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Abstract 

When human participants repeatedly encounter a velocity-dependent force field that distorts 

their movement trajectories, they adapt their motor behavior to recover straight trajectories. 

Computational models suggest that adaptation to a force field occurs at the action selection 

level through changes in the mapping between goals and actions. The quantitative prediction 

from these models indicates that early perturbed trajectories before adaptation and late 

unperturbed trajectories after adaptation should have opposite curvature, i.e. one being a mirror 

image of the other. We tested these predictions in a human adaptation experiment and we found 

that the expected mirror organization was either absent or much weaker than predicted by the 

models. These results are incompatible with adaptation occurring at the action selection level 

but compatible with adaptation occurring at the goal selection level, as if adaptation corresponds 

to aiming toward spatially remapped targets. 

Author summary 

Motor adaptation is a fundamental component of the acquisition and maintenance of skilled 

behaviors. Yet the nature of motor adaptation remains poorly understood: when we encounter 

forces which repeatedly perturb our movements, do we change our actions or our plans? Current 

computational models of motor control favor the former, but this assumption has not been 

thoroughly investigated. To address this issue, we compared predictions of a model of motor 

adaptation based on changes at the action level with observations obtained from a group of 

human participants involved in a motor adaptation task. The behavior of the participants clearly 

differed from the model's predictions. These results challenge contemporary perspectives on 

motor adaptation. 
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Introduction 

Motor behavior is both highly stable and widely flexible (Bernstein 1967; Glencross 1980; 

Krakauer et al. 2019). On the one hand, a large repertoire of skilled, efficient behaviors (e.g. 

speech production, handwriting, gait, …) is maintained for decades, often robust in the face of 

injury, aging, disease or brain damage. On the other hand, a few movements performed in a 

novel sensorimotor environment (e.g. wearing prismatic glasses, holding a visco-elastic 

manipulandum, …) or in some altered physiological state (e.g. muscular fatigue, pain, …) can 

induce lasting changes in motor performance (Shadmehr and Mussa-Ivaldi 1994; Martin et al. 

1996; Takahashi et al. 2006; Bouffard et al. 2014). A proper balance between stability and 

flexibility is necessary so that (1) ingrained skills remain sensitive to steady and persistent 

changes in the environment, the body and the nervous system but are not disproportionately 

influenced by temporary, incidental events; and (2) new skills can develop at any time. How 

then is skilled movement organized in response to these contrasting priorities? 

 Motor learning and skill acquisition are generally understood from two distinct 

viewpoints (Krakauer et al. 2019). The first view holds that learning occurs at the action 

selection (control) level, and modifies the mapping between the intended goals and those 

actions inclined to achieve these goals (Fig. 1, purple). For instance, in the typical laboratory 

example of adaptation to a velocity-dependent force field (dynamic perturbation; Shadmehr and 

Mussa-Ivaldi 1994), learning has been described either as a compensation process, i.e. mapping 

is learned between states and compensatory forces opposite to the applied forces (Shadmehr 

and Mussa-Ivaldi 1994; Fig. 1B, left and center; see also Fig. 1C, left and center for the case of 

a visuomotor rotation), or as a reoptimization process, i.e. mapping is learned between goals 

and optimal forces to achieve the goals in the presence of the applied forces (Izawa et al. 2008). 

According to the second view, learning occurs at the goal selection level and modifies the 

mapping between intended and actual goals irrespective of how to achieve these goals (Fig. 1B, 
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right). For instance, adaptation to a visuomotor rotation of the visual display (kinematic 

perturbation) results from a redirection process, i.e. a remapping between target and movement 

vectors (Wang and Sainburg 2005; Fig. 1C, right). Although the latter learning process appears 

more flexible and frugal than the former, it is unclear whether it can account for adaptation to 

dynamic perturbations, i.e. when new patterns of force need to be learned. 

 Models based on compensation or reoptimization are well formulated models that can 

be used to make predictions on adaptation to dynamic perturbations (velocity-dependent force 

fields; Shadmehr and Mussa-Ivaldi 1994; Izawa et al. 2008). In particular, the shape of after-

effect trajectories, i.e. late trajectories in the absence of the force field after adaptation, should 

incorporate a "negative image" of the forces induced by the applied force field, a reflection 

which mirrors before-effect trajectories, i.e. early trajectories in the presence of the force field 

before adaptation (this is exactly the case for the compensation model; Shadmehr and Mussa-

Ivaldi 1994). The shape of before-effect trajectories has been thoroughly documented. They are 

initially curved "away" from the baseline (unperturbed) trajectory with a late ensuing correction 

toward the target (Shadmehr and Mussa-Ivaldi 1994). We have not identified any study that 

quantitatively documents the shape of after-effect trajectories. Yet qualitative observations on 

published figures suggest that after-effect trajectories do not obey the predicted mirror 

organization (fig. 2 in Thoroughman and Taylor 2005; fig. 4 in Hwang et al. 2006; fig. 1 in 

Nozaki et al. 2006; fig. 2 in Huang and Shadmehr 2007; fig. 2 in Darainy et al. 2009; fig. 1b in 

Sun et al. 2022). In fact after-effect trajectories seem to resemble "kinematic" trajectories, i.e. 

trajectories observed during visuomotor rotation or target jump tasks rather than "dynamic" 

trajectories observed during force field tasks (examples of contrast between kinematic and 

dynamic trajectories in fig. 2 in Diedrichsen et al. 2005; fig. 6 in Torrecillos et al. 2015). They 

might thus be compatible with a redirection process, as if adaptation corresponded to aiming 

toward spatially remapped targets. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6725605/figure/FIG2/
https://journals.physiology.org/doi/full/10.1152/jn.01281.2006#F2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694125/figure/f2/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1479774/figure/FIG2/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6795206/figure/F6/
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 The main goal of this study is to clarify the nature of before-effect and after-effect 

trajectories during a force field adaptation task in order to assess the pertinence of the 

compensation/reoptimization process as a basis for motor adaptation. A secondary goal is to 

promote the redirection process as a promising candidate for motor adaptation. 

Results 

We designed a force field adaptation experiment with a large number of trials and a small 

fraction of catch trials (unexpected addition or removal of the force field) to obtain "pure" 

before-effect and after-effect trajectories uncontaminated by ongoing learning processes 

(Thoroughman and Shadmehr 2000). Twenty two participants were asked to make fast, planar, 

forward arm reaching movements from a start position to a target position located 0.1-m away 

in the presence of a null field or a perpendicular clockwise (CW) or counterclockwise (CCW) 

velocity-dependent force field (Fig. 2A,B). The participants performed four blocks of trials 

(Fig. 2C) and we identified baseline, before-effect, adapted, and after-effect trajectories (see 

Material and methods). For data analysis, all trajectories were displayed with a CW deviation, 

i.e. for a CCW perturbation, a vertical symmetry was applied to the trajectories. A trajectory 

was described by (1) the angle (counted positive in the CCW direction) of its tangent relative 

to the target direction (Fig. 2D); (2) the time derivative of the trajectory angle (see Material 

and methods for details). 

 The same color code is used in all the figures: black (baseline), red (before-effect), green 

(adapted), blue (after-effect). For legibility, a * is added on each figure panel when the display 

contains results of simulations. 

