
HAL Id: hal-03748605
https://hal.science/hal-03748605v1

Preprint submitted on 9 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Topology of irregular isomonodromy times on a fixed
pointed curve

Jean Douçot, Gabriele Rembado

To cite this version:
Jean Douçot, Gabriele Rembado. Topology of irregular isomonodromy times on a fixed pointed curve.
2022. �hal-03748605�

https://hal.science/hal-03748605v1
https://hal.archives-ouvertes.fr


TOPOLOGY OF IRREGULAR ISOMONODROMY TIMES ON A FIXED
POINTED CURVE

JEAN DOUÇOT AND GABRIELE REMBADO

Abstract. We will define and study moduli spaces of deformations of irregular

classes on Riemann surfaces, which provide an intrinsic viewpoint on the “times”

of irregular isomonodromy systems in general. Our aim is to study the deeper

generalisation of the G-braid groups that occur as fundamental groups of such

deformation spaces, with particular focus on the generalisation of the fullG-braid

groups.
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Introduction

Classically, the theory of isomonodromy constitutes a collection of nonlinear

integrable differential equations, whose unknown is a (linear) meromorphic con-

nection on a vector bundle over the Riemann sphere. Geometrically, these are

flat Ehresmann connections on a bundle whose fibres are moduli spaces of such

meromorphic connections.

The underlying deformation parameters, the “times”, have recently been given

an intrinsic formulation, leading to a generalisation of themoduli of pointed curves

(in any genus). This framework is especially useful when considering the general-

ised deformations, beyond the generic case: recall [34] set up a theory of “generic”

isomonodromic deformations of meromorphic connections on vector bundles over
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2 J. DOUÇOT AND G. REMBADO

a Riemann surface Σ, where the leading coefficient at each pole has distinct eigen-

values (building on [8]; cf. [36, 5]). This has been extended in two directions: i)

replacing vector bundles by principalG-bundles [10], leading to the appearance of

G-braid groups for complex reductive groupsG, and ii) considering nongeneric ad-
missible deformations [13], where the irregular type of the connection is arbitrary,
leading to cabled braid groups [23].

In particular the spaces of generalised monodromy data, the wild character

varieties (a.k.a. wild Betti spaces), have been proved to form a local system of

Poisson varieties [13] 1

M
B
−!B , (1)

over any space B of admissible deformations. These are important because they

give a purely topological description of the nonlinear isomonodromy differential

equations via the Riemann–Hilbert–Birkhoff correspondence.

Our purpose in this paper is to study the fundamental groups of the base spaces

B of such admissible deformations, the groups that will act by algebraic Poisson

automorphisms on the wild character varieties (the fibres of (1)) from the parallel

transport of the isomonodromy connection—i.e. the monodromy of the nonlinear

differential equations. This builds on our previous paper [23], which used a fixed

marking: here wewill quotient by theWeyl group action and get to the full version

of “wild” mapping class groups, in analogy to forgetting the ordering of marked

points on the underlying pointed curve.

Importantly this encompasses the much-studied case of regular singular con-

nections, involving the (tame) complex character varieties, which is the entry point

for the standard mapping-class- and braid-group-actions in classical/quantum

2d gauge theories—via deformations of pointed curves, e.g. [35, 24, 37, 4] in the

quantum case.

In this series of papers we rather fix the underlying pointed curve, and vary the

rest of the wild Riemann surface structure [13], i.e. the irregular types/classes,

controlling principal parts of irregular singular connections beyond their (formal)

residues. More precisely [23] constructs a moduli scheme of irregular types for

the split Lie algebra (g, t) :=
(
Lie(G), Lie(T)

)
, where T ⊆G is a maximal torus, while

here we consider irregular classes.

Recall in brief an irregular type Q at a point a ∈ Σ is the germ of a t-valued
meromorphic function based there, defined up to holomorphic terms:

Q =
∑
j

Ajz
−j ∈ t((z))

/
tJzK , Aj ∈ t , z(a) = 0 . (2)

Then the Weyl groupWg = N(T)
/
T acts on the left tensor factor of

t⊗C
(
C((z))

/
CJzK

)
' t((z))

/
tJzK ,

and the irregular class underlying (2) is its projection Q in the quotient—viz. the

Weyl-orbit through Q [13, Rk. 10.6]. 2

The important fact is the fibres of (1) only depend on the collection of irregular

classes underlying the irregular types at each marked point, and thus the base B
provides an intrinsic topological description of the local (irregular) isomonodromy

times. In the generic case, where the leading coefficient of (2) is out of all root

hyperplanes, the homotopy type of B brings about the G-braid group: in this

1Basically speaking, a bundle of Poisson manifolds equipped with a complete flat connection: the

(Betti) isomonodromy connection.

2E.g. ifG = GLn(C) we thus consider the coefficientsAj in (3) up to simultaneous permutations

of their eigenvalues.
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paper we shall encounter a generalisation in the nongeneric case, which we will

relate to braid cabling in type-A.

Main results. In § 1 we give the main definition: to a one-pointed (bare) wild

Riemann surface Σ = (Σ,a,Q) we associate a full/nonpure local “wild” mapping

class group (WMCG), viz. the fundamental group of a space B of admissible

deformations of the irregular class Q (cf. Def. 1.1). This latter is the topological

quotient of the (universal) admissibledeformation spaceBofQ, modulo thenatural

action of the Weyl groupWg, where Q is any irregular type lifting Q.

In § 2 we describe the subgroup of the Weyl group preserving the space of

admissible deformations of the irregular type, and further its quotientWg|h, acting

freely on B. The relevant statements are proven inductively along the sequence of

fission (root) subsystems ofΦg associated toQ (cf. [23]): first in the case of a single

semisimple element A ∈ t (in § 2.1), and then in the general case (in § 2.2).

Theorem (Cf. Thm. 2.1). The space B is a Galois covering of B withGal(B,B) =Wg|h,
so the full/nonpure local WMCG is an extension of this latter by the pure local WMGC.

In § 3 we describe all full/nonpure local WMCGs for the irreducible rank-2 root

systems, after explaining it is enough to consider a simple Lie algebra.

Finally in § 4 we explicitly describe the full/nonpure local WMCGs when g ∈{
gln(C), sln(C)

}
, in the nonabelian case n > 2. This means identifying the

“effective” subquotient of the Weyl group that controls the Galois covering B! B
(a Coxeter-type group), and then compute the fundamental group of the base (an

Artin-type group): the inductive step is in § 4.1, where we prove the following.

Theorem (Cf. Prop. 4.1, Cor. 4.1 and Prop. 4.2). The Weyl-stabiliser of B if a direct
product of (restricted) wreath products of symmetric groups, andWg|h is a direct product
of symmetric groups; then π1(B) is the subgroup of braids whose underlying permutation
lies inWg|h—an extension of this latter by the pure braid group.

In the general case instead we introduce a family of trees (T , r) with some dec-

oration, called “ranked” fission trees, which depend on the choice of the irregular

classQ (cf. Def. 4.1, and comparewith the unranked fission trees of [23, § 5]). Their

automorphisms control the Coxeter-type groups in the general type-A case:

Theorem (Cf. Thm. 4.1 and Prop. 4.3). The automorphism group Aut(T , r) of the
ranked fission tree is isomorphic toWg|h.

Finally we attach a (full/nonpure) “cabled” braid group CBr(T , r) to any ranked

fission tree, in Def. 4.4, with a recursive algorithm (along maximal subtrees): this

relies on the operadic composition of the symmetric and braid group operads,

extending the pure cabled braid group of [23]—which rests in turn on the pure

braid group operad.

Themain result of § 4 is that the elements of type-A full/nonpure local WMCGs

are precisely such “cabled” braids.

Theorem (Cf. Thm. 4.2). The full/nonpure type-A local WMCG of Σ is isomorphic to
CBr(T , r), where (T , r) is the ranked fission tree associated with the irregular class Q.

All Lie algebras and tensor products are defined over C.
Some basic notions and conventions, used throughout the body of the paper,

are collected in § A, while § B contains the proof of few lemmata. Finally in § C we

spell out the relation ofwildRiemann surfaceswith themuch-studiedHamiltonian

viewpoint on isomonodromic deformations.

The end of remarks/examples is signaled by a4.
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1. Full/nonpure local WMCG

Let Σ be a Riemann suface, G a finite-dimensional connected reductive Lie

group over C, g = Lie(G) its Lie algebra, T ⊆G a maximal (algebraic) torus, and

t = Lie(T)⊆ g the associated Cartan subalgebra. Denote thenΦg = Φ(g, t)⊆ t∨ the

root system of the split Lie algebra (g, t), andWg =W(Φg) the Weyl group.

Choose a point a ∈ Σ, and let

Q ∈ t⊗TΣ,a , TΣ,a := K̂Σ,a

/
ÔΣ,a , (3)

be an untwisted irregular type based there, introducing the completed local ring

ÔΣ,a of the surface and its fraction field K̂Σ,a. Recall if z is a local coordinate on Σ
with z(a) = 0 then (3) becomes

Q =

p∑
i=1

Aiz
−i ∈ z−1t[z−1] ' t((z))

/
tJzK ,

for suitable (semisimple) coefficients Ai ∈ t and for an integer p > 1.

As explained in the introduction, the moduli spaces attached to (3) (the de

Rham/Betti spaces [11]) only depend on the Weyl-orbit of (3), denoted

Q ∈
(
t⊗TΣ,a

)/
Wg . (4)

Here the Weyl group acts on the Cartan subalgebra—and trivially on the other

tensor factor; the element (4) defines an irregular class, a.k.a. “bare” irregular

type [13, Rem. 10.6] (cf. [14] for a definition in the twisted case).

