Gerben Van Der Hoek
email: g.vanderhoek@uu.nl

Evaluating digital student work through model backtracking

Keywords: Digital assessment, Intelligent Tutoring System, Model tracing

Designing a digital assessment system for mathematics brings along a number of challenges, such as creating an intuitive interface or providing the right feedback. We investigate how these challenges are met in different methods for evaluating digital student work. After done so, we formulate an idea for a new approach: model backtracking. That is, retracing students' calculations through their final or intermediate answers. We explain the mathematical principle behind model backtracking and conclude that the method is promising, despite its limitations. Finally, we hypothesize about possible ways of meeting design challenges using model backtracking and provide recommendations for further research.

Introduction

Digitally assessing mathematics has become increasingly important in the field, since there are many different applications that can lead to increased potential for student learning and summative assessment as well as didactical insight in students' problem-solving behavior. When designing a digital assessment system, a number of challenges needs to be overcome. In this paper we formulate a new approach for evaluating digital mathematical student work, that may help to overcome such challenges: model backtracking (MBT). With this technique, the model the student employs is derived from the final or intermediate answers. The aim of this paper is to explain the idea behind MBT and hypothesize about possible applications, this paper is therefore purely theoretical.

Although MBT could be used in summative settings, in this paper we mainly focus on the applications of MBT in formative settings. We single out intelligent tutoring systems (ITSs) to discuss in detail and outline the general structure of ITSs. We then proceed to investigate feedback and relate specific feedback to the granularity of the student input. We elaborate on various challenges that arise when designing ITSs. The principles behind MBT are explained and we proceed to hypothesize on how MBT may help to overcome design challenges. After done so we discuss the limitations of MBT and give suggestions for further research. Since MBT is still very much in a developmental stage, the results in this paper are of a hypothetical nature, indicating which design difficulties could be overcome using MBT.

Intelligent tutoring systems

ITS can guide the learning process by providing students with feedback. There are essentially two types of feedback: inner loop feedback which focusses on in-task guidance, and outer loop feedback which guides the learning process over several tasks [START_REF] Santos | Interoperable intelligent tutoring systems as open educational resources[END_REF][START_REF] Vanlehn | The Behavior of tutoring systems[END_REF]. Inner loop feedback can provide appropriate hints if a student fails to make a correct step or is unable to successfully complete the task [START_REF] Heeren | Feedback services for stepwise exercises[END_REF]. Outer loop feedback can include an indication of the degree of mastery of different learning goals, based on a student model covering the domain. From such a model a suggestion on the next task to be completed by the student can be provided adaptively [START_REF] Heeren | Fine-Grained Cognitive Assessment Based on Free-Form Input for Math Story Problems[END_REF].

Generally, ITSs consist of four modules [START_REF] Nwana | Intelligent tutoring systems: an overview[END_REF], as Figure 1 illustrates. The user interface module is used for communication between the system and the student. It is an important part of the ITS since the way in which information is displayed can affect, for instance, the willingness of the student to work with the ITS. The user interface module communicates directly with the tutoring module; this module is also known as the pedagogical module, it can make educational decisions such as suggesting the next tasks best suited for the student or how much and what type of feedback to provide. The tutoring module draws on the student model module which contains information about the knowledge of the student. This knowledge is often represented as a subset of the expert knowledge in the expert knowledge module [START_REF] Brusilovsky | User Models for Adaptive Hypermedia and Adaptive Educational Systems[END_REF]. The expert knowledge module contains rules governing the way objects in a domain may be manipulated. It also contains so-called buggy rules. These rules model well known student errors within the domain. Currently, there are two approaches to evaluating student input: model tracing [START_REF] Anderson | Cognitive Tutors: Lessons Learned[END_REF] and constraint-based modelling [START_REF] Mitrovic | Intelligent tutors for all: The constraint-based approach[END_REF]. In a model tracing approach, a step in the user input is compared to an expert solution for the problem. If a step deviates from the expert model, a buggy rule can be applied to check which specific error occurred. In constraint-based modelling the input is evaluated using two conditions: a relevance condition and a satisfaction condition. If a relevance condition of the error applies, then the satisfaction condition also needs to be satisfied to flag the error.

