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Classically, the theory of isomonodromy constitutes a collection of nonlinear integrable differential equations, whose unknown is a (linear) meromorphic connection on a vector bundle over the Riemann sphere. Geometrically, these are flat Ehresmann connections on a bundle whose fibres are moduli spaces of such meromorphic connections.

The underlying deformation parameters, the "times", have recently been given an intrinsic formulation, leading to a generalisation of the moduli of pointed curves (in any genus). This framework is especially useful when considering the generalised deformations, beyond the generic case: recall [34] set up a theory of "generic" isomonodromic deformations of meromorphic connections on vector bundles over

a Riemann surface Σ, where the leading coefficient at each pole has distinct eigenvalues (building on [8]; cf. [36,5]). This has been extended in two directions: i) replacing vector bundles by principal G-bundles [START_REF]isomonodromy, and quantum Weyl groups[END_REF], leading to the appearance of G-braid groups for complex reductive groups G, and ii) considering nongeneric admissible deformations [START_REF]Geometry and braiding of Stokes data; fission and wild character varieties[END_REF], where the irregular type of the connection is arbitrary, leading to cabled braid groups [23].

In particular the spaces of generalised monodromy data, the wild character varieties (a.k.a. wild Betti spaces), have been proved to form a local system of Poisson varieties [START_REF]Geometry and braiding of Stokes data; fission and wild character varieties[END_REF] M B -B , (1) over any space B of admissible deformations. These are important because they give a purely topological description of the nonlinear isomonodromy differential equations via the Riemann-Hilbert-Birkhoff correspondence.

Our purpose in this paper is to study the fundamental groups of the base spaces B of such admissible deformations, the groups that will act by algebraic Poisson automorphisms on the wild character varieties (the fibres of ( 1)) from the parallel transport of the isomonodromy connection-i.e. the monodromy of the nonlinear differential equations. This builds on our previous paper [23], which used a fixed marking: here we will quotient by the Weyl group action and get to the full version of "wild" mapping class groups, in analogy to forgetting the ordering of marked points on the underlying pointed curve.

Importantly this encompasses the much-studied case of regular singular connections, involving the (tame) complex character varieties, which is the entry point for the standard mapping-class-and braid-group-actions in classical/quantum 2d gauge theories-via deformations of pointed curves, e.g. [START_REF] Kohno | Monodromy representations of braid groups and Yang-Baxter equations[END_REF][START_REF] Drinfel | Quasi-Hopf algebras and Knizhnik-Zamolodchikov equations[END_REF]37,4] in the quantum case.

In this series of papers we rather fix the underlying pointed curve, and vary the rest of the wild Riemann surface structure [START_REF]Geometry and braiding of Stokes data; fission and wild character varieties[END_REF], i.e. the irregular types/classes, controlling principal parts of irregular singular connections beyond their (formal) residues. More precisely [23] constructs a moduli scheme of irregular types for the split Lie algebra (g, t) := Lie(G), Lie(T ) , where T ⊆ G is a maximal torus, while here we consider irregular classes.

Recall in brief an irregular type Q at a point a ∈ Σ is the germ of a t-valued meromorphic function based there, defined up to holomorphic terms:

Q = j A j z -j ∈ t((z)) t z , A j ∈ t , z(a) = 0 . (2) 
Then the Weyl group W g = N(T ) T acts on the left tensor factor of t ⊗ C C((z)) C z t((z)) t z , and the irregular class underlying (2) is its projection Q in the quotient-viz. the Weyl-orbit through Q [13, Rk. 10.6]. The important fact is the fibres of (1) only depend on the collection of irregular classes underlying the irregular types at each marked point, and thus the base B provides an intrinsic topological description of the local (irregular) isomonodromy times. In the generic case, where the leading coefficient of (2) is out of all root hyperplanes, the homotopy type of B brings about the G-braid group: in this paper we shall encounter a generalisation in the nongeneric case, which we will relate to braid cabling in type-A.

Main results.

In § 1 we give the main definition: to a one-pointed (bare) wild Riemann surface Σ = (Σ, a, Q) we associate a full/nonpure local "wild" mapping class group (WMCG), viz. the fundamental group of a space B of admissible deformations of the irregular class Q (cf. Def. 1.1). This latter is the topological quotient of the (universal) admissible deformation space B of Q, modulo the natural action of the Weyl group W g , where Q is any irregular type lifting Q.

In § 2 we describe the subgroup of the Weyl group preserving the space of admissible deformations of the irregular type, and further its quotient W g|h , acting freely on B. The relevant statements are proven inductively along the sequence of fission (root) subsystems of Φ g associated to Q (cf. [23]): first in the case of a single semisimple element A ∈ t (in § 2.1), and then in the general case (in § 2.2). Theorem (Cf. Thm. 2.1). The space B is a Galois covering of B with Gal(B, B) = W g|h , so the full/nonpure local WMCG is an extension of this latter by the pure local WMGC.

In § 3 we describe all full/nonpure local WMCGs for the irreducible rank-2 root systems, after explaining it is enough to consider a simple Lie algebra.

Finally in § 4 we explicitly describe the full/nonpure local WMCGs when g ∈ gl n (C), sl n (C) , in the nonabelian case n 2. This means identifying the "effective" subquotient of the Weyl group that controls the Galois covering B B (a Coxeter-type group), and then compute the fundamental group of the base (an Artin-type group): the inductive step is in § 4.1, where we prove the following. Theorem (Cf. Prop. 4.1, Cor. 4.1 and Prop. 4.2). The Weyl-stabiliser of B if a direct product of (restricted) wreath products of symmetric groups, and W g|h is a direct product of symmetric groups; then π 1 (B) is the subgroup of braids whose underlying permutation lies in W g|h -an extension of this latter by the pure braid group.

In the general case instead we introduce a family of trees (T , r) with some decoration, called "ranked" fission trees, which depend on the choice of the irregular class Q (cf. Def. 4.1, and compare with the unranked fission trees of [23, § 5]). Their automorphisms control the Coxeter-type groups in the general type-A case: Theorem (Cf. Thm. 4.1 and Prop. 4.3). The automorphism group Aut(T , r) of the ranked fission tree is isomorphic to W g|h .

Finally we attach a (full/nonpure) "cabled" braid group CBr(T , r) to any ranked fission tree, in Def. 4.4, with a recursive algorithm (along maximal subtrees): this relies on the operadic composition of the symmetric and braid group operads, extending the pure cabled braid group of [23]-which rests in turn on the pure braid group operad.

The main result of § 4 is that the elements of type-A full/nonpure local WMCGs are precisely such "cabled" braids.

Theorem (Cf. Thm. 4.2). The full/nonpure type-A local WMCG of Σ is isomorphic to

CBr(T , r), where (T , r) is the ranked fission tree associated with the irregular class Q.

All Lie algebras and tensor products are defined over C. Some basic notions and conventions, used throughout the body of the paper, are collected in § A, while § B contains the proof of few lemmata. Finally in § C we spell out the relation of wild Riemann surfaces with the much-studied Hamiltonian viewpoint on isomonodromic deformations.

The end of remarks/examples is signaled by a .

F / WMCG

Let Σ be a Riemann suface, G a finite-dimensional connected reductive Lie group over C, g = Lie(G) its Lie algebra, T ⊆ G a maximal (algebraic) torus, and t = Lie(T ) ⊆ g the associated Cartan subalgebra. Denote then Φ g = Φ(g, t) ⊆ t ∨ the root system of the split Lie algebra (g, t), and W g = W(Φ g ) the Weyl group.

Choose a point a ∈ Σ, and let

Q ∈ t ⊗ T Σ,a , T Σ,a := K Σ,a O Σ,a , (3) 
be an untwisted irregular type based there, introducing the completed local ring O Σ,a of the surface and its fraction field K Σ,a . Recall if z is a local coordinate on Σ with z(a) = 0 then (3) becomes

Q = p i=1 A i z -i ∈ z -1 t[z -1 ] t((z)) t z ,
for suitable (semisimple) coefficients A i ∈ t and for an integer p 1.

As explained in the introduction, the moduli spaces attached to (3) (the de Rham/Betti spaces [START_REF]Hyperkähler manifolds and nonabelian Hodge theory of (irregular) curves[END_REF]) only depend on the Weyl-orbit of (3), denoted

Q ∈ t ⊗ T Σ,a W g . ( 4 
)
Here the Weyl group acts on the Cartan subalgebra-and trivially on the other tensor factor; the element (4) defines an irregular class, a.k.a. "bare" irregular type [START_REF]Geometry and braiding of Stokes data; fission and wild character varieties[END_REF]Rem. 10.6] (cf. [START_REF] Boalch | Twisted wild character varieties[END_REF] for a definition in the twisted case).

If Q is a "starting" irregular type, then we have associated to it the deformation space

B = B(Q) in [23]; recall this is B = p i=1 B i , with B i = B(A i ) := d α i Ker(α) ∩ d α =i t \ Ker(α) ⊆ t , where d α = ord(q α ) , q α = α • Q , α ∈ Φ g ,
taking the pole order at a ∈ Σ. But two deformations are then equivalent (that is, they define the same irregular class) if they lie in the same W g -orbit, which leads to admissible deformations of the "starting" irregular class Q. The main definition is thus the following. 

