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Abstract

The problem addressed in this paper concerns the frictional contact between an elastomer and a rigid

body with randomly rough surfaces. The work is accomplished on the basis of two crucial elements: a

framework for generating random geometries and a robust frictional contact algorithm, both of which are

realised in the approach of Isogeometric analysis (IGA) for its high accuracy and robustness. For the

former, a new Isogeometric framework for random geometry modelling is proposed, which combines the

random field generation based on Karhunen-Loève expansion theory with Non-Uniform Rational B-Spline

(NURBS) interpolation method. For the latter, a mortar-based frictional contact algorithm in 2D large

deformation regime is adopted incorporating a modified closest point projection method for detection of

contact. Numerical experiments are conducted with several settings such as ’rough-smooth’, ’smooth-rough’

and ’rough-rough’ contact, depending on which side of the contact pair the randomly rough surface belongs

to. The ratio of the global coefficient of friction to the prescribed local one and the ratio of true contact area

to the nominal contact area are characterised under these settings, and factors like the root mean square

roughness and correlation length of the random surface and the external traction are discovered to have a

significant influence on the two ratios.

Keywords: Isogeometric analysis, computational contact mechanics, rough surface, random geometry

modelling

1. Introduction

Contact between rough surfaces has been a prevailing research topic for decades in many scientific subfields

including tribology and computational mechanics. In the field of tribology, to name a few, pioneering

work was conducted by Greenwood and Williamson [1], who proposed the famous GW model based on the

assumption of independent hemisphere asperities in contact, which is still being investigated and modified

for various applications [2]. Whitehouse and Archard [3] characterised a random profile by a Gaussian

height distribution, indicating the root mean square (RMS) roughness and the correlation length as two
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important parameters. Persson [4, 5] proposed a contact theory based on the probability distribution of

contact stresses, introducing surface roughness power spectrum as an inherent factor of rough surfaces.

These analytical approaches, though succeeded in predicting deformation and contact area under specific

scenarios, had limitations due to their simplified assumptions such as absence of mutual interactions of

asperities or infinitesimal deformation during contact. On the other hand, in the field of computational

mechanics, the use of numerical methods get boosted in tackling contact problems because of the growing

computing power and advancement in algorithms, among which those reported in [6, 7] stand as outstanding

representatives. The Finite Element Method (FEM), is arguably the most versatile numerical method in

this category and is widely adopted in the literature. Various FEM-based contact formulations have been

developed, such as Node-to-Segment (NTS) formulation [8], Segment-to-Segment (STS) formulation [9] and

Mortar formulation [10]. These formulations in general can deal with small or large deformation, frictionless

or frictional contact problems, and have their own merits and limitations. For an extensive overview of the

use of FEM in computational contact mechanics, please refer to [11]. Alternatively, the Boundary Element

Method (BEM) [12] and Fast Fourier Transformation (FFT) method [13] are also applicable of handling

contact problems.

In recent decades, Isogeometric analysis (IGA) proposed by Hughes et al [14] to integrate the Computer

Aided Geometric Design (CAGD) and the FEM, shows a promising capability in the treatment of contact

problems. In IGA, Non-Uniform Rational B-Spline (NURBS) basis functions play the role of conventional

shape functions in FEM. NURBS basis functions intrinsically possess higher-order and tailorable continuity,

which enable IGA to not only represent precisely the complex geometry under investigation with a fairly

coarse mesh but also lead to increased accuracy and robustness of the results in comparison to standard FEM.

Furthermore, the higher continuity across elements makes IGA particularly suitable for contact treatment,

as recognised already in the original IGA paper [14], which results in a smooth description of contacting

profile or surface and more importantly provides a continuous normal field of the contacting interface.

Thereby it avoids the necessity of using smoothing [15, 16] or normal averaging [17, 18] techniques, which

are often required in the context of FEM. Consequently, these superiors properties facilitate the derivation

of a variationally consistent formulation in an iterative nonlinear framework.

Early attempts applying IGA to contact problems can be found in Temizer et al [19], Lorenzis et al

[20], Lu [21] and Kim et al [22] and a comprehensive review of Isogeometric contact can be found in [23].

Temizer et al [19] developed a three-dimensional frictionless knot-to-surface algorithm (as an analogy to the

NTS algorithm) and obtained reliable results of the classical Hertzian contact problem. The over-constraint

phenomena were observed and a mortar-based constraint relaxation technique was proposed. Temizer et

al [24] extended that algorithm to the three-dimensional mortar-based frictional contact treatment in the

regime of finite deformation. Lorenzis et al [20] presented a two-dimensional large deformation frictional

mortar contact formulation using NURBS discretisation. The significant superiority of its performance over

the contact formulation based on Lagrangian basis functions was found as the latter displayed irregular
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contact force oscillations. The formulation was further extended to a three-dimensional frictionless case by

Lorenzis et al [25], with the augmented Lagrangian method utilised in the iterative solver. Matzen et al [26]

proposed a point-to-segment algorithm, in which the Lagrange multiplier method was used in the contact

formulation and Greville and Botella points were chosen as collocation points for the evaluation of contact

integrals. An extension to three-dimensional problems termed a weighted point-based contact approach was

recently proposed by Matzen et al [27]. An unbiased two-half-pass contact algorithm was proposed by Sauer

and Lorenzis [28], of which the derivation was based on surface potentials [29] and counted both the master

and slave side contributions into the contact integrals. The extension of the two-half-pass contact algorithm

to a segmentation-free mortar contact formulation was presented by Duong et al [30]. And a varying-

order NURBS discretisation technique incorporated in the two-half-pass algorithm to refine the contacting

boundary of the geometry with order elevation while keeping the bulk parameterisation unchanged, was

presented by Agrawal and Gautam [31], in which higher accuracy and efficiency was achieved. Apart from

the above Galerkin-based IGA formulations, an alternative approach [32, 33] to solve contact problems is to

collocate the strong form of the original boundary value problem, which leads to a significant reduction of

computational time.

Despite the power of IGA in geometry modelling and the existence of a variety of contact algorithms, their

use in the contact problems of randomly rough surfaces are rarely seen in the literature, and a consistent

IGA framework for generating random geometry is still missing. To list the only few relevant published

works, Temizer [34] established an IGA-based contact homogenisation framework towards contact problems

between periodically and randomly rough elastic boundary layers. Investigations on characterising the global

coefficient of friction were conducted in the sense of varying the geometry, material and load parameters. The

results revealed the influence of microscopic roughness on the global coefficient of friction by demonstrating

that it might be feasible to assign a well-defined global coefficient of friction to a contact interface with

random roughness but impossible for one with periodic roughness. In a following investigation, Kılıç and

Temizer [35] proposed a tuning approach towards the mean value and oscillation of macroscopic frictional

response of the contact interface with periodic bilateral roughness of elastic soft materials. They found that

surface heterogeneities such as texture and bulk heterogeneities such as particle embedding can be applied

individually or suppositionally in tuning the macroscopic frictional response in a finite deformation setting,

by which a minimal oscillation of the magnitude of the macroscopic coefficient of friction was achievable.

Tong et al [36] argued that the global coefficient of friction (COF) may differ from locally assumed COF

because of large contact angles. They justified the findings through a single asperity contact model as well

as a multi-asperity contact model.

In the present paper, a new IGA-based framework for random geometry modelling is proposed to facilitate

the incorporation of roughness to contact surfaces, which integrates random field generation using Karhunen-

Loève expansion (K-L expansion) and NURBS interpolation method. An adapted mortar-based frictional

contact algorithm for elastic-rigid contact problems is developed using the penalty method. Numerical
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experiments are performed based on whether the roughness is assigned to a single elastic or rigid surface

or both. A local COF is prescribed to the contact interface and particular attention is paid to the effective

global COF compared with the local one. Parametric analyses are conducted regarding RMS, correlation

lengths of the surface and the external normal force. The remaining contents are organised as follows. In

Sec.2 the IGA framework for the modelling of random geometry is proposed, comprising a brief introduction

of fundamentals of IGA, the IGA random field modelling method and NURBS interpolation method. A

frictional contact algorithm dealing with 2D elastic-rigid contact problem in the large deformation regime

is presented in Sec.3. Numerical experiments with regard to three basic settings, namely ’rough-smooth’

contact, ’smooth-rough’ contact and ’rough-rough’ contact, are reported in Sec.4. Lastly, Sec.5 concludes

and closes the paper.

