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Abstract

In this paper, stochastic planar stick-slip motions are investigated using a slider-on-belt model where the coefficient of

friction (COF) of the contact interface is modelled as a random field. New three-variable stick-slip transition criteria

are proposed to improve the accuracy and robustness of the algorithm. Stochastic analyses are performed concerning

the Peak-to-Valley value of the displacement and friction forces and the time duration of the stick state. It is found that

the correlation length of the COF random field is dominantly responsible for the stochastic behaviours of the system.

In contrast, the belt velocity and the mean value of the COF have a significant influence on the time duration of the

stick state compared with the corresponding deterministic slider-on-belt model.
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1. Introduction

Stick-slip vibrations are frequently encountered in the dynamic response of mechanical systems involving friction.

They are self-sustained phenomena induced by dry friction [1] and can bring desired or undesired consequences

concerning applied scenarios. For instance, string instruments like cello play melodious music thanks to the stick-slip

effect, but squeaky automotive disc brakes [2], chattering machine tools [3], and even earthquakes are also caused by

the same origin [4]. Two states characterise the stick-slip motion as its name implies: one stick state where two surfaces

in contact have null relative velocity and friction is a constraining force, and one slip state where they have non-zero

relative velocity and friction now behaves like an applied force. The non-smooth transition between these two states

makes the system exhibits rich nonlinear behaviours, including bifurcation and chaos [1, 5, 6]. As a result, friction-

induced stick-slip vibrations have been a continuously active topic for theoretical analysis [7, 8, 9, 10, 11, 12, 13, 14]

and industrial applications [15, 16, 17].

Methods to model dry friction are various [18]. The most widely used dry friction model is undoubtedly Coulomb’s

friction law. However, in recent decades dry friction is recognised to be of stochastic nature from both theoretical [19]

and experimental [20, 21] aspects. It is indeed too ideal to treat the coefficient of friction (COF) as an invariant quantity

as the contacting objects are generally surrounded by complicated conditions (e.g., contacting surfaces’ roughness,
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contact forces between the objects, and the interfacial temperature). Alternatively, stochastic approaches of modelling

friction appear to be a more appropriate choice. Looking into the existing literature, randomness in friction has been

taken into consideration through imposing stochastic motion of the contacting objects [22, 23], modelling COF as

a random variable [24, 25], random process [26, 27] or random field [28, 29]. In this work, the focus is on planar

stick-slip motions, in which the concept of the slider-on-belt model is adopted, that is to say, a rigid body is set on a

moving belt, driven by the friction force at the contact interface, with constraining force from the spring connected

to a fixed boundary. Different from the classical slider-on-belt model, as shown in Fig.1(a), which is often studied

in one dimension, the present work takes into account the spatially distributed randomness in COF to model it as a

random field. Indeed, due to the imbalance of momentum caused by uneven friction forces, the rigid body is expected

to rotate and move in the transverse direction, too, which makes the problem two-dimensional, as shown in Fig.1 (b).

In the authors’ previous work [29], the statistical properties of the frictional force and torque were analysed for a rigid

body moving on a plane with a constant velocity and random field COF modelling. However, the dynamical planar

stick-slip motion under such conditions was not studied. The present paper is meant to bridge this gap and extend that

previous work.
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Fig. 1. (a) 1D deterministic slider-on-belt model; (b) 2D stochastic slider-on-belt model.

When dealing with 2D stick-slip problems, numerical difficulties are often encountered, especially near the stick-

slip transition points, where the direction and magnitude of friction and relative velocity are not known a priori [30].

Therefore, proper stick-slip transition criteria are of crucial importance. Tariku and Rogers [31] proposed force-

balance and spring-damper stick-slip algorithms and compared five different models determining the friction force

of the stick or slip state in a 2D case. However, none of them concerns the rotation of the moving object. Neither

do methods proposed in [32, 33]. Kardan et al. [34] proposed a stick-slip condition for the general motion case

based on the concept of instantaneous centre of zero acceleration. They considered the rotation of the moving object,

but the algorithm is only effective when there is an external torque applying on the object so that the instantaneous

centre of zero acceleration is not null. Kudra and Awrejcewicz [35] took into account rotation and developed an

event-driven method to capture precisely the stick-slip transition points. The integration of friction force and torque
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are approximated by Padé approximants or their modifications for computational efficiency. In a following research,

Kudra and Awrejcewicz [36] proposed a new regularised model to approximate general integrations of the friction

force, for which the accuracy and robustness of the model are improved.

This paper extends the method described in [35, 36] by taking into account random friction forces and torques

to form new general 3D stick-slip criteria in the stochastic setting. The stick-slip transition points are captured with

enhanced accuracy by event-driven and bisection methods. This new robust algorithm enables the study of the friction-

induced vibration problems in planar motion with a random COF field. Then this paper establishes new results con-

cerning the impact of system parameters, e.g. the correlation length of the COF random field, on some quantities of

interest, e.g. the variations of the magnitude of random friction forces and torques. The layout of this paper is outlined

as follows: in section 2 the stick-slip oscillator under investigation is introduced as the baseline model. The method

used to generate COF random field, the governing equations for the dynamical system, and the proposed stick-slip

criteria are also presented. In section 3 stochastic analysis of the stick-slip oscillator is performed concerning quanti-

ties of interest with varying parameters. Bifurcation and spectra analyses of the stochastic model are conducted and

compared with the deterministic model in section 4. Section 5 concludes and closes the paper.