IfQ is a “starting” irregular type, then we have associated to it the deformation

space B = B(Q) in [23]; recall this is B =
∏p
i=1
Bi, with

Bi = B(Ai) :=
⋂
dα6i

Ker(α) ∩
⋂
dα=i

(
t \Ker(α)

)
⊆ t ,

where

dα = ord(qα) , qα = α ◦Q , α ∈ Φg ,

taking the pole order at a ∈ Σ.
But two deformations are then equivalent (that is, they define the same irregular

class) if they lie in the sameWg-orbit, which leads to admissible deformations of

the “starting” irregular class Q. The main definition is thus the following.

Definition 1.1. The local wild mapping class group of the (bare)wild Riemann surface

Σ = (Σ,a,Q
)
is

Γ(Φg,d) :=π1
(
B,Q

)
, d = (dα)α∈Φg

, (5)

where B = B
/
∼ is the topological quotient with respect to the equivalence relation

Q1 ∼ Q2 if WgQ1 =WgQ2⊆ t⊗TΣ,a . (6)

This yields in general a larger fundamental group than the pure case—some

paths in B become loops in B.

Remark 1.1. The space B itself depends on the irregular type Q, not just on the

underlying irregular class. However if w ∈ Wg then B is homeomorphic to w(B),

and there is a further canonical homeomorphism B ' w(B) obtained by matching

orbits: thus (5) only depends on Q. 4

Now the Weyl action does not preserve B in the nongeneric case, i.e. the case

where Ap is not regular, so we first need to describe the subset

WgQ ∩ B⊆WgQ ,

and further understand the Weyl-stabiliser of the irregular type.
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2. Weyl group fission

2.1. Inductive step. Wefirst consider the case of a single coefficient, i.e. Q = Az−1
.

In the general case the irregular type is transformed along the diagonalWeyl action

on each coefficient.

Choose then A ∈ t, and let h = Zg(A)⊆ g be the centraliser: it is the (reduct-

ive) Levi factor of a parabolic subgroup of G. The associated deformation space

becomes

B = Ker(Φh) ∩
⋂

Φg \Φh

(
t \Ker(α)

)
⊆Ker(Φh) , (7)

and we set U :=Ker(Φh)⊆ t.
Now ifw ∈ StabWg

(B)⊆Wg then certainlywA ∈ B, but the converse is true. To
state this let OA ⊆ B be the orbit of A under the action of StabWg

(B); then:

Lemma 2.1. One has StabWg
(U) = StabWg

(B), and (WgA) ∩ B = OA.

Proof. The Weyl group permutes the root hyperplanes via

w
(
Ker(α)

)
= Ker(wα) , w ∈Wg , α ∈ Φg ,

i.e. along the permutation of the roots. (Recall we identify W(Φg)⊆GL(t∨) and
W(Φ∨

g )⊆GL(t), cf. § A.) Hence w(B)⊆B if and only if w ∈ Wg preserves the

partition Φg = Φh ∪ (Φg \Φh), by (7). In turn this is equivalent to w(Φh)⊆Φh,

proving the first statement.

Analogously if wA ∈ B then w preserves the above partition, whence the

inclusion (WgA) ∩ B⊆OA—and the opposite one is tautological. �

Thus the restriction of orbits to thedeformation space is controlled by the setwise

stabiliser of U⊆ t.

Remark 2.1. The extremal cases areA = 0, in which caseU = t and StabWg
(U) = 1;

and A ∈ treg, in which case U = (0) and StabWg
(U) =Wg. 4

Now the Weyl group Wh = W(Φh)⊆Wg of the Levi factor lies in the setwise

stabiliser of U, but in general the inclusion is proper. Namely by definition

Ker(α) = Ker(σα − 1)⊆ t , α ∈ Φg ,

and the subgroup Wh is generated by the reflections along the hyperplanes of

the subsystem Φh⊆Φg: hence automatically any element of Wh acts trivially on

U = Ker(Φh), i.e.

Wh⊆(Wg)U⊆ StabWg
(U) .

However it is possible to show the first inclusion is an equality, and more

precisely thatWh is the (maximal) parabolic subgroup fixing the given semisimple

element A ∈ t.

Lemma 2.2. One hasWh = (Wg)U = (Wg)A.

Proof. In principle

(Wg)U⊆(Wg)B⊆(Wg)A ,

since A ∈ B⊆U, so it is enough to show the inclusion (Wg)A⊆Wh, i.e. that any

element ofWg fixing A lies in the Weyl group of Φh.

To this end recall the Lie-group-theoretic definition of the Weyl group is

Wh = NH(T)
/
T ⊆NG(T)

/
T =Wg ,

using the normalisers NH(T)⊆NG(T) of the given maximal torus, where H⊆G
is the reductive subgroup integrating h⊆ g. Hence an element w ∈ Wg such that
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w(A) = A corresponds to an elementg ∈ NG(T)—definedup to the T -action—such

that Adg(A) = A: this means

g ∈ NG(T) ∩H = NH(T) ,

whence w ∈Wh. �

Finally we have an identification OA 'Wg|hA, introducing the quotient group

Wg|h := StabWg
(U)
/
Wh . (8)

In turn there is a homeomorphism

B ' B
/
Wg|h , (9)

by Def. 1.1, which leads to the following.

Proposition 2.1. The fundamental group π1(B,A) is an extension of (8) by π1(B,A),
where A ∈ B is the Weyl-orbit of the base point.

Proof. By construction the Wg|h-action on B is free: indeed the stabilisers of all

points are conjugated, and by Lem. 2.2 the stabiliser of the base point is trivial.

Moreover the action is automatically properly discontinuous (Wg|h is finite), and

the spaces involved are Hausdorff: hence every point of B has a neighbourhood

O⊆B such that w1(O) ∩w2(O) 6= ∅ implies w1 = w2 ∈Wg|h.

It follows that the canonical projection p : B ! B is a Galois covering, with

automorphisms provided by the monodromy action of Wg|h. The choice of the

base point A ∈ p−1(A)⊆B in the fibre yields an identification p−1(A) ' Wg|h

between the torsor and the group, so there is a (principle) fibre bundle

Wg|h ↪−!B
p
−! B .

Then the resulting exact sequence of homotopy groups contains the short sequence

1−!π1(B,A)
π1(p)
−−−! π1(B,A)−!Wg|h−! 1 , (10)

identifying π0(Wg|h) ' Wg|h for the discrete space. The connecting map in this

case is a group morphism: it corresponds to the monodromy action at the base

point—up to turning it into a left action, i.e. exchangingWg|h with its opposite. �

Example 2.1. For example if A ∈ treg then Wh is trivial, so Wg|h = Wg. Hence (9)

generalises the generic “configuration” space treg
/
Wg, and in turn π1(B,A) gener-

alises the (full/nonpure) g-braid group. 4

Remark 2.2 (Reduced reflection groups). At first one may think (8) is the reflection

group of the “restricted” hyperplane arrangement

H =
{
Ker(α) ∩U = Ker

(
α
∣∣
U

) ∣∣∣ α ∈ Φg \Φh

}
⊆P
(
U∨
)
: (11)

however this is not the case in general.

For example ifΦh = A1⊆A2 = Φg then (8) is trivial (see § 3), while the reduced

arrangement is of type A1—so has a Weyl group of order two. The point is there

are reflections of (11) which do not come as restrictions of elements in StabWg
(U)

(see § 4). 4
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2.2. General case. The space (9) corresponds to one factor of (5), i.e. to an irregular

type with a simple pole only: here we extend this to an arbitrary irregular type.

Suppose thus to have an increasing sequence of fission subsystems

Φh1
⊆ · · ·⊆Φhp+1

:=Φg , (12)

for some integer p > 1, associated to an irregular type Q =
∑p
i=1
Aiz

−i
. Then

h1 = Zg

(
{A1, . . .,Ap }

)
is the centraliser ofQ, which generalises the Levi factor h of

the previous section.

Namely there is a filtration of Weyl (sub)groups

Wh1
⊆ · · ·⊆Whp+1

=Wg ,

and the deformation space is a product, with each factorBi⊆ t determined as in (7)

(it is the space of admissible deformations of Ai ∈ t). ThenWg acts diagonally on

B⊆ tp.
Now w(Q) ∈ B means that w(Ai) ∈ Bi for i ∈ { 1, . . .,p }, and this condition

can be described recursively using Lem. 2.1. To this end define a sequence of

subgroups

W1⊆ · · ·⊆Wp⊆Wg ,

as follows. Set as above Ui :=Ker(Φhi), and then

Wp := StabWg
(Up) , Wi−1

:= StabWi(Ui−1)⊆Wi , i ∈ { 2, . . .,p } . (13)

Denote then OQ the orbit of the irregular type under the action of the smallest

groupW1⊆Wg.

Lemma 2.3. One hasWi−1 = StabWi(Bi) for i ∈ { 1, . . .,p }, and (WgQ) ∩ B = OQ.

Proof. First w(Ap) ∈ Bp if and only if w ∈ Wp, and the first statement has been

proven in Lem. 2.1—for i = p.
Then we can replace (hp, g) with (hp−1, hp), and repeat the same construction:

we need w ∈Wp such that w(Ap−1) ∈ Bp−1, where

Bp−1 = Up−1 ∩
⋂

Φhp \Φhp−1

(
t \Ker(α)

)
⊆ t ,

by (7). Reasoning as in the proof of Lem. 2.1 this requires w(Φhp−1
)⊆Φhp−1

,

which is equivalent to preserving the partitionΦhp = Φhp−1
∪ (Φhp \Φhp−1

), since
by (recurrence) hypothesis w(Φhp)⊆Φhp . Hence w ∈Wp−1 and

Wp−1 = StabWp(Bp−1)⊆Wp .
Descending until i = 1 shows that w(Q) ∈ B if and only if w ∈

⋂
iWi = W1,

and proves the first statement—inductively. �

NoteW1⊆Wg is determined by the flag of kernels

U = (t ⊇ U1 ⊇ · · · ⊇ Up) , (14)

by (13). Indeed consider the (parabolic) stabiliser of (14), withinWg, i.e.