Feedback

Both [START_REF] Shute | Focus on formative feedback[END_REF] and [START_REF] Narciss | Feedback strategies for interactive learning tasks[END_REF] studied literature on feedback, in this section we compare both studies with regard to specific errors. In both papers we find evidence that specific student errors need to be known in order to provide meaningful feedback. Both authors give a definition of feedback:

Formative feedback is information communicated to the learner that is intended to modify his or her thinking or behavior for the purpose of improving learning. (Shute) Feedback in instructional contexts is all the post response information that is provided to a learner to inform the learner on his or her actual state of learning. (Narciss) In both definitions feedback is information provided with the intent of informing the learner on the state of learning. Where Shute takes it one step further by demanding that the purpose of feedback is to modify behavior to improve learning. How may learning be improved by communicating information on the actual state of learning? Shute argues that a factor inhibiting learning is uncertainty. Since uncertainty is an unpleasant state that needs to be reduced it induces a cognitive load that could distract attention from actual task completion. Feedback could reduce this uncertainty; however, feedback can also serve the function of informing the learner on possible solving strategies or mistakes. To accomplish this, the feedback needs to be specific [START_REF] Shute | Focus on formative feedback[END_REF] or equivalently: elaborate [START_REF] Narciss | Feedback strategies for interactive learning tasks[END_REF], although, the feedback should not contain the actual solution. Both Shute and Narciss support the claim that specific feedback leads to better learning outcome than feedback only on the correctness of answers. Narciss formulates five cognitive functions for feedback four of which require the specific error to be known. According to Narciss, a key issue is: how well a learning medium (i.e. teacher or ITS) is able to transform a discrepancy between the current state of learning and the required state into feedback that contains relevant information to mastering the requirements. The performance of a learning medium in this respect increases if it is more able to identify specific errors.

Granularity [START_REF] Vanlehn | The Behavior of tutoring systems[END_REF] of the student input plays an important role in digitally assessing students reasoning. The granularity can range from students inputting every aspect of their reasoning to inputting only the final answer. When there is less information available the difficulty of correctly assessing student reasoning increases. Typically, ITSs require that students input every step of their calculation in order to detect specific errors and provide specific feedback in the sense of [START_REF] Shute | Focus on formative feedback[END_REF] and [START_REF] Narciss | Feedback strategies for interactive learning tasks[END_REF]. [START_REF] Drijvers | Digital assessment of mathematics: Opportunities, issues and criteria[END_REF] stipulates that a task shouldn't be essentially altered to accommodate a digital environment. However, inputting every step, in comparison to just calculating steps using pencil and paper, forms an additional requirement for completing a task. Furthermore, inputting every step could be cumbersome and might discourage students from working with ITSs.

Challenges

When designing ITSs there are certain factors that need to be considered.

Interface

One needs to avoid that proficiency in editing mathematical text digitally is required [START_REF] Drijvers | Digital assessment of mathematics: Opportunities, issues and criteria[END_REF]. [START_REF] Heeren | Fine-Grained Cognitive Assessment Based on Free-Form Input for Math Story Problems[END_REF] deal with this problem by allowing all kinds of input, even textual or mathematically nonsensical. The drawback however is that it is very difficult to evaluate such input to a high degree of accuracy.

Stepwise evaluation

When dealing with tasks concerning equivalent expressions, such as solving equations and simplifying algebraic expressions, often assessment systems require stepwise input. For example, Heeren and Jeuring (2014) describe such a system. Through such a system the required feedback can be provided with a high level of expediency if all the steps are inputted. Although inputting each step separately in the environment can be quite time consuming. Additionally, step by step input isn't feasible on devices with small screens such as smartphones, making this technology less accessible.