2. Dynamics of the planar stick-slip oscillator

2.1. Baseline model

In this section, the baseline model is introduced. It consists of a rigid disc of mass m and radius R connected at its

centre to a fixed support by a horizontal spring of stiffness k, and to two moving supports by two vertical springs of

stiffness k/2. The disc is in contact with a belt moving at velocity vb in the x-direction with friction through its bottom

surface, as pictorially depicted in Fig.1(b). The baseline model is different from the classic slider-on-belt model, as

shown in Fig.1(a), in such a way that the motion in the transverse direction, as well as rotation, takes place because

the spatially distributed randomness of the COF is taken into consideration, which is generally absent for a classic

slider-on-belt model. Additionally, the bottom surface of the disc is modelled to be smooth and the belt surface to be

rough, which means that the belt surface determines the fluctuations in COF. In dynamical analysis, the static COF µs

is generally larger than the kinetic one µk, and they are distinguished by the application of the Coulomb’s friction law,

as depicted in Fig.2 where the equation

µk = 0.9 µs (1)

is satisfied globally for the deterministic (classic) model and locally for the stochastic model, which will be elaborated

in the following content.

To take into account its spatial statistical fluctuations, the static COF is modelled as a homogeneous lognormal

random field. The COF field, located within the domain ΩD, is represented by {Hs(x), x ∈ ΩD} where x = (x, y) is

the 2D-coordinate in the belt-fixed frame for which the origin is the geometric centre of the belt at the initial position.

It should be noted that a homogeneous random field is determined by: (1) the correlation structure; (2) the marginal

probability distribution. For the former, a correlation function {RH(x, x′), x, x′ ∈ Ω2
D} of exponential type, which is a
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typical correlation structure in the random field theory [37], is adopted in this paper and is expressed as

RH(x, x′) = e−
‖x−x′‖2

l2 , (2)

where l is the correlation length. Please note that the exact definition of correlation length should be lc = l
√
π/2, but

in this work l will be used to indicate correlation length for the concise representation, and it will not violate the main

conclusions of this paper. For the marginal probability distribution, a lognormal distribution is applied to the random

variables in the random field. The reasons for the choice of the lognormal distribution, as explained in [29], are: (1)

it is near a bell shape as the normal distribution; (2) it is almost surely positive, which is compatible with the concept

of COF. The COF random field is modelled as attached to the belt surface. Furthermore, the belt is sufficiently long

so that during the simulation the disc will not leave the belt, and the COF random field does not repeat itself, i.e., no

periodic boundary condition necessities.

The values of the critical parameters used in the simulation are given in Table.1, where µHs = E[Hs(x)] is the mean

value of the static COF random field and σHs its standard deviation. The corresponding kinetic COF can be derived

through Eq.(1). These parameters will serve as a basis for the stochastic analysis in Sec.3.

Table 1: Parameters used for simulation

Model / Parameter m [kg] k [N/m] vb [m/s] R [m] l [m] static COF

Deterministic model 10 30 0.2 0.5 / µs = 0.5

Stochastic model 10 30 0.2 0.5 0.1 µHs = 0.5, σHs = 0.1

Fig. 2. Coulomb’s friction model.

2.2. COF random field generation

In the dynamics regime, a closed-form solution (e.g., displacement) is generally not available due to the nonlin-

earity induced by the friction model. Therefore, a numerical approach is required to perform simulations. Numerical
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methods are versatile for the generation of a random field, e.g., Turning bands method [38, 39], Spectral method

[40, 41], Matrix decomposition method [42] and methods based on Karhunen-Loève expansion [43]. For interested

readers, please refer to [44] for a comprehensive review of Gaussian random field generation. The differences among

these methods mainly concern their algorithm complexity and accuracy. As compared in [44], the Matrix decomposi-

tion method is the only method that reflects the correlation structure of the random field exactly but with an algorithm

complexity ofO(N3). As a result, the conventional Matrix decomposition method becomes computationally intractable

when the number of nodes N is large. The large cost can be alleviated through the circulant embedding method pro-

posed by Dietrich and Newsam [45], which makes use of the block-Toeplitz structure of the covariance matrix of a

homogeneous (isotropic) random field, sampled at equispaced node points on a rectangular domain. In such a case, the

generation process can be significantly accelerated via the Fast Fourier Transform (FFT) technique, and the algorithm

complexity thus declines to O(N log N).

The generation procedure of a two-dimensional normalised homogeneous Gaussian random field Γ ∼ N(0,Σ),

where Σ is the prescribed covariance matrix using the circulant embedding method is presented in Appendix A. For

more details, please refer to [45, 46]. The Gaussian random field with prescribed mean value µ and standard deviation

σ can be obtained simply by Γ̂ = µ + σΓ. The COF random field, which is of lognormal distribution, can be obtained

through Nataf transform [47] as Ĥs = F−1[Φ(Γ̂)] = exp(Γ̂), where Φ(·) is the cumulative distribution function (CDF)

of the standard normal variable, F−1(·) is the inverse CDF of the lognormal random variable with specified mean µH

and standard deviation σHs and Ĥs is a discretised representation of the random field Hs(x). It should be noted that

the use of Nataf transform will slightly change the prescribed covariance structure. However, this effect is negligible

for the coefficient of variation (CV) of the random variable less than 0.3, as being analysed quantitatively in a recent

research [48]. In the present case, as indicated in Table.1 CVHs = 0.2 and is consistent with the requirement.