StabWg
(U) :=

⋂
i

StabWg
(Ui)⊆Wg , (15)

which coincides withWg ∩ Stab
GL(t)(U); then:

Lemma 2.4. One hasW1 = StabWg
(U).

Proof. Postponed to B. �

Thus the restriction of orbits to B is controlled by the action of the setwise

Weyl-stabiliser of the kernel flag (14), generalising the inductive step.
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Remark 2.3. Beware however it is not true in general that StabWg
(Ui) = StabWg

(Bi):
e.g. for the fission ∅ = Φh1

⊆Φh2
⊆Φg one has U1 = t, so StabWg

(U1) =Wg; but

B1 = t
∖ ⋃
Φh

2

Ker(α)⊆ t ,

which is not stabilised byWg if h2⊆ g is a proper Lie subalgebra. 4
Analogously we can identify the subgroup fixing the irregular type.

Lemma 2.5. One hasWh1
= (Wg)U1

= (Wg)Q. 3

Proof. By definition w(Q) = Q if and only if w(Ai) = Ai for i ∈ { 1, . . .,p }, i.e.
w ∈

⋂
i(Wg)Ai .

Now the argument of Lem. 2.2 yields the inductive step for the proof of the

identity ⋂
j6i6p

(Wg)Ai = (Wg){Aj,...,Ap } =Whj ⊆Wg , j ∈ { 1, . . .,p } ,

whence

(Wg)Q =Wh1
⊆Wg .

On the other hand

Wh1
=
⋂
i

Whi ⊆
⋂
i

(Wg)Ui = (Wg)U1
,

since U1 =
∑
iUi⊆ t, andWhi acts as the identity on Ui = Ker(Φhi).

Finally if w acts as the identity on U1 then it also fixes (pointwise) Bi⊆U1 for

i ∈ { 1, . . .,p }, thus
(Wg)U1

⊆(Wg)B⊆(Wg)Q ,

proving the remaining inclusion. �

In particular by Lemmata 2.4 and 2.5 we also have an inclusionWhi ⊆Wi, since
Whi = (Wg)Ui ⊆ StabWg

(Uj) , j ∈ { i, . . .,p } ,

as Ui =
⋃
j>iUj⊆ t.

It follows thatWh1
is a normal subgroup of StabWg

(U1), hence a fortiori of (15),

and we consider again the quotient group

Wg|h := StabWg
(U)

/
Wh1

. (16)

Note the numerator of (16) depends on the whole sequence h = (h1, . . ., hp), while

the denominator only depends on the last term—the pointwise stabiliser of a

flag/filtration only depend on its union/sum, contrary to the setwise stabiliser.

Example 2.2 (Complete fission and generic case). In particular if the fission is “com-

plete”, which means that H1 = StabG(Q) = T ⊆G is the maximal torus, then

Φh1
= ∅; in this case U1 = t andWh1

is trivial, soWg|h ' StabWg
(U).

If further we are in the generic case where Ap ∈ treg thenU is stationary at t, so
StabWg

(U) =Wg. 4

Finally by construction there is a topological identificationB ' B
/
Wg|h, and the

same argument of the proof of Prop. 2.1 yields the following.

Theorem 2.1. The projection B! B is a Galois covering, and the local WMCG (5) is an
extension ofWg|h by the pure local WMCG.

Of course ifW1 =Wh1
then B = B, in which case the local WMCG is pure (and

has been studied in [23]).

3Note in the rightmost identity we consider two different actions ofWg: the former is an action on

t, the latter on t⊗TΣ,a.
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3. Low-rank examples

Analogously to the pure caseweprovide examples of localWMCGs for low-rank

Lie algebras, after proving we can reduce to the simple case.

3.1. Reduction to the simple case. Suppose g =
⊕⊥
i Ii is a decomposition of g

into orthogonal ideals, with respect to an AdG-invariant nondegenerate symmetric

bilinear form g⊗ g! C (such as (X | Y) = Tr(XY) for X, Y ∈ gln(C)). Choose then
a root subsystem Φ⊆Φg—not necessarily obtained from fission.

Introduce ti := t∩ Ii (a Cartan subalgebra of Ii), and letΦIi = Φ(Ii, ti)⊆Φg be

the associated root system; this way there are two other decompositions:

t =

⊥⊕
i

ti , Φg =
⊕
i

ΦIi .

Further let Φ(i) :=Φ ∩ΦIi , which is a root subsystem of ΦIi .

Then one can show [23] the deformation space (7) splits as a productB =
∏
iBi,

where

Bi = Ker

(
Φ(i)

)
∩

⋂
ΦIi

\Φ(i)

(
ti \Ker(α)

)
⊆ ti . (17)

Finally the Weyl group also splits as a product Wg =
∏
iWIi ⊆

∏
iGL(ti),

where the i-th factor (the Weyl group of ΦIi) acts trivially on the complementary

direct summands. It follows that every Wg-orbit (inside t) splits as a product of

WIi-orbits (inside ti), so the previous discussion of setwise/pointwise stabilisers

can be carried over factorwise, and:

Corollary 3.1. The deformation space B decomposes as a (topological) product
∏
iBi,

whereBi is the topological quotient of (17)with respect to the equivalence relation (6)—with
WIi replacingWg.

In particular the factor corresponding to the centre Zg⊆ g is contractible, and

can be removed; and further if g is semisimple then the full/nonpure local WMCG

is a direct product of the groups associated with its simple ideals.

Hence hereafter we will assume g is simple.

Remark 3.1. In this case all Cartan subalgebras t⊆ g are conjugated by (inner)

Lie-algebra automorphisms of g, which in turn induces homeomorphisms of the

resulting deformation spaces B. Hence the pure local WMCG does not depend on

the choice of the Cartan subalgebra, and so in turn neither does the full/nonpure

one—since the latter is an extension of the former by a subquotient of the Weyl

group. 4

3.2. Rank one. If rk(g) = 1 then the only nontrivial fission is the “generic” one, so

Γ(Φg,d) is either trivial or isomorphic to the g-braid group. This is of type A1, i.e.

the braid group on 2-strands, and (10) becomes

1−!Z−!Z−!Z
/
2Z−! 1 ,

with Γ(Φg,d) ' Z ' Γ(Φg,d), matching up with a particular case of (32):

1−!PBr2−!Br2−! S2−! 1 .

Equivalently up to homotopy we have B ' S1, and the arrow B ! B is the

two-sheeted covering of the circle over itself.
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3.3. Rank 2. Suppose now rk(g) = 2: since g is simple then Φg is isomorphic to

A2, B2/C2 or G2, and Wg is isomorphic to Dih3 ' S3, Dih4 or Dih6, respectively

(i.e. the symmetries of a triangle, a square, or a hexagon). Here Dihn denotes

the dihedral group of order 2n, for an integer n > 1—i.e. we use the “geometric”

convention rather than the “algebraic” one.

The generic fission is ∅⊆Φg, in which case we obtain the g-braid group, while

the nongeneric (incomplete) fission isΦh⊆Φg, withΦh = {±θ } for some θ ∈ ∆g—

here ∆g⊆Φg is a choice of simple roots; this corresponds to the deformation space

B = C \ { 0 }. With the usual notation we find U = Ker(θ) and Wh ' Z
/
2Z, and

we must describe StabWg
(U)⊆Wg—acting on B. This is the same as the setwise

stabiliser of the lineCθ⊆ t∨ for the dual action, and the difference among the three

types is due to the parity of the corresponding dihedral group.

Namely for type A the Weyl group yields the standard permutation action of

S3 on C3 ⊇ t∨—identified with the standard dual Cartan subalgebra for gl
3
(C) ⊇

sl3(C). Then the only nontrivial permutation fixing the line generated by either

simple root is the associated (simple) reflection. It follows that StabWg
(U) = Wh,

so (8) is trivial and the local WMCG is pure: it is thus infinite cyclic.

For typeB the long roots are vertices of a square centered at the origin of t∨R ' R2
,

while the short roots are vertices of a smaller square obtained by taking midpoints

of each side:

The Weyl group acts by preserving both squares, and operates as the group

of their symmetries. In both cases a diagonal is fixed by the subgroup generated

by the (simple) reflection along the corresponding axis, but also by a rotation of

π. This means the stabiliser is always the Klein four-group K4 ' Z
/
2Z × Z

/
2Z,

hence (8) becomes

Wg|h ' Z
/
2Z ,

acting as the antipode on the punctured plane, and B! B is again a two-sheeted

covering of the circle onto itself (up to homotopy equivalence). In particular

Γ(Φg,d) is infinite cyclic.
Finally typeG yields to an analogous situation. Long/short roots assemble into

two Weyl-invariant hexagons in the real plane, and the action of the Klein group

(within Dih6) fixes any given diagonal within each hexagon:

Then we can extend to the complete (nongeneric) fission ∅ = Φt⊆Φh⊆Φg,

with the middle term as above. The associated kernel flag isU =
(
t ⊇ t ⊇ Ker(θ)

)
,

so the setwise stabiliser stays the same; but this time the irregular type is centralised

by the maximal torus only, soWg|h will be isomorphic to the group of order two
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(for type A), or to the Klein group (for type B/C and G). The result is a covering

C∗ × C∗ = B−!B , C∗ = C \ { 0 } ,

with either two or four sheets, and Γ(Φg,d) is an extension of the monodromy

group by Γ(Φg,d) ' Z2
.

4. Type A

Importantly we can explicitly describe local WMCGs for the special/general

linear Lie algebra in full generality, building on [23].

Let n > 2 be an integer and g = sln(C). The Weyl groupWg ' Sn acts naturally

on V :=Cn, so we will use the vector representation g ↪! gl(V) ' gln(C).