Predictions 

The compensation model (Shadmehr and Mussa-Ivaldi 1994) makes immediate predictions on 

the shape of before-effect and after-effect trajectories and corresponding velocity profiles 
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(Fig. S1). These prediction will not be further considered: they are robust but lack pertinence 

as the compensation model is not a general model of motor control (see Discussion). In order 

to build precise predictions for the reoptimization model, we proceeded in the following way. 

We considered one participant (P7) and analyzed detailed characteristics of her motor behavior 

(Fig. 3). We calculated the mean baseline and before-effect trajectories (Fig. 3A) and velocity 

profiles (Fig. 3B). For each single trial (e.g. a baseline trial; Fig. 3C), we calculated a discrete 

measure of the frequency content (peak frequency; number of minima+number of 

maxima/duration/2) of velocity, acceleration and jerk traces. We plotted the peak frequency of 

all trials for the two types of trial (Fig. 3G). These results show that the smoothness of mean 

trajectories and velocity profiles (Fig. 3A,B) is an artifact of averaging widely nonsmooth and 

variable single trials (Fig. 3C,G). Although these observations are not surprising (Vallbo and 

Wessberg 1993; Guigon et al. 2019), they cannot be explained by models that produce 

temporally invariant smooth movements (Flash and Hogan 1985; Harris and Wolpert 1998; 

Todorov and Jordan 2002). To circumvent this difficulty, we considered a model which 

explains the frequency content of movements (Fig. 3C,G) by the pursuit of intermediate goals 

(via-points) updated at ~8 Hz (see Material and methods; Guigon et al. 2019; Guigon 2022). 

We searched for a series of via-points 𝑆 and model parameters that account for experimental 

paths and velocity profiles of baseline and before-effect trajectories (Fig. 3D,E; for a parametric 

study of the model, see below). The series 𝑆 contained three intermediate via-points (squares; 

Fig. 3D) at 32, 64 and 96% of the distance to the target in the direction of the target, and the 

target itself (circle; Fig. 3D). Note that we did not search for the "best fit", as all single trials 

were different (Fig. 3C,G). Note also that the intensity of the modeled force field (𝜑) was lower 

than that of the experimental field (see Discussion). The amplitude and frequency contents of 

the resulting movement were consistent with the experimental data (Fig. 3F,G). At this stage, 

the proposed model is appropriate for trajectory formation and online motor control during 
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perturbations and further accounts for many characteristics of motor behavior (Guigon 2022). 

We can now obtain proper predictions for the reoptimization model (Fig. 4). The adapted 

trajectory was not a straight path but an overcompensation (green; Fig. 4A) which is consistent 

with Izawa et al. (2008). Its velocity profile was close to the baseline velocity (green vs black; 

Fig. 4B). The after-effect trajectory had the expected mirror organization relative to the before-

effect trajectory (blue vs red; Fig. 4A) and a velocity profile which resembled the before-effect 

profile (blue vs red; Fig. 4B). The mirror effect is quantitatively described in Fig. 4C,D. The 

trajectory angles had opposite monotonic trends for before-effect and after-effect trajectories 

over the first ~0.6 s (blue vs red; Fig. 4C) with corresponding changes in the sign of the 

derivatives (blue vs red; Fig. 4D). In the following, we will focus on the early part of the 

trajectories (0.4 s; dotted boxes in Fig. 4C,D; Fig. 4E,F) since trajectory averaging for 

experimental data may produce unreliable results for the late part of the trajectory. Two 

quantitative observations are relevant: (1) the angle derivative of the before-effect trajectory 

became positive at 0.29 s (vertical red dashed line; Fig. 4F). This result is consistent with 

experimental data in P7 and across all the participants (Fig. S2); (2) the angle derivative of the 

after-effect trajectory became negative at 0.31 s (vertical blue dashed line; Fig. 4F) which 

means that the derivative is negative 22.5% of the time during the first 0.4 s. For comparison 

with experimental data, we will use this number rather than the time of change in sign which 

might not be well defined in the data (e.g. due to multiple changes in sign). 

 On the one hand, the expected positive sign of the derivative of the after-effect trajectory 

angle would add support to the reoptimization model. On the other hand, a null or negative 

derivative would contradict the reoptimization model. 

Two participants 

Results for participant P7 shown in Fig. 5 (same format as in Fig. 4) followed the typical pattern 

observed in force-field adaptation experiments (Shadmehr and Mussa-Ivaldi 1994; Izawa et al. 
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2008): 1. The mean baseline trajectory was straight (black; Fig. 5A); 2. The mean before-effect 

trajectory deviated in the direction of the perturbation with a late hook-like correction (red; 

Fig. 5A); 3. The mean adapted trajectory was straighter than the mean before-effect trajectory 

but not as straight as the baseline trajectory (green; Fig. 5A); 4. The mean after-effect trajectory 

was deviated in the direction opposite to the perturbation (blue; Fig. 5A); 5. The velocity 

profiles had a large initial peak followed by one or more smaller peaks (Fig. 5B); 6. Single trial 

trajectories were variable but consistent with the mean trajectory (Fig. 5C); 7. Lateral deviation 

decayed exponentially across trials (𝑅2 = 0.69; Fig. 5D). 

 To test the reoptimization model, we analyzed the time course of the mean trajectory 

angle (Fig. 5E) and trajectory angle derivative (Fig. 5F). As expected, the mean angle of the 

before-effect trajectory decreased until ~0.3 s and then increased (red; Fig. 5E,F and inset). The 

mean angle of the after-effect trajectory was initially approximately constant and then decreased 

(blue; Fig. 5E,F and inset). To assess the statistical significance of this observation, we 

performed a t-test on the sign of the angle derivative (𝐻0 : = 0 vs 𝐻1 : ≠ 0; 𝑁 = 34 trials) at 

each timestep. The corresponding p-value was > 0.05 for the first 0.1 s (Fig. 5G), which 

indicates that we cannot reject the hypothesis that the angle derivative is zero. The p-value was 

<  0.05 after 0.1 s (Fig. 5G), meaning that the angle derivative was significantly different from 

zero and negative. We calculated the Bayes factor bf10 for 𝐻1 vs 𝐻0 which indicated that the 

data were 1 to 5 times more likely under 𝐻0 than under 𝐻1 when 𝑝 > 0.05 (Fig. 5H). 

 A different behavior was observed for participant P5 (Fig. 6). The mean before-effect 

and after-effect trajectories were symmetrically organized (Figs. 6A,C,D). A statistical analysis 

indicated that the angle derivative of the after-effect trajectory was non-zero and positive 

between ~0.1 and ~0.3 s following movement onset (p-value < 0.05, Fig. 6E; bf10 > 3, 

Fig. 6G). Although the behavior of this participant matches some predictions of the 
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reoptimization model, the experimental path and velocity profile of the after-effect trajectory 

were different from the predicted path and velocity profile (Fig. 6A,B vs Fig. 4A,B). 