Three realisations of COF random field are presented with different correlation length, as shown in Fig.3. Values

of random variables apart from the grid points are determined through interpolation.

Fig. 3. Random field realisations with correlation length (1) l/R = 10−1; (2) l/R = 100; (3) l/R = 101.

2.3. Governing equation of the system

2.3.1. Deterministic system

The governing equation of the deterministic system is introduced first in this section. In this case, the COF is mod-

elled spatially uniform (e.g. constant for the whole contact interface). The problem thus becomes one-dimensional, as
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illustrated in Fig.1(a) and can be expressed mathmetically as

mẍ + kx + fd = 0, (3)

where fd is the friction force represented as

fd =


−kx Stick

−µkmg Slip.
(4)

Equation (3) is relatively standard for the friction-induced vibration problem and has been extensively investigated

in the literature. The stick-slip transition criteria are briefly presented here and can be compared with those of the

stochastic system to be presented in the next section: (1) stick to slip when kx ≥ µsmg; (2) slip to stick when kx < µsmg

and ẋ becomes zero. The accuracy of capturing the slip to stick transition point can be further improved through the

bisection method or interpolation method.

2.3.2. Stochastic system

The governing differential equation of the stochastic system can be expressed as

Mq̈ + Kq + Qs = 0, (5)

where M = diag([m,m, J]) is the mass matrix and J = 1
2 mR2 is the moment of inertia, K = diag([k, k, 0]) is the stiffness

matrix. The authors would like to note that for stiffness matrix K no coupling is assumed between the horizontal and

vertical directions. This is for the use of so-called ’idealised’ springs: the horizontal and vertical springs go along

with the disc in the y- and x-direction, respectively, as has been shown in Fig.1(b). q = [x, y, φ]T is the generalised

coordinate vector and Qs = [−Fsx,−Fsy,−Ts]T is the vector containing two perpendicular friction forces and the

torque, which are stochastic (random in time) due to the spatial randomness of the COF and for which the values can

be distinct concerning different state of the disc such that for the state of stick

Fsx = kx, Fsy = ky, Ts = 0, (6)

and for the state of slip

Fs = [Fsx, Fsy]T =
x

S
PHk(x)

vp

‖vp‖
dS ,

Ts =
x

S
PHk(x)

x × vp

‖vp‖
dS ,

(7)

where vp = [ẋ − vb, ẏ]T, Hk(x, y) = 0.9Hs(x, y) is the kinetic COF random field, P = mg/(πR2) is the normal pressure

that is considered constant in this paper. Then one gets

Fsx(ẋ, ẏ, φ̇) =
x

S
PHk(x, y)

ẋ − vb − φ̇y√
(ẋ − vb − φ̇y)2 + (ẏ + φ̇x)2

dS ≈
∑

i

PHk(xi, yi)
ẋ − vb − φ̇yi√

(ẋ − vb − φ̇yi)2 + (ẏ + φ̇xi)2
∆S i,

Fsy(ẋ, ẏ, φ̇) =
x

S
PHk(x, y)

ẏ + φ̇x√
(ẋ − vb − φ̇y)2 + (ẏ + φ̇x)2

dS ≈
∑

i

PHk(xi, yi)
ẏ + φ̇xi√

(ẋ − vb − φ̇yi)2 + (ẏ + φ̇xi)2
∆S i,

Ts(ẋ, ẏ, φ̇) =
x

S
PHk(x, y)

φ̇(x2 + y2) + xẏ − y(ẋ − vb)√
(ẋ − vb − φ̇y)2 + (ẏ + φ̇x)2

dS ≈
∑

i

PHk(xi, yi)
φ̇(x2

i + y2
i ) + xiẏ − yi(ẋ − vb)√

(ẋ − vb − φ̇yi)2 + (ẏ + φ̇xi)2
∆S i.

(8)
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In practice, the friction forces and torque should be computed in a discrete way, as shown in the third part of (8),

where (xi, yi) is the coordinate of the centroid of the i-th discrete area, Hk(xi, yi) is the COF of this centroid and ∆S i

its area. The authors note that in general the contact pressure is not constant due to roughness but the combination

of PHk(x, y) accounts for the fluctuations in the resultant frictional forces and torque. In this case, an averaging P is

taken over the contact interface to justify the random field modelling of COF, as described in [29].

The governing equations show that in stick state the frictional forces and torque of the disc are uncoupled in three

dimensions. However, in the slip state, they are coupled due to the components in the friction vector Qs, as shown

in Eq.(8), which causes difficulties in the numerical computation. Consequently, particular care should be taken to

capture the occurrence of the state transition, as will be discussed in the next section.