= (Σ, a, Q is Γ (Φ g , d) := π 1 B, Q , d = (d α ) α∈Φ g , (5) 
where B = B ∼ is the topological quotient with respect to the equivalence relation

Q 1 ∼ Q 2 if W g Q 1 = W g Q 2 ⊆ t ⊗ T Σ,a . (6) 
This yields in general a larger fundamental group than the pure case-some paths in B become loops in B.

Remark 1.1. The space B itself depends on the irregular type Q, not just on the underlying irregular class. However if w ∈ W g then B is homeomorphic to w(B), and there is a further canonical homeomorphism B w(B) obtained by matching orbits: thus (5) only depends on Q. Now the Weyl action does not preserve B in the nongeneric case, i.e. the case where A p is not regular, so we first need to describe the subset

W g Q ∩ B ⊆ W g Q ,
and further understand the Weyl-stabiliser of the irregular type.

W

2.1. Inductive step. We first consider the case of a single coefficient, i.e. Q = Az -1 .

In the general case the irregular type is transformed along the diagonal Weyl action on each coefficient. Choose then A ∈ t, and let h = Z g (A) ⊆ g be the centraliser: it is the (reductive) Levi factor of a parabolic subgroup of G. The associated deformation space becomes

B = Ker(Φ h ) ∩ Φ g \ Φ h t \ Ker(α) ⊆ Ker(Φ h ) , (7) 
and we set

U := Ker(Φ h ) ⊆ t. Now if w ∈ Stab W g (B)
⊆ W g then certainly wA ∈ B, but the converse is true. To state this let O A ⊆ B be the orbit of A under the action of Stab W g (B); then:

Lemma 2.1. One has Stab W g (U) = Stab W g (B), and (W g A) ∩ B = O A .
Proof. The Weyl group permutes the root hyperplanes via

w Ker(α) = Ker(wα) , w ∈ W g , α ∈ Φ g ,
i.e. along the permutation of the roots. (Recall we identify W(Φ g ) ⊆ GL(t ∨ ) and

W(Φ ∨ g ) ⊆ GL(t), cf. § A.) Hence w(B) ⊆ B if and only if w ∈ W g preserves the partition Φ g = Φ h ∪ (Φ g \ Φ h ), by (7). In turn this is equivalent to w(Φ h ) ⊆ Φ h , proving the first statement.
Analogously if wA ∈ B then w preserves the above partition, whence the inclusion (W g A) ∩ B ⊆ O A -and the opposite one is tautological.

Thus the restriction of orbits to the deformation space is controlled by the setwise stabiliser of U ⊆ t.

Remark 2.1. The extremal cases are A = 0, in which case U = t and Stab W g (U) = 1; and A ∈ t reg , in which case U = (0) and Stab W g (U) = W g . Now the Weyl group W h = W(Φ h ) ⊆ W g of the Levi factor lies in the setwise stabiliser of U, but in general the inclusion is proper. Namely by definition

Ker(α) = Ker(σ α -1) ⊆ t , α ∈ Φ g ,
and the subgroup W h is generated by the reflections along the hyperplanes of the subsystem Φ h ⊆ Φ g : hence automatically any element of W h acts trivially on

U = Ker(Φ h ), i.e. W h ⊆(W g ) U ⊆ Stab W g (U) .
However it is possible to show the first inclusion is an equality, and more precisely that W h is the (maximal) parabolic subgroup fixing the given semisimple element A ∈ t.

Lemma 2.2. One has

W h = (W g ) U = (W g ) A .
Proof. In principle

(W g ) U ⊆(W g ) B ⊆(W g ) A ,
since A ∈ B ⊆ U, so it is enough to show the inclusion (W g ) A ⊆ W h , i.e. that any element of W g fixing A lies in the Weyl group of Φ h . To this end recall the Lie-group-theoretic definition of the Weyl group is

W h = N H (T ) T ⊆ N G (T ) T = W g ,
using the normalisers N H (T ) ⊆ N G (T ) of the given maximal torus, where H ⊆ G is the reductive subgroup integrating h ⊆ g. Hence an element w ∈ W g such that w(A) = A corresponds to an element g ∈ N G (T )-defined up to the T -action-such that Ad g (A) = A: this means

g ∈ N G (T ) ∩ H = N H (T ) , whence w ∈ W h .
Finally we have an identification O A W g|h A, introducing the quotient group

W g|h := Stab W g (U) W h . ( 8 
)
In turn there is a homeomorphism 

B B W g|h , (9) 
(O) ∩ w 2 (O) = ∅ implies w 1 = w 2 ∈ W g|h .
It follows that the canonical projection p : B B is a Galois covering, with automorphisms provided by the monodromy action of W g|h . The choice of the base point A ∈ p -1 (A) ⊆ B in the fibre yields an identification p -1 (A)

W g|h between the torsor and the group, so there is a (principle) fibre bundle

W g|h -B p -B .
Then the resulting exact sequence of homotopy groups contains the short sequence

1 -π 1 (B, A) π 1 (p) ---π 1 (B, A) -W g|h -1 , (10) 
identifying π 0 (W g|h ) W g|h for the discrete space. The connecting map in this case is a group morphism: it corresponds to the monodromy action at the base point-up to turning it into a left action, i.e. exchanging W g|h with its opposite.

Example 2.1. For example if A ∈ t reg then W h is trivial, so W g|h = W g . Hence (9) generalises the generic "configuration" space t reg W g , and in turn π 1 (B, A) generalises the (full/nonpure) g-braid group.

Remark 2.2 (Reduced reflection groups). At first one may think (8) is the reflection group of the "restricted" hyperplane arrangement

H = Ker(α) ∩ U = Ker α U α ∈ Φ g \ Φ h ⊆ P U ∨ : ( 11 
)
however this is not the case in general. 8) is trivial (see § 3), while the reduced arrangement is of type A 1 -so has a Weyl group of order two. The point is there are reflections of [START_REF]Hyperkähler manifolds and nonabelian Hodge theory of (irregular) curves[END_REF] which do not come as restrictions of elements in Stab W g (U) (see § 4). 2.2. General case. The space (9) corresponds to one factor of (5), i.e. to an irregular type with a simple pole only: here we extend this to an arbitrary irregular type.

For example if Φ

h = A 1 ⊆ A 2 = Φ g then (
Suppose thus to have an increasing sequence of fission subsystems

Φ h 1 ⊆ • • • ⊆ Φ h p+1 := Φ g , (12) 
for some integer p 1, associated to an irregular type Q = p i=1 A i z -i . Then h 1 = Z g { A 1 , . . ., A p } is the centraliser of Q, which generalises the Levi factor h of the previous section.

Namely there is a filtration of Weyl (sub)groups

W h 1 ⊆ • • • ⊆ W h p+1 = W g ,
and the deformation space is a product, with each factor B i ⊆ t determined as in (7) (it is the space of admissible deformations of A i ∈ t). Then W g acts diagonally on B ⊆ t p . Now w(Q) ∈ B means that w(A i ) ∈ B i for i ∈ { 1, . . ., p }, and this condition can be described recursively using Lem. 2.1. To this end define a sequence of subgroups

W 1 ⊆ • • • ⊆ W p ⊆ W g ,
as follows. Set as above U i := Ker(Φ h i ), and then

W p := Stab W g (U p ) , W i-1 := Stab W i (U i-1 ) ⊆ W i , i ∈ { 2, . . ., p } . ( 13 
)
Denote then O Q the orbit of the irregular type under the action of the smallest group

W 1 ⊆ W g . Lemma 2.3. One has W i-1 = Stab W i (B i ) for i ∈ { 1, . . ., p }, and (W g Q) ∩ B = O Q .
Proof. First w(A p ) ∈ B p if and only if w ∈ W p , and the first statement has been proven in Lem. 2.1-for i = p.

Then we can replace (h p , g) with (h p-1 , h p ), and repeat the same construction: we need w ∈ W p such that w(A p-1 ) ∈ B p-1 , where

B p-1 = U p-1 ∩ Φ hp \ Φ h p-1 t \ Ker(α) ⊆ t , by (7) 
. Reasoning as in the proof of Lem. 2.1 this requires w(Φ h p-1 ) ⊆ Φ h p-1 , which is equivalent to preserving the partition

Φ h p = Φ h p-1 ∪ (Φ h p \ Φ h p-1 ), since by (recurrence) hypothesis w(Φ h p ) ⊆ Φ h p . Hence w ∈ W p-1 and W p-1 = Stab W p (B p-1 ) ⊆ W p .
Descending until i = 1 shows that w(Q) ∈ B if and only if w ∈ i W i = W 1 , and proves the first statement-inductively.

Note W 1 ⊆ W g is determined by the flag of kernels U = (t ⊇ U 1 ⊇ • • • ⊇ U p ) , (14) 
by [START_REF]Geometry and braiding of Stokes data; fission and wild character varieties[END_REF]. Indeed consider the (parabolic) stabiliser of ( 14), within W g , i.e.

Stab W g (U) := i Stab W g (U i ) ⊆ W g , (15) 
which coincides with W g ∩ Stab GL(t) (U); then:

Lemma 2.4. One has W 1 = Stab W g (U).
Proof. Postponed to B.

Thus the restriction of orbits to B is controlled by the action of the setwise Weyl-stabiliser of the kernel flag [START_REF] Boalch | Twisted wild character varieties[END_REF], generalising the inductive step.