2. Isogeometric framework for random geometry modelling

2.1. Preliminaries

In this section, the fundamentals of IGA are briefly reviewed, starting with B-spline and NURBS basis

functions, and then describing their uses in the representation of geometries. For a full description, interested

readers are referred to the original paper by Hughes [14] and the monograph [37]. A B-spline of degree p is

built upon a non-decreasing knot vector Ξ = {ξ1, ξ2, ..., ξn+p+1}, where ξi is the i-th knot entry and n is the

total number of the B-spline basis functions. A p-th degree univariate B-spline basis function Ni,p can be

obtained recursively through the Cox-de Boor formula [38]. For p = 0

Ni,0(ξ) =

1 ξi ≤ ξ < ξi+1

0 otherwise

. (1)

For a positive integer p

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) . (2)

These B-spline basis functions are piecewise polynomials exhibiting a few properties worthy of noting, which

are (1) partition of unity, i.e.
∑p+1
i=1 Ni,p(ξ) = 1; (2) non-negativity, i.e. Ni,p(ξ) ≥ 0; (3) linear independence;

(4) knot multiplicity dependent continuity, i.e. the basis functions are Cp−k-continuous at the internal knot

(knot other than the first and last knot) whose multiplicity is k. When k = p the basis functions are C0

continuous across that knot thus interpolatory at the location. In particular, a knot vector with its first and

last knot entries repeated by p + 1 times is called an open vector. And basis functions defined on an open

vector are interpolatory at the boundaries.

Multivariate B-splines are achieved by the tensor product of univariate B-splines with their basis functions

denoting as

N
(ds)
i,p (ξ) =

ds∏
d=1

N
(1)
id,pd

(ξd) , (3)
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where ds is the dimension of the multivariate B-splines, i = {i1, ..., ids}, p = {p1, ..., pds} and ξ = {ξ1, ..., ξds}

indicate the index number, spline degree and parametric coordinate in each dimension of the multivariate

B-splines, respectively. N
(1)
id,pd

(ξd) is the univariate B-spline basis function of the dimension d. In this case,

a B-spline geometry can be represented as

GB(ξ) =
∑
i

N
(ds)
i,p (ξ) Pi , (4)

where GB(ξ) can be a curve, a surface or a volume depending on the dimension ds. Pi ∈ Rds are the

corresponding control points, of which the number is the same as that of the (multivariate-) B-spline basis

functions. NURBS are generalisations of B-splines that possess merits of flexibility and accuracy in the

modelling geometries of arbitrary shapes. NURBS basis functions are defined through rational weighted

B-spline basis functions as

R
(ds)
i,p (ξ) =

N
(ds)
i,p (ξ) ωi

W (ξ)
=

N
(ds)
i,p (ξ) ωi∑

j N
(ds)
j,p (ξ) ωj

, (5)

where N
(ds)
i,p (ξ) are the (multivariate-) B-spline basis functions and ωi > 0 are the NURBS weights. Similar

to B-spline geometries, a NURBS geometry can be formed as

GN (ξ) =
∑
i

R
(ds)
i,p (ξ) Pi . (6)

Similarly, GN (ξ) can be a curve, a surface or a volume depending on ds and Pi ∈ Rds are the corresponding

control points. The authors note that (6) is defined on the parametric space and can be seen as a mapping

from the parametric domain to the physical domain. The NURBS functions in the physical domain can thus

be obtained through a push-forward method as R̄
(ds)
i,p (x) := Ri,p(ξ)(ds) ◦ x−1.

2.2. Isogeometric random field modelling

Random field generation methods in Isogeometric framework have recently been proposed based on

Karhunen-Loève expansion (KL-expansion) in [39] and [40]. Essentially, both methods solve a Fredholm

integral eigenvalue problem while they are distinguished in treatments to approximate the solution through

Galerkin or collocation projection. As argued in [40], the Galerkin projection method suffers severe compu-

tational inefficiencies because of dimension explosion in the construction of the system matrix. In contrast,

the collocation method solves the strong form directly with collocated points instead of requiring a weak

form of the original eigenvalue problem. Its realisation benefits from the high continuity of NURBS in Iso-

geometric analysis, which makes it more promising in practical applications. In the following, first the basic

theory of KL expansion is briefly introduced and then the collocation method is introduced in solving the

KL approximation problem in the Isogeometric problem. Finally, two numerical examples corresponding to

1D and 2D random field are presented.
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2.2.1. Karhunen-Loève expansion

Let α denote a real-valued random field defined on a closed bounded domain D ⊂ Rd, where d = 1, 2 or

3 indicating a mapping α : D × Ω → R and α(x,Θ) is a random variable for each x ∈ D and Θ ∈ Ω with

respect to a complete probability space (Ω,F ,P), where Ω is a sample space, F is a σ-algebra on Ω and P

is a probability measure. The covariance function of α(x, ·) is defined by

C(x,x′) := E[(α(x,Θ)− µx)(α(x′,Θ)− µx))], x,x′ ∈ D , (7)

where E is the expectation operator with respect to the probability measure P, and µx := E[α(x,Θ)]

is the mean function. Without loss of generality, we assume that the mean value is zero, e.g. µx = 0 and

the non-zero mean case can be represented by simply adding the mean value to the zero mean case. The

random field is assumed to be homogeneous and isotropic, which mean that the covariance function C(x,x′)

is a function of the distance ‖x− x′‖. The covariance function C(x,x′) is bounded, symmetric and positive

definite by definition. According to the theory of KL expansion [41], it has the spectral decomposition

C(x,x′) =

∞∑
n=0

λiφi(x)φi(x
′) , (8)

where λi and φi(x) are the eigenvalues and eigenvectors of the covariance kernel, respectively. They are the

solutions of the so-called Fredholm integral equation of the second kind as

w

D
C(x,x′)φi(x

′) dx′ = λiφi(x) . (9)

Moreover, the eigenfunctions form an orthogonal and complete set. They can be normalised according to
r
D φi(x)φj(x)dx = δij . The random field admits a convergent infinite series expansion as

α(x,Θ) ∼
∞∑
i=1

√
λiφi(x)θi , (10)

where {θi}i∈N is an infinite sequence of random variables satisfying E[θi] = 0 and E[θiθj ] = δij . In practice,

a finite number of the expansion terms is required and thus a truncation to a term N should be imposed,

with the eigenvalues being rearranged in a descending sequence as

αN (x,Θ) =

N∑
i=1

√
λiφi(x)θi , (11)

It has been proven that the KL approximation in (11) is optimal among all series expansion methods with

respect to a global mean error. For the error analysis of (11), see [41].

2.2.2. Isogeometric collocation method

The analytical solutions of the eigenvalue problems in KL approximation (9) may only exist with restric-

tions, for example, the covariance function is separable and of a simple form or the domain D is rectangular.

For general covariance functions or complex domains, the eigenvalue problems requires numerical methods.
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Conventional numerical methods such as Galerkin methods and Nyström method can be found in the lit-

erature [42]. In this section, a collocation method is introduced in the Isogeometric framework to solve the

eigenvalue problems.

Denote C(D) as a space of continuous functions on D with the supremum or uniform norm ‖ · ‖∞ and

denote {Sh}h>0 as a sequence of approximating subspace of C(D) with finite dimension dh. A residual can

be defined as

Rh :=
w

D
C(x,x′)φh(x′) dx′ − λhφh(x) , (12)

where λh ∈ R+ and φh(x) ∈ Sh. In the Isogeometric framework, we can find a sequence of univariate NURBS

basis function as a basis of Sh (for a rigorous proof, see [40]), e.g. Sh = span{R̄(ds)
J,p }

dh
J=1 ⊂ C(D), where I is

the index number of R̄
(ds)
i,p depending on the dimension ds of the domain D such that when ds = 1, J = i1;

when ds = 2, J = (i2 − 1)× n1; and when ds = 3, J = (i3 − 1)× n1n2 + (i2 − 1)× n1 + i1, where nd is the

number of NURBS basis functions in the direction d ∈ {1, 2, 3}. In this case, the eigenfunction φh(x) can be

represented through a linear combination of {R̄(ds)
I,p }

dh
J=1 as

φh(x) =

dh∑
J=1

fJ R̄J,p(x) , (13)

where fJ ∈ R are the coefficients. The superscript (ds) of the NURBS basis functions are omitted for

convenience. The residual can be obtained by substituting (13) into (12) as

Rh =

dh∑
J=1

fJ

[ w
D
C(x,x′)R̄J,p(x′) dx′ − λhR̄J,p(x)

]
, (14)

The key idea of the collocation method is to select distinct collocation points such that the residual (14)

vanishes at those points and the problem is then converted to a generalised eigenvalue problem to solve for

the coefficients fJ . The collocation points to be selected xJ ∈ D should satisfy certain requirements such

that the existence and uniqueness of the solution are guaranteed, as

det
[
R̄J,p(xI)

]
6= 0, I, J = 1, ..., dh . (15)

A widely used strategy for the determination of collocation points is to enforce the mapping of the Greville

abscissae [43] in the parametric space to the physical space. The Greville abscissae ξ̄kJk , Jk = 1, ..., nk of the

kth coordinate direction of the parametric domain D̄ = [0, 1]ds , k = 1, ..., ds are defined from the knot vector

as

ξ̄kIk :=
1

pk

pk∑
q=1

ξkIk+q , (16)

where nk is the number of collocation points in the kth direction and nc =
∏ds
k=1 nk is the total number of

collocation points. Note that nc = dh. Finally, the collocation points are defined as the image of the Greville

abscissae as

x̄I = x(ξI), ξI = {ξ1
I1 , ..., ξ

ds
Ids
} ∈ D̄, ∀Ik ∈ {1, ..., nk} . (17)
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The convergence and stability analysis of the Greville abscissae strategy has been presented in [40] for the

one-dimensional case. Although not ready to be extended to higher dimensions, it is practically proved useful

in those cases. Alternatively, other strategies, e.g. Demko abscissae [43], may also be applied.