2.4. A three-variable stick-slip transition criteria for the stochastic system

As mentioned in the introduction, the stick-slip transition criteria are crucial in the friction-induced vibration

problems involving stick-slip phenomena. In this section, a new three-variable event-driven integration method is

proposed to deal with the stick-slip transition, as an extension of [35], in which the algorithm is two-variable. Firstly,

nondimensionalising the relevant variables, one gets

x? = (x − vbt)/R, y? = y/R, ẋ? = (ẋ − vb)/(Rωn), ẏ? = ẏ/(Rωn), φ̇? = φ̇/ωn,

P? = PR2/(mg) = 1/π, dS ? = dS/R2.

It is to be noted that the time derivative is nondimensionalised by ωn =
√

k/m such that ˙(•)? = ˙(•)/ωn. Secondly,

define a non-dimensional relative velocity magnitude λ =
√

ẋ?2 + ẏ?2 + φ̇?2 such that

ẋ? = λ cos θ cosψ, ẏ? = λ cos θ sinψ, φ̇? = λ sin θ. (9)

Thirdly, consider a non-dimesionalised triplet (F?
sx, F

?
sy,T

?
s ) of friction force and torque like in Eq.(8) but in a limit

case where the kinetic COF random field is replaced by its static counterpart. The justification of using static COF to

model friction is accomplished by the concept of ”virtual sliding” [22], which indicates that the disc is actually not

sliding on the belt. The triplet depicts the normalised boundary as the limit of the duration of the stick state and can

be expressed as

F?
sx(ẋ?, ẏ?, φ̇?) =

x

S ?
P?Hs(x, y)

ẋ? − φ̇?y?√
(ẋ? − φ̇?y?)2 + (ẏ? + φ̇?x?)2

dS ? ,

F?
sy(ẋ?, ẏ?, φ̇?) =

x

S ?
P?Hs(x, y)

ẏ? + φ̇?x?√
(ẋ? − φ̇?y?)2 + (ẏ? + φ̇?x?)2

dS ? ,

T?
s (ẋ?, ẏ?, φ̇?) =

x

S ?
P?Hs(x, y)

φ̇?(x?2 + y?2) + x?ẏ? − y? ẋ?√
(ẋ? − φ̇?y?)2 + (ẏ? + φ̇?x?)2

dS ?.

(10)
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Substituting Eq.(9) into Eq.(10), more concise formulations are obtained and can be characterised by the azimuth pair

(θ, ψ) as

F?
sx(θ, ψ) =

x

S ?
P?Hs(x, y)

cos θ cosψ − y? sin θ√
(cos θ cosψ − y? sin θ)2 + (cos θ sinψ + x? sin θ)2

dS ? ,

F?
sy(θ, ψ) =

x

S ?
P?Hs(x, y)

cos θ sinψ + x? sin θ√
(cos θ cosψ − y? sin θ)2 + (cos θ sinψ + x? sin θ)2

dS ? ,

T?
s (θ, ψ) =

x

S ?
P?Hs(x, y)

(x?2 + y?2) sin θ + x? cos θ sinψ − y? cos θ cosψ√
(cos θ cosψ − y? sin θ)2 + (cos θ sinψ + x? sin θ)2

dS ?.

(11)

By sampling the azimuth pair (θ, ψ) from the set D′ = [0, 2π]2, the integrals in Eq.(11) are calculated numerically using

their corresponding discretised forms. An ellipsoidal-like domain Ωl with limit boundary surface Γl is thus formed by

the collected results, as depicted in Fig.4. The stick-slip transition criteria can be stated as follows.

Fig. 4. Limit boundary surface of static friction triplet.

(1) Slip-to-stick criteria. Theoretically, the slip state lasts as long as λ > 0 and ends only at λ = 0 and the real

non-dimensionalised friction triplet Qr?
s ∈ Ωl\Γl. However, since the point satisfying ẋ? = 0, ẏ? = 0 and θ̇? = 0

simultaneously is a singular point, a threshold ελ is set up and a criterion function C(ẋ?, ẏ?, φ̇?) = λ − ελ is defined

such that the slip state remains when C(ẋ?, ẏ?, φ̇?) ≥ 0 and breaks when C(ẋ?, ẏ?, φ̇?) < 0 and Qr?
s ∈ Ωl\Γl. The

key to capture the occurrence of the transition point is to continuously detect the sign change of the criterion function

8



C(ẋ?, ẏ?, φ̇?) during the simulation. Bisection method is used to enhance the accuracy of the detection of the transition

point [12]. As done in [35], after the detection of the earliest time tr for which C(ẋ?, ẏ?, φ̇?) < 0 and the validation of

the condition Qr?
s ∈ Ωl\Γl, a small velocity jump needs to be applied for the next time step t+r to improve the robustness

of the algorithm: 
ẋ (t+r ) = vb

ẏ (t+r ) = 0

φ̇ (t+r ) = 0

, (12)

where ẋ (t+r ), ẏ (t+r ) and φ̇ (t+r ) are the initial velocity terms in the next stick state.