All participants 

For each participant, we calculated the percentage of time over the first 0.4 s during which the 

angle derivative of the after-effect trajectory was statistically null or negative using both p-

values and Bayes factors (see Fig. 5G,H). The reoptimization model predicts that this 

percentage should be around 22.5 (Fig. 4F). The experimental percentage was different from 

the predicted percentage for all the participants (Fig. 7A,B). The behavior of ten participants 

(blue bars; Fig. 7) was similar to the behavior of P7 (see Fig. 5; Fig. S3). The behavior of eight 

participants (dark blue bars; Fig. 7) was similar to the behavior of P5 (see Fig. 6). The 

quantitative results for these participants are shown exhaustively in Fig. S4. It can be observed 

that the behavior of these participants is rather homogeneous and differs qualitatively and 

quantitatively from the predicted behavior in terms of path and velocity profile. The two 

remaining participants (light blue bars; Fig. 7) failed to improve their behavior with training 

(Fig. S5). 

Redirection model 

We simulated adaptation through redirection using an ad-hoc series of via-points 𝑆′ to obtain 

an adapted trajectory (green; Fig. 8A, left) which resembles a real adapted trajectory (green; 

Fig. 5C). We generated small variations around these via-points to obtain an ensemble of 

adapted trajectories (green; Fig. 8A, right). The corresponding after-effect trajectories (blue; 

Fig. 8A) resembled real after-effect trajectories (blue; Fig. 5C). The velocity profiles, the 

trajectory angles and the trajectory angle derivatives were consistent (Fig. 8B,C,D). As 

expected, we observed an absence of mirror effect, the angle derivative of after-effect 

trajectories being positive < 10% of the time in the first 0.4 s (Fig. 8D). 
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Parametric study of the reoptimization model 

The conclusions of this study are highly dependent on the predictions of the reoptimization 

model. As the model contains parameters, it is important to understand the influence of these 

parameters on the proposed predictions. We explored the role of 3 parameters: the feedback 

delay ∆, the noise ratio 𝜎𝜉/𝜎𝜔 of motor to sensory noise variance used in the state estimator, 

and the muscle gain 𝑔sh/𝑔el. The first two parameters modulate how sensory information 

participates in state estimation. The third parameter calibrates the contribution of shoulder and 

elbow torques to coordination. The trajectories, velocity profiles, trajectory angles and 

trajectory angle derivatives were consistent across variations of these parameters (Figs. S6, S7, 

S8). The mirror organization between before-effect and after-effect trajectories was robustly 

observed. We note that the time at which the angle derivative of the before-effect trajectory 

becomes negative (Fig. 4F) varied with the feedback delay (Fig. S6D) and the torque ratio 

(Fig. S8D). 

 A set of parameters (𝑤𝜃
#, 𝑤𝜃̇

#, 𝑤𝛼
#, 𝑤𝜀

#) specify the boundary conditions at the via-points, 

i.e. whether position, velocity, activation and excitation are forced to take specified values. The 

predictions were built with 𝑤𝜃
# ≠ 0 and 𝑤

𝜃̇
# = 𝑤𝛼

# = 𝑤𝜀
# = 0 (constraints only on position). The 

role of these parameters is illustrated in Fig. S9. Although they have little influence on 

acceleration (Fig. S9A), they have a clear effect on jerk, with a higher level of jerk whenever 

the constraints are not applied exclusively to position (Fig. S9B). Only the lower level of jerk 

(constraints on position) is consistent with experimental data (Fig. 4C,D). 

Discussion 

Classical computational models of motor adaptation assume that learning occurs at the action 

selection level (Shadmehr and Mussa-Ivaldi 1994; Izawa et al. 2008). We derived predictions 

for these models which show that after-effect trajectories following adaptation to a velocity-
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dependent force field are close to a mirror of before-effect trajectories (Figs. 4, S1). 

Experimental data collected in twenty-two participants did not follow these predictions (Figs. 5, 

6, 7, S3, S4). We discuss implications and limitations of these observations. 

 To open the discussion, we note that we have worked from the modeling prediction that 

a mirror organization should be observed between before-effect and after-effect trajectories 

following adaptation to a force field. Yet, at least in the case of adaptation to a visuomotor 

rotation, the strength and the shape of the after-effects may depend not only on the nature of 

the perturbation but also on the adaptation protocol, e.g. the presence of error-clamp trials 

(Vaswani et al. 2015). It is unclear how we can account for this fact in the framework of 

reoptimization models. We also note that the present study is not concerned with how 

adaptation occurs on a trial-by-trial basis and with issues related to feedforward and feedback 

corrections (Albert and Shadmehr 2016). 

 Hundreds of force field adaptation studies have been performed since the seminal study 

of Shadmehr and Mussa-Ivaldi (1994), but none of them have quantitatively documented 

properties of after-effect trajectories. Although many published figures could informally be 

used to gain qualitative information on before-effect and after-effect trajectories and their 

differences (to mention a few: figs. 3 and 7 in Lackner and DiZio 1994; fig. 13 in Shadmehr 

and Mussa-Ivaldi 1994; see Introduction for other references), they are not sufficient to draw 

firm conclusions. The lack of a specific interest for after-effect trajectories might be related to 

the prevalent view in computational motor control that adaptation results from changes at the 

control level, and that properties of after-effect trajectories are a direct by-product of these 

changes (Shadmehr and Mussa-Ivaldi 1994; Izawa et al. 2008). In this framework, an after-

effect trajectory reflects a kind of compensation that attempts to negate the forces induced by 

the applied force field and thus inheres to the properties of the force field itself. As velocity 

along the trajectory increases, the compensation force increases and the after-effect trajectory 
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curves away from the baseline trajectory, thus depicting a mirror image of the before-effect 

trajectory. Both the compensation and the reoptimization models (Shadmehr and Mussa-Ivaldi 

1994; Izawa et al. 2008) obey to this premise (Figs. 4, S1). Nonetheless, the data presented in 

this study are incompatible with these models. The expected mirror organization was 

completely absent in 11/22 participants, and present but far smaller than expected in the 

remaining participants (Fig. 7). Yet, we did not average data across the participants, provided 

single participant analyses (Figs. S3, S4), and made the raw data available to give a chance to 

any possible interpretation. 

 At this stage, it is interesting to consider the implication of adaptation at the action 

selection level. It would mean that each new adaptation requires the building of a dedicated 

control policy which inherits from general motor abilities (e.g. when we hold a manipulandum 

in a force field task, we do not need to relearn motor coordination from scratch), but remains 

insulated from general and specific skills (e.g. it does not interfere with our ability to walk or 

to play the piano). The corresponding motor architecture would come with a heavy 

computational burden to build, maintain, update, share and exploit each learned ability in each 

specific context. A solution based on the storage of multiple controllers has been proposed 

(Wolpert and Kawato 1998), but does not address the associated computational burden. 

Furthermore, its proposed implementation through the huge computational power of the 

cerebellum is probably incompatible with the predominant sensory nature of cerebellar 

processing (Gao et al. 1996; Nixon 2003). Besides these computational issues, interlimb 

transfer of force field adaptation (Criscimagna-Hemminger et al. 2003; Malfait and Ostry 2004) 

and adaptation by mere observation (Mattar and Gribble 2005) are also inconsistent with 

adaptation at the action selection level. The study of de Rugy et al. (2012) which is often taken 

to argue against optimal motor control models, for once, would be consistent with our view. 

They showed that human participants failed to reoptimize their muscle recruitment patterns 
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following (virtual) changes in muscle actions. They interpreted their results by the existence of 

"habitual" coordination patterns that are unaffected by selective modifications of the peripheral 

apparatus. A further interpretation could be that there is no available mechanism for adaptation 

at the action selection level. A last, indirect argument is related to the contribution of the 

primary motor cortex (M1) to motor adaptation. Since there is strong evidence that M1 

participates to low-level (e.g. muscular) aspects of motor control (Evarts 1968; Sergio et al. 