Remark 2.3. Beware however it is not true in general that Stab W g (U i ) = Stab W g (B i ): e.g. for the fission ∅ = Φ h 1 ⊆ Φ h 2 ⊆ Φ g one has U 1 = t, so Stab W g (U 1 ) = W g ; but B 1 = t Φ h 2 Ker(α) ⊆ t , which is not stabilised by W g if h 2 ⊆ g is a proper Lie subalgebra.
Analogously we can identify the subgroup fixing the irregular type. Lemma 2.5. One has

W h 1 = (W g ) U 1 = (W g ) Q . Proof. By definition w(Q) = Q if and only if w(A i ) = A i for i ∈ { 1, . . ., p }, i.e. w ∈ i (W g ) A i .
Now the argument of Lem. 2.2 yields the inductive step for the proof of the identity

j i p (W g ) A i = (W g ) { A j ,...,A p } = W h j ⊆ W g , j ∈ { 1, . . ., p } , whence (W g ) Q = W h 1 ⊆ W g .
On the other hand

W h 1 = i W h i ⊆ i (W g ) U i = (W g ) U 1 , since U 1 = i U i ⊆ t,
and W h i acts as the identity on

U i = Ker(Φ h i ).
Finally if w acts as the identity on U 1 then it also fixes (pointwise

) B i ⊆ U 1 for i ∈ { 1, . . ., p }, thus (W g ) U 1 ⊆(W g ) B ⊆(W g ) Q ,
proving the remaining inclusion.

In particular by Lemmata 2.4 and 2.5 we also have an inclusion

W h i ⊆ W i , since W h i = (W g ) U i ⊆ Stab W g (U j ) , j ∈ { i, . . ., p } , as U i = j i U j ⊆ t. It follows that W h 1 is a normal subgroup of Stab W g (U 1
), hence a fortiori of ( 15), and we consider again the quotient group

W g|h := Stab W g (U) W h 1 . (16) 
Note the numerator of (16) depends on the whole sequence h = (h 1 , . . ., h p ), while the denominator only depends on the last term-the pointwise stabiliser of a flag/filtration only depend on its union/sum, contrary to the setwise stabiliser.

Example 2.2 (Complete fission and generic case). In particular if the fission is "complete", which means that

H 1 = Stab G (Q) = T ⊆ G is the maximal torus, then Φ h 1 = ∅; in this case U 1 = t and W h 1 is trivial, so W g|h Stab W g (U).
If further we are in the generic case where

A p ∈ t reg then U is stationary at t, so Stab W g (U) = W g .
Finally by construction there is a topological identification B B W g|h , and the same argument of the proof of Prop. 2.1 yields the following. Theorem 2.1. The projection B B is a Galois covering, and the local WMCG (5) is an extension of W g|h by the pure local WMCG.

Of course if W 1 = W h 1 then B = B, in which case the local WMCG is pure (and has been studied in [23]).

Note in the rightmost identity we consider two different actions of W g : the former is an action on t, the latter on t ⊗ T Σ,a .

L -

Analogously to the pure case we provide examples of local WMCGs for low-rank Lie algebras, after proving we can reduce to the simple case.

3.1. Reduction to the simple case. Suppose g = ⊥ i I i is a decomposition of g into orthogonal ideals, with respect to an Ad G -invariant nondegenerate symmetric bilinear form g ⊗ g C (such as

(X | Y) = Tr(XY) for X, Y ∈ gl n (C)).
Choose then a root subsystem Φ ⊆ Φ g -not necessarily obtained from fission.

Introduce t i := t ∩ I i (a Cartan subalgebra of I i ), and let Φ I i = Φ(I i , t i ) ⊆ Φ g be the associated root system; this way there are two other decompositions:

t = ⊥ i t i , Φ g = i Φ I i .
Further let

Φ (i) := Φ ∩ Φ I i , which is a root subsystem of Φ I i .
Then one can show [23] the deformation space (7) splits as a product B = i B i , where

B i = Ker Φ (i) ∩ Φ I i \ Φ (i) t i \ Ker(α) ⊆ t i . ( 17 
)
Finally the Weyl group also splits as a product

W g = i W I i ⊆ i GL(t i )
, where the i-th factor (the Weyl group of Φ I i ) acts trivially on the complementary direct summands. It follows that every W g -orbit (inside t) splits as a product of W I i -orbits (inside t i ), so the previous discussion of setwise/pointwise stabilisers can be carried over factorwise, and:

Corollary 3.1. The deformation space B decomposes as a (topological) product i B i , where B i is the topological quotient of [START_REF] Brieskorn | Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe[END_REF] with respect to the equivalence relation (6)-with

W I i replacing W g .
In particular the factor corresponding to the centre Z g ⊆ g is contractible, and can be removed; and further if g is semisimple then the full/nonpure local WMCG is a direct product of the groups associated with its simple ideals.

Hence hereafter we will assume g is simple.

Remark 3.1. In this case all Cartan subalgebras t ⊆ g are conjugated by (inner) Lie-algebra automorphisms of g, which in turn induces homeomorphisms of the resulting deformation spaces B. Hence the pure local WMCG does not depend on the choice of the Cartan subalgebra, and so in turn neither does the full/nonpure one-since the latter is an extension of the former by a subquotient of the Weyl group.

Rank one.

If rk(g) = 1 then the only nontrivial fission is the "generic" one, so Γ (Φ g , d) is either trivial or isomorphic to the g-braid group. This is of type A 1 , i.e. the braid group on 2-strands, and (10) becomes

1 -Z -Z -Z 2Z -1 , with Γ (Φ g , d) Z Γ (Φ g , d)
, matching up with a particular case of (32):

1 -PBr 2 -Br 2 -S 2 -1 .
Equivalently up to homotopy we have B S 1 , and the arrow B B is the two-sheeted covering of the circle over itself.

Rank 2. Suppose now rk

(g) = 2: since g is simple then Φ g is isomorphic to A 2 , B 2 /C 2 or G 2 ,
and W g is isomorphic to Dih 3 S 3 , Dih 4 or Dih 6 , respectively (i.e. the symmetries of a triangle, a square, or a hexagon). Here Dih n denotes the dihedral group of order 2n, for an integer n 1-i.e. we use the "geometric" convention rather than the "algebraic" one.

The generic fission is ∅ ⊆ Φ g , in which case we obtain the g-braid group, while the nongeneric (incomplete) fission is Φ h ⊆ Φ g , with Φ h = { ±θ } for some θ ∈ ∆ ghere ∆ g ⊆ Φ g is a choice of simple roots; this corresponds to the deformation space B = C \ { 0 }. With the usual notation we find U = Ker(θ) and W h Z 2Z, and we must describe Stab W g (U) ⊆ W g -acting on B. This is the same as the setwise stabiliser of the line Cθ ⊆ t ∨ for the dual action, and the difference among the three types is due to the parity of the corresponding dihedral group.

Namely for type A the Weyl group yields the standard permutation action of S 3 on C 3 ⊇ t ∨ -identified with the standard dual Cartan subalgebra for gl 3 (C) ⊇ sl 3 (C). Then the only nontrivial permutation fixing the line generated by either simple root is the associated (simple) reflection. It follows that Stab W g (U) = W h , so (8) is trivial and the local WMCG is pure: it is thus infinite cyclic.

For type B the long roots are vertices of a square centered at the origin of t ∨ R R 2 , while the short roots are vertices of a smaller square obtained by taking midpoints of each side:

The Weyl group acts by preserving both squares, and operates as the group of their symmetries. In both cases a diagonal is fixed by the subgroup generated by the (simple) reflection along the corresponding axis, but also by a rotation of π. This means the stabiliser is always the Klein four-group K 4 Z 2Z × Z 2Z, hence (8) becomes

W g|h Z 2Z ,
acting as the antipode on the punctured plane, and B B is again a two-sheeted covering of the circle onto itself (up to homotopy equivalence). In particular

Γ (Φ g , d) is infinite cyclic.
Finally type G yields to an analogous situation. Long/short roots assemble into two Weyl-invariant hexagons in the real plane, and the action of the Klein group (within Dih 6 ) fixes any given diagonal within each hexagon:

Then we can extend to the complete (nongeneric) fission ∅ = Φ t ⊆ Φ h ⊆ Φ g , with the middle term as above. The associated kernel flag is U = t ⊇ t ⊇ Ker(θ) , so the setwise stabiliser stays the same; but this time the irregular type is centralised by the maximal torus only, so W g|h will be isomorphic to the group of order two (for type A), or to the Klein group (for type B/C and G). The result is a covering

C * × C * = B -B , C * = C \ { 0 } ,
with either two or four sheets, and Γ (Φ g , d) is an extension of the monodromy group by Γ (Φ g , d) Z 2 .

T A

Importantly we can explicitly describe local WMCGs for the special/general linear Lie algebra in full generality, building on [23].

Let n 2 be an integer and g = sl n (C). The Weyl group W g S n acts naturally on V := C n , so we will use the vector representation g gl(V) gl n (C).

Remark 4.1 (General linear description). Using the basis we identify V with the standard Cartan subalgebra of gl(V), so t = V ∩g (the standard Cartan subalgebra of g) becomes the subspace of n-tuples of (possibly coalescing) points of the complex plane with vanishing barycentre.