(2) Stick-to-slip criteria. Firstly, the real friction triplet during the stick state as shown in Eq.(6) is nondimensionalised

by the normal force FN = mg and the nominal torque TN = FN R as

Fr?
sx = Fsx/FN , Fr?

sy = Fsy/FN , T r?
s = Ts/TN . (13)

Then the real non-dimensionalised friction triplet Qr?
s = (Fr?

sx , Fr?
sy , T r?

s ) is compared against the domain Ωl. If Qr?
s

is inside the domain Ωl, the stick state maintains; if Qr?
s is on the boundary Γl or outside the domain Ωl, the stick state

then breaks and transits to the next slip state. In the present model, since the frictional torque is always zero during the

stick state (as shown in Eq.(6)), the limit boundary surface Γl can thus collapse to its equatorial circle, e.g., see Fig5.

At the stick state, the disc moves completely following the belt, so displacement only occurs in the x-direction. In the

𝜓

(𝐹!"#⋆, 𝐹!%#⋆)

Fig. 5. Equatorial circle of the limit boundary surface.

y-direction, the displacement remains and so does the friction force. Therefore, the current state of the friction pair

(Fr?
sx , F

r?
sy ) will solely translate horizontally along the way dashed arrows point shown in Fig.5, until it finally reaches

9



the boundary, breaks the stick state and enters into the next slip state. Consequently, the azimuth angle ψ changes

continuously and can be obtained as ψ = arctan (Fr?
sy /F

r?
sx ). Bisection method is again used here to capture a more

accurate transition point. After the break of the current stick state, a small velocity jump is applied at the initial time

step t+l of the next slip state to the disc as 
ẋ (t+l ) = vb − ελ cosψ

ẏ (t+l ) = −ελ sinψ

φ̇ (t+l ) = 0

. (14)

The velocity jump essentially makes the criterion function C(ẋ?, ẏ?, φ̇?) = 0 at time step t+l and avoids the oscillation

problems that usually take place as a result of the indefinite moving direction when the relative velocity between the

disc and belt is minimal. For instance, Fig.6 compares simulation results using the stochastic baseline model with

and without velocity jump incorporated in the algorithm. It can be observed from Fig.6(b) that a sudden decrease in

the friction force occurs if no velocity jump is applied, which is caused by the fact that the moving direction is not

properly dealt with after the release of the state of stick. Consequently, a lag presents in the displacement compared

with the results of which that incorporated the velocity jump, as shown in Fig.6(a). Therefore, the robustness of the

algorithm can be improved by performing the velocity jump.

The accuracy of the proposed algorithm can be controlled by the threshold parameter ελ. If a small threshold ελ is

chosen, the time step used for simulation should be reduced correspondingly. To quantify the influence of ελ, several

numerical experiments are conducted using the stochastic baseline model. The result obtained from ελ = 10−5 is used

as a reference. The error can be calculated by using

error =
w T

0
(x(t) − xref(t))2 dt =

∑
i

(xti − xref,ti )
2∆ti, (15)

where x(t) and xref(t) are respectively the disc’s displacement and reference displacement in the x-direction, and xti

and xref,ti are the corresponding discrete values at time ti, ∆ti is the time step at ti satisfying
∑

i ∆ti = T = 100 [s]. The

results shown in Fig.7 indicate that the error decreases and the results converge with the decrease of ελ.

Finally, the overall algorithm is summarised in a flowchart depicted in Fig.8.

3. Stochastic analysis of the stick-slip oscillator.

In this section, stochastic analysis is performed to investigate the system responses regarding some quantities of

interest, which will be introduced first. Then the uncertainties of these quantities with respect to the variation of some

system parameters (e.g., the correlation length, the belt velocity, and the mean value of the COF random field) are

quantified and compared with the outputs of the deterministic model. The results are reported successively in the

following subsections. The objective of this investigation is to assess the impact of the local COF fluctuations on the

friction-induced vibration and determine the situations when it is important to take it into account.
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Fig. 6. The impact of velocity jump on (a) displacement; (b) friction force in the x-direction.

3.1. Quantities of interest (QoI)

In order to illustrate the influence of COF random field modelling on the dynamic responses of the system under

investigation, dynamic simulations are performed on both the deterministic and stochastic baseline models using the

parameters presented in Table.1. Figure 9 collects the results of the time-displacement, time-friction force, and time-

velocity (all in the x-direction) plots from the deterministic model and a single long realisation of the stochastic

model. Apparent periodic behaviour can be observed from the dynamic displacement and friction force responses of

the deterministic model, and the Peak-to-Valley values (PV) of the displacement ∆xd and that of friction force ∆Fd

do not change during the entire simulation. In contrast, PVs of the displacement ∆xs and friction force ∆Fsx of the

stochastic model show strong fluctuations during the simulation. Therefore, ∆xs and ∆Fsx can be adopted as two

quantities of interest to characterise the difference induced by a random field modelling of COF.
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Fig. 7. Error analysis with respect to ελ.

Another quantity of interest is the time duration of the stick state tstk. It is of great concern in some industrial

contexts. For example, in drilling engineering, a long period in stick state degrades the drilling performance [22]. As

can be observed in Fig.9 (e)(f), when the velocity of the disc remains the same as at the belt velocity (in this case

vb = 0.2 [m/s]), the disc is in the stick state. The nondimensionalised time duration of the stick state, represented

by the sum of all time spans of the stick state being divided by the total simulation time Tsk = tsk/ttot, is an intuitive

indicator to reveal how the random modelling of COF impacts on the stick-slip motion of the system. In the subsequent

sections, a subscript (or superscript) ’s’ or ’d’ means that the quantity is obtained from the stochastic or deterministic

model.

