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A COLOURFUL CLASSIFICATION OF (QUASI) ROOT SYSTEMS AND
HYPERPLANE ARRANGEMENTS

GABRIELE REMBADO

Abstract. We will introduce a class of graphs with coloured edges to encode
subsystems of the classical root systems, which in particular classify them up to
equivalence. We will further use the graphs to describe root-kernel intersections,
as well as restrictions of root (sub)systems on such intersections, generalising the
regular part of a Cartan subalgebra. Finally we will consider a slight variation to
encode the hyperplane arrangements only, showing there is a unique noncrystal-
lographic arrangement that arises.
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Introduction

Let G be a connected complex reductive Lie group, and T ⊆G a maximal torus
(such as the group of invertible diagonal matrices inside GLn(C)). Denote g =
Lie(G), and let t = Lie(T)⊆ g be the associated Cartan subalgebra.

A previous paper [16] introduced pure local “ wild ” mapping class groups of
type g, associated with the root system Φg = Φ(g, t)⊆ t∨ and some further data:
the missing piece comes from moduli spaces arising in complex algebraic geom-
etry, parametrising isomorphism/gauge classes of meromorphic connections on
principal G-bundles over a Riemann surface, i.e. the de Rham spaces of the wild
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2 G. REMBADO

nonabelian Hodge correspondence [3]. See [16] for details and references, in par-
ticular the relation with the wild character varieties (the Betti spaces) and the ad-
missible deformations of wild Riemann surfaces [8]—as well as the reviews [7, 9];
the “quantum” side of this story, in particular the quantisation of the nonabelian
Hodge spaces, has been considered in [21, 22, 23, 17, 1, 2].

The upshot are spaces B⊆ tp for an integer p > 1, coming with a product
decomposition

B =

p∏
i=1

Bi , Bi⊆ t , (1)

and the pure local “wild” mapping class group is then the fundamental group

Γ = π1(B) '
∏
i

π1(Bi) .

Now each factor in (1) is a “restricted” root-hyperplane complement, in the fol-
lowing sense. If Φ ′⊆Φ is an inclusion of root systems, we consider the flat

U :=Ker(Φ ′) =
⋂
Φ ′

Ker(α)⊆ t , (2)

of the root-hyperplane arrangement of Φ⊆ t∨, and then the complement of the
remaining hyperplanes:

B(Φ ′,Φ) :=U∩
⋃

Φ\Φ ′

(
t \Ker(α)

)
⊆U . (3)

When nonempty, (3) is the complement of the hyperplane arrangement (in U)
obtained upon restriction of the additional roots, i.e.

B(Φ ′,Φ) = U
∖ ⋃
Φ\Φ ′

Ker
(
α
∣∣
U

)
. (4)

Then there exists an increasing sequence

Φ1⊆ · · ·⊆Φp+1 :=Φg , (5)

of root (sub)systems, such that Bi = Bi(Φi,Φi+1) for i ∈ { 1, . . .,p }.
The generic case corresponds to the inclusion ∅⊆Φg (for p = 1), which brings

about the regular part

B(∅,Φg) = treg = t
∖ ⋃
Φg

Ker(α)⊆ t ,

of the Cartan subalgebra. Hence this example of local wild mapping class group,
whose role in 2d gauge theory was first understood in [4], leads to pure (generalised/Artin–
Tits) braid groups of type g [12, 14, 13].

The problem we consider here is thus to classify the hyperplane arrangements
of the “restricted” systems

Φ
∣∣
U
:=
{
α
∣∣
U

∣∣∣ α ∈ Φ \Φ ′
}
⊆U∨ (6)

of linear functionals—in the description (4).
Note (6) is a symmetric subset, but it need not be a root system; and fur-

ther even the resulting hyperplane arrangement is not that of a root system in
general—i.e. it is not crystallographic. Moreover it is not true that the resulting
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Coxeter group is obtained by restricting (to U) the elements of the Weyl group
preserving (2)—even in type A.

In view of the aforementioned obstructions, an explicit description of (4) in
principle relies on a description of:

(1) root subsystems Φ⊆Φg;
(2) for any inclusion Φ ′⊆Φ of two such, the set of equivalence classes of

functionals α,β ∈ Φ with respect to the relation

α ∼ β if U⊆Ker(α−β) .