2005; Lillicrap and Scott 2013), a likely hypothesis is that M1 neurons are involved in processes 

subserving adaptation to dynamic perturbations (e.g. force field). Yet, Perich and Miller (2017) 

have shown that the directional selectivity of M1 neurons was modified by the application of a 

force field but remained unchanged during the course of adaptation. Their results suggest that 

adaptation occurs upstream of M1 and is transmitted to M1 which is responsible for motor 

execution. 

 An alternative view is that adaptation to a novel motor environment relies on changes 

at the goal selection level (redirection model), i.e. aiming toward appropriately chosen 

successive spatial goals (e.g. via-points) would mimic adaptation and after-effects in a force 

field (Fig. 8). In the proposed scenario, the "memory" of the perturbation is not a continuous 

mapping between state and force but a discrete set of via-points. This scenario can be 

reproduced in a simulation by a multiple-step target jump protocol involving several 

intermediate via-points and the actual target where the via-points have been chosen by hand to 

obtain an adapted trajectory which is close to the baseline trajectory (Fig. 8). Our data are not 

incompatible with this view. Yet, they cannot be said to support it since the proposed adaptation 

mechanism remains incompletely specified: there is no structured approach to select or learn to 

select proper via-points. Interestingly, the redirection model is versatile enough to account for 

the whole dataset. The absence of a mirror effect in some participants and its presence in others 

can be explained by a specific configuration of via-points (Fig. 8A,B). Whether it is possible to 
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find the location of the via-points for a given task remains an open question. It is tempting to 

assume that variability should be minimal at the via-points as in the experiment of Todorov and 

Jordan (2002) in which the via-points are indicated to the participants (their fig. 3). 

Unfortunately, kinematic variability is so large (e.g. Fig. 3G) that we cannot expect anything 

precise from an analysis of variability, suggesting that in the absence of a constrained trajectory, 

the via-points may be themselves be subject to variability from trial to trial. 

 The proposed mechanism should not be linked to the kind of explicit, cognitive strategy 

that can be used to compensate for a visuomotor rotation simply by changing the aiming 

direction (Mazzoni and Krakauer 2006). Here, the proper choice of via-points is conceived as 

the outcome of a learning process. What drives the learning process is not specified, but could 

possibly be cast in a cost/benefit framework (e.g. effort vs accuracy). We have no information 

on the explicit or implicit nature of the mechanism. Yet, in post-experiment interviews, we 

noted that several participants believed that the after-effect deviations were due to a force field 

and not to their own behavior, which suggests that they probably had little conscious control 

over their behavior once adapted to the perturbation. 

 A possible concern is the seemingly ad hoc nature of the proposed scenario. However 

this scenario is derived from a consistent theoretical construct which accounts for the 

production of fast and slow movements, the distinction between discrete and rhythmic 

movements, the ubiquity of isochronous behaviors, the existence of scaling laws, power laws 

and speed-accuracy tradeoffs (Guigon 2022). Thus motor control would involve a unique, 

general-purpose, task-independent action selection mechanism (controller) and each task would 

have its own representation defined as a series of successive intermediate goals updated at a 

fixed frequency and pursued at a fixed horizon. In this framework, a skilled movement is not 

defined by the operation of a dedicated, "skilled" controller, but the use of a dedicated, "skilled" 

task representation. Consider the following example. It is probable that none of the readers of 
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this article have the tennis skills of a top ranked tennis player. Yet, for the most part, they would 

not be clumsy in activities of daily living, probably have their own motor skills, and should 

sometimes be able to produce a magnificent backhand worthy of a good tennis player. 

Accordingly, the difference between a novice and an expert would not be found at a control 

level, e.g. a difference in mastering coordination, but at the level of task representation, i.e. how 

successive goals are consistently set to properly elicit and guide actions. Our view of motor 

adaptation can effortlessly be cast in this framework. Interestingly, the computational burden 

associated with the storage of multiple controllers is significantly alleviated with the storage of 

multiple task representations. Task representations are discrete sets which are much more frugal 

in neural resources than continuous mappings. Furthermore, they can be scaled spatially and 

shared between effectors, accounting for motor equivalence. Issues related to the stability and 

flexibility of skills appear much less enigmatic when skills are conceived as task representations 

rather than controllers. 

 The main limitation of this study is its strong reliance on computational modeling. Our 

conclusions are based on the divergence between experimental data and predictions of the 

compensation/reoptimization models. So it is fundamental to check that the proposed 

predictions are both robust and realistic. As far as robustness is concerned, there is no difficulty 

with the compensation model which is well-formulated and easy to simulate. However, this 

model has little general relevance for motor control as it does not provide solutions to central 

problems such as trajectory formation and coordination (Todorov and Jordan 2002). For this 

reason, we have not pursued comparisons with this model. The reoptimization model is based 

on optimal feedback control (Todorov and Jordan 2002) and has been updated here to account 

for proper online feedback control (Guigon 2022). It generates movements with realistic 

trajectories, velocity profiles, and amplitude and frequency contents (Fig. 3). We have shown 

that its predictions are robust to parameter changes (Figs. S6, S7, S8). 
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 An unsettled and interesting issue is related to the intensity of the applied force field. 

The predictions were obtained with a 2-Ns/m force field as compared to the 10-Ns/m field of 

the experiment. In the model, for a given perturbation intensity, the size of the lateral deviation 

of the before-effect trajectory is determined by the interplay between the operation of the state 

estimator and the dynamics of the arm. Two observations can be made. First, changes in 

parameters of the state estimator (feedback delay, noise ratio) can reduce the impact of the force 

field. Yet even a fine tuning of these parameters would not lead to a realistic trajectory deviation 

for a 10-Ns/m field. Second, parameters of the dynamics have also an influence on the response 

to perturbations. For instance, we have assessed the influence of the torque ratio (Fig. S8). This 

parameter reflects the relative efficiency of shoulder and elbow muscles, but its value is not 

easy to set as it depends on the physiological cross-sectional area, the innervation ratio, the 

moment arm and the modulation of force production by firing rate and recruitment in pools of 

motoneurons of each muscle. Furthermore, we cannot play freely with this parameter as it has 

a strong impact on the timing of the movement (Fig. S8D). Other parameters of the dynamics 

cannot be modified as they pertain to intrinsic characteristics of the arm. 

 We propose two ideas to obtain quantitatively more realistic deviations with respect to 

the intensity of the perturbation. The first idea is to use a more realistic dynamics for the 

modeled arm. For simplicity, we considered the control of a planar two-link arm. Yet the 

participants were free to use all available degrees of freedom from the trunk to the wrist. The 

corresponding kinematic chain would likely offer a larger inertial resistance to perturbations. 

The second idea is in fact an extension of the first one and invokes impedance to account for 

resistance to perturbations, i.e. not only inertia, but also viscosity and stiffness, could contribute 

to the resistance (Hogan 1985; Burdet et al. 2001). In the simulations, we used a long feedback 

delay (0.12 s) to clearly indicate that any kind of instantaneous, short-latency and medium-

latency visco-elastic contributions of muscles and tendons remained unmodeled. A model of 
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these contributions is feasible for perturbations about a static posture (Crevecoeur and Scott 

2014) but remains elusive for perturbations during ongoing movements. Note that the very 

efficient elastic feedback along the desired trajectory used in the compensation model cannot 

be included in the reoptimization model or the redirection model due to the absence of a desired 

trajectory. 