The resulting inclusion C n-1 t V induces a homotopy equivalence

t reg Conf n = C n 1 i =j n H ij ,
using the notation of (31), which moreover is compatible with the Weyl group action-since gl n (C) = g ⊕ ⊥ C Id V , and the orthogonal line

C Id V = Z gl(V) is fixed (pointwise) by W g .
Hence there is a second homotopy equivalence

t reg W g UConf n ,
and whenever useful we will work within the general linear Lie algebra.

4.1. Inductive step. If Φ h ⊆ Φ g = A n-1 is a fission subsystem, we have an associated J-partition n = j∈J I j , and

Φ h J A |Ij|-1 ⊆ A n-1 ,
with the usual convention that A 0 = ∅ (cf.

[23] and § A). Namely for i ∈ n we set

I i := { i } ∪ j ∈ n ±α - ij ∈ Φ h ⊆ n , α - ij = e ∨ i -e ∨ j ∈ t ∨ ,
and then

J := min(I i ) i ∈ n ⊆ n .
The Weyl group of h thus comes with a natural factorisation

W h J S I j ⊆ S n = W g ,
with trivial factors corresponding to the trivial components of Φ h . The setwise stabiliser of U = Ker(∆ h ) ⊆ t is bigger in general, since we can also permute components of Φ h of the same rank.

To state this precisely consider two nonempty finite sets I and K, and suppose I = k∈K I k is a K-partition of I with parts I k ⊆ I of equal cardinality m 1-so |I| = m|K|. Then the symmetric group S I contains the subgroup

N := τ ∈ S I τ(I k ) ⊆ I k for k ∈ K (S m ) |K| ,
which stabilises all parts (and permutes their elements). If I has a total order then there is a "complementary" subgroup P ⊆ S I , which permutes all parts (fixing their elements): more precisely, if

I k = i (k) 1 , . . ., i (k) m 
⊆ I for k ∈ K, then any element of σ ∈ S K P acts as

σ : i (k) j -i (σ k ) j ∈ I , j ∈ { 1, . . ., m } .
By construction N ∩ P = 1 inside S I , and P acts on N by conjugation.

Lemma 4.1 (Cf. [54], Lem. 3.2.8). If τ = K τ (k) ∈ N, with τ (k) ∈ S I k S m , then στσ -1 = K τ (σ -1 k ) ∈ N , σ ∈ P . ( 18 
)
Hence we have an inner semidirect product P N ⊆ S I , and it follows that (P N) N P canonically. Equivalently the outer semidirect product of P and N, with respect to the action [START_REF]Sur les groupes de tresses [d'après V. I. Arnol[END_REF], comes with a natural group embedding P N S I . This latter is also the wreath product S K S m S I , cf. § A.

Remark 4.2. One has

|P N| = (m!) |K| |K|! m|K| ! = | S I | ,
with strict inequality if 1 < m < |I| (proven e.g. by induction on m). Thus the embedding P N S I is proper for nontrivial partitions of I.

Let us apply this to the present situation: for an integer i 1 denote

K i := j ∈ J I j = i ⊆ J . If i 2, the integer |K i | 0 is thus the multiplicity of A i-1 as an irreducible component of Φ h . Instead for i = 1 one has a natural bijection K 1 - i ∈ n ±α - ij ∈ Φ h for any j , I j = { i } -i .
The subgroups P i S K i and N i (S i ) |K i | of S J are defined as the above-noting J inherits a natural total order from n.

Proposition 4.1.

There is a canonical group isomorphism

Stab W g (U) i 0 S K i S i ⊆ W g . ( 19 
)
Proof. The statement is the algebraic rewriting of the following claim: the setwise stabiliser of U = Ker(∆ h ) is the subgroup of W g = S n that permutes parts I j ⊆ n of the same cardinality, and that further permutes the elements within each part. By the above discussion this yields the direct product (19)-as permutations of disjoint parts commute.

To prove the claim recall the "extended" kernel Ker(∆ h ) ⊆ V is defined by the condition that the coordinate of any vector are equal within each part C I j ⊆ V, so its setwise stabiliser is given by the above condition. Thus to conclude it is enough to show that the setwise Weyl-stabiliser of the "essential" kernel U = Ker(∆ h ) ∩ t is the same; but by construction

Ker(∆ h ) = U ⊕ ⊥ C Id V ⊆ gl(V) ,
and the orthogonal line is fixed (pointwise) by the whole of W g (cf. Rem. 4.1).

Corollary 4.1. One has

W g|h i 0 S K i .
This is a particular example of application of the operadic composition of the symmetric group operad, cf. [54, § 3.1] and below.

Proof. By definition W g|h is the quotient (8), which is readily computed in this case using Prop. 4.1 and the factorisation

W h i 1 (S i ) |K i | , ( 20 
)
as quotients and direct products commute.

This corresponds to the fact that W g|h is naturally identified with the subgroup permuting parts of equal cardinality (and fixing the elements within each part). In particular in this case the exact group sequence

1 -W h -Stab W g (U) -W g|h -1 splits.
Further (20) is naturally a subgroup of the Weyl group of the "reduced" root system

Φ g U = α U α ∈ Φ g A |J|-1 ,
viz. a subgroup of S J -corresponding to certain "admissible" permutations. 

I i = ϕ -1 (i) ⊆ d, for i ∈ I.
Then there is a natural group embedding

S ϕ := I S I i -S d ,
obtained by juxtaposing permutations, and we let X ϕ := Y d S ϕ (the "semiordered" configuration space): this is the space of configurations of d = i |I i | points in the complex plane, such that two of them are indistinguishable if they lie within the same part of the I-partition.

To identify the fundamental group recall there is an "augmentation" group morphism p d :

Br d S d , with kernel π 1 (Y d ) = PBr d ⊆ Br d .
Proposition 4.2. There is a group isomorphism

π 1 (X ϕ ) Br ϕ ⊆ Br d , Br ϕ := p -1 d (S ϕ )
, and Br ϕ is an extension of S ϕ by PBr d .

Here Br ϕ is thus the "semipure" braid group of the partition, i.e. the group of braids whose underlying permutation lies within S ϕ ⊆ S d .

Proof. There are Galois coverings Y d X d =: UConf d and Y d X ϕ , and it follows the induced map X ϕ X d is a covering (with S d : S ϕ sheets). Up to identifying groups and torsors (the discrete fibres), after a suitable choice of base points, this Note (20) has a trivial factor corresponding to K 1 . yields a commutative diagram of pointed topological spaces, with (principle) fibre bundles in each row:

S ϕ Y d X ϕ S d Y d X d
.

In turn this leads to a morphism of (short) exact group sequences, proving the statement: In our situation we thus find a group isomorphism

π 1 (X ϕ ) S ϕ 1 
π 1 (B) Br ϕ ⊆ Br |J| ,
where ϕ : J I ⊆ Z 0 is the I-partition obtained from J = i 0 K i by removing the empty parts.

Remark 4.3. The extreme cases are S ϕ = 1, where X ϕ = Y d , and S ϕ = S d , where X ϕ = X d is the (fully) unordered configuration space. In our setting this means either no two irreducible components of Φ h have the same rank, or conversely they all have the same rank-respectively. Remark 4.4. Note there is also a different subgroup of Br d associated with the partition and projecting onto S ϕ , namely i Br I i Br d : this is the subgroup obtained by juxtaposing |I| braids, each on |I i | strands. However in general the inclusion i Br I i ⊆ Br ϕ is proper. E.g. Br 1 × Br 1 ⊆ Br 2 is trivial, while p -1 2 (S 1 × S 1 ) = p -1 2 (1) = PBr 2 Z . This simple example shows the fundamental group of the semiordered configuration space is not just the direct product of the corresponding braid groups: it is possible two points in different parts braid across each other (along a loop in X ϕ ), provided the are not swapped by the underlying permutation of the overall braid. Remark 4.5. By the Galois correspondence the isomorphim class of the covering X ϕ X d matches up with the conjugacy class of a subgroup of Br d = π 1 (X d ). This is precisely the conjugacy class of Br ϕ ⊆ Br d , which is generically nontrivialas S ϕ ⊆ S d is generically not a normal subgroup.

General case: ranked fission trees. Suppose now to have an increasing filtration

Φ h 1 ⊆ • • • ⊆ Φ h p ⊆ Φ h p+1 := A n-1 .
of fission subsystems. As in [23] this corresponds to a "fission" tree T = (T 0 , φ) of height p 1 (cf. § A). The set J l = J h l is as above, for l ∈ p, and then we add a tree root at level p + 1. By definition φ(i) = j ∈ J l+1 means that the irreducible component of h l ⊆ h l+1 corresponding to i ∈ J l lies within the irreducible component of h l+1 corresponding to j.

This was enough to encode the pure local WMCG in type A, while in the nonpure case we must retain more data, according to the results of the previous section. 

Definition 4.1 (Ranked fission tree).

A ranked fission tree is a fission tree T = (T 0 , φ) equipped with a rank function r : T 0 Z 1 ; in turn a rank function satisfies:

r(i) = φ -1 (i) r(j) , i ∈ T 0 .
We then say r(T ) := r( * ) 1 is the rank of the tree.