This latter is also the quotient set Φ
/
U⊥⊆ t∨

/
U⊥, within the quotient vector

space (of t∨) modulo the annihilator

U⊥ =
{
λ ∈ t∨

∣∣∣ λ∣∣U = 0
}
⊆ t∨ .

But in our situation U⊥ = CΦ ′⊆ t∨, so we can equivalently consider the quotient
set

Φ
/

CΦ ′⊆CΦ
/

CΦ ′ ,
which is thus naturally in bijection with (6): we refer to either as the quotient of
Φ, modulo Φ ′. 1

While a study of such quotients and hyperplane arrangements can be carried
in general, the geometric setup of [16] only brings about a particular type of
root subsystems: namely the root systems of iterated centraliser of semisimple
elements, viz. (reductive) Levi factors of parabolic Lie subalgebras of g—cf. § 3
of op. cit. These are “fission” root systems [5, 6], and the sequence (5) is then
controlled by an increasing sequence of subdiagrams of the Dynkin diagram of
the semisimple part [g, g]⊆ g, corresponding at each step to the subset of simple
roots vanishing on the chosen semisimple element.

In this paper instead we consider all root subsystems of a simple Lie algebra
g, which cannot always be read from the Dynkin diagram. This yields the gen-
eral semisimple case by taking direct products, and finally adding an Abelian
factor (in the reductive case) does not modify the homotopy type of (4). 2 More
precisely we propose an elementary classification of root subsystems of the clas-
sical simple Lie algebras in terms of some combinatoric data: certain graphs with
coloured edges which retain more information than the Dynkin diagram, a slight
generalisation thereof to describe all possible quotients, and finally a variation to
encode the root hyperplanes only.

Note [20] also deals with the classification of irreducible root (sub)systems: in
particular the statement of Cor. 4.1 is coherent with the tables in § 10 of op. cit—
although for us this comes as a corollary of the main construction, with a more el-
ementary proof, and we further get to noncrystallographic systems/arrangements
by considering quotients.

Finally, using an (invariant) scalar product (· | ·) : V ⊗ V ! C, the vanishing
locus of a subset Φ ′⊆V∨ corresponds to the orthogonal subspace of its image
under the vector space isomorphism (· | ·)] : V∨ ! V . Then restricting a linear

1E.g. if Φ ′ = {±γ } for some γ ∈Φ then the quotient is the set of γ-strings in Φ.
2The (contractible) centre Zg =

⋂
Φg

Ker(α)⊆ t acts on each factor (1) by translations, and one
can appeal to the resulting fibration Zpg ↪!B�B

/
Zpg .



4 G. REMBADO

functional λ ∈ V∨ to U = Ker(Φ ′)⊆V is the same as taking the orthogonal
projection of (·|·)](λ) ∈ V onto U: in this viewpoint one is thus led to study
projections of (co)roots onto intersections of other (co)roots’ kernels (cf. [15]). The
viewpoint we take here does not rely on the invariant product, although our
results are compatible with the (complex) Euclidean structure (cf. Prop. 5.1).

Main results and layout. In § 1 we review the special linear case, which is the
prototype for the other classical types.

In § 2 we introduce bichromatic graphs (G, c), i.e. graphs endowed with a
red/green colouring c : G1 ! {R,G } of each edge, and describe the main corre-
spondence which maps them bijectively to symmetric subsets of the nonreduced
root system BCn—if G has n > 1 nodes, cf. § A. In particular there are “classical”
graphs corresponding to root systems of type A, B, C, D and BC, depicted in
Ex. 2.1.

In § 3 we introduce a special class of bichromatic graphs, which correspond to
(crystallographic) root subsystems of BCn under the main correspondence above:
they are thus called crystallographs (see Def. 3.1).

Theorem (Cf. Thm. 3.1). There is a canonical inclusion-preserving bijection between
crystallographs on n > 1 nodes and root subsystems of BCn.

In § 4 we classify crystallographs directly from their defining properties, prov-
ing the following.

Theorem (Cf. Thm. 4.1, Lem. 4.1 and Cor. 4.1). All crystallographs are disjoint
unions of “classical” ones, up to acting on root (sub)systems via the Weyl group; in
particular no exceptional types arise from root subsystems of classical simple Lie algebras.