Remark 4.1 (General linear description). Using the basis we identify V with the

standardCartan subalgebra of gl(V), so t = V∩g (the standardCartan subalgebra of

g) becomes the subspace of n-tuples of (possibly coalescing) points of the complex

plane with vanishing barycentre.

The resulting inclusion Cn−1 ' t ↪!V induces a homotopy equivalence

treg ' Confn = Cn
∖ ⋃

16i 6=j6n

Hij ,

using the notation of (31), which moreover is compatible with the Weyl group

action—since gln(C) = g⊕⊥ C IdV , and the orthogonal line C IdV = Zgl(V) is fixed

(pointwise) byWg. Hence there is a second homotopy equivalence

treg
/
Wg ' UConfn ,

and whenever useful we will work within the general linear Lie algebra. 4

4.1. Inductive step. If Φh⊆Φg = An−1 is a fission subsystem, we have an associ-

ated J-partition n =
∐
j∈J Ij, and

Φh '
⊕

J
A|Ij|−1

⊆ An−1 ,

with the usual convention that A0 = ∅ (cf. [23] and § A). Namely for i ∈ nwe set

Ii := { i } ∪
{
j ∈ n

∣∣∣ ±α−
ij ∈ Φh

}
⊆n , α−

ij = e
∨

i − e∨j ∈ t∨ ,

and then

J :=
{
min(Ii)

∣∣ i ∈ n }⊆n .

The Weyl group of h thus comes with a natural factorisation

Wh '
∏
J

SIj ⊆ Sn =Wg ,

with trivial factors corresponding to the trivial components of Φh. The setwise

stabiliser of U = Ker(∆h)⊆ t is bigger in general, since we can also permute com-

ponents of Φh of the same rank.

To state this precisely consider two nonempty finite sets I and K, and suppose

I =
∐
k∈K Ik is a K-partition of I with parts Ik⊆ I of equal cardinality m > 1—so

|I| = m|K|. Then the symmetric group SI contains the subgroup

N :=
{
τ ∈ SI

∣∣ τ(Ik)⊆ Ik for k ∈ K } ' (Sm)|K| ,

which stabilises all parts (and permutes their elements). If I has a total order then

there is a “complementary” subgroup P⊆ SI, which permutes all parts (fixing their

elements): more precisely, if Ik =
(
i
(k)
1

, . . ., i
(k)
m

)
⊆ I for k ∈ K, then any element of

σ ∈ SK ' P acts as

σ : i
(k)
j 7−! i

(σk)
j ∈ I , j ∈ { 1, . . .,m } .
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By construction N ∩ P = 1 inside SI, and P acts on N by conjugation.

Lemma 4.1 (Cf. [54], Lem. 3.2.8). If τ =
∏
K τ

(k) ∈ N, with τ(k) ∈ SIk ' Sm, then

στσ−1 =
∏
K

τ(σ
−1

k ) ∈ N , σ ∈ P . (18)

Hence we have an inner semidirect product PnN⊆ SI, and it follows that

(PnN)
/
N ' P canonically. Equivalently the outer semidirect product of P and N,

with respect to the action (18), comes with a natural group embedding PnN ↪!SI.
This latter is also the wreath product SK o Sm ↪! SI, cf. § A. 4

Remark 4.2. One has

|PnN| = (m!)|K||K|! 6
(
m|K|

)
! = | SI| ,

with strict inequality if 1 < m < |I| (proven e.g. by induction on m). Thus the

embedding PnN ↪! SI is proper for nontrivial partitions of I. 4

Let us apply this to the present situation: for an integer i > 1 denote

Ki :=
{
j ∈ J

∣∣∣ ∣∣Ij∣∣ = i } ⊆ J .
If i > 2, the integer |Ki| > 0 is thus the multiplicity of Ai−1 as an irreducible

component of Φh. Instead for i = 1 one has a natural bĳection

K1

'
−!
{
i ∈ n

∣∣∣ ±α−
ij 6∈ Φh for any j

}
, Ij = { i } 7−! i .

The subgroups Pi ' SKi andNi ' (Si)
|Ki|

of SJ are defined as the above—noting J
inherits a natural total order from n.

Proposition 4.1. There is a canonical group isomorphism

StabWg
(U) '

∏
i>0

(
SKi o Si

)
⊆Wg . (19)

Proof. The statement is the algebraic rewriting of the following claim: the setwise

stabiliser of U = Ker(∆h) is the subgroup of Wg = Sn that permutes parts Ij⊆n
of the same cardinality, and that further permutes the elements within each part.

By the above discussion this yields the direct product (19)—as permutations of

disjoint parts commute.

To prove the claim recall the “extended” kernel K̃er(∆h)⊆V is defined by the

condition that the coordinate of any vector are equal within each part CIj ⊆V , so
its setwise stabiliser is given by the above condition. Thus to conclude it is enough

to show that the setwise Weyl-stabiliser of the “essential” kernel U = K̃er(∆h) ∩ t
is the same; but by construction

K̃er(∆h) = U⊕⊥ C IdV ⊆ gl(V) ,

and the orthogonal line is fixed (pointwise) by the whole ofWg (cf. Rem. 4.1). �

Corollary 4.1. One has

Wg|h '
∏
i>0

SKi .

4This is a particular example of application of the operadic composition of the symmetric group

operad, cf. [54, § 3.1] and below.
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Proof. By definitionWg|h is the quotient (8), which is readily computed in this case

using Prop. 4.1 and the factorisation

Wh '
∏
i>1

(Si)
|Ki|

, (20)

as quotients and direct products commute. 5 �

This corresponds to the fact thatWg|h is naturally identified with the subgroup

permuting parts of equal cardinality (and fixing the elements within each part). In

particular in this case the exact group sequence

1−!Wh−! StabWg
(U)−!Wg|h−! 1

splits.

Further (20) is naturally a subgroup of the Weyl group of the “reduced” root

system

Φg

∣∣
U
=
{
α
∣∣
U

∣∣∣ α ∈ Φg

}
' A|J|−1

,

viz. a subgroup of SJ—corresponding to certain “admissible” permutations.

On the whole there is a Galois covering B ! B with

∏
i>0

(
|Ki|!

)
sheets, and to

go further let us work within gl(V) ⊇ g. Recall from [23] that there is a canonical

vector space isomorphism Ũ := K̃er(∆h) ' CJ, and by Rem. 4.1 theWg-equivariant

inclusion U ↪! Ũ yields homotopy equivalences

B ' Conf|J| , B
/
Wg ' UConf|J| ,

with fundamental groups PBr |J| and Br|J|, respectively. What we have here is an

“intermediate” covering, since it is onlyWg|h that acts (freely) on B.
To simplify the notation let us contemplate the following abstract situation. For

an integer d > 1 consider the ordered configuration space Yd :=Confd⊆Cd, as
well as an I-partition ϕ : d� Iwith parts Ii = ϕ

−1(i)⊆d, for i ∈ I. Then there is a

natural group embedding

Sϕ :=
∏
I

SIi ↪−! Sd ,

obtained by juxtaposing permutations, andwe letXϕ :=Yd
/
Sϕ (the “semiordered”

configuration space): this is the space of configurations of d =
∑
i|Ii| points in the

complex plane, such that two of them are indistinguishable if they lie within the

same part of the I-partition.
To identify the fundamental group recall there is an “augmentation” group

morphism pd : Brd ! Sd, with kernel π1(Yd) = PBrd⊆Brd.

Proposition 4.2. There is a group isomorphism

π1(Xϕ) ' Brϕ⊆Brd , Brϕ :=p−1

d (Sϕ) ,

and Brϕ is an extension of Sϕ by PBrd.

Here Brϕ is thus the “semipure” braid group of the partition, i.e. the group of

braids whose underlying permutation lies within Sϕ⊆ Sd.

Proof. There are Galois coverings Yd ! Xd =: UConfd and Yd ! Xϕ, and it follows

the induced map Xϕ ! Xd is a covering (with

[
Sd : Sϕ

]
sheets). Up to identifying

groups and torsors (the discrete fibres), after a suitable choice of base points, this

5Note (20) has a trivial factor corresponding to K
1
.
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yields a commutative diagram of pointed topological spaces, with (principle) fibre

bundles in each row:

Sϕ Yd Xϕ

Sd Yd Xd

.

In turn this leads to a morphism of (short) exact group sequences, proving the

statement:

π1(Xϕ) Sϕ

1 PBrd 1

Brd Sdpd

.

Note indeed Ker

(
pd
∣∣
Brϕ

)
= Ker(pd) ∩ Brϕ = PBrd. �

In our situation we thus find a group isomorphism

π1(B) ' Brϕ⊆Br|J| ,

whereϕ : J� I⊆Z>0 is the I-partition obtained from J =
∐
i>0

Ki by removing the

empty parts.

Remark 4.3. The extreme cases are Sϕ = 1, where Xϕ = Yd, and Sϕ = Sd, where

Xϕ = Xd is the (fully) unordered configuration space. In our setting this means

either no two irreducible components ofΦh have the same rank, or conversely they

all have the same rank—respectively. 4

Remark 4.4. Note there is also a different subgroup of Brd associated with the

partition and projecting onto Sϕ, namely

∏
i BrIi ↪!Brd: this is the subgroup

obtained by juxtaposing |I| braids, each on |Ii| strands. However in general the

inclusion

∏
i BrIi ⊆Brϕ is proper. E.g. Br1×Br1⊆Br2 is trivial, while

p−1

2
(S1× S1) = p

−1

2
(1) = PBr2 ' Z .