3.2. Varying correlation length.

Hereinafter, uncertainties in the QoI of the stochastic model are quantified by varying the correlation length of

the baseline model while keeping other parameters unchanged. The correlation length is one of the most important

parameters in describing a random field since it determines to what extent randomness is distributed spatially, as shown

in Fig.3. With this in mind, the impact of the correlation length on the QoI is analysed by Monte Carlo method with

100 realisations. The total simulation time of each realisation is set to 100 [s], and the initial time step size is set to

10−3s (may vary for the use of bisection method). The threshold ελ is set to 10−3. The authors would like to note that

since the motion of the disc is quasi-periodic in a single realisation, a number of realisations for a QoI (such as ∆xs)

can be collected both inside a single realisation and across realisations using the ergodicity property of the response.

A convergence check is performed as shown in Fig.10, where the mean value of ∆xs/∆xd converges when the number

of realisations exceeds 100.

The outputs of these simulations are collected into three figures in dimensionless forms, as shown in Fig.11, with

the horizontal coordinate being nondimensionalised by the characterised length (radius R) of the disc and the vertical

coordinate being nondimensionalised by the output of the corresponding deterministic model. It can be observed from

12
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Fig. 8. The flowchart of the algorithm.

Fig.11(a)(b) that correlation length has a significant impact on the PV of the displacement and friction force, both of

which share similar patterns. Specifically, the mean value of the stochastic model tends to asymptotically approach

that of the deterministic model with an asymptotically vanishing standard deviation when the correlation length is

small (e.g. l/R < 10−1). On the other side, when l/R increases to be of the order 100, the mean value fluctuates

strongly around one and the standard deviation surges to its peak value. Finally, when the correlation length becomes

so large as l/R > 102, both the mean value and the standard deviation tend to stabilise at a constant value, where the

mean value is slightly lower than one. In Fig.11(c), the observation of the two extreme cases is still applicable: the

mean value of the stick duration approaches to one with vanishing standard deviation when l/R < 10−1 and become

stabilised with constant standard deviation when l/R > 102. Moreover, the time duration of stick fluctuates the most

when l/R is between 10−1 and 101, where the mean value bends downward from one.

The mechanisms behind these phenomena can be interpreted as follows. When the correlation length becomes very

small compared with the characterised length of the disc, the COF of the contact interface takes such a realisation that
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Fig. 9. (a)(c)(e) Dynamic responses of the deterministic baseline model; (b)(d)(f) dynamic responses of the stochastic baseline model.

a large part of the probability distribution can be covered and no significant difference takes place when the contact

interface changes due to relative motions between the disc and the belt. In this case, the COF random field of the

contact interface can be regarded as a homogenised one equivalent to a deterministic model with its COF being the

mean value of the stochastic COF [29]. When the correlation length becomes very large, the COF random field tends

to be spatially uniform, of which the random field is comparable to a random variable (with the prescribed mean value

and standard deviation of the random field). It also explains that when l/R > 102, the standard deviations of QoI

converge to 0.2, which corresponds to the prescribed coefficient of variation of the COF random field. The inherent

stochastic properties of the random field are most prominent when the correlation length and the characterised length

of the geometry are comparable.
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Fig. 10. Nondimensionalised PV of displacement in the x-direction with simulation number
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Fig. 11. Stochastic analysis on (a) nondimensionlised PV of displacement in the x-direction; (b) nondimensionlised PV of friction force in the

x-direction; (c) nondimensionalised time duration of stick state concerning nondimensionalised varying correlation length of the COF random field.

Solid line - mean value; shaded area - standard deviation.
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3.3. Varying the belt velocity.

The belt velocity stands as another important parameter since it affects the occurrence of the stick-slip motion of

the system. If the belt moves slowly, the disc may soon catch up with the belt and enter into the state of stick. However,

if the belt moves fast, the disc may take longer to accelerate to the belt velocity and a shorter stick duration is expected.

This section reports stochastic analysis by varying the belt velocity with other parameters equal to the values set for

the stochastic baseline model. Other parameters for the numerical solution procedure are the same as described in

Sec.3.2.

(a) (b)

(c)

Fig. 12. Stochastic analysis on (a) nondimensionalised PV of displacement in x direction; (b) nondimensionalised PV of friction force in x direction;

(c) nondimensionalised time duration of stick state concerning varying the belt velocity. Solid line - mean value; shaded area - standard deviation.

The simulation results are depicted in Fig.12. An immediate observation from these figures is that when the belt

velocity increases, all QoI are negatively impacted in the mean sense. The mean value for the PV of the displacement

and friction force drops by around 20% in the velocity span under concern. However, the mean value of the stick

duration drops by around 40% at vb = 0.6 compared with its value at vb = 0.1. These results demonstrate that the

duration of the stick state is tightly connected to the belt velocity. The authors would like to note that although a

decrease of the stick duration with an increasing belt velocity for the deterministic model is expected, these results

show that the stochasticity would exacerbate this effect, i.e. the stick duration would drop faster because of the

introduced randomness in COF. Furthermore, the variation of PV of the displacement increases slightly with the
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increase of the belt velocity, while that of the friction force expands massively when the belt velocity grows. This

variation expansion indicates that the statistical fluctuations in the friction force become significant in the case of a

relatively large belt velocity.