In § 5 we use crystallographs to explicitly determine the vanishing loci of any
root subsystem.

Theorem (Cf. Prop. 5.1). Let Φ⊆BCn be a root subsystem, and GΦ the associated
crystallograph; then Ker(Φ) has a natural basis consisting of the set of type-A connected
components of GΦ—including trivial ones.

In § 6 we define “quotients” graphs G
/
G ′ of nested crystallographs G ′⊆G, with

the explicit algorithm of Def. 6.1. We study the obstruction for such a quotient
to be a crystallograph, and accordingly introduce a weakened notion of quasi-
crystallographs in Def. 6.2 The main statement about these two new classes of
bichromatic graphs is the following.

Theorem (Cf. Thm. 6.1, Thm. 6.2, and Prop. 6.2). Let Φ ′⊆Φ⊆BCn be nested
root systems, and G ′ = GΦ

′
, G = GΦ the associated crystallographs. Then the restricted

system (6) is associated with the quotient graph G
/
G ′ under the main correspondence, and

it is a quasi-crystallograph; and conversely all quasi-crystallographs arise from quotients
of root systems.

Further we completely classify this extended class of graphs, thereby explicitly
describing all possible quotients of root systems.

Theorem (Cf. Cor. 6.1 and Rk. 6.1). Quasi-crystallographs are disjoint unions of “clas-
sical” graphs, and two other “exotic” components—which do not generically correspond
to root systems.
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In § 7 we modify the main definition to introduce projective crystallographs,
in Def. 7.2. They retain less information than crystallographs, since are used to
(completely) encode the data of subsets of the root-hyperplane arrangement of
type Bn/Cn; further a natural “projectification” operation G 7! P(G) produces
such a graph from any crystallograph, and corresponds to taking the canonical
projection π : V∨ \ { 0 } ! P

(
V∨
)

of root systems—as their kernels are dilation-
independent. Then we adapt the previous arguments to prove the following.

Theorem (Cf. Cor. 7.1 and Thm. 7.1). Projective crystallographs on n > 1 nodes
are in natural inclusion-preserving bijection with root-hyperplane sub-arrangements of
Bn/Cn/BCn—and are obtained from the projectification operation on crystallographs.
Moreover they are disjoint unions of “classical” projective crystallographs.

Finally we consider the compatibility of quotients and projectifications, to get
to the desired classification of quotient/restricted hyperplane arrangements.

Theorem (Cf. Lem. 7.1 and Thm. 7.2). Let Φ ′⊆Φ⊆BCn be nested root systems,
and G ′ = P(GΦ

′
), G = P(GΦ) the associated projective crystallographs. Then the

quotient G
/
G ′ is the projectification of the quasi-crystallograph associated to the restricted

system (6), and thus controls the quotient/restricted hyperplane arrangement.
Moreover all projectifications of quasi-crystallographs are disjoint unions of the “clas-

sical” ones, and of a single exotic component.

The latter exotic hyperplane arrangement is as follows (cf. [16]). Let r, s > 0
be integers, and consider the standard complex coordinates z = (z1, . . ., zr+s) on
Cr+s. Then the exotic arrangement contains the hyperplanes

H±ij =
{
z ∈ Cr+s

∣∣ zi ± zj = 0
}
⊆Cr+s , i 6= j ∈ { 1, . . ., r+ s } ,

viz. the root-hyperplanes of type Dr+s, plus the hyperplanes

Hi =
{
z ∈ Cr+s

∣∣ zi = 0
}
⊆Cr+s , i ∈ { 1, . . ., r } ,

viz. the root hyperplanes of type Br/Cr—in the standard embedding Cr ↪!Cr ×
Cs.

This arrangement thus plays a distinguished role within the theory of irre-
ducible root systems.

Some standard notions, notations and conventions, used throughout the paper,
are summarised in § A.