This simple example shows the fundamental group of the semiordered config-

uration space is not just the direct product of the corresponding braid groups: it

is possible two points in different parts braid across each other (along a loop in

Xϕ), provided the are not swapped by the underlying permutation of the overall

braid. 4

Remark 4.5. By the Galois correspondence the isomorphim class of the covering

Xϕ ! Xd matches up with the conjugacy class of a subgroup of Brd = π1(Xd). 6

This is precisely the conjugacy class of Brϕ⊆Brd, which is generically nontrivial—

as Sϕ⊆ Sd is generically not a normal subgroup. 4

4.2. General case: ranked fission trees. Suppose now to have an increasing filtra-

tion

Φh1
⊆ · · ·⊆Φhp ⊆Φhp+1

:=An−1 .

of fission subsystems. As in [23] this corresponds to a “fission” tree T = (T0,φ)
of height p > 1 (cf. § A). The set Jl = Jhl is as above, for l ∈ p, and then

we add a tree root at level p + 1. By definition φ(i) = j ∈ Jl+1 means that

the irreducible component of hl⊆ hl+1 corresponding to i ∈ Jl lies within the

irreducible component of hl+1 corresponding to j.
Thiswas enough to encode thepure localWMCG in typeA, while in the nonpure

case we must retain more data, according to the results of the previous section.

6All spaces involved are (locally) path-connected and semi-locally simply-connected [32, Thm. 1.38].
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Definition 4.1 (Rankedfission tree). A rankedfission tree is a fission tree T = (T0,φ)
equipped with a rank function r : T0 ! Z>1; in turn a rank function satisfies:

r(i) =
∑
φ−1(i)

r(j) , i ∈ T0 .

We then say r(T) := r(∗) > 1 is the rank of the tree.

This means to each node we attach a positive rank, which equals the sum of

its child-nodes’. In particular

∑
Jl
r(i) = r(T), independently of the level, and the

rank function is determined by assigning ranks to the leaves—i.e. by r
∣∣
J1
∈ ZJ1>1

.

The algorithm to associate a ranked fission tree (T , r) to (12) is the following:

the underlying fission tree is constructed as in [23], and we further set r(i) = k+ 1

if the node i ∈ Jl corresponds to a type-A irreducible rank-k component of Φhl+1
.

Working within the general linear Lie algebra, this is the same as setting r(i) = k
if i corresponds to an irreducible component isomorphic to Φglk(C)—including

Φgl
1
(C) = ∅. It follows that r(T) = n if we work within gln(C). 7

By construction the Weyl group of hl⊆ g comes with a canonical group iso-

morphism

Whl '
∏
Jl

Sr(i) , l ∈ p , (21)

and to construct the stabiliser of the kernel flag in terms of the tree we introduce

the following.

Definition 4.2. An isomorphism (T0,φ, r) ! (T ′
0
,φ ′, r ′) of ranked fission trees is a

bĳection f : T0 ! T ′
0
matching roots, and such that there are commutative diagrams:

T0 \ { ∗ } T ′
0
\ { ∗ }

T0 T ′
0

f

φ φ′

f

and

T0 T ′
0

Z>1

f

r r′
.

An automorphism of (T0,φ, r) is an isomorphism (T0,φ, r)! (T0,φ, r); their group
is denoted Aut(T , r).

This restricts the usual notion of isomorphismof (rooted) trees, by further asking

that ranks be preserved. Note by definition an automorphism preserves the nodes

at each level, and is uniquely determined by the image of the leaves.

4.3. General case: reflection groups. It is possible to compute the automorphism

group of the tree recursively, and in turn this will control the monodromy action

of the Galois covering B! B = B
/
Wg|h.

Choose then a ranked fission tree (T , r), and note its subtrees are equipped with

restricted rank functions. In particular let T = T(T , r) be the set of (ranked)maximal
proper subtrees, i.e. the subtrees of T rooted at each child-node of the root, and

choose a complete set of representatives T̃⊆T of isomorphism classes. Finally

denote n(t) > 1 the cardinality of the isomorphism class of any maximal proper

subtree t ∈ T.

Definition 4.3. The extended automorphism group Ãut(T , r) of the ranked fission

tree (T , r) is defined recursively by

Ãut(T , r) =
∏
t∈T̃

Sn(t) o Ãut(t, r0) , r0 := r
∣∣
t0

, (22)

7This choice is more natural since the (nonsemisimple) rank of the general linear Lie algebra controls

the Weyl/braid groups without shifts.
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with basis Ãut

(
i, r(i)

)
:= Sr(i) for i ∈ J1.

Note at each step it is the global information of the subtree t that is required in

the algorithm—rather than simply the data at each level of T .

A priori (22) depends on the choice of T̃⊆T, but the following identification in

particular shows it does not.

Theorem 4.1. One has Ãut(T , r) = StabWg
(U). Further the automorphism group

Aut(T , r) is obtained recursively as in (22) but with recursion basis Aut
(
i, r(i)

)
:= S1 for

i ∈ J1—the trivial group.

Proof. The first item can be proven by induction on p > 1.

If p = 1 then a maximal proper subtree is a leaf, so T = J1: then two leaves

are isomorphic (as ranked trees) if and only if they have the same rank. Hence for

i ∈ J1 the integer n(i) > 1 is the number of rank-r(i) leaves, and in this case

Ãut(T , r) =
∏
i∈J̃1

Sn(i) o Sr(i)⊆ Sr(T) ,

where J̃1⊆ J1 is a set of representatives of leaves—of all possible ranks. The result

follows from Prop. 4.1.

Now let p > 2. By the induction hypothesis the bases of the wreath products

in (22) are the setwise stabilisers of the deformation space of the “sub-irregular

types” obtained by focusing on each eigenspaces of the leading coefficient. In ad-

dition to that we are then permuting isomorphic maximal proper subtrees, i.e. ei-

genspaces of the leading coefficient whose nested decomposition (into eigenspaces

for the subleading coefficients) plays a symmetric role: this yields the whole of

StabWg
(U), as any other permutation of the eigenvalues of the leading coefficient

moves the irregular type out of the space of admissible deformations.

The second item is a straightforward extension from the unranked case, and can

also be proven recursively on p > 1.

If p = 1 an automorphism is the data a permutation of the leaves whichmatches

up ranks. Hence in this case

Aut(T , r) =
∏
i∈J̃1

Sn(i) =
∏
i∈J̃1

Sn(i) o S1 ,

using the above notation. (Note Sn(i)⊆ SJ1 is naturally identified with the sym-

metric group of rank-r(i) leaves.)
Now let p > 2. By the induction hypothesis the bases of the wreath products

in (22) are the automorphism groups of the maximal proper ranked subtrees. In

addition to that we are then permuting isomorphic maximal proper subtrees: this

yields the whole of Aut(T , r), as any other permutation of child-nodes of the root,

bringing along the corresponding subtrees, cannot restrict to an isomorphism of

these latter. �

Example 4.1. The most symmetric example is that in which r is constant at each

level: in this case any automorphism of the underlying tree T = (T0,φ) preserves
the rank function.

If moreover T is a complete m-ary tree, viz. if all interior nodes have m > 1

child-nodes, then simply

Aut(T , r) ' Sm o · · · o Sm︸ ︷︷ ︸
p times

,
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the p-foldwreath power—recall this example of wreath product is associative. The

extended group instead is

Ãut(T , r) ' (Sm)op o Sr ,
where r > 1 is the rank of any leaf.

On the opposite end, if r is injective at each level, the group Aut(T , r) is trivial—

and Ãut(T , r) '
∏
J1
Sr(i)⊆ Sr(T). In this case the type-A local WMCG is pure. 4

Now by (recursive) construction Aut(T , r)⊆ Ãut(T , r) is a subgroup, so by

Thm. 4.1 it can be identified with a subgroup of the kernel-flag stabiliser.

Indeed choose f ∈ Aut(T , r), so by definition f : T0 ! T0 yields rank-preserving

permutations fl := f
∣∣
Jl
∈ SJl of the nodes at each level l ∈ p+ 1. In particular f1

permutes subsets of leaves (of constant rank), and we can map it to an element of

Wg ' Sr(T) along the group embedding∏
J̃1

Sn(i) ↪−!
∏
J̃1

Sn(i) o Sr(i)⊆ Sr(T) ,

keeping the notation of the proof of Thm. 4.1. This yields an injective group

morphism ι : Aut(T , r) ↪! StabWg
(U)—since f is determined by f1.

By construction the image of ι is disjoint fromWh1
=
∏
J1
Sr(i) (using (21)), and

acts on it by conjugation, so there is a second group embedding

ι̃ : Aut(T ,p)nWh1
↪−! Ãut(T , r) . (23)

Proposition 4.3. The group morphism (23) is surjective.
Hence the exact group sequence

1−!Wh1
−! StabWg

(U)−!Wg|h−! 1

splits in the general type-A fission, generalising the recursive step.

Proof. It is equivalent to show thatWh1
⊆ Ãut(T , r) is a normal subgroup, and that

Ãut(T , r)
/
Wh1

' Aut(T , r) .

This can be proven recursively on p > 1, the base being the content of Cor. 4.1.

If p > 2 consider a maximal proper subtree t ∈ T: its leaves yield a subset

J1(t)⊆ J1, and there is a partition

J1 =
∐
T

J1(t) ,

of the leaves of T . Accordingly the centraliser of the irregular type splits as

Wh1
'
∏
T

Wh1
(t) =

∏
T̃

(
Wh1

(t)
)n(t)

,

whereWh1
(t) =:

∏
J1(t)

Sr(i) is theWeyl group of the Lie algebra h1∩glr(t)(C)⊆ h1,

and in turn glr(t)(C)⊆ glr(T)(C) matches up with the eigenspace of the leading

coefficient corresponding to the root of the subtree t—viz. a child-node of the root

of T .
Hence, using the decomposition (22), and the fact that direct products and

quotients commute, the result follows from Lem. 4.2; indeed in particular

Ãut(T , r)
/
Wh1

'

(∏
T̃

Sn(t) o Ãut(t, r)

)/
Wh1

=
∏
T̃

(
Sn(t) o Ãut(t, r)

/
Wh1(t)

)
=
∏
T̃

Sn(t) o Aut(t, r) = Aut(T , r) ,
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by the recursive hypothesis—and definition of the automorphism group. �

Lemma 4.2. Letm > 0 be an integer and P a group, and choose a normal subgroupN⊆P.
Then 1 o N⊆ Sm oP is a normal subgroup, and in this identification there is a canonical
group isomorphism (

Sm oP
)/
N ' Sm o

(
P
/
N
)
. (24)

Proof. Postponed to § B. �

Hence in brief there is an explicit (finite) algorithm to compute the “effective”

subquotient of theWeyl group acting freely on the deformation space of any type-A
irregular type, to yield the deformation space of the associated irregular class.