This means to each node we attach a positive rank, which equals the sum of its child-nodes'. In particular J l r(i) = r(T ), independently of the level, and the rank function is determined by assigning ranks to the leaves-i.e. by r J 1 ∈ Z J 1 1 . The algorithm to associate a ranked fission tree (T , r) to ( 12) is the following: the underlying fission tree is constructed as in [23], and we further set r(i) = k + 1 if the node i ∈ J l corresponds to a type-A irreducible rank-k component of Φ h l+1 . Working within the general linear Lie algebra, this is the same as setting r(i) = k if i corresponds to an irreducible component isomorphic to Φ gl k (C) -including Φ gl 1 (C) = ∅. It follows that r(T ) = n if we work within gl n (C).

By construction the Weyl group of h l ⊆ g comes with a canonical group isomorphism

W h l J l S r(i) , l ∈ p , (21) 
and to construct the stabiliser of the kernel flag in terms of the tree we introduce the following.

Definition 4.2. An isomorphism (T 0 , φ, r) (T 0 , φ , r ) of ranked fission trees is a bijection f : T 0 T 0 matching roots, and such that there are commutative diagrams:

T 0 \ { * } T 0 \ { * } T 0 T 0 f φ φ f and T 0 T 0 Z 1 f r r
.

An automorphism of (T 0 , φ, r) is an isomorphism (T 0 , φ, r) (T 0 , φ, r); their group is denoted Aut(T , r).

This restricts the usual notion of isomorphism of (rooted) trees, by further asking that ranks be preserved. Note by definition an automorphism preserves the nodes at each level, and is uniquely determined by the image of the leaves. 4.3. General case: reflection groups. It is possible to compute the automorphism group of the tree recursively, and in turn this will control the monodromy action of the Galois covering B B = B W g|h . Choose then a ranked fission tree (T , r), and note its subtrees are equipped with restricted rank functions. In particular let T = T(T , r) be the set of (ranked) maximal proper subtrees, i.e. the subtrees of T rooted at each child-node of the root, and choose a complete set of representatives T ⊆ T of isomorphism classes. Finally denote n(t) 1 the cardinality of the isomorphism class of any maximal proper subtree t ∈ T.

Definition 4.3. The extended automorphism group Aut(T , r) of the ranked fission tree (T , r) is defined recursively by

Aut(T , r) = t∈ T S n(t) Aut(t, r 0 ) , r 0 := r t 0 , ( 22 
)
This choice is more natural since the (nonsemisimple) rank of the general linear Lie algebra controls the Weyl/braid groups without shifts.

with basis Aut i, r(i) := S r(i) for i ∈ J 1 .

Note at each step it is the global information of the subtree t that is required in the algorithm-rather than simply the data at each level of T .

A priori (22) depends on the choice of T ⊆ T, but the following identification in particular shows it does not. Theorem 4.1. One has Aut(T , r) = Stab W g (U). Further the automorphism group Aut(T , r) is obtained recursively as in (22) but with recursion basis Aut i, r(i) := S 1 for i ∈ J 1 -the trivial group.

Proof. The first item can be proven by induction on p 1.

If p = 1 then a maximal proper subtree is a leaf, so T = J 1 : then two leaves are isomorphic (as ranked trees) if and only if they have the same rank. Hence for i ∈ J 1 the integer n(i) 1 is the number of rank-r(i) leaves, and in this case

Aut(T , r) = i∈ J 1 S n(i) S r(i) ⊆ S r(T ) ,
where J 1 ⊆ J 1 is a set of representatives of leaves-of all possible ranks. The result follows from Prop. 4.1. Now let p 2. By the induction hypothesis the bases of the wreath products in ( 22) are the setwise stabilisers of the deformation space of the "sub-irregular types" obtained by focusing on each eigenspaces of the leading coefficient. In addition to that we are then permuting isomorphic maximal proper subtrees, i.e. eigenspaces of the leading coefficient whose nested decomposition (into eigenspaces for the subleading coefficients) plays a symmetric role: this yields the whole of Stab W g (U), as any other permutation of the eigenvalues of the leading coefficient moves the irregular type out of the space of admissible deformations.

The second item is a straightforward extension from the unranked case, and can also be proven recursively on p 1.

If p = 1 an automorphism is the data a permutation of the leaves which matches up ranks. Hence in this case

Aut(T , r) = i∈ J 1 S n(i) = i∈ J 1 S n(i) S 1 ,
using the above notation. (Note S n(i) ⊆ S J 1 is naturally identified with the symmetric group of rank-r(i) leaves.)

Now let p 2. By the induction hypothesis the bases of the wreath products in (22) are the automorphism groups of the maximal proper ranked subtrees. In addition to that we are then permuting isomorphic maximal proper subtrees: this yields the whole of Aut(T , r), as any other permutation of child-nodes of the root, bringing along the corresponding subtrees, cannot restrict to an isomorphism of these latter.

Example 4.1. The most symmetric example is that in which r is constant at each level: in this case any automorphism of the underlying tree T = (T 0 , φ) preserves the rank function.

If moreover T is a complete m-ary tree, viz. if all interior nodes have m 1 child-nodes, then simply Aut(T , r) S m • • • S m p times , the p-fold wreath power-recall this example of wreath product is associative. The extended group instead is Aut(T , r) (S m ) p S r , where r 1 is the rank of any leaf.

On the opposite end, if r is injective at each level, the group Aut(T , r) is trivialand Aut(T , r) J 1 S r(i) ⊆ S r(T ) . In this case the type-A local WMCG is pure.

Now by (recursive) construction Aut(T , r) ⊆ Aut(T , r) is a subgroup, so by Thm. 4.1 it can be identified with a subgroup of the kernel-flag stabiliser.

Indeed choose f ∈ Aut(T , r), so by definition f : T 0 T 0 yields rank-preserving permutations f l := f J l ∈ S J l of the nodes at each level l ∈ p + 1. In particular f 1 permutes subsets of leaves (of constant rank), and we can map it to an element of W g S r(T ) along the group embedding

J 1 S n(i) - J 1 S n(i) S r(i) ⊆ S r(T ) ,
keeping the notation of the proof of Thm. 4.1. This yields an injective group morphism ι : Aut(T , r)

Stab W g (U)-since f is determined by f 1 .
By construction the image of ι is disjoint from W h 1 = J 1 S r(i) (using ( 21)), and acts on it by conjugation, so there is a second group embedding Hence the exact group sequence

ι : Aut(T , p) W h 1 -Aut(T , r) . ( 23 
1 -W h 1 -Stab W g (U) -W g|h -1
splits in the general type-A fission, generalising the recursive step.

Proof. It is equivalent to show that W h 1 ⊆ Aut(T , r) is a normal subgroup, and that Aut(T , r) W h 1 Aut(T , r) .

This can be proven recursively on p 1, the base being the content of Cor. 4.1.

If p 2 consider a maximal proper subtree t ∈ T: its leaves yield a subset J 1 (t) ⊆ J 1 , and there is a partition

J 1 = T J 1 (t) ,
of the leaves of T . Accordingly the centraliser of the irregular type splits as

W h 1 T W h 1 (t) = T W h 1 (t) n(t)
, where W h 1 (t) =: J 1 (t) S r(i) is the Weyl group of the Lie algebra h 1 ∩ gl r(t) (C) ⊆ h 1 , and in turn gl r(t) (C) ⊆ gl r(T ) (C) matches up with the eigenspace of the leading coefficient corresponding to the root of the subtree t-viz. a child-node of the root of T .

Hence, using the decomposition (22), and the fact that direct products and quotients commute, the result follows from Lem. 4.2; indeed in particular

Aut(T , r) W h 1 T S n(t) Aut(t, r) W h 1 = T S n(t) Aut(t, r) W h 1 (t) = T S n(t) Aut(t, r) = Aut(T , r) ,
by the recursive hypothesis-and definition of the automorphism group. Lemma 4.2. Let m 0 be an integer and P a group, and choose a normal subgroup N ⊆ P. Then 1 N ⊆ S m P is a normal subgroup, and in this identification there is a canonical group isomorphism

S m P N S m P N . ( 24 
)
Proof. Postponed to § B.

Hence in brief there is an explicit (finite) algorithm to compute the "effective" subquotient of the Weyl group acting freely on the deformation space of any type-A irregular type, to yield the deformation space of the associated irregular class. which all had pure local WMCG isomorphic to PBr 2 × PBr 2 3 × PBr 4 . We will see their associated stabilisers are not all isomorphic.

First consider

Q = T 1 x + T 2 x 2 + T 3 x 3 , T i ∈ gl 9 (C) , with T 1 = diag(4, 3, 2, 1, 0, -1, -2, -3, -4) , T 2 = diag(4, 4, 3, 2, 1, 0, -3, -4, -7) , T 3 = diag(2, 2, 1, 1, 1, 0, 0, 0, -7) .
The corresponding ranked fission tree (T , r) is drawn below:

1 1 1 1 1 1 1 1 1 2 3 3 1 2 1 1 1 1 1 1 1 9
From the recursive algorithm we get Aut(T , r) = S 2 × (S 2 S 3 ) . This is the same as the automorphism group of the ranked tree for the irregular type Q = T 1 x + T 2 x 2 , with T i ∈ gl 9 (C) given by T 1 = diag(4, 3, 2, 1, 0, -1, -2, -3, -4) , T 2 = diag(4, 1, 1, 0, 0, 0, -2, -2, -2) .