Granularity

The granularity of the expected student input concerns the step size of the input by the student. If the student skips a few steps the assessment system was expecting, the efficiency of diagnosing possible errors drops. In the ASSISTment system [START_REF] Feng | Addressing the assessment challenge with an online system that tutors as it assesses[END_REF] this problem is solved by asking additional questions to the student. However, in a summative setting there is a risk that these questions give away part of the solution.

Non-stepwise evaluation

Some tasks consist of the calculation of several different non-equivalent components such as for instance, linear extrapolation where first the average change is computed before computing a future value. Since stepwise evaluation generally evaluates equivalency of steps it is not applicable here. One way to deal with this problem is to ask the student to input each of the different components of the calculation. The drawback however, is that this gives away part of the structure of the calculation. [START_REF] Tacoma | Automated Feedback on the Structure of Hypothesis Tests[END_REF] solve this problem by letting the student select the next step from a dropdown menu before performing the actual calculation. However, this only partly solves the problem since the menu only contains steps necessary to perform the required computation.

The general idea of model backtracking

We propose to retrace the students' computation from the final answer. There will be obvious limitations to this method, however many of the problems mentioned above could be solved for certain classes of digital assessment environments.

Consider the task of computing the derivative of 𝑓(𝑥) = (3𝑥 + 2) 3 , if the student arrives at the answer 𝑓′(𝑥) = 3 • (3𝑥 + 2) 2 it is unclear if the student forgot to multiply with the exponent 3, or if the student forgot to apply the chain rule. In this example these two errors are indistinguishable. However, when computing the derivative of 𝑓(𝑥) = (3𝑥 + 2) 5 these errors are in fact distinguishable since they lead to different answers. So, when implementing a task for computing derivatives of functions of the type: 𝑓(𝑥) = (𝑝 1 𝑥 + 𝑝 2) 𝑝 3 one should choose the parameters such that 𝑝 1 ≠ 𝑝 3 .

The idea behind model backtracking is to design tasks in ITSs with parameters that make it possible to distinguish different errors. Along with a structure in the expert model module as a tree containing all possible paths of errors through the steps of the task given the predetermined buggy rules. When certain conditions are satisfied one can retrace a student error by means of just the final answer. Of course, model backtracking can also be used for evaluating intermediate steps in a computation.

One immediately notices that not all tasks can be designed using MBT (since there are restrictions on the initial values of the task), for instance not all real-world tasks can be modelled using MBT. However, MBT works well on tasks that draw on random parameters, these parameters can simply be restricted to a domain that makes backtracking possible.

The mathematics of MBT: an example

In this section we will describe how model backtracking works, doing so we will formulate certain definitions that can be extended to more general settings. We start out by defining what we mean by a computational task. We proceed to show how, in this setting, buggy rules can be represented by functions and that various errors are comprised of compositions of these functions. We then find sufficient conditions for determining the path, that is, which composition of functions, the student used to arrive at a certain answer. When the path is known, appropriate feedback can be given to the student.

A computational task is the pair (Ω, 𝐹) where Ω ⊆ ℝ 𝑛 is called the parameter space and 𝐹: Ω ⟶ ℝ 𝑚 is called the computation. An element (𝑝 1 , 𝑝 2 , ⋯ , 𝑝 𝑛) ∈ Ω represents the given parameters in the task.

Given the table

𝑡 … 𝑡 1 … 𝑡 2 … 𝑁 … 𝑁 1 … 𝑁 2 …
Assume 𝑁 depends on 𝑡 exponentially.