Example 4.2. Let us look at the examples of type-A irregular type considered in [23],

which all had pure local WMCG isomorphic to PBr2×PBr
2

3
×PBr4. We will see

their associated stabilisers are not all isomorphic.

First consider

Q = T1x+ T2x
2 + T3x

3

, Ti ∈ gl
9
(C) ,

with

T1 = diag(4, 3, 2, 1, 0,−1,−2,−3,−4) ,

T2 = diag(4, 4, 3, 2, 1, 0,−3,−4,−7) ,

T3 = diag(2, 2, 1, 1, 1, 0, 0, 0,−7) .

The corresponding ranked fission tree (T , r) is drawn below:

1 1 1 1 1 1 1 1 1

2 3 3 1

2 1 1 1 1 1 1 1

9

From the recursive algorithm we get

Aut(T , r) = S2 × (S2 o S3) .
This is the same as the automorphism group of the ranked tree for the irregular

type Q = T1x+ T2x
2
, with Ti ∈ gl

9
(C) given by

T1 = diag(4, 3, 2, 1, 0,−1,−2,−3,−4) , T2 = diag(4, 1, 1, 0, 0, 0,−2,−2,−2) .

Indeed in that case the tree is as follows:

1 1 1 1 1 1 1 1 1

1 2 3 3

9

Finally let us consider Q = T1x+ T2x
2 + T3x

3 + T4x
4
, with Ti ∈ gl

9
(C) given by

T1 = diag(4, 3, 2, 1, 0,−1,−2,−3,−4) ,

T2 = diag(4, 4, 3, 2, 1, 0,−3,−4,−7) ,

T3 = diag(2, 2, 2, 2, 1, 0,−3,−3,−3) ,

T4 = diag(1, 1, 1, 1, 1, 1, 0,−2,−4) .

The ranked fission tree is then:
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1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1

4 1 1 1 1 1

6 1 1 1

9

Its automorphism group is now Aut(T , r) = S3 × S32, which is not the same as in

the previous two cases.

This is not contradictory: the pure local WMCG only depends on the whole set

of unordered configuration spaces attached to the (unranked) fission tree, while

the full/nonpure local WMCG also depends on their positions in the tree. 4

4.4. General case: (cabled) braid group. Write nowB =
∏p
l=1
Bl the deformation

space, in the decomposition of [23]. This means Bl⊆CJl is a product of ordered

configuration spaces (type-A root-hyperplane complements), attached to the nodes

at the above level Jl+1: namely

Bl =
∏
Jl+1

Confki ⊆CJl , ki =
∣∣∣φ−1(i)

∣∣∣ > 1 ,

counting the number of child-nodes. Thus globally

B =
∏
T0

Confki ⊆CT0 \{∗ } , and π1(B) '
∏
T0

PBrki . (25)

Now recall from [23, § 6] that the cabling of pure braid group operad, viz. the

operadic composition

γPB : PBrn×
n∏
i=1

PBrki −!PBrk , k =
∑
i

ki , (26)

for n,k1, . . .,kn > 0, yields a group embedding π1(B) ↪!PBrJ1 . More precisely

recursive cabling along the (unranked) fission tree T = (T0,φ) leads to a pure

“cabled braid group” PCBr(T)⊆PBr|J1|, and there is a canonical group isomorph-

ism π1(B) ' PCBr(T). 8 The point is that in the pure case one finds a “noncrossed”

group/action operad, which in particular implies (26) is a groupmorphism equip-

ping the domain with the direct product structure.

Here instead we naturally encountered the operadic composition of the symmet-
ric group operad S =

(
S•, 1 ∈ S1,γ

S
)
, viz. the function

γS : Sn×
n∏
i=1

Ski −! Sk , (σ,τ) 7−!γS (σ;τ) , (27)

for σ ∈ Sn and τ =
∏n
i=1
τ(i). Its definition is a generalisation of the above

construction to arbitrary partitions k =
∐n
i=1
Ii, where ki = |Ii|. Namely there is a

“block permutation” operation

Sn−! Sk , σ 7−!σ 〈k1, . . .,kn〉 ,

8See op. cit. for an explanation of terminology, due to the nested braiding of eigenspaces for the

coefficients of the irregular type.
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which consists in the permutation of all parts by fixing their elements, and then

γS (σ;τ) :=σ 〈k1, . . .,kn〉 · τ ∈ Sk ,

with tacit use of the natural group embedding

∏
i SIi ↪! Sk on the right factor.

Lemma 4.3. If k1 = · · · = kn then (27) is an injective morphism, equipping the domain
with the semidirect product structure.

Proof. Postponed to B. �

This means the operadic compositions yields in particular group embeddings

Sn o Sm ↪! Smn, which were used above.

Thus the recursive definition (22) can be rewritten in this language, and amounts

to:

Aut(T , r) =
∏
t∈T̃

γS
(
Sn(t)×Aut(t, r0)

n(t)
)
⊆ SJ1 , r0 = r

∣∣
t0

, (28)

starting again from the trivial group at each leaf. But finally this can reformulated

to exhibit the relation with braid groups.

Lemma 4.4. Let {Pi }i∈I and {Ni }i∈I be finite collections of groups, and ρi : Pi !
Aut(Ni) group morphisms. Then there is a canonical group isomorphism

P nN '
∏
I

Pi nNi , P =
∏
I

Pi , N =
∏
I

Ni ,

using the production action on the left-hand side:

ρ : P−!
∏
I

Aut(Ni)⊆Aut(N) , ρ =
∏
I

ρi .

Proof. Postponed to § B. �

It follows that (28) is equivalent to the recursive definition

Aut(T , r) = Sϕn
∏
T̃

Aut(T , r0)
n(t)

, (29)

introducing the T̃-partition ϕ : Jp ! T̃ induced from the isomorphism classes of

maximal proper subtrees; this means Sϕ =
∏

T̃
Sn(t)⊆ SJp .

The expression (29) clarifies thenatural definitionof ananalogous (full/nonpure)

“cabled” braid groups: one should “lift” this through the (augmentation) operad

morphism p : B ! S , where B =
(
Br•, 1 ∈ Br1,γ

B
)
is the (full/nonpure) braid

group operad.

Definition 4.4. The cabled braid group of the ranked fission tree (T , r) is the group

recursively defined by

CBr(T , r) = Brϕn
∏
T̃

CBr(t, r0)
n(t)⊆Br|J1| , (30)

with basis CBr

(
i, r(i)

)
:=Br1, for i ∈ J1, using the semipure braid group of Prop. 4.2.

Here Brϕ⊆Br|Jp| is the subgroup corresponding to the braiding of the maximal

proper subtrees (i.e. the equal-dimensional eigenspaces of the leading coefficient),

acting by conjugation of the cabled braid group of any such subtree.

Remark 4.6. The recursive definition of the pure cabled braid group of [23] can also

be given in terms of subtrees, but in that context it simplifies to a recursion on the

level—since it only involves direct products. 4
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Finally we can prove that (30) is the correct definition, i.e. that indeed this is

the group controlling the topology of admissible deformations of type-A irregular

classes.

Theorem 4.2. There is a group isomorphism π1(B) ' CBr(T , r), and CBr(T , r) is an
extension of Aut(T , r) by PCBr(T).

Proof. By Prop. 4.3 the projection B ! B amounts to the Galois covering over the

quotient B
/
Aut(T , r), so the claimed group extension will follow from the first

statement—as PCBr(T) ' π1(B), proven in [23].

The first statement instead can be proven by induction on p > 1. If p = 1 then

PCBr(T) = PBr|J1|, and CBr(T , r)⊆Br|J1| is the “semipure” braid group of partition

of the leaves into equal-rank nodes: the result then follows from Prop. 4.2.

Now suppose p > 2, and write B(T) the space determined by the (unranked)

tree as in (25). By definition

B(T) = Conf|Jp|×
∏
t∈T̃

B(t)n(t) ,

with the usual notation for representatives of maximal proper subtrees, and for

the cardinality of their isomorphism classes. Then for t ∈ T̃ the base of the wreath

product Sn(t) o Aut(t, r0) acts on the rightmost factor, while Sn(t) is naturally a sub-

groupof permutations of the child-nodes of the roots—permuting the (isomorphic)

subtrees rooted there.

Assume first T̃ = { t } is a singleton, i.e. all maximal proper subtrees are iso-

morphic, and let n :=
∣∣Jp∣∣. Then simply B(T) = Confn×B(t)n, and accordingly

Aut(T , r) = Sn o Aut(t, r0) by (22).

Now we have a natural surjective map B(T) ! UConfn, composing the ca-

nonical projection B(T) ! Confn with the Galois covering Confn ! UConfn;

and there is also a Galois covering B(T) ! B(T) = B(T)
/
Aut(T , r). By construc-

tion the former factorises through the latter, so there is a commutative triangle of

topological spaces:

B(T)

B(T) UConfn

p π

π

.

The difference from the case p = 1 is that the arrows onto the unordered configura-

tion space are not coverings, but rather (locally trivial) fibre bundles with positive-

dimensional fibres. For π this is clear (it is the composition of a trivial bundle and

a locally trivial one), while for π it can be proven as follows. If O⊆UConfn is

an open trivialising set for π then π−1(O) = Õ × B(t)n, where Õ ' Sn×U is the

preimage of O under the standard Galois covering, and

π−1(O) = p
(
π−1(O)

)
=
(
Õ× B(t)n

)/
Aut(T , r) .