Materials and methods 

Computational modeling 

We simulate displacements of a planar two-link arm whose dynamics are given by 

𝜃̈ = 𝐌(𝜃)−1 (𝜏𝑢 + 𝜏𝑒 − 𝐶(𝜃, 𝜃̇)) (1) 

where 𝜃 = [𝜃sh,𝜃el] are the shoulder and elbow angles, 𝐌(𝜃) the inertia matrix, 𝐶(𝜃, 𝜃̇) the 

matrix of velocity-dependent torques, 𝜏𝑢 the control torque produced by actuators and 𝜏𝑒 the 

torque due to external forces applied on the arm. We define 

𝐌(𝜃)=[
𝑑1 + 2𝑑2 cos 𝜃el 𝑑3 + 𝑑2 cos 𝜃el
𝑑3 + 𝑑2 cos 𝜃el 𝑑3

] 

and 

𝐶(𝜃, 𝜃̇)=𝑑2 [
2𝜃̇sh𝜃̇el + 𝜃̇el

2

−𝜃̇sh
2

] sin 𝜃el 

where 𝑚sh and 𝑚el are the link masses, 𝑙sh and 𝑙el the link lengths, 𝐼sh and 𝐼el the moments of 

inertia, 𝑠sh and 𝑠el the distances from the joint center to the center of mass, 𝑑1 = 𝐼sh + 𝐼el +

𝑚el𝑙sh
2 , 𝑑2 = 𝑚el𝑙sh𝑠el and 𝑑3 = 𝐼el. 

 Displacements are perturbed by a velocity-dependent force field producing a force 

proportional to the velocity along the movement direction 𝜓 (direction is measured relative to 
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initial hand position and 0 is rightward) and perpendicular to this direction. The force field is 

described by 

𝐃 =𝐑(𝜓)−1× [
0 0
𝜑 0

] × 𝐑(𝜓) (2) 

where 𝜑 is the force level (𝜑 > 0 for a counterclockwise perturbation, 𝜑 < 0 for a clockwise 

perturbation) and 𝐑(𝜓) the rotation matrix of angle 𝜓. The perturbation torque is 

𝜏𝑒 = 𝜏𝑒
𝜑
= 𝐉(𝜃)T𝐃𝐉(𝜃)𝜃̇ 

where 𝐉(𝜃) is the Jacobian matrix of the kinematics 

𝐉(𝜃) = [
−𝑙sh sin𝜃sh − 𝑙el sin( 𝜃sh + 𝜃el) −𝑙el sin(𝜃sh + 𝜃el)
𝑙sh cos 𝜃sh + 𝑙el cos( 𝜃sh + 𝜃el) 𝑙el cos( 𝜃sh + 𝜃el)

] 

Parameters are: 𝑚sh = 1.4 kg, 𝑚el = 1.1 kg, 𝑙sh = 0.3 m, 𝑙el =  0.33 m, 𝑠sh = 0.11 m, 𝑠el =

0.16 m, 𝐼sh = 0.025 kg m2, 𝐼el = 0.045 kg m2. 

 In all the simulations, the initial arm configuration is [45°, 90°], movement amplitude 

is 0.1 m, movement direction is 𝜓 = 90°, and force (field) level is 𝜑 = 2 Ns/m. Four conditions 

are considered: baseline, in the absence of the force field; before-effect, in the presence of the 

force field before adaptation; adapted, in the presence of the force field after adaptation; after-

effect, in the absence of the force field after adaptation. 

Compensation model 

The compensation model is taken from Shadmehr and Mussa-Ivaldi (1994). The principle is 

the following. First we derive a desired 1-s spatial trajectory for a 0.1-m forward displacement 

based on a 0.5-s 0.1-m long minimum-jerk trajectory (Flash and Hogan 1985) followed by a 

0.5-s stationary posture. Second we use the arm inverse kinematics to obtain the desired angular 

trajectory 𝜃∗(𝑡), and the arm inverse dynamics (Eq. 1) to calculate the joint torques 𝜏𝑢
∗(𝑡) which 

produce the desired angular trajectory. Third we obtain actual angular trajectories using 

𝜃̈ = 𝐌(𝜃)−1 (𝜏𝑢
∗ + 𝜏𝑒 + 𝜏𝑐 −𝐁(𝜃 − 𝜃

∗) − 𝐶(𝜃, 𝜃̇)) 
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where 𝜏𝑐 is a compensation torque built by adaptation, and 𝐁 a feedback gain along the desired 

trajectory (𝐁 = 20𝕀2 Nm/rad, where 𝕀2 is the 2 × 2 identity matrix). The four conditions are: 

baseline, 𝜏𝑒 = 𝜏𝑒
0 = 𝜏𝑐 = 0; before-effect, 𝜏𝑒 = 𝜏𝑒

𝜑
 and 𝜏𝑐 = 0; adapted, 𝜏𝑒 = 𝜏𝑒

𝜑
 and 𝜏𝑐 =

𝜏𝑒
−𝜑

= −𝜏𝑒
𝜑

; after-effect, 𝜏𝑒 = 𝜏𝑒
0 = 0 and 𝜏𝑐 = 𝜏𝑒

−𝜑
= −𝜏𝑒

𝜑
. 

Reoptimization model 

The reoptimization model is an extension of the model described in Izawa et al. (2008). The 

control torque 𝜏𝑢 = [𝜏𝑢
sh, 𝜏𝑢

el] is derived from a control input 𝑢 = [𝑢sh, 𝑢el] according to 

{
 

 
𝜈𝛼̇𝑖 = −𝛼𝑖 + 𝜀𝑖
𝜈𝜀𝑖̇ = −𝜀𝑖 + 𝑢𝑖
𝜏𝑢
𝑖 = 𝑔𝑖𝛼𝑖

 

(3)

 

where 𝑖 = {sh, el}, 𝛼𝑖 is muscle activation, 𝜀𝑖 muscle excitation, 𝑔𝑖  muscle gain and 𝜈 the 

muscle time constant (linear second-order muscle model; van der Helm and Rozendaal 2000). 

We define a state vector 𝑋 = [𝜃sh, 𝜃el, 𝜃̇sh, 𝜃̇el, 𝛼sh, 𝛼el, 𝜀sh, 𝜀el] and rewrite the dynamics 

(Eqs. 1 and 3) as 𝑋̇ = 𝐹0(𝑋, 𝑢) + 𝑛dyn for the unperturbed dynamics or 𝑋̇ = 𝐹𝜑(𝑋, 𝑢) + 𝑛dyn 

for the perturbed dynamics, where 𝑛dyn is additive noise on the dynamics. We formulate an 

optimal feedback control problem for this dynamics as a search for a control policy 𝑢(𝑡) to 

reach a goal 𝑋# = [𝜃sh
# , 𝜃el

# , 𝜃̇sh
# , 𝜃̇el

# , 𝛼sh
# , 𝛼el

# , 𝜀sh
# , 𝜀el

# ] while minimizing the cost 

ℑ𝐹• =∑ ∫ 𝑢𝑖
2

𝑡+𝑇H

𝑡

𝑑𝑡
𝑖=sh,el

(4) 

where 𝐹• is either 𝐹0 or 𝐹𝜑 to indicate whether optimization applies to the unperturbed or the 

perturbed dynamics, and 𝑇H is the planning horizon (Guigon 2022). In Izawa et al. (2008), 

optimization runs on a fixed duration (0.5 s) and thus cannot be used to simulate before-effect 

and after-effect conditions which require flexible time to produce online movement corrections. 