Indeed in that case the tree is as follows:

1 1 1 1 1 1 1 1 1 1 2 3 3 9 Finally let us consider Q = T 1 x + T 2 x 2 + T 3 x 3 + T 4 x 4 , with T i ∈ gl 9 (C) given by T 1 = diag(4, 3, 2, 1, 0, -1, -2, -3, -4) ,
T 2 = diag(4, 4, 3, 2, 1, 0, -3, -4, -7) ,

T 3 = diag(2, 2, 2, 2, 1, 0, -3, -3, -3) , T 4 = diag(1, 1, 1, 1, 1, 1, 0, -2, -4) .
The ranked fission tree is then:

1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 4 1 1 1 1 1 6 1 1 1 9
Its automorphism group is now Aut(T , r) = S 3 × S 3 2 , which is not the same as in the previous two cases. This is not contradictory: the pure local WMCG only depends on the whole set of unordered configuration spaces attached to the (unranked) fission tree, while the full/nonpure local WMCG also depends on their positions in the tree. 4.4. General case: (cabled) braid group. Write now B = p l=1 B l the deformation space, in the decomposition of [23]. This means B l ⊆ C J l is a product of ordered configuration spaces (type-A root-hyperplane complements), attached to the nodes at the above level J l+1 : namely

B l = J l+1 Conf k i ⊆ C J l , k i = φ -1 (i) 1 ,
counting the number of child-nodes. Thus globally

B = T 0 Conf k i ⊆ C T 0 \{ * } , and π 1 (B) T 0 PBr k i . ( 25 
)
Now recall from [23, § 6] that the cabling of pure braid group operad, viz. the operadic composition

γ PB : PBr n × n i=1 PBr k i -PBr k , k = i k i , (26) 
for n, k 1 , . . ., k n 0, yields a group embedding π 1 (B) PBr J 1 . More precisely recursive cabling along the (unranked) fission tree T = (T 0 , φ) leads to a pure "cabled braid group" PCBr(T ) ⊆ PBr |J 1 | , and there is a canonical group isomorphism π 1 (B) PCBr(T ). The point is that in the pure case one finds a "noncrossed" group/action operad, which in particular implies ( 26) is a group morphism equipping the domain with the direct product structure.

Here instead we naturally encountered the operadic composition of the symmetric group operad S = S • , 1 ∈ S 1 , γ S , viz. the function

γ S : S n × n i=1 S k i -S k , (σ, τ) -γ S (σ; τ) , (27) 
for σ ∈ S n and τ = n i=1 τ (i) . Its definition is a generalisation of the above construction to arbitrary partitions k = n i=1 I i , where

k i = |I i |.
Namely there is a "block permutation" operation

S n -S k , σ -σ k 1 , . . ., k n ,
See op. cit. for an explanation of terminology, due to the nested braiding of eigenspaces for the coefficients of the irregular type. which consists in the permutation of all parts by fixing their elements, and then

γ S (σ; τ) := σ k 1 , . . ., k n • τ ∈ S k ,
with tacit use of the natural group embedding i S I i S k on the right factor. 27) is an injective morphism, equipping the domain with the semidirect product structure.

Lemma 4.3. If k 1 = • • • = k n then (
Proof. Postponed to B.

This means the operadic compositions yields in particular group embeddings S n S m S mn , which were used above.

Thus the recursive definition ( 22) can be rewritten in this language, and amounts to:

Aut(T , r) = t∈ T γ S S n(t) × Aut(t, r 0 ) n(t) ⊆ S J 1 , r 0 = r t 0 , (28) 
starting again from the trivial group at each leaf. But finally this can reformulated to exhibit the relation with braid groups.

Lemma 4.4. Let { P i } i∈I and { N i } i∈I be finite collections of groups, and ρ i : P i Aut(N i ) group morphisms. Then there is a canonical group isomorphism

P N I P i N i , P = I P i , N = I N i ,
using the production action on the left-hand side:

ρ : P - I Aut(N i ) ⊆ Aut(N) , ρ = I ρ i .
Proof. Postponed to § B.

It follows that ( 28) is equivalent to the recursive definition

Aut(T , r) = S ϕ T Aut(T , r 0 ) n(t) , (29) 
introducing the T-partition ϕ : J p T induced from the isomorphism classes of maximal proper subtrees; this means S ϕ = T S n(t) ⊆ S J p .

The expression (29) clarifies the natural definition of an analogous (full/nonpure) "cabled" braid groups: one should "lift" this through the (augmentation) operad morphism p : B S , where B = Br • , 1 ∈ Br 1 , γ B is the (full/nonpure) braid group operad.

Definition 4.4. The cabled braid group of the ranked fission tree (T , r) is the group recursively defined by

CBr(T , r) = Br ϕ T CBr(t, r 0 ) n(t) ⊆ Br |J 1 | , (30) 
with basis CBr i, r(i) := Br 1 , for i ∈ J 1 , using the semipure braid group of Prop. 4.2.

Here Br ϕ ⊆ Br |Jp| is the subgroup corresponding to the braiding of the maximal proper subtrees (i.e. the equal-dimensional eigenspaces of the leading coefficient), acting by conjugation of the cabled braid group of any such subtree.

Remark 4.6. The recursive definition of the pure cabled braid group of [23] can also be given in terms of subtrees, but in that context it simplifies to a recursion on the level-since it only involves direct products.

Finally we can prove that (30) is the correct definition, i.e. that indeed this is the group controlling the topology of admissible deformations of type-A irregular classes.

Theorem 4.2. There is a group isomorphism π 1 (B) CBr(T , r), and CBr(T , r) is an extension of Aut(T , r) by PCBr(T ).

Proof. By Prop. 4.3 the projection B B amounts to the Galois covering over the quotient B Aut(T , r), so the claimed group extension will follow from the first statement-as PCBr(T ) π 1 (B), proven in [23].

The first statement instead can be proven by induction on p 1. If p = 1 then PCBr(T ) = PBr |J 1 | , and CBr(T , r) ⊆ Br |J 1 | is the "semipure" braid group of partition of the leaves into equal-rank nodes: the result then follows from Prop. 4.2. Now suppose p 2, and write B(T ) the space determined by the (unranked) tree as in [START_REF] Balser | Birkhoff invariants and Stokes' multipliers for meromorphic linear differential equations[END_REF]. By definition

B(T ) = Conf |Jp| × t∈ T B(t) n(t) ,
with the usual notation for representatives of maximal proper subtrees, and for the cardinality of their isomorphism classes. Then for t ∈ T the base of the wreath product S n(t) Aut(t, r 0 ) acts on the rightmost factor, while S n(t) is naturally a subgroup of permutations of the child-nodes of the roots-permuting the (isomorphic) subtrees rooted there.

Assume first T = { t } is a singleton, i.e. all maximal proper subtrees are isomorphic, and let n := J p . Then simply B(T ) = Conf n ×B(t) n , and accordingly Aut(T , r) = S n Aut(t, r 0 ) by ( 22). Now we have a natural surjective map B(T ) UConf n , composing the canonical projection B(T )

Conf n with the Galois covering Conf n UConf n ; and there is also a Galois covering B(T ) B(T ) = B(T ) Aut(T , r). By construction the former factorises through the latter, so there is a commutative triangle of topological spaces:

B(T ) B(T ) UConf n p π π .
The difference from the case p = 1 is that the arrows onto the unordered configuration space are not coverings, but rather (locally trivial) fibre bundles with positivedimensional fibres. For π this is clear (it is the composition of a trivial bundle and a locally trivial one), while for π it can be proven as follows.

If O ⊆ UConf n is an open trivialising set for π then π -1 (O) = O × B(t) n
, where O S n ×U is the preimage of O under the standard Galois covering, and

π -1 (O) = p π -1 (O) = O × B(t) n Aut(T , r) .
Now the latter quotient can be taken in two steps: first the action of the base yields

O × B(t) n 1 Aut(t, r 0 ) O × B(t) n ,
and then the space O × B(t

) n ⊆ O × S n ×B(t) n O × B(t)
n is a slice for the action of the "complement" subgroup S n 1. In conclusion π -1 (O) O × B(t) n , proving we have a locally trivial fibre bundle

B(t) n -B(T ) π -UConf n .
This yields the exact group sequence

1 -CBr(t, r 0 ) n -π 1 B(T ) π 1 (π) ---Br n -1 ,
by the recursive hypothesis, using that UConf n is a π(K, 1)-space and that fibres are connected. Moreover any continuous function UConf n B(t) n yields a global section, so in conclusion there is a semidirect product decomposition

π 1 B(T )
Br n CBr(t, r 0 ) =: Br n CBr(t, r 0 ) n , in accordance with the recursive definition (30).

Finally consider the general case where T is not a singleton. Then we can generalise the above argument using the composition of projections

B(T ) -B(T ) -X ϕ = Conf n S ϕ ,
onto the semiordered configuration space, where ϕ : J p T is as above. Again a two-step quotient (over any open trivialising subspace O ⊆ X ϕ ) can be taken with respect to the actions of the subgroups ---Br ϕ -1 , using the recursive hypothesis, Prop. 4.2, the fact that fibres are connected, and that X ϕ is a covering of a K(π, 1)-space-so it is also a K(π, 1). Again this has global sections, since there are continuous maps X ϕ T B(t) n(t) , proving the statement.

Remark 4.7. Note the fibre bundles B(T )

UConf n , in the first part of the above proof, is not trivial in general. Indeed the total space is homeomorphic to Conf n ×B(t) n S n 1, but this is not simply UConf n ×B(t) because there is no global slice for the quotient Conf n

UConf n -but rather only "local" ones, over a trivialising cover.