3.4. Varying the mean value of the COF random field.

As a final case of this section, the influence of the mean value of the COF random field is of concern. Specifically,

µHs is varied inside the interval [0.2, 1] with σHs determined by a fixed coefficient of variation (CV) as CVHs =

σHs/µHs = 0.2. The outcomes of the simulation are shown in Fig.13.

(a) (b)

(c)

Fig. 13. Stochastic analysis on (a) nondimensionalised PV of displacement in the x-direction; (b) nondimensionalised PV of friction force in the

x-direction; (c) nondimensionalised time duration of stick state concerning varying the mean value of the COF random field. The embedded figure

presents time duration with dimensions. Dashed line - time duration of stick state of the deterministic model. Solid line - mean value; shaded area -

standard deviation.

A first observation of these results is that in contrast to the influence of the belt velocity, increasing µHs impacts

positively all QoI, of which the dimensionless mean values gradually increase and finally saturate at one. The variation

of the PV of the displacement remains stable, but that of the friction force increases significantly after µHs > 0.8. In

contrast, the variation of the stick duration shrinks with the increase of µHs . These results indicate that, by increasing

µHs , the probabilistic expectations of the QoI of the stochastic system turn close to its deterministic counterpart, al-

though variations can be observed in different realisations. The duration of the stick state generally becomes longer if
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a larger µHs is applied, as seen in the embedded figure in Fig.13(c), and the result of the stochastic model approaches

asymptotically to that of the deterministic model. Concerning the stick duration aspect, the effect of the spatial fluctu-

ations of the COF become negligible when increasing the mean value of the COF random field.

4. Bifurcation and spectral analysis

After a close inspection of the dynamical properties of the stochastic baseline model shown in Fig.9, apparent

non-periodic responses are observed in the x-direction displacement. It is thus natural to look into the phase diagram

for more insights. The phase diagrams of both the dynamical responses of the deterministic model and the stochastic

model are plotted in Fig.14. The deterministic model and stochastic model results in the x-direction are similar
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Fig. 14. Phase diagram of the dynamic response of (a) deterministic model; (b) stochastic model in the x-direction; (c) stochastic model in the

y-direction; (d) stochastic model in the rotating direction.

concerning the shape of the phase diagrams. For the dynamical response of the deterministic model, its phase diagram

only contains a single line and a closed loop, meaning that the motion is utterly periodic except for the initial motion.

Additionally, no motion in the y-direction or rotation occurs because of the uniform modelling of the COF in the

entire contact interface. On the contrary, phase diagrams of the dynamical responses of the stochastic model exhibit

chaotic-like behaviour: the phase diagrams contain multiple irregular loops rather than a finite number of regular
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loops, indicating the absence of periodic behaviour. On the other hand, the dynamical responses in the y-direction and

rotating direction are similar in the sense that no specific pattern can be found in their phase diagrams since the loops

seem to contain significant randomness.
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Fig. 15. Spectrum of the dynamic responses in the x-direction (a) l/R = 0.1; (b) l/R = 1; (c) l/R = 10. Solid line - stochastic model; dashed line -

deterministic model.
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Spectral analyses of the displacement in the x-direction are also conducted to complement the above analysis.

Specifically, three cases where l/R = 0.1, l/R = 1 and l/R = 10.0 are chosen as exemplified analyses. As shown

in Fig.15, the peak values of the deterministic model clearly appear at the fundamental frequency and its harmon-

ics, which means the behaviour of the system is periodic without any disturbance. In comparison, the spectrum of

the stochastic model, which is obtained using the periodogram method, presents different patterns concerning the

nondimensionalised correlation length: (1) for the case where l/R = 0.1, shown in Fig.15(a), the spectrum follows

approximately the first two peaks of the deterministic model but meanwhile contains a significant amount of noise;

(2) for l/R = 1 in Fig.15(b), the noise level is enhanced as no meaningful pattern can be observed from the spec-

trum, which means that even the basic periodicity may not be sustained in a stochastic model; (3) for l/R = 10.0 in

Fig.15(c), the noise level is substantially reduced, and the first four peaks are found to approximately following those

of the deterministic model.

The chaotic-like behaviours found in the dynamic responses of the stochastic model motivate the authors to investi-

gate if the system exhibited certain bifurcation behaviours concerning the variation of model parameters as mentioned

in Sec.3. To illustrate the system behaviour, the displacements in the x-direction are recorded at time instants when the

disc changes its state from slip to stick. The procedure to conduct simulations is the same as described in Sec.3, except

that no repeated realisations using the same parameters are needed because the statistical properties of the output are

out of concern in this case. These results are presented in Fig.16. It is again observed that the nondimensionalised

correlation length significantly affects the system responses: when l/R < 10−1, the system has only one steady state

and the responses look much like a deterministic one; when 100 < l/R < 101, the results are significantly dispersed,

showing that no steady state exists; however, multiple steady states can be found when l/R > 102 for the data recorded

forms several separable clusters. Conversely, the impact of the belt velocity is believed not to be prominent upon

the bifurcation behaviour of the system, as seen in Fig.16(b), and the recorded data is scattered at approximately the

same level for the variation of the belt velocity. On the other side, the mean value of the static COF shows a positive

influence on the dispersion of the results when increasing its value. As a comparison, the data recorded from the

deterministic model results shows that the system is always in a steady state in all three cases above.
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(a) (b)

(c)

Fig. 16. Bifurcation behaviours of the stochastic model concerning (a) the correlation length of the COF random field; (b) the belt velocity; (c) the

mean value of the COF random field. Dot marker - data from stochastic model; square marker - data from deterministic model.