2.2.3. Generalised eigenvalue problem

The residual (14) is set to zero at the collocation points introduced in the last section, as

RhI =

nc∑
J=1

fJ

[ w
D
C(x̄I ,x

′)R̄J,p(x′) dx′ − λhR̄J,p(x̄I)
]

= 0, I = 1, ..., nc . (18)

The collection of the equations (18) with respect to the index J yield a generalised eigenvalue problem,

written into a matrix form as

Afh = λhBfh , (19)

where λh and fh are respectively the eigenvalues and eigenvectors to be sought. A,B ∈ Rnc×nc are system

matrices with components as

AIJ =
w

D
C(x̄I ,x

′)R̄J,p(x′) dx′ (20)

and

BIJ = R̄J,p(x̄I) , (21)

where I, J = 1, ..., nc. Finally, the eigenfunctions in (13) are obtained as

φhI (x) =

nc∑
J=1

fhI,J R̄J,p(x), I = 1, ..., nc , (22)

where fhI,J is the Jth component of the Ith eigenvector in the solution of (19) corresponding to the Ith

eigenvalue λhI , which is often sorted in a descending order according to their values.

2.2.4. Numerical examples of random field

In this section, 1D and 2D random fields are generated to illustrate the effectiveness of the method. For

both examples, the exponential correlation function is used, which has the form of

R(x,x′) = e−
‖x−x′‖

l , (23)

where l has the unit of length and is often termed ’correlation length’. The authors would like to note

that other forms of correlation function, e.g. Gaussian and sinusoidal, are also applicable. The exponential

function is a realistic description of surface roughness, and an additional advantage is that only this form of

function leads to an analytical solution of 1D problem.

For the 1D case, a NURBS straight line is generated with length L = 1, degree p = 2 and initial knot

vector {0, 0, 0, 1, 1, 1}. The final knot vector is obtained through a knot insertion refinement procedure [14]

by adding 50 knot values equally spaced in [0, 1] to the initial knot vector. The collocation points derived

through (16) and (17) are shown as red dots in Fig.1a. The correlation length is set to l = 0.1. The first five
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(a)

(b)

Fig. 1. 1D case. (a) Collocation points; (b) Random field.

Table 1: First five eigenvalues of 1D problem

Order
Numerical solution

λhn

Analytical solution

λ

Relative error

err

1 0.18713553 0.18708255 2.8317158 e-4

2 0.15609842 0.15604556 3.3875399 e-4

3 0.12120695 0.12115435 4.3414122 e-4

4 0.09137638 0.09132424 5.7094505 e-4

5 0.06878706 0.06873560 7.4879421 e-4

eigenvalues calculated through numerical method λhn are compared to the analytical solutions λn, which are

elucidated in [41] and in Table.1. The relative error in the table is defined as

err =
‖λn − λhn‖

λn
. (24)

As shown in Table.1, the numerical-analytical relative errors of the first five eigenvalues are below 0.1%,

thus proving the effectiveness of the numerical method. The eigenfunctions corresponding to the first five

eigenvalues of the numerical results are compared with their analytical counterparts in Fig.2, in which the

degree numbers are marked close to the curve. These results are in good consistency. Finally, the generated

1D random field is presented in Fig.1b. A further inspection of the validity of the current method to generate

a consistent correlation structure and height distribution is performed in Appendix B.

For the 2D case, the procedure to model a random field is almost the same with only differences in

replacing the 1D NURBS basis functions by its 2D version and collocating points in the 2D rather than

1D space. A NURBS circle is used to illustrate the collocation points used to derive eigen information in

Fig.3a and one realisation of the random field is shown in Fig.3b. Unlike 1D case, no analytical result is

available. It should be noted that a merit of the IGA collocation method is that once the eigen information

is obtained, the random realisations of any point in the geometry domain can be obtained straightforwardly
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Fig. 2. First five eigenfunctions of 1D problem, line - numerical solution; triangle - analytical solution.

without the need of remeshing or interpolation used in other random field generation methods. On the other

hand, efficiency is sacrificed as the process of setting and solving the generalised eigenvalue problem can be

time-consuming.

(a) (b)

Fig. 3. 2D case. (a) Collocation points; (b) Random field.

2.3. Isogeometric random geometry modelling

The random geometry can be constructed by incorporating the random field into an existing deterministic

NURBS geometry, e.g. a 1D random field can be incorporated as the random profile of 2D geometry and a 2D

random field as the random surface of 3D geometry. This incorporation can be accomplished by the NURBS

curve interpolation and surface interpolation method [44]. In the following, these interpolation methods
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are first introduced and then used to extend the random fields generated in Sec.2.2.4 to the corresponding

NURBS random geometries.

2.3.1. NURBS curve and surface interpolation

NURBS curve interpolation is an inverse procedure of the NURBS curve generation. Recall (6) in the

1D case that a sequence of interpolation points {Qk}Nk=1 of the random field are known as

Qk = GN (ξ̄k) =

N∑
i=1

PiRi,p(ξ̄k), k = 1, . . . , N, (25)

where ξ̄k is the inverse image of Qk in the parametric space [0, 1], Ri,p are the ith 1-D NURBS basis

functions of the degree p and Pi are the coordinates of the corresponding control points. Equations (25) can

be rearranged in a matrix form as
R1,p(ξ̄1) · · · RN,p(ξ̄1)

R1,p(ξ̄2) · · · RN,p(ξ̄2)
...

. . .
...

R1,p(ξ̄N ) · · · RN,p(ξ̄N )




P1

P2

...

PN

 =


Q1

Q2

...

QN

 . (26)

In order to solve for {Pi}Ni=1, the collocated parametric coordinates {ξ̄k}Nk=1 are to be decided. The choice

of those knots should meet the invertible constraint like (15) as

det
[
Ri,p(ξ̄k)

]
6= 0, i, k = 1, . . . , N. (27)

One possible strategy is the chord length method [45] and it determines the sequence of the collocated knots

recursively through

ξ̄k = ξ̄k−1 +
|Qk −Qk−1|∑N
j=1 |Qj −Qj−1|

, ξ̄1 = 0 and ξ̄N = 1. (28)

Finally, the knot vector required for the modelling of the random profile can be defined through a local

average of the collocated knots as

U = {ξ1, · · · , ξp+1︸ ︷︷ ︸
=0

, ξp+2, · · · , ξN , ξN+1, · · · , ξN+p+1︸ ︷︷ ︸
=1

}, where ξk+p =
1

p

k+p−1∑
l=k

ξ̄l for k = 2, . . . , N − p. (29)

The NURBS surface interpolation can be conducted similarly. The difference lies in the sequence of

interpolation points having an additional index for the second direction, e.g. {Qk,l}, k = 1, . . . , N and

l = 1, . . . ,M , and a control net and knot vectors in both directions are to be determined. The relation

between {Qk,l} and the control net {Pi,j} is

Qk,l = GN (ξ̄1
k, ξ̄

2
l ) =

N∑
i=1

M∑
j=1

Pi,jR
(2)
i,p(ξ̄1

k, ξ̄
2
l ), k = 1, . . . , N, l = 1, . . . ,M. (30)
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Unit weights are assumed so that the 2D NURBS basis functions can be represented as tensor products of

their 1D counterparts, e.g. R
(2)
i,p(ξ̄1

k, ξ̄
2
l ) = Ri1,p1(ξ̄1

k)Ri2,p2(ξ̄2
l ), and (30) can be written in a matrix form as

R1,p1(ξ̄1
1) · · · RN,p1(ξ̄1

1)
...

. . .
...

R1,p1(ξ̄1
N ) · · · RN,p1(ξ̄1

N )



P1,1 · · · P1,M

...
. . .

...

PN,1 · · · PN,M



R1,p2(ξ̄2

1) · · · R1,p2(ξ̄2
M )

...
. . .

...

RM,p2(ξ̄2
1) · · · RM,p2(ξ̄2

M )

 =


Q1,1 · · · Q1,M

...
. . .

...

QN,1 · · · QN,M

 .
(31)

The collocated knot pairs {ξ̄1
k, ξ̄

2
l } are determined through the following strategy [44].