Now the latter quotient can be taken in two steps: first the action of the base yields(
Õ× B(t)n

)/(
1 o Aut(t, r0)

)
' Õ× B(t)n ,

and then the spaceO×B(t)n⊆O×Sn×B(t)n ' Õ×B(t)n is a slice for the action

of the “complement” subgroup Sn o 1. In conclusion π−1(O) ' O×B(t)n, proving
we have a locally trivial fibre bundle

B(t)n ↪−!B(T)
π
−! UConfn .
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This yields the exact group sequence

1−!CBr(t, r0)
n−!π1

(
B(T)

) π1(π)
−−−! Brn−! 1 ,

by the recursive hypothesis, using that UConfn is a π(K, 1)-space and that fibres are

connected. Moreover any continuous function UConfn ! B(t)n yields a global

section, so in conclusion there is a semidirect product decomposition

π1
(
B(T)

)
' Brn o CBr(t, r0) =: BrnnCBr(t, r0)

n
,

in accordance with the recursive definition (30).

Finally consider the general case where T̃ is not a singleton. Then we can

generalise the above argument using the composition of projections

B(T)−!B(T)−!Xϕ = Confn

/
Sϕ ,

onto the semiordered configuration space, where ϕ : Jp ! T̃ is as above. Again a

two-step quotient (over any open trivialising subspace O⊆Xϕ) can be taken with

respect to the actions of the subgroups∏
T̃

(
1 o Aut(t, r0)n(t)

)
,

∏
T̃

(
Sn(t) o 1

)
⊆Aut(T , r) ,

whose (inner) product gives the whole of Aut(T , r) in view of Lem. 4.4 The ana-

logous commutative triangle of topological spaces then yields the fibre bundle∏
T̃

B(t)n(t) ↪−!B(T)
π
−! Xϕ ,

whence the exact group sequence

1−!
∏
T̃

CBr(t, r0)
n(t)−!π1

(
B(T)

) π1(π)
−−−! Brϕ−! 1 ,

using the recursive hypothesis, Prop. 4.2, the fact that fibres are connected, and

that Xϕ is a covering of a K(π, 1)-space—so it is also a K(π, 1). Again this has

global sections, since there are continuous maps Xϕ !
∏

T̃
B(t)n(t), proving the

statement. �

Remark 4.7. Note the fibre bundles B(T) ! UConfn, in the first part of the

above proof, is not trivial in general. Indeed the total space is homeomorphic

to

(
Confn×B(t)n

)/
Sn o 1, but this is not simply UConfn×B(t) because there is no

global slice for the quotient Confn ! UConfn—but rather only “local” ones, over

a trivialising cover. 4

Remark 4.8. The auxiliary fibre bundle

Sn×B(t)n ↪−!B(T)
π
−! UConfn ,

which appears in the above proof when T̃ = { t }, yields the following exact group

sequence:

1−!PCBr(t)n−!PCBr(T)
π1(π)
−−−! Brn−! Sn−! 1 .

This is recovering the fact that PCBr(T)
/
PCBr(t)n ' PBrn, considering the direct

product over the nodes of the (unranked) fission tree. 4
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Outlook

There is a “twisted” version of irregular types/classes [14, 15, 22]; and there

exists “global” deformations of (twisted, bare) wild Riemann surfaces, defined as

in [23]: we plan to consider these elsewhere.

Using the standard generators/relations of braid groups should in principle

lead to a presentation of their cabled versions, which in turn might be used to

compute their monodromy action on wild character varieties.

Finally recall [23] constructed a smooth affinemoduli scheme IT 6p
d of irregular

types of bounded pole order p ∈ Z>1, and with given pole order dα ∈ { 0, . . .,p }
after evaluation at each root α ∈ Φg—for any complex reductive group G. In

particular the C-points IT 6p
d (SpecC) recover the above “universal” deformation

space B = B(Q), for any irregular type Q ∈ t ⊗ T 6p
Σ,a with ord(qα) = dα. Then

one may take a quotient in the (complex) algebraic category, rather than the ana-

lytic/holomorphic one (e.g. the affine GIT quotient), to try to construct a moduli

space of irregular classes at the point a ∈ Σ: we also plan to study this further,

both in the twisted and nonlocal setting.
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Appendix A. Basic notions/notations

Permutations and partitions. For an integer n > 0 we denote n = { 1, . . . ,n } (so

0 = ∅), and Sn the symmetric group of permutations of n (so S0 and S1 are trivial).

The action of a permutation σ ∈ Sn is denoted j 7! σj ∈ n, and we compose them

right-to-left. More generally if I is a finite set we denote SI its symmetric group of

permutations, so SI ' S|I| choosing a total order on I—coherently with Sn = Sn.

A J-partition of a finite set I is a surjection φ : I� J onto a (finite) set J, which is

equivalent to giving a decomposition

I =
∐
j∈J
Ij , Ij :=φ

−1(j)⊆ I ,

of I, with nonempty parts indexed by J.

If all parts have the same cardinality m =
∣∣Ij∣∣ > 1 then we can consider the

subgroup permuting all parts, and further the elements within each part: this is

the (restricted) wreath product

SJ o Sm = SJ oJ Sm ,

using the natural SJ-action on J. In turn the wreath product is the same as

SJ o Sm = SJn(Sm)|J| ,

with respect to the action of SJ given by

σ · τ =
∏
J

τ(σ
−1

j )
, σ ∈ Sj , τ =

∏
J

τ(j) ∈ (Sm)|J| ,

where τ(j) ∈ SIj ' Sm for j ∈ J. Elements of SJ o Sm are then written (σ;τ).
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Weyl actions. Let (V ,Φ) be a root system in the finite-dimensional complex vector

space V , andW = W(Φ)⊆GL(V) the Weyl group. If S⊆V is a subset, its setwise
Weyl-stabiliser is the subgroup

StabW(S) =
{
w ∈W

∣∣ w(S)⊆S }⊆W ,

and its pointwiseWeyl-stabiliser is the subgroup

WS =
{
w ∈W

∣∣ S⊆Ker(w− IdV)
}
⊆ StabW(S) .

The latter is a parabolic subgroup ofW—thinking of the Weyl group as a reflection

group—and is a normal subgroup of the former. Clearly WS = WCS, and if

CS1⊆CS2 thenWS1
⊆WS2

; further if U1,U2⊆V are subspaces then

WU1+U2
=WU1

∩WU2
⊆W .

On the other hand, tautologically, ifWi = StabW(Ui) then

StabW1
(U2) =W1 ∩ StabW(U2) =W2 ∩ StabW(U1) = StabW2

(U1) .

We identifyW with theWeyl groupW(Φ∨)⊆GL(V∨) for the dual/inverse root
system, via w 7! tw−1

[16, Ch. VI, § 1.1].

Braid groups. For an integer n > 0 we denote PBrn the pure braid group on n
strands—so PBr0 and PBr1 are trivial. It is the fundamental group of the space

Confn = Confn(C) :=Cn \
⋃

16i 6=j6n

Hij , (31)

where

Hij =
{
(z1, . . ., zn) ∈ Cn | zi = zj

}
⊆Cn .

In particular Conf1 = C, and in general this yields the space of ordered configur-

ations of n points in the complex plane. The symmetric group Sn acts naturally

on (31), and the projection

Confn−!UConfn :=Confn

/
Sn ,

to the space of unordered configurations, is a Galois cover. The (full/nonpure) braid
group is Brn = π1(UConfn), and the associated exact group sequence

1−!PBrn−!Brn
pn−−! Sn−! 1 (32)

corresponds to the braid group “augmentation”, i.e. the morphism taking the

permutation underlying the braiding of the n strands.

More generally for a split Lie algebra (g, t) we consider the root-hyperplane

complement

treg = t \
⋃
α∈Φg

Ker(α)⊆ t , Φg = Φ(g, t) ,

generalising (31) in type A, and PBrg = π1(treg) is the pure g-braid group, a.k.a. the
generalised (Artin–Tits) braid group of type g [17, 19, 21, 18]. The Weyl group

Wg = W(Φg) acts freely on treg, and treg ! treg := treg
/
Wg is a Galois covering.

Then Brg :=π1(treg) is the full/nonpure g-braid group, and there is an exact group

sequence generalising (32):

1−!PBrg−!Brg−!Wg−! 1 .

Trees. A (finite) tree T = (T0,φ) of height p > 1 is the data of a finite set T0

with a partition T0 =
∐p+1

l=1
Jl, such Jp+1 = { ∗ } is a singleton, and a function

φ : T0 \ { ∗ } ! T0 such that φ(Jl)⊆ Jl+1 for l ∈ { 1, . . .,p }. The elements of T0 and
the nodes of the tree, and φ(i) is the parent-node of i ∈ T0 \ { ∗ }—so ∗ ∈ Jp+1 is the

root, while J1⊆ T0 contains the leaves. Converselyφ−1(i)⊆ T0 is the set of child-nodes
of i ∈ T0.
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Appendix B. Missing proofs

Proof of Lem. 2.4. We can recursively prove that

Wi =
⋂

i6j6p

StabWg
(Uj) , i ∈ { 1, . . .,p } .

The base i = p is tautological, and then

Wi−1 =
{
w ∈Wi

∣∣ w(Ui−1)⊆Ui−1

}
=
{
w ∈Wg

∣∣ w(Uj)⊆Uj for j > i− 1

}
,

using (13) and the recursive hypothesis. �

Proof of Lem. 4.2. By definition Sm oP = SmnPm, with respect to the natural per-

mutation action Sm ! Aut(Pm). Then 1 oN = 1nNm⊆ SmnPm, and it is normal

since it is normalised by 1 o P = 1 n Pm and stabilised by the permutation action.