Control with a planning horizon offers an efficient solution to time flexibility as at any time and 

in any changing situation due to a perturbation there always remains the duration of a planning 
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horizon to reach designated goals (Guigon 2022). The initial boundary condition is given by 

𝑋(𝑡) = 𝑋̂(𝑡), where 𝑋̂(𝑡) is the estimated value of 𝑋(𝑡) provided by an optimal state estimator 

using forward modeling and delayed sensory feedback with delay ∆ (Guigon et al. 2008; Guigon 

2022). The state estimator is given by 

𝑋̇̂(𝑡) = 𝐹̂(𝑋̂(𝑡), 𝑢(𝑡)) + 𝐊(𝑡)(𝑦(𝑡 − ∆) − 𝐇𝑋̂(𝑡)) 

where 𝐹̂ is the dynamics for estimation which is either 𝐹0 or 𝐹𝜑 (see below),  

𝐇 = [𝕀4 𝕆4] 

is a 4 × 8 observation matrix (𝕀4 is the 4 × 4 identity and 𝕆4 the 4 × 4 null matrix), indicating 

that only the position and velocity are observed, 𝐊(𝑡) the Kalman gain and 

𝑦(𝑡)  =  𝐇𝑋(𝑡) + 𝑛obs 

where 𝑛obs is additive observation noise. The Kalman gain is given by 

𝐊(𝑡)  =  𝐀(𝑡)𝐏(𝑡)𝐇𝑇(𝐇𝐏(𝑡)𝐇𝑇 +𝛀𝜔)−1 

where 

𝐀(𝑡) =
𝜕𝐹•(𝑡)

𝜕𝑋
 

and 

𝐏(𝑡 + 𝛿) = 𝛀𝜉 + (𝐀(𝑡) − 𝐊(𝑡)𝐇)𝐏(𝑡)𝐀(𝑡)𝑇 

where 𝛿 is the integration timestep, 𝛀𝜔 the covariance matrix of observation (sensory) noise 

𝑛obs (4-dimensional, zero-mean, Gaussian random vector) and 𝛀𝜉 the covariance matrix of 

dynamic (motor) noise 𝑛dyn (8-dimensional, zero-mean, Gaussian random vector). We take 

𝛀𝜔 = 𝜎𝜔 × diag[1,1,10,10] 

and 

𝛀𝜉 = 𝜎𝜉 × diag[1,1,10,10,100,100,1000,1000] 

where 𝜎𝜔 and 𝜎𝜉 are the variance of sensory and motor noise, respectively, and diag[] indicates 

the diagonal matrix with listed values on the diagonal. The state estimator is formulated to be 
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optimal taking into account the feedback delay as explained in the Supplementary Notes of 

Todorov and Jordan (2002). 

 To control movement duration, the goal 𝑋# is updated every 𝑇G within a series of 

successive intermediate goals (via-points) 𝑆 = {𝑋0, 𝑋1,⋯ , 𝑋𝑛} with 𝑋𝑛 = 𝑋
∗, i.e. 𝑋# = 𝑋0 at 

𝑡 = 0, 𝑋# = 𝑋1 at time 𝑡 = 𝑇G, ⋯, 𝑋# = 𝑋𝑛 at time 𝑡 = 𝑛𝑇G, where 𝑋∗ is the final goal of the 

movement (Guigon et al. 2019; Guigon 2022). 

 The four conditions are: baseline: 𝜏𝑒 = 𝜏𝑒
0 = 0, ℑ𝐹0, 𝐹̂ = 𝐹0; before-effect: 𝜏𝑒 = 𝜏𝑒

𝜑
, 

ℑ𝐹0 (the trajectory is planned based on the unperturbed dynamics but executed against a 

perturbation), 𝐹̂ = 𝐹0 (the estimator is unaware of the perturbation); adapted, 𝜏𝑒 = 𝜏𝑒
𝜑

 and 

ℑ𝐹𝜑  (the trajectory is planned based on the perturbed dynamics and executed against a 

perturbation), 𝐹̂ = 𝐹𝜑 (the estimator is tuned to the perturbed dynamics); after-effect, 𝜏𝑒 =

𝜏𝑒
0 = 0, ℑ𝐹𝜑 (the trajectory is planned based on the perturbed dynamics but executed in the 

absence of the perturbation), 𝐹̂ = 𝐹𝜑 (the estimator remains tuned to the perturbed dynamics). 

The same series of via-points 𝑆 is used in all the conditions. The fact that the estimator becomes 

adapted to the perturbed dynamics is consistent with experimental observations (Flanagan et al. 

2003; Davidson and Wolpert 2005). 

 Parameters are: 𝜈 = 0.05 s, 𝑔sh  =  2, 𝑔el = 1, 𝑇H = 0.28 s, 𝑇G = 0.13 s, ∆ = 0.12 s, 

𝛿 = 0.01 s, 𝜎𝜔 = 1, 𝜎𝜉 = 1. This mean that only the position is constrained at the intermediate 

goals. The final goal state is 𝑋∗ = [60.7°, 60°, 0,0,0,0,0,0], i.e. the final shoulder and elbow 

angles corresponding to a 0.1-m forward displacement, zero final velocity, activation and 

excitation. 

Redirection model 

The redirection model is taken from Guigon (2022) and customized to the current formulation. 

The baseline and before-effect conditions are the same as for the reoptimization model. In the 
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adapted and after-effect conditions, the cost function is ℑ𝐹0, i.e. the controller is unaware of the 

perturbation, but the series of via-points 𝑆 used in the baseline and before-effect conditions is 

replaced by a new series of via-points 𝑆′ which defines adaptation. Like the controller, the 

estimator remains unaware of the perturbation (𝐹̂ = 𝐹0). 

Numerical solution 

The reoptimization and redirection models are simulated numerically using the iLQR method 

proposed by Li and Todorov (2004). For this, we reformulate the optimal control problem 

defined by Eq. 4 and the final boundary constraint 𝑋# as a "regulator" problem with a cost 

function including both the control cost and the final boundary constraint as a task cost. 

Parameters 𝑤𝑢 (for the control), 𝑤𝜃
#, 𝑤𝜃̇

#, 𝑤𝛼
#, 𝑤𝜀

# (for via-points) and 𝑤𝜃
∗, 𝑤𝜃̇

∗, 𝑤𝛼
∗, 𝑤𝜀

∗ (for the 

final goal) are necessary to weight the different terms of the cost function. The parameters are: 

𝑤𝑢 = 0.00001, 𝑤𝜃
∗ = 10, 𝑤𝜃̇

∗ = 0.1, 𝑤𝛼
∗ = 0.01, 𝑤𝜀

∗ = 0.01, 𝑤𝜃
# = 𝑤𝜃

∗ , 𝑤𝜃̇
# = 0, 𝑤𝛼

# = 0, 

𝑤𝜀
# = 0. 