ξ̄1
k,l = ξ̄1

k−1,l +
|Qk,l −Qk−1,l|∑N
j=1 |Qj,l −Qj−1,l|

, ξ̄1
1,l = 0 and ξ̄1

N,l = 1 and ξ̄1
k =

1

M

M∑
l=1

ξ̄1
k,l ,

ξ̄2
l,k = ξ̄2

l−1,k +
|Qk,l −Qk,l−1|∑M
j=1 |Qk,j −Qk,j−1|

, ξ̄2
1,k = 0 and ξ̄2

M,k = 1 and ξ̄2
l =

1

N

N∑
k=1

ξ̄2
l,k.

(32)

It should be noted in this strategy that the collocated knots in each direction also satisfy the constraint (27).

Finally, the knot vector for each direction can be obtained by (33), respectively as

U = {ξ1
1 , · · · , ξ1

p1+1︸ ︷︷ ︸
=0

, ξ1
p1+2, · · · , ξ1

N , ξ
1
N+1, · · · , ξ1

N+p1+1︸ ︷︷ ︸
=1

}, where ξ1
k+p1 =

1

p1

k+p1−1∑
l=k

ξ̄1
l for k = 2, . . . , N − p1

V = {ξ2
1 , · · · , ξ2

p2+1︸ ︷︷ ︸
=0

, ξ2
p2+2, · · · , ξ2

M , ξ
2
M+1, · · · , ξ2

M+p2+1︸ ︷︷ ︸
=1

}, where ξ2
l+p2 =

1

p2

l+p2−1∑
k=l

ξ̄2
k for l = 2, . . . ,M − p2

(33)

2.3.2. Numerical examples of random geometry

The results of Sec.2.2.4 are used in this section to generate random geometries. Moreover, an ’extrusion’

procedure is applied to the original random field by adding one to its dimension, i.e. a 1D random field is

incorporated in the model as the random profile of a 2D geometry and a 2D random field is incorporated

in the model as the random surface of a 3D geometry, as shown in Fig.4. This procedure is straightforward

to implement, for instance, by defining a knot vector W = {0, 0, 1, 1} and corresponding control points in

the additional dimension. In this way, a geometry with randomly rough edge (profile or surface) can be

constructed.

3. Large deformation frictional elastic-rigid contact algorithm

In this section, the contact algorithm and implementation details are presented for tackling 2D large

deformation elastic-rigid frictional contact problems. The algorithm is readily developed from [20] for general

2D elastic contact problems and is adopted here with some modifications. The authors note that here the

analysis is restricted to 2D, but the extension to an elastic-elastic contact problem in 3D is feasible with

additional algorithmic complexities, for which the details can be found in [25, 28, 27]. For more details and

more general topics on contact problems, see [6] and [7].
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(a)

(b)

Fig. 4. Random geometries. (a) 2D geometry with random profile; (b) 3D geometry with random surface.

3.1. Problem definition

An elastic body is set to contact with a fixed rigid ground, as illustrated in Fig.5. The conventional

’slave-master’ terminology is used in this work such that the elastic body is termed as slave body, denoted

by Bs, and the rigid ground is termed as the master body, denoted by Bm. The boundary of the domain

(∂Bi = Γiu ∪ Γiσ ∪ Γic in the initial configuration and ∂Bi = γiu ∪ γiσ ∪ γic in the current configuration, i ∈

{s,m}) is formed by the composition of boundary parts with displacement, traction and contact constraints,

respectively. The deformation of the bodies can be expressed as

xi = φi(Xi) = Xi + ui , (34)

where i ∈ {s,m}, and xi and Xi indicate the coordinates of the material points in the current and reference

configurations, respectively. ui is the displacement field of body i. φi(·) is the deformation mapping of body

i from the reference configuration to the current configuration. Note that xm = Xi and ui = 0 since the

master body is fixed.

To facilitate the description of the contact variables, the master surface is parameterised through the

convective coordinate ξ that defines the covariant vector τ 1 = xm,ξ . The contravariant vector is defined as

τ 1 := m11τ 1 = τ 1/m11, where m11 := τ 1 · τ 1 is the metric. The curvature is defined as k11 := xm,ξξ · n,

where n = nm(ξ) = e3×τ1

‖e3×τ1‖ is the normal unit vector and e3 is the unit vector of the third dimension.
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Fig. 5. Initial and current configurations of the contact problem

Denote γc as the contact interface in the current configuration where the contact occurs so that the

contact interface of the slave surface and master surface coincide, e.g. γsc = γmc = γc. For the determination

of γc, the distance function is introduced as

d := ‖xs − xm(ξ)‖ , (35)

which describes the distance between a fixed point xs on γsc and an arbitrary point xm = xm(ξ) on γmc .

Among those arbitrary points on γmc , denote x̄m = xm(ξ̄) that minimises the distance function (35) as the

projection of the slave point xs. The general procedure to determine the projection point usually involves the

use of the Closest Point Projection (CPP) method, in which the solution is found through an optimisation

approach minimising the distance function in (35), which is equivalent to finding the root of

f(ξ) := τ 1(ξ) · [xs − xm(ξ)] (36)

through Newton iterations. The CPP method works well for a generally smooth master surface. However,

it may suffer severe numerical difficulties when random fluctuations are introduced in the master surface as

the high local curvature may prevent the CPP method from convergence. Additionally, in such cases, the

CPP method becomes intensively sensitive to the initialisation conditions and can be very time-consuming.

Therefore, a modified genetic algorithm based on [46] is proposed in this work to determine the closest

projection point, as summarised in Algorithm 1 below. Note that the input of ξ̄n is used to accelerate the

algorithm since the contact regions usually don’t vary significantly between two adjacent time steps, which

makes ξ̄n a practical initial guess for the next time step. At the first time step, ξ̄n is set to 0. From now on

we use the over-bar sign, ¯(•), to indicate a projected variable from a slave point.
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Algorithm 1: A modified genetic algorithm to search for the closest projection point

Input : MasterNurbsGeo - NURBS model of master surface;

xs - position of the slave point;

ξ̄n - projection parametric coordinate from the last time step.

Output: ξ̄ - projection parametric coordinate from the current time step.

(1)Initialisation: Randomly generate a pool of N (N is an even number) parametric coordinates

including ξ̄n and sort them increasingly into a parent set as Σp = {ξp1 , . . . , ξ
p
N}.

(2)Create new generation: Generate two sets of random variables {αI}N/2I=1, {βJ}N/2J=1 such that

0 ≤ αI , βJ ≤ 1. Mate the nearest pair in the parent set Σp and produce two springs asξ
s
i = αIξ

p
i + (1− αI)ξpi+1

ξsi+1 = βJξ
p
i + (1− βJ)ξpi+1

. (37)

Then sort the springs into a spring set as Σs = {ξs1, . . . , ξsN}.

(3)Fitness evaluation: The fitness of each point of two sets Σp, Σs are evaluated using (36),

resulting in the evaluated parent set Θp = {f(ξp1), . . . , f(ξpN )} and the evaluated spring set

Θs = {f(ξs1), . . . , f(ξsN )}. Define Λ = min{Θp,Θs} as the minimum element of the two evaluated

sets.

(4)Resupply: Keep the top K members of both sets Σp and Σs according to fitness evaluations and

add M (such that 2K +M = N) new randomly generated parametric points to form the parent set

for the next iteration.

(5)Convergence criteria: The convergence criterion is set as Λ < ε, where ε is the tolerance

parameter. If the criterion is met, return ξ̄ = f−1(Λ). Repeat (1)∼(5) if the criterion is not met.

3.2. Contact constraints

To form the contact constrains, the normal gap gN is defined as

gN = (xs − x̄m) · n , (38)

where n = n̄m is the unit normal vector at the projection point of the master surface. The tangential gap

in the incremental form by the use of backward time-discretised Euler formulation is defined as

ġT = ˙̄ξτ 1 → ġT = (ξ̄ − ξ̄n)/∆t τ 1 , (39)

where τ 1 = τ̄m1 is the covariant vector at the projection point and ξ̄n denotes the projection parametric

coordinate of the same slave point at the last time step mentioned in Algorithm 1. In the following, all

variables are by default assumed to be in the current time step, e.g. t = tn+1, except for those with subscript

n indicating the last time step, e.g. t = tn.
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The contact traction vector in the current configuration t = tm = −ts can be decomposed into its normal

and tangential components as

t = tN + tT = tNn + tT1
τ 1. (40)

Concerning unilateral contact with dry friction only, the Karush-Kuhn-Tucker (KKT) conditions for impen-

etrability in the normal direction are

gN ≥ 0, tN ≤ 0, gN tN = 0 ġN tN = 0 , (41)

and the KKT conditions for Coulomb friction in the tangential direction are

Φ = ‖tT ‖ − µ|tN | ≤ 0, ġT = γ̇
tT
‖tT ‖

, γ ≥ 0 γΦ = 0 , (42)

where γ = γ̇∆t is the slip length and µ is the COF. The authors would like to note that according to the

existing literature [47, 48], the COF is not always a material constant and may possess a significant amount

of randomness. However, for computational convenience, in this work the static COF and kinetic COF are

assumed to be the same constant.