1. Prototype: type A

The main idea can be seen in type A: let g = sln(C), with root system An−1.
If Φ⊆An−1 is a root subsystem, for each i ∈ n := { 1, . . .,n } we can consider

the subset
Ii = { i }∪

{
j ∈ n

∣∣∣ α−ij ∈ Φ}⊆n , (7)

where α−ij : V ! C are the type-A roots for V = Cn (cf. § A). The fact that Φ is
closed under the root-hyperplane reflections of its elements implies the subsets (7)
yield a partition of n:

n =
∐
i∈J

Ii , J :=
{

min(Ii)
∣∣ i ∈ n }⊆n . (8)
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In turn there is a root system decomposition

Φ '
⊕
J

AIi , AIi :=
{
α−jk

∣∣∣ j,k ∈ Ii }⊆Φ . (9)

This can be naturally encoded into a graph G = GΦ on the set of nodes G0 = n,
by putting an (unoriented) straight edge { j,k } if and only if αjk ∈ Φ. Then (9) is
equivalent to the fact that G decomposes into a disjoint union

G =
∐
J

G(i) ,

of (sub)graphs G(i)⊆G for i ∈ J, each of which is a complete graph on the set
of nodes Ii⊆n—without loop edges. Importantly all root subsystems are thus
parametrised by such graphs.

Moreover one can use these latter to describe quotients, as follows. An inclu-
sion Φ ′⊆Φ corresponds to a subgraph G ′ = GΦ

′
of G, on the same set of nodes,

and the system of restricted roots (6) is determined by the missing edges. More
precisely there may be pairs of connected components G ′(i),G ′(j)⊆G ′, for i, j ∈ J,
such that there are nodes i0 ∈ G ′(i)0 and j0 ∈ G ′(j)0 which are adjacent in G—i.e.
{ i0, j0 } ∈ G1 \ G

′
1; in the next picture the new straight edge (lying in the larger

graph only) is depicted by a dashed line:

i0G ′(i) j0 G ′(j)

Figure 1. Example: two connected components of G ′ are linked
in G.

Further the fact that Φ is a root (sub)system then implies all pairs of nodes in
two such components are adjacent in the larger graph, i.e. there exists a connected
component of G containing both G ′(i) and G ′(j) as subgraphs. This is because the
Weyl group element corresponding to σ−ij ∈ An−1 maps α−jk 7! α−ki, for any triple
{ i, j,k }⊆n of distinct indices (see below more generally).

Then we can construct a “quotient” graph, denoted G
/
G ′, with the following

algorithm: its set of nodes is that of connected components of G ′, viz. the set
J ′⊆n associated with Φ ′ as in (8), and two components are adjacent if and only
if they are “fused” in G.

It turns out G
/
G ′ is still a disjoint union of complete graphs (see below more

generally), so it encodes a type-A root system inside C|J
′|; and further there is a

canonical vector space isomorphism Ker(Φ ′) ' C|J
′|, identifying An−1 with the

root system of gl(V)—vanishing on the centre C IdV ⊆ gl(V).
Hence this graph-theoretic description yields in particular a proof of the fol-

lowing:
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Proposition 1.1 (Cf. [16]).

(1) If Φ⊆An−1 is a root subsystem, then it is isomorphic to a direct sum of irre-
ducible type-A root systems.

(2) If Φ ′⊆Φ⊆An−1 is an inclusion of root systems, the quotient Φ
/
Φ ′ is isomor-

phic to a root system of type A, and in particular An−1
/
Φ ′ ' A|J| ′−1.

A proof of a stronger statement, involving all classical simple Lie algebras, is
given below: in brief a more general class of graphs (extending G ′⊆G and G

/
G ′

from this section) leads to an explicit description of all root subsystems, and of
all linear functionals that arise upon the restriction (6). The main idea is to add
a different type of straight edges to encode the new roots that arise in type D,
and further loop edges to encode the short/long roots in type B/C. Finally, at
a later time, a variation thereof can be introduced to only encode the resulting
hyperplane arrangements (cf. § 7).

Remark 1.1. In particular in type A the “restricted” root-hyperplane comple-
ment (4) is identified with a product of spaces of (ordered) configurations of
points in the complex affine line, whose fundamental groups are pure braid
groups. If Φ = An−1 there is a single component, and the fundamental group is
the pure braid group on

∣∣J ′∣∣ strands. See [16] about the general case. 4

2. Bichromatic graphs and symmetric sets of roots

Let {R,G } be the set of colours “red” and “green”.