Remark 4.8. The auxiliary fibre bundle

S n ×B(t) n -B(T ) π -UConf n ,
which appears in the above proof when T = { t }, yields the following exact group sequence:

1 -PCBr(t) n -PCBr(T )

π 1 (π) ---Br n -S n -1 .
This is recovering the fact that PCBr(T ) PCBr(t) n PBr n , considering the direct product over the nodes of the (unranked) fission tree. O There is a "twisted" version of irregular types/classes [START_REF] Boalch | Twisted wild character varieties[END_REF][START_REF]Diagrams for nonabelian Hodge spaces on the affine line[END_REF]22]; and there exists "global" deformations of (twisted, bare) wild Riemann surfaces, defined as in [23]: we plan to consider these elsewhere.

Using the standard generators/relations of braid groups should in principle lead to a presentation of their cabled versions, which in turn might be used to compute their monodromy action on wild character varieties.

Finally recall [23] constructed a smooth affine moduli scheme IT p d of irregular types of bounded pole order p ∈ Z 1 , and with given pole order d α ∈ { 0, . . ., p } after evaluation at each root α ∈ Φ g -for any complex reductive group G. In particular the C-points IT p d (Spec C) recover the above "universal" deformation space B = B(Q), for any irregular type Q ∈ t ⊗ T p Σ,a with ord(q α ) = d α . Then one may take a quotient in the (complex) algebraic category, rather than the analytic/holomorphic one (e.g. the affine GIT quotient), to try to construct a moduli space of irregular classes at the point a ∈ Σ: we also plan to study this further, both in the twisted and nonlocal setting.

A
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A. B / Permutations and partitions. For an integer n 0 we denote n = { 1, . . . , n } (so 0 = ∅), and S n the symmetric group of permutations of n (so S 0 and S 1 are trivial).

The action of a permutation σ ∈ S n is denoted j σ j ∈ n, and we compose them right-to-left. More generally if I is a finite set we denote S I its symmetric group of permutations, so S I S |I| choosing a total order on I-coherently with S n = S n .

A J-partition of a finite set I is a surjection φ : I J onto a (finite) set J, which is equivalent to giving a decomposition I = j∈J I j , I j := φ -1 (j) ⊆ I , of I, with nonempty parts indexed by J. If all parts have the same cardinality m = I j 1 then we can consider the subgroup permuting all parts, and further the elements within each part: this is the (restricted) wreath product S J S m = S J J S m , using the natural S J -action on J. In turn the wreath product is the same as S J S m = S J (S m ) |J| , with respect to the action of S J given by

σ • τ = J τ (σ -1 j ) , σ ∈ S j , τ = J τ (j) ∈ (S m ) |J| ,
where τ (j) ∈ S I j S m for j ∈ J. Elements of S J S m are then written (σ; τ).

Weyl actions. Let (V, Φ) be a root system in the finite-dimensional complex vector space V, and W = W(Φ) ⊆ GL(V) the Weyl group. If S ⊆ V is a subset, its setwise Weyl-stabiliser is the subgroup

Stab W (S) = w ∈ W w(S) ⊆ S ⊆ W ,
and its pointwise Weyl-stabiliser is the subgroup

W S = w ∈ W S ⊆ Ker(w -Id V ) ⊆ Stab W (S) .
The latter is a parabolic subgroup of W-thinking of the Weyl group as a reflection group-and is a normal subgroup of the former. Clearly W S = W CS , and if

CS 1 ⊆ CS 2 then W S 1 ⊆ W S 2 ; further if U 1 , U 2 ⊆ V are subspaces then W U 1 +U 2 = W U 1 ∩ W U 2 ⊆ W .
On the other hand, tautologically, if

W i = Stab W (U i ) then Stab W 1 (U 2 ) = W 1 ∩ Stab W (U 2 ) = W 2 ∩ Stab W (U 1 ) = Stab W 2 (U 1 ) .
We identify W with the Weyl group W(Φ ∨ ) ⊆ GL(V ∨ ) for the dual/inverse root system, via w t w -1 [16, Ch. VI, § 1.1].

Braid groups.

For an integer n 0 we denote PBr n the pure braid group on n strands-so PBr 0 and PBr 1 are trivial. It is the fundamental group of the space

Conf n = Conf n (C) := C n \ 1 i =j n H ij , (31) 
where

H ij = (z 1 , . . ., z n ) ∈ C n | z i = z j ⊆ C n .
In particular Conf 1 = C, and in general this yields the space of ordered configurations of n points in the complex plane. Then Br g := π 1 (t reg ) is the full/nonpure g-braid group, and there is an exact group sequence generalising (32):

1 -PBr g -Br g -W g -1 .

Trees. A (finite) tree T = (T 0 , φ) of height p 1 is the data of a finite set T 0 with a partition T 0 = p+1 l=1 J l , such J p+1 = { * } is a singleton, and a function φ : T 0 \ { * } T 0 such that φ(J l ) ⊆ J l+1 for l ∈ { 1, . . ., p }. The elements of T 0 and the nodes of the tree, and φ(i) is the parent-node of i ∈ T 0 \ { * }-so * ∈ J p+1 is the root, while J 1 ⊆ T 0 contains the leaves. Conversely φ -1 (i) ⊆ T 0 is the set of child-nodes of i ∈ T 0 .

A B. M

Proof of Lem. 2.4. We can recursively prove that

W i = i j p Stab W g (U j ) , i ∈ { 1, . . ., p } .
The base i = p is tautological, and then

W i-1 = w ∈ W i w(U i-1 ) ⊆ U i-1 = w ∈ W g w(U j ) ⊆ U j for j i -1 , using (13) 
and the recursive hypothesis.

Proof of Lem. 4.2. By definition S m P = S m P m , with respect to the natural permutation action S m Aut(P m ). Then 1 N = 1 N m ⊆ S m P m , and it is normal since it is normalised by 1 P = 1 P m and stabilised by the permutation action. Hence the quotient on the left-hand of ( 24) is well defined. Now there is an induced action S m Aut(Q m ), where Q := P N, and finally the natural surjective group morphism S m P S m Q vanishes on 1 N.

Proof of Lem. 4.3. The compatibility with the product follows from [START_REF]Sur les groupes de tresses [d'après V. I. Arnol[END_REF] (which in turn is equivalent to the action-operad axiom for S [54, Eq. 4.1.2]), and from the fact that the block permutation operation is a group morphism in this case. Injectivity follows from the identity

S n k ∩ (S k ) n = 1 ⊆ S nk ,
where S n k ⊆ S nk is the image of the block permutation operation S n S nk .

Proof of Lem. 4.4.

There is a natural bijection

I (p i , n i ) - I p i , I n i ,
between the underlying sets, and one can show it is compatible with the semidirect multiplication. Indeed choose elements p i , p i ∈ P i and n i , n i ∈ N i for i ∈ I, so that

I (p i , n i ) I (p i , n i ) = I (p i , n i ) • i (p i , n i ) = I (p i p i , ρ i (p i )n i n i ) ∈ I P i N i , which is mapped to I p i p i , I ρ i (p i )n i n i ∈ P N. Conversely I p i , I n i • I p i , n i = I p i I p i , ρ I p i I n i I n i ∈ P N ,
which coincides with the above-using the product action and the direct product multiplication.

A C. R

On the other side of the Riemann-Hilbert-Birkhoff correspondence there is a Poisson fibre bundle analogous to (1), viz.

M dR π -B , (33) 
whose fibres (the de Rham spaces) are moduli spaces of irregular singular algebraic connections on principal G-bundles. This is equipped with the pullback (flat nonlinear algebraic) isomonodromy connection; see in particular [9, Fig. 1], which spells out this picture.

Now one can choose a local trivialisation of (33), i.e. an isomorphism of fibre bundles Moreover the difference between the isomonodromy connection and the trivial connection (on the upper-right corner of (34)) can be "integrated" to a nonautonomous Hamiltonian system

M dR O := π -1 (O) O × M O π p 1 , (34) 
H = (H 1 , . . ., H d ) : M × O -C d . ( 35 
)
In this Hamiltonian viewpoint the symplectic nature of isomonodromic deformations, as considered in [9] (and extended in successive degree of generality in subsequent work), is equivalent to the integrability of [START_REF] Kohno | Monodromy representations of braid groups and Yang-Baxter equations[END_REF]; this amounts to the identities

H i , H j + ∂H i ∂t j - ∂H j ∂t i = 0 , i, j ∈ { 1, . . ., d } .
Hence the local coordinates become times of isomonodromic deformations over O ⊆ B: but in principle they are not intrinsically associated to isomonodromic deformations, contrary to the flat Ehresmann connections on (1) and (33) (one needs a choice of "initial" trivialisation [9, Rk. 7.1]).

Examples of such isomonodromy systems abound, with far-reaching applications already in the genus-zero case, famously encompassing (generalisations of) the Painlevé equations [START_REF]Studies on the Painlevé equations. I. Sixth Painlevé equation P VI[END_REF]43,41,7,20] and the Schlesinger system [47]. The (Harnad-)dual version of the Schlesinger system, on the other side of the Fourier-Laplace transform [30,[START_REF] Yamakawa | Fourier-Laplace transform and isomonodromic deformations[END_REF], was considered in [START_REF]isomonodromy, and quantum Weyl groups[END_REF], and the combination of Schlesinger and its dual yield the system of Jimbo-Miwa-Môri-Sato (JMMS) [33]. Note [30] also links previous papers about isospectral deformations [2, 1] to the isomonodromic deformations of JMMS.