The contact constrains are here regularised with penalty method as

tN = εN 〈gN 〉− , 〈gN 〉− =

gN if gN ≤ 0

0 otherwise

, (43)

where εN > 0 is the normal penalty parameter. The tangential contact traction is regularised in the time-

discretised setting, reads

tT1
= tT1n

+ εT

[
m11(ξ̄ − ξ̄n)− γ tT1

‖tT ‖

]
, Φ ≤ 0 γ ≥ 0 Φγ = 0 , (44)

where εT > 0 is the tangential penalty parameter. The frictional traction can be updated with the classical

return mapping algorithm in analogy to plasticity theory. The trial state of the frictional traction starts

with a non-slip assumption, e.g. γ = 0, as

ttrial
T1

= tT1n
+ εT

[
m11(ξ̄ − ξ̄n)

]
, Φtrial = ‖ttrial

T ‖ − µ|tN | , (45)

and the final state is determined with respect to stick or slip by Φtrial as

tT1 =

t
trial
T1

if Φtrial ≤ 0

−µ|tN |
ttrialT1

‖ttrialT ‖ otherwise

. (46)

3.3. Contact virtual work and linearisation

The contact virtual work is expressed as

δWc =
w

Γc

[
tNδgN + tT · δgT

]
dΓ =

w

Γc

[
tNδgN + tT1

δξ̄
]
dΓ. (47)
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Note that the integral area Γc is the contact region in the reference configuration by a ’pull-back’ operation

of γc in order to facilitate the linearisation of the contact virtual work. This procedure is not strictly accurate

but is shown not to affect the results [20]. The linearisation of (47) yields

∆δWc =
w

Γc

[
∆tNδgN + tN∆δgN + ∆tT1δξ̄ + tT1∆δξ̄

]
dΓ. (48)

The variational terms in (47), as well as their linearised terms in (48), can be readily taken from [6] as

δgN = (δus − δūm) · n δξ̄ = H11
[
(δus − δūm) · τ 1 + gNn · δx̄m,ξ

]
. (49)

∆δgN = −(δx̄m,ξ∆ξ̄ + ∆ūm,ξ δξ̄ + x̄m,ξξ∆ξ̄δξ̄) · n

+
gN
m11

(δx̄m,ξ + x̄m,ξξδξ̄)n⊗ n(∆ūm,ξ + x̄m,ξξ∆ξ̄).
(50)

∆δξ̄ = H11
[
− τ 1 · (δξ̄∆ūm,ξ + δx̄m,ξ∆ξ̄)− (τ 1 · x̄m,ξξ − gNn · x̄m,ξξξ)δξ̄∆ξ̄

+ gN (δx̄m,ξξ∆ξ̄ + ∆ūm,ξξδξ̄) · n− (δx̄m,ξ + x̄m,ξξδξ̄) · τ 1∆ξ̄

− (∆ūm,ξ + x̄m,ξξ∆ξ̄) · τ 1δξ̄ + (δxs − δx̄m) · (∆ūm,ξ + x̄m,ξξ∆ξ̄)

+ (∆us −∆ūm) · (δx̄m,ξ + x̄m,ξξδξ̄)
]
,

(51)

where H11 = m11 − gNk11 and H11 = 1/H11. The linearisation of the contact tractions can be derived as

∆tN = εN∆gN , (52)

∆ttrialT1
= εT

[
m11∆ξ̄ + 2(x̄,ξξ · τ 1∆ξ̄∆x̄,ξ · τ 1)(ξ̄ − ξ̄n)

]
, (53)

∆tT1
= −µεN sgn(ttrialT1

)
[√

m11∆gN +
gN√
m11

(x̄,ξξ · τ 1∆ξ̄ + ∆x̄,ξ · τ 1)
]
, (54)

where ∆gN and ∆ξ̄ can be obtained by simply substituting the variational sign δ with the incremental sign

∆ in (49).

The implementation details of these contact variables can be found in Appendix A.1.

3.4. Mortar-based contact algorithm

The completion of the contact algorithm relates to the computation of the contact integrals in (47) and

(48). Generally, the segment-based method and element-based method are distinguished by the discretisation

of the contact area. Gauss-point-to-surface (GPTS) method and mortar-based method are distinguished by

the use of different integration treatments. Although segment-based discretisation provides a more accurate

result, it incurs a complicated formulation and heavy computation efforts. The element-based method,

on the other hand, is easy to implement, and the accuracy can be enhanced by increasing the number of

integration points. Recently, a hybrid method termed boundary-segmentation method has also been proposed
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which combines the merits of two integration schemes [50]. GPTS method uses Gauss quadrature points

for the evaluation of contact integral, which often causes over-constrained problems leading to undesirable

oscillations of contact tractions, especially at the edge of the contact area, when the penalty parameter is

set to a large value. The mortar-based method is essentially a weak enforcement of the contact constraints

by projecting the constraints to the control points through the integration over the local contact element.

In this work, element-based method together with mortar-based algorithm is used to evaluate the contact

integral. The contact virtual work is reformulated as

δWc =
∑
A

(tNAδgNA + tTAδξ̄A)AA , (55)

where the normal gap and the parametric projections are determined through a weighted average of their

local values on the contact surface, with the NURBS basis functions as weights

gNA =

r
Γc
RA gN dΓ

r
Γc
RA dΓ

ξ̄A =

r
Γc
RA ξ̄ dΓ

r
Γc
RA dΓ

, (56)

where subscript A indicates the active control points, which are determined through the criteria gNA ≤ 0.

AA =
r
Γc
RA dΓ is the tributary area. The variational and incremental form of (56) can be obtained

immediately via replacing the corresponding variables in the integrals by their variational or incremental

form

δgNA =

r
Γc
RA δgN dΓ
r
Γc
RA dΓ

∆gNA =

r
Γc
RA ∆gN dΓ
r
Γc
RA dΓ

δξ̄A =

r
Γc
RA δξ̄ dΓ

r
Γc
RA dΓ

∆ξ̄A =

r
Γc
RA ∆ξ̄ dΓ

r
Γc
RA dΓ

, (57)

and the incremental variational form of these variables are as

∆δgNA =

r
Γc
RA ∆δgN dΓ
r
Γc
RA dΓ

∆δξ̄A =

r
Γc
RA ∆δξ̄ dΓ
r
Γc
RA dΓ

. (58)

Additionally, the mortar treatment of the metric and its linearisation results in

m11A =

r
Γc
RA m11 dΓ
r
Γc
RA dΓ

∆m11A =

r
Γc
RA ∆m11 dΓ
r
Γc
RA dΓ

. (59)

The contact traction in the normal direction with its incremental form as a result of projection to control

points becomes

tNA = εNgNA ∆tNA = εN∆gNA , (60)

and in the tangential direction

tTA =

t
trial
TA = tTAn + εTm11A(ξ̄A − ξ̄An) if ‖ttrial

TA ‖ ≤ µ|tNA|

µ|tNA| t
trial
TA

‖ttrialTA ‖
= −µεNgNA ttrialTA

‖ttrialTA ‖
otherwise.

(61)

∆tTA =

∆ttrial
TA = tTAn + εT∆m11A(ξ̄A −∆ξ̄An) if ‖ttrial

TA ‖ ≤ µ|tNA|

−µεN sgn(ttrial
TA )

[√
m11A∆gNA + gNA

2
√
m11A

∆m11A

]
otherwise.

(62)
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Finally, the residual term and the tangent stiffness matrix need to be derived for the contact algorithm.

Substitute (57), (60) and (61) into (55), we have

δWc =
∑
A

(
εNgNA

w

Γc

RAδgNdΓ + tTA
w

Γc

RAδξ̄dΓ
)

=
w

Γc

[(
εN
∑
A

gNARA

)
δgN +

(∑
A

tTARA

)
δξ̄
]
dΓ ,

(63)

The linearisation of (55) comprises two parts, namely, the ’main’ component and the ’geometric’ component

as

∆δWc = ∆δWc,m + ∆δWc,g , (64)

where

∆δWc,m =
∑
A

tNA(δgNA + ∆tTAδξ̄A)AA

=
∑
A

εN∆gNAδgNAAA +
∑
A,stick

∆tstickTA δξ̄AAA +
∑
A,slip

∆tslipTAδξ̄AAA

=
∑
A

( εNr
Γc
RA dΓ

w

Γc

RAδgN dΓ
w

Γc

RA∆gN dΓ
)

+
∑
A,stick

∆tstickTA

w

Γc

RAδξ̄ dΓ +
∑
A,slip

∆tslipTA

w

Γc

RAδξ̄ dΓ

(65)

and

∆δWc,g =
∑
A

(tNA∆δgNA + tTA∆δξ̄A)AA

=
∑
A

(
εNgNA

w

Γc

RA∆δgN dΓ + tTA
w

Γc

RA∆δξ̄ dΓ
)

=
w

Γc

[(
εN
∑
A

gNARA

)
∆δgN +

(∑
A

tTARA

)
∆δξ̄

]
dΓ.