Definition 2.1. A bichromatic graph is a graph G = (G0,G1,m) equipped with
a colour function c : G1 ! {R,G }, assigning colours to each edge, such that
c(e,me) 6= c(e ′,m ′e) if e = e ′⊆G0.

A bichromatic subgraph of (G, c) is a subgraph G ′⊆G equipped with the re-
stricted colour function c ′ = c

∣∣
G ′1

. 3

The colouring condition is that any two edges incident at the same node(s) have
different colours, so there are at most two such edges. We thus say a bichromatic
graph is complete if it has exactly two edges incident at each pair of (possibly
coinciding) nodes.

If the colour function is constant we speak of “red/green graphs” according to
whether c(G1) = {R } or c(G1) = {G }—this is now just an ordinary “monochro-
matic” graph. We denote GR,GG⊆G the red/green subgraphs of the bichromatic
graph G obtained by keeping its red/green edges only, i.e. the graphs defined by

(G•)0 :=G0 , (G•)1 := c
−1(•)⊆G1 , • ∈ {R,G } .

Clearly all the information about (G, c) is contained in the pair (GR,GG).
Recall an ordinary graph is simply-laced if it has no repeated edges and no loop

edges.

Definition 2.2. A bichromatic graph (G, c) is simply-laced if (GR,GG) is a pair of
simply-laced (monochromatic) graphs.

3At times the colour function will be (abusively) omitted.
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This means G has no loop edges, and we denote G⊆G the simply-laced bichro-
matic graph obtained from G by removing its loop edges: it is the maximal
simply-laced bichromatic subgraph of G. In this terminology a complete bichro-
matic graph is thus not simply-laced, so a simply-laced complete bichromatic graph
is rather a bichromatic graph with every possible straight edge—but no loop
edges.

2.1. Correspondence with symmetric systems. Now for an integer n > 1 we
use the incidence of a bichromatic graph (G, c) on the set of nodes G0 = n to
store information about certain subsets of BCn (cf. § A), in the following (main)
correspondence. If e = { i, j } ∈ G1 is a straight edge, then ΦG,c contains:

(1) the roots ±e−ij, if c(e) = R;
(2) the roots ±e+ij, if c(e) = G.

i j

±e−ij ∈ Φ
G,cG1 3

Figure 2. Main correspondence, straight edges (I).

i j

±e+ij ∈ Φ
G,cG1 3

Figure 3. Main correspondence, straight edges (II).

Analogously if l = {k } ∈ G1 is a loop edge of G then ΦG,c contains:

(1) the roots ±ek, if c(l) = R;
(2) the roots ±2ek, if c(l) = G.

k

±ek ∈ ΦG,cG1 3

Figure 4. Main correspondence, loop edges (I).
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k

±2ek ∈ ΦG,cG1 3

Figure 5. Main correspondence, loop edges (II).

By construction ΦG,c is closed under the involution α 7! −α of BCn—it is a
symmetric subset. Conversely any symmetric subset Φ⊆BCn is associated with a
unique bichromatic graph (GΦ, c) on n nodes by inverting the above prescription.

By construction these correspondences are mutually inverse order-preserving
bijections between bichromatic graphs on n > 1 nodes and symmetric subsets of
the root system BCn.

Example 2.1 (Classical bichromatic graphs). The classical (irreducible) root sys-
tems yield the following bichromatic graphs: a simply-laced complete red graph
for type A, a simply-laced complete bichromatic graph for type D, a simply-laced
complete bichromatic graph with red loop edges (resp. green loop edges) glued
at all nodes for type B (resp. type C), and finally a complete bichromatic graph
for type BC. See e.g. below for n = 4 nodes:

GA3 GD4

Figure 6. Examples of simply-laced classical graphs.

GB4 GC4 GBC4

Figure 7. Examples of non-simply-laced classical graphs.