 Note that the models are formulated in a stochastic setting (noise on the dynamics and 

the observation) but are simulated without noise. There is no particular reason to add noise in 

the simulations. 

 

Experiment 

Ethics statement 

The experiment was approved by Comité d'Ethique de La Recherche at Sorbonne Université 

(CER-2021-112). Participants signed a consent form prior to participating in the experiment 

and in accordance with the ethical guidelines of Sorbonne Université and in accordance with 

the Declaration of Helsinki. 
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Participants 

Twenty-two volunteers (20–30 yr old, 8 female) participated in the behavioral experiment. 

According to the Edinburgh Protocol of handedness (Oldfield 1971), 18 were right-handed, 2 

left-handed and 2 ambidextrous. They had no known neurological disorders and normal or 

corrected to normal vision and they were uninformed as to the purpose of the experiment. 

Apparatus 

Participants were seated on a chair and used their dominant hand (their most comfortable hand 

for ambidextrous participants) to move the handle of a robotic arm programmed to constrain 

the displacement of the hand in a horizontal plane and apply force perturbations. Task 

instructions, feedback information, and continuous visual feedback of hand displacement were 

provided on a monitor placed vertically in front of the participant. The flow of the task was 

controlled by a personal computer running Windows 7 (Microsoft Corporation, USA). The 3D 

position of the robot was recorded at 1000 Hz and stored on the computer for offline processing 

and analysis using custom written Matlab scripts (Mathworks, Natick, MA, USA). 

Experimental procedure 

The participants were asked to make forward reaching movements from a start position to a 

target position located 0.1-m away using visual information displayed on the monitor (start 

position: 0.6-cm diameter white circle; target position: 1-cm diameter white circle; moving 

cursor: 0.3-cm diameter black circle). To start a trial, the participants placed the cursor at the 

start position and began to move when ready. Once the cursor stopped inside the target circle 

(cartesian velocity < 0.01 m/s), feedback was given regarding desired movement velocity. The 

circle appeared blue if the movement was deemed too slow (peak velocity along target direction 

< 0.25 m/s) or red if deemed too fast (peak velocity > 0.35 m/s). No specific constraint was 

applied to movement accuracy other than the displacement of the cursor to the target circle. The 

return movement was unconstrained except for the need to stop inside the start circle (cartesian 

velocity < 0.01 m/s) to start the next trial. 
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 On some trials, a velocity-dependent force field was applied during the forward 

displacement as defined by Eq. 2 with 𝜓 = 90° and 𝜑 = ±10 Ns/m. The force field was CCW 

(𝜑 > 0) for half of the participants. The participants performed four blocks of trials: block 1 

(20 trials, 100% vs 0% of null field vs force field), block 2 (200 trials, 90% vs 10%), block 3 

(100 trials, 5% vs 95%), block 4 (min 150 trials, max 400 trials, 10% vs 90%). The last block 

involved many trials to maximize the number of recordings of after-effect trajectories. Yet the 

participants were offered the possibility to stop the experiment after 150 trials if they felt 

exhausted or bored. A pause was proposed between each block. Participants were given the 

following instructions: "Perform forward reaching movements to the target according to the 

required speed, as indicated by the color code (blue, green, red). You may return to the starting 

position at your own pace. Make a brief pause in the target and at the starting position and avoid 

rhythmic back and forth movements. Sometimes the robot may perturb your movement. 

Whenever it happens, continue to obey to the task instructions". At the start of recording, the 

participants were already familiar with the robot as they performed unrelated preliminary trials 

of force and position measurements. The robot was transparent and easy to manipulate. 

Data processing and analysis 

Raw data were used to obtain the planar trajectory of the hand for each trial. A symmetry 

relative to the start position/target position axis was applied to the trajectories of participants 

receiving a CCW perturbation. Velocity, acceleration and jerk were calculated numerically 

from the two-sample difference of the position, velocity and acceleration signals, respectively. 

Position, velocity, acceleration and jerk were filtered with a fourth-order Butterworth low-pass 

filter with a cutoff at 10 Hz. Valid trials were detected by a peak velocity along target direction 

between 0.25 and 0.35 m/s in the forward part of the movement. For each valid trial, the forward 

trajectory was extracted by detection of movement onset and offset with a velocity threshold of 

0.01 m/s and two time-varying quantities were calculated: (1) the angle (counted positive in the 



 25 

CCW direction) of the tangent to the trajectory relative to the line between the start position 

and the target position; (2) the time derivative of this angle which is closely related to the 

curvature of the trajectory. 

 The valid trials were divided into four categories: baseline (trials of block 1), before-

effect (perturbed trials of block 2), adapted (perturbed trials of block 4), and after-effect 

(unperturbed trials of block 4). For each category, mean trajectory, mean angle and mean angle 

derivative were calculated over the trials. 

 The rationale for the choice of the filter cutoff frequency is the following. A power 

spectrum analysis was performed on the unfiltered timeseries using a specific method for short-

duration timeseries (de Grosbois and Tremblay 2016). The results are shown in Fig. S10 for 

velocity, acceleration and jerk pooled across trials and participants, separately for each category 

(baseline, before-effect, adapted, after-effect). Much of the power was below 10 Hz. 

Statistical analysis 

A classical Student's t-test was used to assess the sign of the trajectory angle derivative (𝐻0 : =

0 vs 𝐻1 : ≠ 0). A p-value < 0.05 was taken to support 𝐻1. A p-value > 0.05 indicated that we 

could not reject 𝐻0. To assess the status of 𝐻0 vs 𝐻1 in the latter case, we calculated the Bayes 

factor bf10 which is the ratio between the likelihood of the data under 𝐻1 and 𝐻0 (Rouder et al. 

2009). Bayes factors were interpreted according to the following table: 1 < bf10 < 3: 

anecdotal; bf10 > 3: substantial. The Bayes factors were calculated with the Matlab toolbox 

FieldTrip (https://www.fieldtriptoolbox.org/; Oostenveld et al. 2011). 

Supplementary information 

Figures S1-S10. 

https://www.fieldtriptoolbox.org/
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Figure 1. Goal selection vs action selection. A. The motor system contains: (1) a process, called 

action selection (𝐴𝑆; purple), which translates a current goal (e.g. a target to reach) into the 

proper displacement of the current effector (e.g. the arm) toward the goal (the target); (2) a 

process, called goal selection (𝐺𝑆; orange), which provides the current goal for a given task. 

B. Schematic of adaptation to a force field perturbation (only the early phase of movement is 

described). The small circle is the starting position, the double circle the goal position, the black 

arrow the planned displacement, and the gray arrow the actual (or observed) displacement. (left) 

For a planned displacement toward the goal position, the force field (black leftward arrows) 

induces an initial actual displacement in the direction of the perturbation. (center) Adaptation 

at the 𝐴𝑆 level consists in keeping the same goal position and applying compensatory forces 

(purple rightward arrows). (right) Adaptation at the 𝐺𝑆 level consists in re-aiming toward a 

new goal position (orange double circle). C. Schematic of adaptation to a rotation of the visual 

display. (left) For a planned displacement toward the goal position, the rotation induces an 

initial actual displacement in the direction of the rotation. (center) Adaptation at the 𝐴𝑆 level 

consists in keeping the same goal position and applying compensatory rotation (purple 

rightward arrow). (right) Adaptation at the 𝐺𝑆 level consists in re-aiming toward a new goal 

position (orange double circle). 
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Figure 2. Description of the experiment. A. Experimental setup. (left) Top view. The small 

open circle is the start position and the large open circle the target position. The black circle is 

the robot handle. The elongated open rectangle is a top view of a monitor. (right) Front view. 