(66)

The implementation details for the tangent stiffness matrix can be found in Appendix A.2.

3.5. Validation case: Hertzian contact problem

The classical Hertzian frictional contact problem is investigated to validate the contact algorithm devel-

oped above. The basic setting of the Hertzian contact problem is depicted in Fig.6, in which a quarter of

a cylinder with a radius R = 1 [m] is pressed under a uniform vertical traction py = 10−3 [Pa] to a rigid

plane. The horizontal displacements of the nodes on the left side of the cylinder are fixed to zero due to the

symmetrical condition. The coefficient of friction is set as µ = 0.7. The material of the cylinder is linearly

elastic with Young’s module E = 1 [Pa] and Poisson ratio ν = 0.3. To capture this small deformation,

the geometry is locally refined such that 70% of the mesh is condensed in 5% of the geometry close to the

contact region, as shown in Fig.6. The resulting normal and tangential contact tractions are normalised by

the magnitude of normal contact force of the analytical solution of the frictionless contact problem, which

is written as [51]

p =
4Rpy
πa

√
a2 − x2, a = 2

√
2R2py(1− ν2)

Eπ
. (67)

19



Fig. 6. Basic setting of Hertzian contact

problem
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Fig. 7. Normalised results of normal and tangential contact tractions

It has been explained in detail in [17] that the applied load needs to be small enough for the small deformation

assumption underlying equation (67) to hold. Since the closed-form solution of the tangential contact traction

is not available in the literature, a semi-analytical solution is used instead, which is based on the uncoupling

assumption of the normal and tangential contact stress. The normalised contact tractions against normalised

coordinates (x/a) for both the reference and numerical results are depicted in Fig.7. Due to the uncoupling

assumption used in deriving the tangential contact force and the normal contact force being taken from

frictionless contact result, some discrepencies among the analytical and numerical results are expected.

Nevertheless, they are generally in good consistency, thus proving the efficiency of the contact algorithm.

The authors would like to note that other contact algorithm, e.g. GPTS based contact algorithms [19, 20],

may not get such good consistency, especially at the edge (e.g. x/a ∼ 1), where tremendous oscillations

may occur due to the over-constraint nature of those algorithms and a post-processing procedure is often

required to alleviate the oscillations in the results.

4. Contact analysis of 2D randomly rough surfaces

In this section, the random geometry modelling method presented in Sec.2 and the contact algorithm

developed hereinbefore are combined to construct an extended method for contact problems involving ran-

domly rough surfaces. To demonstrate this method, the contact between 2D randomly rough surfaces will

be analysed. In the two-dimensional setting, random surfaces degenerate into 1D random profiles, which can

usually be characterised by spatial property as Root Mean Square (RMS) roughness and spectral property

as correlation length. The problem is set to be on a mesoscopic scale, that is to say, from micrometre (µm)

to millimetre (mm) for our examples of interests. The main objective of the contact analysis is to see how

the local COF relates to the global COF under the condition of unilateral or bilateral rough contact. For

unilateral roughness condition, a prescribed roughness is imposed to either the elastic body or the rigid
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body (termed ’rough’ in the following), while the other side in contact is considered to have a significantly

lower level of roughness (termed ’smooth’ in the following) in the initial configuration. When the contact

occurs, the elastomer will be forced to deform while the rigid body exhibits no deformation during the whole

process. For bilateral roughness condition, random roughness of the same level is imposed to both surfaces

before contact. The second objective is to analyse the development of the real contact area, which is usually

only part of the nominal contact area, as the parameters such as the roughness change. It should be noted

that the investigations in this work merely demonstrate the capacity of the analysis framework to establish

the link between local COF and global COF in computational aspect, rather than reflecting the complicated

physical mechanism of the frictional contact phenomena. In this case, only elastic contact is of concern and

plastic and thermal effects are excluded and thus friction is the sole source of energy dissipation.

4.1. Baseline model

A baseline model, shown in Fig.8, is introduced for illustrating the procedures of the numerical exper-

iments to be presented. A square-shaped elastomer (slave body) with length a = 1 [m] contacts against a

fixed rigid body (master body) under a uniform normal pressure t at the top of the elastomer. The ma-

terial of the elastomer is modelled by the Neo-Hookean model with Young’s modulus E = 1 [MPa] and

Poisson’s ratio ν = 0.3. The elastomer is discretised by cubic NURBS basis functions and is further refined

near the contact interface, where the mesh size h is required to be smaller than the minimum correlation

lengths of rough surfaces from either side of the contact interface. Here the mesh size is typically set as

h = 0.5 min{l̃s, l̃m}, where l̃s and l̃m are respectively the smallest correlation lengths of the slave and master

surfaces. The normal traction t is loaded through an incremental approach to ensure convergence of the

algorithm. When the normal loading is applied, the traction boundary condition employed to the nodes of

the top mesh is converted to displacement boundary condition by fixing their vertical displacements at this

instant. This conversion is introduced to prevent the elastomer from toppling down when meeting with kinks

from the randomly rough surface of the rigid body. For the same reason, the control points in the left and

right corners of the bottom side of the elastomer are lifted slightly about 0.01a. Afterwards, a displacement

control in the horizontal direction is employed to the nodes at the top edge of the elastomer to trigger the
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frictional sliding process and last for a long enough length. The local COF is set as µo = 0.2. The global

COF, however, needs to be calculated with the integration of normal and tangential (with respect to the

moving direction) forces at the interface, as

FN =
w

Γc

εN |〈
∑
A

gNARA〉−| · n dΓ = [FNx, FNy]T, (68)

FT =
w

Γc

∑
A

tTARA · τ 1 dΓ = [FTx, FTy]T, (69)

where n and τ 1 are normalised normal vector and contravariant vector of the master surface, respectively and

〈•〉− denotes taking the negative part as shown in (43). The penalty parameters are set as εN = 100E/a and

εT = 10E/a. The instant global COF is defined as the ratio of global normal force to the global tangential

force as

µins =
|FNx + FTx|
|FNy + FTy|

(70)

It is foreseeable that the instant global COF µins would experience oscillations during the sliding process

when there exists roughness. Therefore, the global COF is better quantified by taking a time average of its

instant values, excluding the time of precursor to full sliding tpre and lasting for a long-enough time duration

T for saturation to a limit as

µ̄t =
1

T

w tpre+T

tpre
µins dt (71)

The precursor to full sliding describes the transition from the initial phase after vertical loading to the full

sliding phase during the frictional interaction of the elastomer with the rigid substrate. For instance, Fig.9

depicts the progress of the instant global COF with the normalised horizontal loading time. The simulation

is based on ”rough-smooth” setting in which a roughness of RMSs/a = 0.001, correlation structure as (23)

and a correlation length ratio ls/a = 0.1 are employed to the slave surface, while the master surface is

smooth (RMSm/a = 10−6). The normal pressure is set as t/E = 0.01. It is observed from Fig.9 that at the

initial phase the global tangential force nearly vanishes thus the instantaneous global COF is close to zero;

in the transition phase precursor to sliding, micro-slips occur and gradually accumulate and finally lead to

the full sliding phase. The authors note that by saying ”full sliding” they do not mean every point of the

slave surface is at the state of sliding, which should be determined by the criteria described in (61) and (62),

but the elastomer starts to slide as a whole such that the friction front has propagated to the entire contact

interface. To illustrate this propagation, we investigated normal and tangential traction distribution of the

contact interface at these two phases, as shown in Fig.10. At the initial phase (shown in Fig.10(a)), the

tangential traction has both positive and negative values along the contact interface, meaning that the points

on the slave surface of the elastomer have opposite moving trend approximately divided by the mid-point of

the slave surface. At the full sliding phase (shown in Fig.10(b)), however, the tangential traction has only

negative values and besides, the normal (tangential) traction show apparent larger values on the right side of
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Fig. 10. Normal and tangential traction distribution of contact interface at (a) initial phase; (b) full sliding phase.

the contact interface than the left side compared to the initial phase, so that all points of the contact interface

have been rearranged to show the same moving trend. During the full sliding phase, stress concentration may

occur locally in the contact interface due to the employment of roughness to the slave surface, resulting in

the fluctuations of the global COF, which then becomes a random variable. For representativeness, Ns = 50

realisations will be performed in the following investigations, and the time-averaged global COF is further

quantified by the ensemble average procedure as

µ̄ =
1

Ns

Ns∑
i=1

µ̄ti , (72)

where µ̄ti indicates the i-th realisation of the time-averaged global COF. Another variable of interest is the
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true contact area Atrue. It is well-known that the area in real contact is generally smaller than the nominal

contact area Anor. The instantaneous ratio (Atrue/Anor) can be derived from the manipulation of the gap

results as (Atrue

Anor

)
ins

=
1

a

w

Γc

sgn(|〈
∑
A

gNARA〉−|)dΓ , (73)

and its time-average value is expressed as( Ātrue

Anor

)t
=

1

T

w tpre+T

tpre

(Atrue

Anor

)
ins

dt. (74)