4
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Remark 2.1 (Dual reading). In this construction ΦG is naturally a subset of V , but
one may equivalently work with subsets of V∨ using the dual basis e∨i —defined
by 〈e∨i , ej〉 = δij in the canonical pairing 〈·, ·〉 : V∨ ⊗ V ! C. In this case we
consider the linear functionals

α±ij = e
∨
i ± e

∨
j , αi = e

∨
i ∈ V

∨ ,

and again get a bijection G 7! ΦG⊆V∨ between bichromatic graphs and symmet-
ric subsets of the dual/inverse root system of BCn: note e∨i = (· | ·)[(ei) ∈ V∨

in the isomorphism (· | ·)[ : V ! V∨ provided by the (canonical) invariant scalar
product. The notation is then closer to the prototype in § 1, identifying V = Cn

with the Cartan subalgebra of gln(C)—so the root system lies in the dual. 4

3. Crystallographs and main correspondence

The crucial fact is that one can explicitly describe the class of bichromatic
graphs that map to root subsystems, rather than arbitrary symmetric subsets of
roots. This is achieved by encoding the transformations of roots under mutual
root-hyperplane reflections, in the following (main) definition.

Definition 3.1. A bichromatic graph (G, c) is a crystallograph 4 if the following
conditions hold:

(1) if a node is incident to two distinct straight edges, then G contains a
straight edge closing the triangle; the third side is red if and only if the
first two have the same colour—else it is green;

Figure 8. Straight edge closure condition for crystallographs (I).

Figure 9. Straight edge closure condition for crystallographs (II).

4As in “crystallographic (bichromatic) graph”.
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Figure 10. Straight edge closure condition for crystallographs (III).

(2) if a node is incident to a loop edge and a straight edge, then G contains
the straight edge of opposite colour, as well as the loop edge of the same
colour at the opposite end.

Figure 11. Loop edge closure condition for crystallographs (I).

Figure 12. Loop edge closure condition for crystallographs (II).

Figure 13. Loop edge closure condition for crystallographs (III).

Figure 14. Loop edge closure condition for crystallographs (IV).

The fact that the classical root systems of Ex. 2.1 correspond to crystallographs
is an intended feature.

Theorem 3.1. The association (G, c) 7! ΦG,c restricts to a bijection between crystallo-
graphs on n > 1 nodes and root subsystems of BCn.

Proof. The conditions in Def. 3.1 are the translation of the relevant identities for
the root-hyperplane reflections.

Namely denote

σ±ij :=σe±ij
, σi :=σei ∈W

(
BCn

)
⊆O

(
V , (· | ·)

)
,
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for i 6= j ∈ n, using the standard notation for Weyl group elements. Then the
nontrivial identities are

σ−ij
(
e−jk
)
= e−ik , σ−ij

(
e+jk
)
= e+ik , σ+ij

(
e−jk
)
= −e+ik , σ+ij

(
e+jk
)
= −e−ik , (10)

and

σi
(
e±ij
)
= −e∓ij , σ±ij(ej) = ∓ei , (11)

for distinct indices i, j,k ∈ n.
Thus indeed a bichromatic subgraph (G, c) is a crystallograph if and only if the

associated (symmetric) subset of roots is closed under mutual root-hyperplane
reflections: the row of identities (10) corresponds to the former “simply-laced”
condition of Def. 3.1 (with i, j,k ∈ G0 being the vertices of the triangle), and (11)
to the condition involving loop edges (with i, j ∈ G0 being the ends of the stright
edge). �

Remark 3.1. By construction a crystallograph is connected if and only if the asso-
ciated root system is irreducible; it is simply-laced if and only if the associated
root system is a direct sum of simply-laced irreducible reduced root systems; and
it has a double loop edge if and only if the associated root system is nonreduced.

Moreover the bichromatic graph (GΦ
∨

, c∨) associated with the dual/inverse
system is given by GΦ

∨
= GΦ, and then swapping the colour of all loop edges of

(GΦ, c) (so there is a natural inherited notion of dual/inverse crystallograph).
Finally the rank of a crystallograph can be defined by rk(G, c) := rk(ΦG,c), and

by construction
∣∣∣ΦG

∣∣∣ = 2|G1|—as every edge corresponds to a pair of opposite
roots. 4

4. Crystallograph classifications

The point of introducing crystallographs is that one can directly prove the
following classification statement.