Hence the quotient on the left-hand of (24) is well defined.

Now there is an induced action Sm ! Aut(Qm), where Q :=P
/
N, and finally

the natural surjective group morphism Sm oP ! Sm oQ vanishes on 1 oN. �

Proof of Lem. 4.3. The compatibility with the product follows from (18) (which in

turn is equivalent to the action-operad axiom for S [54, Eq. 4.1.2]), and from the

fact that the block permutation operation is a group morphism in this case.

Injectivity follows from the identity

Sn 〈k〉 ∩ (Sk)
n = 1⊆ Snk ,

where Sn 〈k〉⊆ Snk is the image of the block permutation operation Sn ! Snk. �

Proof of Lem. 4.4. There is a natural bĳection∏
I

(pi,ni) 7−!
(∏
I

pi,
∏
I

ni

)
,

between the underlying sets, and one can show it is compatible with the semidirect

multiplication.

Indeed choose elements p ′i,pi ∈ Pi and n ′i,ni ∈ Ni for i ∈ I, so that∏
I

(p ′i,n
′
i)
∏
I

(pi,ni) =
∏
I

(p ′i,n
′
i) •i (pi,ni)

=
∏
I

(p ′ipi, ρi(pi)n
′
ini) ∈

∏
I

Pi nNi ,

which is mapped to

(∏
I p
′
ipi,
∏
I ρi(pi)n

′
ini

)
∈ P nN. Conversely(∏

I

p ′i,
∏
I

n ′i

)
•
(∏
I

pi,ni

)
=
(∏
I

p ′i

∏
I

pi, ρ
(∏
I

pi
)∏
I

n ′i

∏
I

ni

)
∈ P nN ,

which coincides with the above—using the product action and the direct product

multiplication. �

Appendix C. Relations to isomonodromy systems

On the other side of the Riemann–Hilbert–Birkhoff correspondence there is a

Poisson fibre bundle analogous to (1), viz.

M
dR

π
−! B , (33)

whose fibres (the de Rham spaces) aremoduli spaces of irregular singular algebraic

connections on principal G-bundles. This is equipped with the pullback (flat

nonlinear algebraic) isomonodromy connection; see in particular [9, Fig. 1], which

spells out this picture.
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Now one can choose a local trivialisation of (33), i.e. an isomorphism of fibre

bundles

M
dR

∣∣
O
:=π−1(O) O×M

O

'

π p1

, (34)

over an open subspace O⊆B, for a fixed Poisson manifold

(
M, { ·, · }

)
. Then the

isomonodromy connection (on the upper-left corner of (34)) can be given by

explicit nonlinear first-order partial differential equations in local coordinates

t = (t1, . . ., td) on O, where d = dim

(
B
)
, for local sections over the trivialising

locus.

Moreover the difference between the isomonodromy connection and the trivial

connection (on the upper-right corner of (34)) can be “integrated” 9 to a no-

nautonomous Hamiltonian system

H = (H1, . . .,Hd) : M×O−!Cd . (35)

In this Hamiltonian viewpoint the symplectic nature of isomonodromic deform-

ations, as considered in [9] (and extended in successive degree of generality in

subsequent work), is equivalent to the integrability of (35); this amounts to the

identities {
Hi,Hj

}
+
∂Hi

∂tj
−
∂Hj

∂ti
= 0 , i, j ∈ { 1, . . .,d } .

Hence the local coordinates become times of isomonodromic deformations over

O⊆B: but in principle they are not intrinsically associated to isomonodromic

deformations, contrary to the flat Ehresmann connections on (1) and (33) (one

needs a choice of “initial” trivialisation [9, Rk. 7.1]).

Examples of such isomonodromy systems abound, with far-reaching applic-

ations already in the genus-zero case, famously encompassing (generalisations

of) the Painlevé equations [42, 43, 41, 7, 20] and the Schlesinger system [47].

The (Harnad-)dual version of the Schlesinger system, on the other side of the

Fourier–Laplace transform [30, 51], was considered in [10], and the combination of

Schlesinger and its dual yield the system of Jimbo–Miwa–Môri–Sato (JMMS) [33].

Note [30] also links previous papers about isospectral deformations [2, 1] to the

isomonodromic deformations of JMMS.

Finally a generalisation of all the above was derived in [12]. This latter setup

brings about nongeneric isomonodromic deformations, considering connections

with several levels 10 which extend examples of the seminal paper [34]. Importantly

this ismore symmetric than op. cit., which in turn is one of ourmainmotivations for

studying the “deeper” nongeneric case: in particular in [12] the group SL2(C) acts
on the bundle of de Rham spaces via automorphisms of the 1-dimensional Weyl

algebra, and contains the Fourier–Laplace transform as the element

(
0 −1

1 0

)
.

See [52, 28] for more recent developments, with the latter also on the quantum

side.

Importantly all these Hamiltonian systems have far-reaching applications in

mathematical physics, notably in integrable hierarchies of differential equations

9Thedifference of the correspondinghorizontal distributions—insideTO×TM Tp
1−−! TO—is given

byO-dependent (vertical) vector fields Xi : O×M! TM on the fibre, and one has dHi = 〈ω,Xi〉
(cf. [12, § 5]).

10The nonzero pole orders of the irregular types evaluated at each root.
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such as KdV [29], and in 2d conformal field theory after quantisation (e.g. [39, 50,

3, 27, 26], opening to “irregular” conformal blocks and the AGT correspondence).

More precisely the quantisation of the Schlesinger system leads to the Knizhnik–

Zamolodchikov connection (KZ) [46, 31], while the quantisation of the dual Schle-

singer system (as in [10]) leads to the Casimir connection of de Concini/Millson–

Toledano Laredo [38]. The quantisation of the JMMS systems, generalising the

above and recovering the connection of Felder–Markov–Tarasov–Varchenko [25],

was considered in [44]; further op. cit. constructed a quantisation of the more gen-

eral “simply-laced” systems of [12] (this is resumed in the table in the introduction

of [44]); cf. [53] for a different construction of “quantum” simply-laced isomon-

dromy systems, and [39, 40, 28] for a “confluence” viewpoint on the quantisation

of irregular singularities.

Finally encoding the irregular moduli in the base curve, and constructing

bundles over their (admissible) deformations, is also helpful for the quantisation of

the extended “classical” symmetries of isomonodromy systems. In particular the

quantised SL2(C)-symmetries [45] generalise the Howe duality [6], which in turn

were used in [49] to compute the monodromy of the Casimir connection in terms

of that of KZ (cf. also [48]): this latter example of generic “quantum” monodromy

action brings about theG-braid groupswhichwe generalise in this series of papers.

Appendix D. List of some nonstandard notation (in rough order of appearance)

Σ Riemann surface

G connected complex reductive Lie group

M
B

Poisson/symplectic fibration of Betti spaces

B space of admissible deformations of bare wild Riemann surfaces

g Lie algebra of G
t Cartan subalgebra of g
T maximal (algebraic) torus in G
Q irregular type

a point of Σ
Aj coefficients of Q
Wg Weyl group of (g, t)

Q irregular class underlying Q
Σ wild Riemann surface

Wg|h subquotient ofWg acting freely on B
(T , r) ranked fission tree

Aut(T , r) automorphisms of (T , r)
CBr(T , r) full/nonpure cabled braid group of (T , r)
Φg root system of (g, t)

ÔΣ,a completed local ring of Σ at a

K̂Σ,a completed fraction field of ÔΣ,a

TΣ,a quotient of K̂Σ,a modulo ÔΣ,a
B = (Q) universal space of admissible deformations of Q
Bi = B(Ai) factors of B = universal spaces of admissible deformations of the Ai
dα pole order of qα = (α⊗ 1)Q
d tuple of the dα
Γ(Φg,d) full/nonpure local WMCG

treg regular part of t
hi nested centralisers of the coefficients of Q
Hi subgroup of Gwith Lie algebra hi
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Φhi sequence of fission root subsystems of Φg

Whi Weyl group of (hi, t)
Ui intersection of the root hyperplanes of Φhi

Wi nested setwise stabilisers of the Ui
StabWi(Bi) setwise stabiliser of Bi inWi
U flag of the subspaces Ui in t
(Wg)Ui pointwise stabiliser of Ui inWg

(Wg)Q stabiliser of Q inWg

Ii orthogonal ideals of g
ti intersection of twith Ii
ΦIi root system of (Ii, ti)
WIi Weyl group of ΦIi

Zg centre of g
PBrn pure braid group on n strands

Brn full/nonpure braid group on n strands

Dihn dihedral group of order 2n
∆g choice of simple roots for Φg

Confn configuration space of n ordered points in C
UConfn configuration space of n unordered points in C
n the set { 1, . . .,n }

SI group of permutations of a set I
Ii parts of n defined by a root subsystem of An−1

J index set for the parts Ii
Ki collection of parts Ij with i > 0 elements

K̃er(∆h) extended kernel of ∆h

Sϕ group of permutations preserving a partition ϕ
pn augmentation group morphism of Brn

Brϕ group of braids with underlying permutations in Sϕ

T fission tree

Ji levels of T
T0 nodes of T
φ parent-node function of T
r rank function of T
T set of maximal proper subtrees of T

T̃ choice of representatives for the isomorphism classes inside T

n(t) cardinality of the isomorphism class containing t ∈ T̃

Ãut(T , r) extended automorphism group of (T , r)
t0 nodes of t
r0 restriction of r to t0
S symmetric braid group operad

γS
composition of S

B full/nonpure braid group operad

γB
composition of B

PCBr(T) pure cabled braid group of T

IT 6p
d moduli scheme of irregular types of bounded pole order, and given

pole order along any root

M
dR

Poisson/symplectic fibration of de Rham spaces

ti local coordinates on B: isomonodromy times

t tuple of the ti
Hi isomonodromy Hamiltonian

H tuple of the Hi: isomonodromy system
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