Finally, taking the average of Ns samples the ratio of true contact area becomes

Ātrue

Anor
=

1

Ns

Ns∑
i=1

( Ātrue

Anor

)t
i
. (75)

4.2. Rough-smooth contact

In the numerical experiments of ’rough-smooth’ contact, the slave surface is randomly rough while the

master surface is smooth. The basic parameters used in all simulations are the same as the baseline model

introduced in Sec.4.1 except for the particular parameter under investigation. Fig.11(a)(c)(e) summarises a

series of three investigations towards averaged macro-to-meso COF ratio µ̄/µo with respect to the variation

of the specific simulation parameter. The dashed line in the figure indicates the result of ’smooth-smooth’

case, which is a limit case when ls/a→∞, the corresponding value of the COF is denoted by ’ssCOF’ and

the corresponding value of the true contact area is denoted by ’ssTCA’. First, the correlation length of the

slave surface ratio ls/a is varied, and it is observed that both the mean value and the standard deviation

of µ̄/µo shrink with the increase of ls/a and the mean value converges to the ssCOF as ls/a approaches 10.

The result implies that with the growth of the correlation length, the roughness of the slave surface tends to

exhibit only in the global sense and the surface can be deemed as smooth in the local sense so that the global

COF approaches the ssCOF. On the other hand, the global COF can remarkably deviate from the ssCOF

when the correlation length is small, as the roughness becomes significantly locally fluctuant. The authors

would like to point out that no homogenisation effect, which means a convergent trend of µ̄/µo when ls/a

becomes small, is observed in the length scale under analysis. Second, the roughness of the slave surface is

varied and it is observed that µ̄/µo has similar mean values approaching ssCOF and small deviations when

the level of roughness RMSs/a ∈ [10−6, 10−4]. However, the roughness at the micrometre level will have a

significant impact on both the mean value and the standard deviation of µ̄/µo and this justifies the choice

of RMSs/a = 0.001 in the baseline model. In the third case, the variation of normal pressure to elasticity

ratio t/E is investigated and a continuous descending trend of µ̄/µo with the increase of t/E is obtained.

The result suggests that the global COF is approaching or even slightly lower than the ssCOF when the

normal pressure approaches 0.1E. The authors note that this result shows a qualitatively same trend as the

experimental results presented in [52], where the COF drops clearly with the increase of external pressure.

As a complementary set to the above investigations, Fig.11(b)(d)(f) summarises the results with respect

to the ratio of the true contact area Ātrue/Anor. It is observed that as the ratio ls/a increases, the ratio
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(a) (b)

(c) (d)

(e) (f)

Fig. 11. Statistical results in rought-smooth contact numerical experiments of µ̄/µo and of Ātrue/Anor with variation of

parameters (a)(b) correlation length of slave surface ratio (ls/a); (c)(d) roughness of slave surface ratio (RMSs/a); (e)(f)

normal pressure ratio (t/E), solid line indicates the mean values and shaded area indicate the standard deviations.

Ātrue/Anor gradually saturates and converges at around the ssTCA with continuous decreasing standard

deviations. Secondly, the micrometre-level roughness has a significant influence on the true contact area

as more voids will be created when the slave surface has heavier spatial fluctuations. Finally, the true
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contact area increases drastically as normal pressure grows, because the voids will be filled up by the heavily

deformed elastomer body.

A further insight can be drawn from the results of Fig.11 as we collect the data of Ātrue/Anor and µ̄/µo in

all three cases and make an scatter plot, as shown in Fig.12. These results, although extracted from different

settings, exhibit very similar patterns that the increase of Ātrue/Anor affects negatively µ̄/µo. These results

reveals that all settings may have impacts on µ̄/µo through varying Ātrue/Anor. Indeed, when the true

contact area approaches the nominal contact area, it is reasonable to deem that the global COF approaches

the ssCOF since almost no singular local behaviour occurs.
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Fig. 12. Scatter plot of µ̄/µo with respect to Ātrue/Anor by simulation results extracted from three cases in ’rough-smooth’

setting.

4.3. Smooth-rough contact

The smooth-rough contact scenarios are investigated in this section by attributing roughness to the master

surface only. The slave surface, though smooth at the initial configuration, is expected to deform according

to the contact interface when applied with contact forces. The global COF is more likely to fluctuate because

of the variation of the contact angle [36], which describes the angle between the direction of local contact

forces and the global motion, along the contact interface.

The parametric analyses with respect to µ̄/µo and Ātrue/Anor are shown in Fig.13(a)(c)(e) and Fig.13(b)(d)(f),

respectively. In an overview of the results, the global COF is found to be less than the ssCOF (indicated

again by the dashed line) in most of the cases, in contrast with the ’rough-smooth’ case, indicating that the

employment of roughness to the rigid contact surface will result in the decrease of global COF with respect
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(a) (b)

(c) (d)

(e) (f)

Fig. 13. Statistical results in smooth-rough contact numerical experiments of µ̄/µo and Ātrue/Anor with variation of parameters

(a)(b) correlation length of master surface ratio (lm/a); (c)(d) roughness of master surface ratio (RMSm/a); (e)(f) normal

pressure ratio (t/E), solid line indicates the mean values and shaded area indicate the standard deviations.

to the ssCOF. The results related to Ātrue/Anor are similar to the ’rough-smooth’ scenario. As for individual

parameters, firstly, the effect of the correlation length of the master surface (lm) is not monotonic as the

global COF decreases when lm/a < 1 and increases asymptotically to the ssCOF when lm/a > 1. Secondly,
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the roughness of the master surface on the scale of 10−4 has a significant influence on the global COF. The

global COF has in general a decreasing trend with the growth of roughness, in contrast to the ’rough-smooth’

case where the trend is the opposite. Finally, the increase of normal pressure causes the decrease of µ̄/µo

but the increase of the standard deviation.

4.4. Rough-rough contact

The last numerical experiment is conducted under the condition of the ’rough-rough’ contact setting, in

which RMSs/a = RMSm/a = 0.001 is used. The ’rough-rough’ contact setting is the most commonly seen

case in reality and the effects of the reported ’rough-smooth’ and ’smooth-rough’ cases are expected to be

combined. The variations of µ̄/µo and Ātrue/Anor is firstly investigated concerning the variations of both the

correlation length of the slave surface to size ratio ls/a and the correlation length of the master surface to

size ratio lm/a, as depicted in Fig.14. The results reveal the distinct impacts of ls/a and lm/a on µ̄/µo: it

increases with the growth of lm/a but decreases with the growth of ls/a, which means that a smoother elastic

surface will result in a lower global COF, whereas a smoother rigid surface will lead to a higher one. The

true contact area ratio Ātrue/Anor, as expected, increases with either the growth of ls/a or lm/a, indicating

a smoother slave or master surface will lead to a larger true contact area.

Fig.15(a) and Fig.15(b) illustrate the numerical experimental results concerning the normal pressure ratio

t/E. It can be observed that an increasing normal pressure results in the decreasing of the global COF with

increasing standard deviations and also in the increasing of the true contact area with shrinking standard

deviations. These results are again in consistence with those of the last two numerical experimental scenarios.

The results of varying RMS of both surfaces are not shown here, as the simulations are highly sensitive to

the roughness and often encounter difficulties in convergence when both surfaces possess a high RMS.

As a comparison among three different settings, the mean values of µ̄/µo and Ātrue/Anor with variation of

normal pressure ratio t/E are exhibited in Fig.16. For the global/local COF ratio, one can observe distinct

patterns in these cases whether the rigid surface is imposed a certain level of roughness or not. Generally,

a rough rigid surface will result in the decrease of the global/local COF ratio, which is due to the multi-

directional distributions of local normal and tangential forces. On the other side, a smoother surface of

either side can lead to the increase of the true contact ratio, while the difference is only significant when a

small external force is applied.

28



(a)

(b)

Fig. 14. Statistical results in rough-rough contact numerical experiments of (a) µ̄/µo; (b) Ātrue/Anor with variation of

correlation length of slave surface ratio (ls/a) and master surface ratio (lm/a), entity plot indicates the mean value and shaded

plot indicates the standard deviation.
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(a) (b)

Fig. 15. Statistical results in rough-rough contact numerical experiments of (a) µ̄/µo and (b) Ātrue/Anor with variation of

normal pressure ratio (t/E), solid line indicates the mean values and shaded area indicate the standard deviations.
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Fig. 16. Comparison of the mean values under different settings for (a) µ̄/µo and (b) Ātrue/Anor with variation of normal

pressure ratio (t/E)
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5. Conclusions

In this paper, a new Isogeometric analysis based method for frictional contact analysis has been presented.