Compute the growth factor per unit of 𝑡. This task is a computational task with Ω = {(𝑡 1 , 𝑡 2 , 𝑁 1 , 𝑁 2) ∈ ℝ 4 | 𝑡 1 < 𝑡 2 , 𝑁 1 ≠ 𝑁 2 } and

𝐹(𝑡 1 , 𝑡 2 , 𝑁 1 , 𝑁 2) = (𝑁 2 𝑁 1) 1 𝑡 2 -𝑡 1
On didactical bases we can distinguish between two steps in this calculation:

Step 1: Computing the growth factor for [𝑡 1 , 𝑡 2]:

𝑓 1 (𝑡 1 , 𝑡 2 , 𝑁 1 , 𝑁 2): = (𝑡 1 , 𝑡 2 , 𝑁 2 𝑁 1

)

Step 2: Computing the growth factor per unit of time:

𝑓 2 (𝑡 1 , 𝑡 2 , 𝑥): = 𝑥 1 𝑡 2 -𝑡 1
We see that:

𝐹 = 𝑓 2 ∘ 𝑓 1
In each of the two steps we can now introduce buggy rules for errors in the steps, the compositions of these rules represent different calculations by the student: (24,28,8,16) backtracking the student error isn't possible. We wish to avoid this.

𝐸 1 : = {𝑒 1 1 , 𝑒 2 1 ,
Having the entries in 𝑀 ̅ differ can be characterized by the following equivalent statement:

For fixed 𝑝 ∈ Ω we define the function:

𝑀 𝑝 : {1,2,3} × {1,2,3} ⟶ ℝ 𝑀 𝑝 (𝑖, 𝑗): = 𝑀 ̅ 𝑖,𝑗 (𝑝)

Then 𝑀 𝑝 needs to be injective.

For the computational task, we only select parameters from: 𝑅𝑆 ≔ {𝑝 ∈ Ω|𝑀 𝑝 is injective}. This ensures that we will be able to backtrack the students' computation. These definitions can be generalized to tasks with more than two steps. And depending on the structure of the ITS1 one can find relaxations on the injectivity condition allowing for a wider selection of possible parameters.

The definition of a computational task as the pair (Ω, 𝐹) where Ω ⊆ ℝ 𝑛 and 𝐹: Ω ⟶ ℝ 𝑚 seems to exclude tasks involving computations done on functions. However, when the class of functions is known, these functions may often be expressed in terms of their parameters. Therefore, MBT can also be used to develop ITSs involving functions and algebraic expressions. Arguably MBT can even be used for evaluating formulae derived from geometrical representations.

Figure 1 :

 1 Figure 1: structure of ITSs from Heeren & Jeuring, 2014, p.112, with permission

Figure 2 :

 2 Figure 2: computational task on computing a growth factor from a table

 Above we see all the entries of 𝑀 ̅ are different, which means the steps through the various errors are uniquely determined by the outcome; whereas below we see that various entries of 𝑀 ̅ have the same value. So, for 𝑝 =

	𝐸 2 : = {𝑒 1 2 , 𝑒 2 2 , 𝑒 3 2 } denotes the set of rules for the second step where: 𝑒 1 2 : = 𝑓 2 and 𝑒 2 2 and 𝑒 3 2 are buggy
	rules defined by:			
	Dividing by elapsed time:		𝑒 2 2 (𝑡 1 , 𝑡 2 , 𝑥): =	𝑥 𝑡 2 -𝑡 1
	Forgetting to recalculate for time:	𝑒 3 1 (𝑡 1 , 𝑡 2 , 𝑥): = 𝑥
	Now for fixed 𝑝 ∈ Ω we look at the 3 × 3 matrix 𝑀 ̅ (𝑝) with entries: 𝑀 ̅ 𝑖,𝑗 : = 𝑒 𝑗 2 ∘ 𝑒 𝑖 1 (𝑝). We can
	compare the input from the user to the entries in this matrix. For instance, if the input matches the
	entry 𝑀 ̅ 3,2 (𝑝), we know the growth factor was calculated as a slope.
	Two examples of 𝑀 ̅ (𝑝):			
		1.63 2.3 11.34 𝑀 ̅ (22, 27, 29, 329) = (0.62 0.02 0.09)
			3.12 60	300
		1.19 0.5 𝑀 ̅ (24, 28, 8, 16) = (0.84 0.13 0.5 2)
			1.68	2	8
	𝑒 3 1 } denotes the set of rules for the first step where: 𝑒 1 1 : = 𝑓 1 and 𝑒 2 1 and 𝑒 3 1 are buggy
	rules defined by:			
	Wrong time direction:	𝑒 2 1 (𝑡 1 , 𝑡 2 , 𝑁 1 , 𝑁 2): = (𝑡 1 , 𝑡 2 ,	𝑁 1 𝑁 2)
	Calculating the difference: 𝑒 3 1 (𝑡 1 , 𝑡 2 , 𝑁 1 , 𝑁 2): = (𝑡 1 , 𝑡 2 , 𝑁 2 -𝑁 1)