Finally a generalisation of all the above was derived in [12]. This latter setup brings about nongeneric isomonodromic deformations, considering connections with several levels which extend examples of the seminal paper [34]. Importantly this is more symmetric than op. cit., which in turn is one of our main motivations for studying the "deeper" nongeneric case: in particular in [12] the group SL 2 (C) acts on the bundle of de Rham spaces via automorphisms of the 1-dimensional Weyl algebra, and contains the Fourier-Laplace transform as the element 0 -1 1 0

.

See [START_REF]Fundamental two-forms for isomonodromic deformations[END_REF][START_REF] Gaiur | Isomonodromic deformations: confluence, reduction & quantisation[END_REF] for more recent developments, with the latter also on the quantum side.

Importantly all these Hamiltonian systems have far-reaching applications in mathematical physics, notably in integrable hierarchies of differential equations

The difference of the corresponding horizontal distributions-inside T O×T M T p 1 --T O-is given by O-dependent (vertical) vector fields X i : O × M T M on the fibre, and one has dH i = ω, X i (cf. [12, § 5]).

The nonzero pole orders of the irregular types evaluated at each root.

such as KdV [29], and in 2d conformal field theory after quantisation (e.g. [39, 50, 3, 27, 26], opening to "irregular" conformal blocks and the AGT correspondence). More precisely the quantisation of the Schlesinger system leads to the Knizhnik-Zamolodchikov connection (KZ) [46,31], while the quantisation of the dual Schlesinger system (as in [START_REF]isomonodromy, and quantum Weyl groups[END_REF]) leads to the Casimir connection of de Concini/Millson-Toledano Laredo [38]. The quantisation of the JMMS systems, generalising the above and recovering the connection of Felder-Markov-Tarasov-Varchenko [START_REF] Balser | Birkhoff invariants and Stokes' multipliers for meromorphic linear differential equations[END_REF], was considered in [44]; further op. cit. constructed a quantisation of the more general "simply-laced" systems of [12] (this is resumed in the table in the introduction of [44]); cf.

[53] for a different construction of "quantum" simply-laced isomondromy systems, and [39, [START_REF]Confluent KZ equations for sl N with Poincaré rank 2 at infinity[END_REF][START_REF] Gaiur | Isomonodromic deformations: confluence, reduction & quantisation[END_REF] for a "confluence" viewpoint on the quantisation of irregular singularities.

Finally encoding the irregular moduli in the base curve, and constructing bundles over their (admissible) deformations, is also helpful for the quantisation of the extended "classical" symmetries of isomonodromy systems. In particular the quantised SL 2 (C)-symmetries [START_REF]Symmetries of the simply-laced quantum connections and quantisation of quiver varieties[END_REF] generalise the Howe duality [6], which in turn were used in [49] to compute the monodromy of the Casimir connection in terms of that of KZ (cf. also [48]): this latter example of generic "quantum" monodromy action brings about the G-braid groups which we generalise in this series of papers. 
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 11 The local wild mapping class group of the (bare) wild Riemann surface Σ

  p d Br ϕ = Ker(p d ) ∩ Br ϕ = PBr d .

  All spaces involved are (locally) path-connected and semi-locally simply-connected [32, Thm. 1.38].

)

  Proposition 4.3. The group morphism (23) is surjective.

  Example 4.2. Let us look at the examples of type-A irregular type considered in [23],

T 1

 1 Aut(t, r 0 ) n(t) , T S n(t) 1 ⊆ Aut(T , r) , whose (inner) product gives the whole of Aut(T , r) in view of Lem. 4.4 The analogous commutative triangle of topological spaces then yields the fibre bundleT B(t) n(t) -B(T ) π -X ϕ ,whence the exact group sequence 1 -T CBr(t, r 0 ) n(t)π 1 B(T )π 1 (π)

A

  

  By construction the W g|h -action on B is free: indeed the stabilisers of all points are conjugated, and by Lem. 2.2 the stabiliser of the base point is trivial. Moreover the action is automatically properly discontinuous (W g|h is finite), and the spaces involved are Hausdorff: hence every point of B has a neighbourhood O ⊆ B such that w 1

	by Def. 1.1, which leads to the following.
	Proposition 2.1. The fundamental group π 1 (B, A) is an extension of (8) by π 1 (B, A),
	where A ∈ B is the Weyl-orbit of the base point.
	Proof.

  and PBr g = π 1 (t reg ) is the pure g-braid group, a.k.a. the generalised (Artin-Tits) braid group of type g[START_REF] Brieskorn | Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe[END_REF][START_REF] Brieskorn | Artin-Gruppen und Coxeter-Gruppen[END_REF] 21,[START_REF]Sur les groupes de tresses [d'après V. I. Arnol[END_REF]. The Weyl group W g = W(Φ g ) acts freely on t reg , and t reg t reg := t reg W g is a Galois covering.

		p n --S n -1	(32)
	corresponds to the braid group "augmentation", i.e. the morphism taking the
	permutation underlying the braiding of the n strands.
	More generally for a split Lie algebra (g, t) we consider the root-hyperplane
	complement		
	t reg = t \	Ker(α) ⊆ t ,	Φ g = Φ(g, t) ,
	α∈Φ g		
	generalising (31) in type A,		

The symmetric group S n acts naturally on (31), and the projection Conf n -UConf n := Conf n S n , to the space of unordered configurations, is a Galois cover. The (full/nonpure) braid group is Br n = π 1 (UConf n ), and the associated exact group sequence 1 -PBr n -Br n

  over an open subspace O ⊆ B, for a fixed Poisson manifold M, { •, • } . Then the isomonodromy connection (on the upper-left corner of (34)) can be given by explicit nonlinear first-order partial differential equations in local coordinates t = (t 1 , . . ., t d ) on O, where d = dim B , for local sections over the trivialising locus.

  CBr(T , r) full/nonpure cabled braid group of (T , r) Φ g root system of (g, t)O Σ,a completed local ring of Σ at a K Σ,a completed fraction field of O Σ,a T Σ,a quotient of K Σ,a modulo O Σ,a B = (Q) universal space of admissible deformations of Q B i = B(A i ) factors of B = universal spaces of admissible deformations of the A i d α pole order of q α = (α ⊗ 1)Q d tuple of the d α Γ (Φ g , d) full/nonpure local WMCG t reg regular part of t h i nested centralisers of the coefficients of Q H i subgroup of G with Lie algebra h i Φ h i sequence of fission root subsystems of Φ g W h i Weyl group of (h i , t) U i intersection of the root hyperplanes of Φ h i W i nested setwise stabilisers of the U i Stab W i (B i ) setwise stabiliser of B i in W i U flag of the subspaces U i in t (W g ) U i pointwise stabiliser of U i in W g (W g ) Q stabiliser of Q in W g I i orthogonal ideals of g t i intersection of t with I i Φ I i root system of (I i , t i ) W I i Weyl group of Φ I i Z g centre ofg PBr n pure braid group on n strands Br n full/nonpure braid group on n strands Dih n dihedral group of order 2n ∆ g choice of simple roots for Φ g Conf n configuration space of n ordered points in C UConf n configuration space of n unordered points in C n the set { 1, . . ., n } S I group of permutations of a set I I i parts of n defined by a root subsystem of A n-1 J index set for the parts I i K i collection of parts I j with i 0 elements

	D. L	(	)
	Σ	Riemann surface	
	G	connected complex reductive Lie group	
	M B Ker(∆ h )	Poisson/symplectic fibration of Betti spaces extended kernel of ∆ h	
	B S ϕ	space of admissible deformations of bare wild Riemann surfaces group of permutations preserving a partition ϕ	
	g p n	Lie algebra of G augmentation group morphism of Br n	
	t Br ϕ	Cartan subalgebra of g group of braids with underlying permutations in S ϕ	
	T T	maximal (algebraic) torus in G fission tree	
	Q J i	irregular type levels of T	
	a T 0	point of Σ nodes of T	
	A j φ	coefficients of Q parent-node function of T	
	W g r	Weyl group of (g, t) rank function of T	
	Q T	irregular class underlying Q set of maximal proper subtrees of T	
	Σ T	wild Riemann surface choice of representatives for the isomorphism classes inside T	
	W g|h n(t)	subquotient of W g acting freely on B cardinality of the isomorphism class containing t ∈ T	
	(T , r) Aut(T , r) Aut(T , r) t 0	ranked fission tree extended automorphism group of (T , r) automorphisms of (T , r) nodes of t	
	r 0	restriction of r to t 0	
	S	symmetric braid group operad	
	γ S	composition of S	
	B	full/nonpure braid group operad	
	γ B	composition of B	
	PCBr(T )	pure cabled braid group of T	
	IT p d	moduli scheme of irregular types of bounded pole order, and given
		pole order along any root	
	M dR	Poisson/symplectic fibration of de Rham spaces	
	t i	local coordinates on B: isomonodromy times	
	t	tuple of the t i	
	H i	isomonodromy Hamiltonian	
	H	tuple of the H	

i : isomonodromy system
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