The start position, target position, and visual feedback of hand position (black circle) are shown 

on the monitor. The black rectangle is the robot handle. The scales are not respected. 

B. Simulated velocity-dependent force field. A minimum-jerk velocity profile with a 0.3 m/s 

peak was multiplied by a 5 N/m force field. Vertical scale: 0.01 m. Horizontal scale: 1 N. 

C. Experimental protocol. The force field level (null or CW) is indicated by the horizontal black 

(baseline block), gray (before-effect and adaptation blocks) or green (adapted and after-effect 

blocks) thick line segments. The vertical line segments indicate catch trials: unexpected CW 

force field in the before-effect block (red); unexpected null force field in the adaptation block 

(gray) and in the after-effect block (blue). Only the colored trials (black: baseline; red: before-

effect; green: adapted; blue: after-effect) were analyzed. D. Graphical definition of the 

trajectory angle. At one point along the trajectory (open square), the trajectory angle is the angle 

between start position/target position direction (dashed line) and the tangent to the trajectory 

(thick line). 
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Figure 3. Model adjustment based on data of participant P7. A. Mean baseline (black; 17 trials) 

and before-effect (red; 19 trials) trajectories for P7. Scale: 0.02 m. B. Mean velocity profiles of 

baseline and before-effect trajectories for P7. C. Velocity (scale 0.1 m/s), acceleration (scale 

2 m/s2) and jerk (scale 30 m/s3) profiles for a single baseline trial (P7). Time scale: 0.1 s. 

D. Simulated baseline (plain black) and before-effect (plain red) trajectories compared to 

experimental trajectories (dashed; data from A). Squares are via-points for the simulated 

trajectories. Same scale as in A. E. Simulated velocity profiles. F. Velocity (same as black in 

E), acceleration and jerk profiles for the simulated baseline trajectory. The profiles have been 

truncated to match the duration of the trial in C. Same scales as in C. G. Peak frequency for 

velocity (orange), acceleration (light green) and jerk (light blue) profiles for individual trials 

(small dots). Large circles correspond to the trial in C. Large squares correspond to the 

simulated trial in F. Thick lines are mean values and boxes indicate 25-75 percentiles. 
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 39 

Figure 4. Model predictions. A. Simulated adapted (green) and after-effect (blue) trajectories 

corresponding to simulated baseline (black) and before-effect (red) trajectories shown in 

Fig. 3D and reproduced here with thin lines. Scale: 0.02 m. B. Simulated velocity profiles. 

C. Trajectory angle for A. D. Trajectory angle derivative for A. E. Zoom on trajectory angle 

(dotted box in C). F. Zoom on trajectory angle derivative (dotted box in D). Vertical dashed 

lines indicate the time of change in derivative sign. 
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Figure 5. Data of participant P7. A. Mean trajectories. Scale: 0.02 m. B. Mean velocity profiles. 

C. Single trials (17, 19, 107, 34 trials, from left to right). Same scale as in A. D. Changes in 

lateral deviation (maximum of trajectory deviation from the start position/target position line) 

with training. The data were taken from C (red and green). Fitting an exponential decay is 

shown. E. Mean trajectory angle over the first 0.4 s with the 95% confidence interval. Inset: 

mean trajectory angle over the first 0.8 s; the box indicates the 0-0.4 s window. Scale: 0.1 s, 

60 deg. F. Same as E for mean trajectory angle derivative. Scale: 0.1 s, 200 deg/s. G. p-value 

of a test ≠0 vs =0 for trajectory angle derivative in F. The dotted line indicates 0.05. H. Bayes 

factor for the test ≠0 vs =0. The dotted lines delimitate regions of interpretation of Bayes factors. 
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 43 

Figure 6. Data of participant P5. Same organization as Fig. 5 with C, D, E, F corresponding to 

E, F, G, H. 
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Figure 7. All participants. A. Percentage of time over the first 0.4 s during which the angle 

derivative of the after-effect trajectory was statistically null or negative using t-test p-values. 

Dashed white line represents model prediction. Color code for the participants: blue, behavior 

incompatible with the reoptimization model; dark blue, behavior partially compatible with the 

reoptimization model; light blue, behavior with no effect of training. B. Same as A using Bayes 

factor. 
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Figure 8. Simulations of the redirection model. A. (left) Adapted (green) and after-effect (blue) 

trajectories corresponding to a series of via-points (squares). (right) Multiple adapted and after-

effect trajectories corresponding to variations of the series of via-points. B. Corresponding 

velocity profiles. C. Corresponding trajectory angles. D. Corresponding trajectory angle 

derivatives. 
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Figure S1. Predictions of the compensation model. A. Simulated trajectories. B. Simulated 

velocity profiles. 
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Figure S2. Time at which the angle derivative of the before-effect trajectory became positive. 

A. All participants with mean value (thick line) and 25-75 percentiles (box). B. Data of 

participant P7 and mean of all the participants. The black dashed line is the model prediction. 
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Figure S3. Participants whose behavior is incompatible with the reoptimization model. Same 

format as in Fig. 5. For 𝑏𝑓10, the dotted lines correspond, from bottom to top, to substantial=, 

anecdotal=, anecdotal≠, and substantial≠. 
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Figure S4. Participants whose behavior is partially compatible with the reoptimization model. 

Same format as Fig. S3. 
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Figure S5. Two participants that failed to improve their behavior with training. Same format 

as Fig. 5. 
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Figure S6. Parametric study of the model: influence of feedback delay. A. Before-effect (red) 

and after-effect (blue) trajectories. Feedback delay: 0, 0.05, 0.12, 0.15 s; light to dark color. 

B. Velocity profile. C. Trajectory angle. D. Angle derivative. 
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Figure S7. Parametric study of the model: influence of noise ratio. Same format as Fig. S6. 

Noise ratio 𝜎𝜉/𝜎𝜔 (motor/sensory): 0.1, 1, 10, 100; light to dark color. 
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Figure S8. Parametric study of the model: influence of torque ratio. Same format as Fig. S6. 

Muscle gain ratio 𝑔sh/𝑔el (shoulder/elbow): 1, 2, 5, 10; light to dark color. 
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Figure S9. Parametric study of the model: influence of boundary conditions. A. Mean and 25-

75 percentiles of positive acceleration peaks for baseline (black) and before-effect (red) 

trajectories for different boundary conditions at via-points: p: only position; pv: position and 

velocity; pva: position, velocity and activation; pvae: position, velocity, activation and 

excitation. B. Same as A for jerk. 

  



 71 

 
  



 72 

Figure S10. Power spectrum analysis. A. Power spectrum density (arbitrary unit) of velocity 

average across trials and participants, for baseline (black), before-effect (red), adapted (green) 

and after-effect (green) trials. B. Same as A for acceleration. C. Same as A for jerk. 
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