5. Conclusions

In this paper, the stick-slip motion of a slider-on-belt model is investigated with the contact interface modelled

as a random field. For this purpose, a lognormal random field is generated by the circulant embedding method and

Nataf transform. New three-variable stick-slip criteria are then proposed to capture an accurate transition point from

the state of stick to slip, or vice versa. The new method proposed in this paper is then used to establish new findings.

Stochastic and bifurcation analyses are conducted to reveal the inherent properties of the slider-on-belt model with

respect to three crucial system properties: the nondimesionalised correlation length l/R, the belt velocity vb and the

mean value of the COF random field µHs .

The results of these analyses can be summarised as follows. (1) l/R is found to be dominantly responsible for

the stochastic responses of the system. When l/R < 10−1, the stochastic model degenerates to a deterministic one

due to homogenisation effects; When l/R > 102, the COF random field reduces to a random variable as the field

becomes spatially uniform but is statistically random. In this case, the random field can be replaced by a random

variable, making the analysis easier to conduct. When l/R takes value in between, the system exhibits prominent

stochastic behaviour (e.g. large variation of displacement and friction force), and the effect of COF random field
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modelling should be taken into account. (2) Belt velocity is a deterministic parameter in this work, but it can amplify

the uncertainties in the displacement and friction force and reduce the time duration of stick state compared with the

deterministic model when vb increases. (3) An increasing mean value of the static COF tends to make the dynamical

responses of the stochastic model approach closely its deterministic counterpart. However, uncertainties still exist as

being amplified in the friction force but reduced in the time duration of the stick state.
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Appendix A Random field generation: the circulant embedding method

This appendix presents an algorithm for generating a two-dimensional normalised homogeneous Gaussian random

field using the circulant embedding method. For more details, please refer to [45, 46]. Consider the generation of a

normalised homogeneous Gaussian random field with correlation function shown as Eq.(2) over a rectangular domain

as D of m × n grid points D = {(i∆x, j∆y), i = 0, . . . ,m − 1, j = 0, . . . , n − 1}. The algorithm can be summarised into

the following steps:

(1) Constructing the covariance matrix. Rearrange the grid points into a column vector g of size mn and the

covariance matrix Σ of size mn × mn can be generated with component

Σi, j = Cov(xi − x j, yi − y j) = σ2RH(xi − x j, yi − y j),

xi − x j = [mod(i − 1,m) −mod( j − 1,m)]∆x,

yi − y j = (di/me − d j/me)∆y,

(A.1)

where σ = 1 is the standard deviation for a normalised Gaussian distribution and d·e indicates approximating to a

ceiling number. In this case, matrix Σ becomes a block-Toeplitz matrix with each block of size m ×m itself a Toeplitz

matrix. Therefore, as Σ is also symmetric, it can be completely characterised by its first block row B = (B1,B2, . . . ,Bn).

(2) Embedding in block circulant matrix. The purpose is that by embedding B into a square circulant matrix S, the

eigenvalue decomposition can be derived, which is essential to form a realisation of the random field, as will be seen

in subsequent steps. Firstly, each block matrix Bi is extended to a circulant matrix Ci of size (2m−1)× (2m−1). Then

the first block row of S can be obtained in the sense of minimal embedding as C = (C1, . . . ,Cn,CT
2 , . . . ,C

T
n), which

results in S being of the size M × M, where M = (2m − 1)(2n − 1). Finally, S is completely characterised by its first

block row as it is also block-circulant.

(3) Eigendecomposition. It is known that a circulant matrix can be diagonalised as S = 1/MFΛF? and F is the

two-dimensional discrete Fourier transform matrix of size M × M [49]. F? is the conjugate transpose of F, and Λ

is a diagonal eigenvalue matrix of size M × M whose diagonal entries form the vector γ = Fs, where s is a vector

containing the transpose of entries in the first row of S, and this calculation can be accelerated by FFT technique.
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(4) Gaussian random field realisation. The circulant matrix S has decomposition as S = FΛ 1
2 (FΛ 1

2 )? provided that

all components in γ are nonnegative. If the semi-positive definite condition of S is satisfied, a random field can be

realised by taking either the real or imaginary part of the vector Γ = F(Λ/M)
1
2 ξ, where ξ = ξ1 + iξ2 is a complex

random vector of dimension M with ξ1 and ξ2 being two normal random variables of zero mean and identity covariance

matrix. As in step (3), this calculation can be done via FFT. The random field vector Γ, corresponding to the grid point

vector g, has an expected distribution as N(0,Σ).
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