For examples of ITS with MBT see: Linear interpolation: https://www.geogebra.org/m/e5ewfude Linear equations: https://www.geogebra.org/m/rqa4w5wb

Acknowledgement

Special thanks to Paul Drijvers for all his support and writing pointers.

Possible applications of MBT

In this section we conjecture how MBT could contribute to overcome design challenges. However, currently these conjectures remain to be proven.

Interface

When working in an ITS for the first time, students often start by inputting only their final answer. Therefore, just demanding the final answer is very intuitive. With the use of MBT, feedback can be provided on the basis of just this input. A student can make a calculation using pen and paper and input only the final answer, thereby staying very close to the way mathematics is normally practiced [START_REF] Drijvers | Digital assessment of mathematics: Opportunities, issues and criteria[END_REF]. As very little input is needed ITSs can be created for small screen devices, which make ITS technology more accessible. Of course, major drawbacks are that sloppy notation isn't detected nor corrected.

Stepwise evaluation and Granularity

By adding the identity function to the set of rules at each step, MBT could also be used to inspect intermediate steps in a calculation. Where, if steps are skipped or haven't been inputted, MBT could still provide feedback. This could constitute an addition to existing systems improving error detection. MBT could be used in combination with constraint-based modelling and model tracing. This way expert knowledge modules that already exist can be employed. When a student for instance inputs step 𝑖 and then inputs step 𝑗 (> 𝑖 + 1) without inputting the intermediate steps, the parameters at step 𝑖 can be seen as starting parameters p for a computational task. The corresponding function 𝑀 𝑝 generally won't be injective however a list of possible paths can still be produced.

Non-stepwise evaluation

If the task consists of the calculation of several different non-equivalent components it is possible to let students work in a digital environment without adding any structure: an empty page. After which the computations are scanned for intermediate answers [START_REF] Heeren | Fine-Grained Cognitive Assessment Based on Free-Form Input for Math Story Problems[END_REF]. By construction the intermediate (wrong) answers differ. Therefore, it may be possible to recognize intermediate steps by just the values they produce and provide specific feedback.

Limitations and suggestions for further research

A clear drawback is that MBT can only be implemented for certain tasks since the possible parameters will be subject to constraints. Furthermore, the class of computational tasks does not contain many higher order tasks, aside from deriving expressions from geometrical representations. Further research might extend the possibilities of ITS beyond computational tasks. One of the drawbacks of the design principle of MBT is that it is very specific for the computational task. Usually ITSs make use of expert knowledge modules which contain rules for an entire mathematical domain. This way different tasks can be designed using the same set of rules [START_REF] Heeren | Feedback services for stepwise exercises[END_REF]. Perhaps MBT could also be used over entire domains, possibly in combination with existing expert knowledge modules. Currently it is unclear what the performance of error detection trough MBT is, nor is it clear if specific feedback on the final answer enhances learning. Empirical experiments will be necessary to indicate if MBT can contribute to a positive learning outcome.