This method is based on two ingredients. Firstly, an Isogeometric random geometry modelling framework

was proposed to facilitate the implementation of a randomly rough surface to a precisely described geometry,

which made use of random field modelling with the K-L expansion method and Non-Uniform Rational B-

Spline (NURBS) curve and interpolation method. The second ingredient concerned a robust and accurate

contact algorithm targeting frictional contact problems. To this end, a mortar-based variational formulation

of contact mechanics with contact constraints enforced by the penalty method was developed by incorporating

a new closest projection point search algorithm.

The results presented in this paper are focused on the determination of the global coefficient of friction

(COF) and true contact area of the randomly rough contact interface between an elastomer and a rigid body

with prescribed local COF in the 2D large deformation regime. Numerical experiments were performed

in three different settings regarding which side of the contacting bodies was attributed with a randomly

rough surface, namely ’rough-smooth’, ’smooth-rough’ and ’rough-rough’ contact conditions. The statistical

properties of the effective global COF and true contact area were characterised by the Monte-Carlo sampling

for multiple realisations. Overall, it was found that correlation length and RMS of the random surface

roughness and the external normal pressure were of significant importance to the global COF and true contact

area. Moreover, the global COF was generally above the ’smooth-smooth’ case one when the roughness was

employed only to the contact surface of elastomer, while it was below the ’smooth-smooth’ case one when

only the rigid body surface is rough. Finally, it is observed that the global COF was mainly impacted by

the true contact area with a decreasing trend in the ’rough-smooth’ case.
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Appendix A Implementation details of the contact algorithm.

A.1 Discretised representation of contact variables

In the Isogeometric framework, the NURBS basis functions introduced in Sec.2.1 play the role of the

shape functions in the traditional finite element method. The contact variables of interest thus can be

interpolated by using these functions, for example, the displacement and its variation on an element can be

expressed as

ue =

ne∑
I=1

RIuI δue =

ne∑
I=1

RIδuI , (A.1)
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where RI = R
(ds)
I,p with the degree p and dimensional indicator (ds) omitted, and ne is the number of

control points whose corresponding basis functions have supports on the element. In this case, (49) can be

represented via interpolated variables as

δgN =
[ ns

e∑
I=1

RsI(ξ
s)δusI −

nm
e∑

I=1

RmI (ξ̄m)δumI

]
· n , (A.2)

δξ̄ = H11
[( ns

e∑
I=1

RsI(ξ
s)δusI −

nm
e∑

I=1

RmI (ξ̄m)δumI

)
· τ 1 + gNn ·

nm
e∑

I=1

RmI,ξ(ξ̄
m)δumI

]
. (A.3)

The authors would like to note that since the master body is fixed, its displacement field is a zero vector

and the formulation can be simplified by dropping off the terms related to the master body. Denote b·cs as

the vector containing quantities related to the slave body only, for instance

δu =



δus1
...

δusns
e

δum1
...

δumnm
e


∆u =



∆us1
...

∆usns
e

∆um1
...

∆umnm
e


bδucs =


δus1

...

δusns
e

 b∆ucs =


∆us1

...

∆usns
e

 (A.4)

The following vectors are defined in a similar manner as

bNcs =


Rs1(ξs)n

...

Rsns
e
(ξs)n

 bTcs =


Rs1(ξs)τ 1

...

Rsns
e
(ξs)τ 1

 (A.5)

bD1cs = H11bTcs bN̄1cs = −k11bD1cs bT̄1cs = −τ 1 · x̄m,ξξbD1cs , (A.6)

such that the variation and linearisation variables discussed in the last section can be rearranged into matrix

form as

bδgNcs = bδucTs bNcs bδξ̄cs = bδucTs bD1cs (A.7)

b∆gNcs = bNcTs b∆ucs b∆ξ̄cs = bD1cTs b∆ucs (A.8)

b∆δgNcs = bδucTs
[ gN
m11
bN̄1csbN̄1cTs − k11bD1csbD1cTs

]
b∆ucs (A.9)

b∆δξ̄cs = H11bδucTs
[
− (3τ 1 · x̄m,ξξ − gNn · x̄m,ξξξ)bD1csbD1cTs − bNcsbN̄1cTs

− bN̄1csbNcTs −
1

m11
(bTcsbT̄1cTs + bT̄1csbTcTs

]
b∆ucs

(A.10)
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A.2 Tangent stiffness matrix

Recall the contact virtual work

δWc =
∑
A

(
εNgNA

w

Γc

RAδgNdΓ + tTA
w

Γc

RAδξ̄dΓ
)

=
w

Γc

[(
εN
∑
A

gNARA

)
δgN +

(∑
A

tTARA

)
δξ̄
]
dΓ.

(A.11)

Its slave-body related part is

bδWccs =
w

Γc

[(
εN
∑
A

gNARA

)
bδgNcs +

(∑
A

tTARA

)
bδξ̄cs

]
dΓ

= bδuT cs
w

Γc

[(
εN
∑
A

gNARA

)
bNcs +

(∑
A

tTARA

)
bD1c

]
dΓ

= bδuT csbRcs ,

(A.12)

where the residual force is obtained as

bRcs =
w

Γ

[(
εN
∑
A

gNARA

)
bNcs +

(∑
A

tTARA

)
bD1cs

]
dΓ. (A.13)

Substituting (56)∼(62) into (65) and (66) and taking their slave-body related parts, the following equations

are obtained as

b∆δWc,mcs = bδuTcsbKc,mcsb∆ucs

b∆δWc,gcs = bδuTcsbKc,gcsb∆ucs ,
(A.14)

where

bKc,mcs =
∑
A

[ εNr
Γc
RA dΓ

w

Γc

RAbNcs dΓ
w

Γc

RAbNcTs dΓ
]

+
∑
A,stick

[ εTr
Γc
RA dΓ

w

Γc

RAbD1cs dΓ
w

Γc

RA
[
m11AbD1cTs − 2bT̄1cTs (ξ̄A − ξ̄An)

]
dΓ
]

+
∑
A,slip

[µεN sign(ttrial
TA )r

Γc
RA dΓ

w

Γc

RAbD1cs dΓ
w

Γc

RA
(√
m11AbNcTs +

gNA√
m11A

bT̄1cTs
)

dΓ
] (A.15)

bKc,gcs =
w

Γc

[(
εN
∑
A

gNARA

)( gN
m11
bN̄1csbN̄1cTs − k11bD1csbD1cTs

)
+
(∑

A

tTARA

)
H11

[
− (3τ 1 · x̄m,ξξ − gNn · x̄m,ξξξ)bD1csbD1cTs − bNcsbN̄1cTs

− bN̄1csbNcTs −
1

m11
(bTcsbT̄1cTs + bT̄1csbTcTs

]
dΓ.

(A.16)

The Gauss-quadrature rule can be applied to evaluate the integral in (A.15) and (A.16). The tangent stiffness

matrix for the contact problem is simply obtained as

bKccs = bKc,mcs + bKc,gcs. (A.17)
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Appendix B Validation of the random field generation method

To validate the random field generation method, especially its capacity in preserving the prescribed

correlation structure and height distribution, a further investigation is performed by checking the correlation

coefficients and the normalised probability density function of the numerical realisations. Specifically, a

general form of exponential type correlation function and Matérn type correlation function is studied as

Rexp(x,x′) = e−(
‖x−x′‖

l )n ,

Rmat(x,x
′) =

21−ν

Γ(ν)
(
√

2ν
‖x− x′‖

l
)ν Kν(

√
2ν
‖x− x′‖

l
).

(B.1)

where n , ν are manually defined parameters, Γ(z) =
r∞
0

e−ttz−1dt is the gamma function and Kν(•) is

the modified Bessel function. The 1D random field generated in Sec.2.2.4 is reinvestigated here by applying

different correlation structures as shown in (B.1) with parameters n = {1.5, 2.0} and ν = {0.5, 10}. The

correlation coefficient is defined as

ρ(x1, x2) =
E[(x1 − µx1)(x2 − µx2)]

σx1
σx2

, (B.2)

where µx = E(x) and σx = E[(x − µx)2] is calculated from the numerical realisations of each case and

compared with the theoretical result shown in Fig.B.1. It can be observed that the current random field

generation method can preserve well the prescribed correlation structure. Moreover, the probability density

function of height distributions are computed and compared with the theoretical Gaussian distribution

results, as shown in Fig.B.2, which shows their consistency.

Fig. B.1. Correlation structure validation. Solid line - theoretical results; dot - numerical results.
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(a) (b)

(c) (d)

Fig. B.2. Height distribution with correlation structure (a) exponential type, n = 1.5; (b) exponential type, n = 2; (c) matérn

type, ν = 0.5; (d) matérn type, ν = 10.0. Solid line - analytical function, bars - numerical realisations.
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