Theorem 4.1. Let (G, c) be a crystallograph on n > 1 nodes. Then G is a disjoint union
of the following types of (crystallo)graphs:

• one of the “classical” graphs GAm−1 , GDm , GBm , GCm , GBCm , with m 6 n;
• a bichromatic graph Gd1,d2 on nodes G

d1,d2
0 = I1

∐
I2, with |Ii| = di and d1 +

d2 6 n, such that Gd1,d2
R = G

Ad1−1∐GAd2−1 and G
d1,d2
G has one straight edge

between every pair of nodes lying in different parts—and none other.

The green part of Gd1,d2 is thus a (monochromatic, simply-laced) complete
bipartite graph on the set of nodes I1

∐
I2; see an example below:
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I1

I2

Figure 15. Example: a graph of type Gd1,d2 (for (d1,d2) = (3, 4)).

Proof. Let us first suppose G is simply-laced, which involves the first condition of
Def. 3.1.

That condition implies that if two nodes are the endpoints of a path of red
edges, then they are the endopoints of a red edge, upon completing a sequence
of red triangles:

Figure 16. Example: completing red triangles along a red path.

Thus GR splits into a disjoint union of simply-laced complete graphs. Further
adding a green edge within such a component turns this latter into a simply-laced
complete bichromatic graph, upon completion of some triangles—both red and
green:

Figure 17. Example: completing triangles within a red component.

Thus at this stage G splits as a disjoint union of type-A (= red) and type-
D (= bichromatic) components, and we can in principle further add green edges
between two such. Reasoning as above shows that if there is a green edge between
two nodes lying in different red components, then all pairs of nodes lying in the
two different parts will be the endpoints of a green edge:
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Figure 18. Example: completing triangles between two red components.

Analogously if a green edge is drawn from a bichromatic component to either
a red or a bichromatic one, then both will be “fused” into a single bichromatic
component—as all green edges will propagate.

Finally suppose there is a node of a red component, which is linked to two
different red components via green edges. A final application of the “simply-
laced” condition of Def. 3.1 shows the two latter red components are then fused
into a single red one, creating a graph of type Gd1,d2 :

Figure 19. Example: completing triangles among triples of red components.

We conclude that G splits into a disjoint union of the simply-laced components
of the statements.

To conclude the proof for a generic graph, note glueing a loop edge to a node
in any component of G turns this latter into a simply-laced complete bichromatic
graph, having a loop edge of the same colour at each node—by the second con-
dition of Def. 3.1. �

Remark 4.1. In view of Thm. 4.1 we can talk of the “red components” of a crystal-
lograph: these are the type-A subgraphs that appear in his decomposition, i.e. the
simply-laced complete red graphs it contains. By convention a trivial component,
consisting of a disconnected node, is also considered to be red. 5

These red components play a central role in the computation of root-kernel
intersection, see § 5; and the presence/absence of trivial components in turn
controls quotients of root systems, see § 6.

By the same token, a “bichromatic” component is a connected component of
any other type B, C, D or BC. 4

Now we consider the simply-laced bichromatic graphs Gd1,d2 , for di > 1; let
simply Φd1,d2 := ΦGd1,d2 ⊆BCn.

5It corresponds to the “rank-zero” root system A0 = ∅.
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Lemma 4.1. The root system Φd1,d2 is equivalent to Ad1+d2−1—inside BCn.

Proof. For i ∈ I1 consider the element σi = σei ∈ W
(
BCd1+d2

)
. This is an

orthogonal transformation of Cd1+d2 , and it will turn Φd1,d2 into a different root
subsystem of BCd1+d2 as follows (using (11)): the crystallograph associated with
σi(Φ

d1,d2) is obtained by changing the colour of all edges incident at the node
i ∈ I1.

The result is a graph of type Gd1−1,d2+1, since i will now be part of a bigger
red component on nodes I2

∐
{ i }. 6

i i

Figure 20. Example: Weyl reflection at a node i of G3,4 (turning
it into G2,5).

Then repeating at all nodes of I1⊆G
d1,d2
0 yields a transformation

w =
∏
I1

σi ∈W(BCd1+d2) , (12)

after choosing a total order for I1. By construction the Weyl element (12) turns
Gd1,d2 into the simply-laced complete red graph on nodes I1

∐
I2, which is associ-

ated with the root subsystem Ad1+d2−1 by the main correspondence. �

Remark 4.2. One can also show (in nonconstructive fashion) that Φd1,d2 is isomor-
phic to Ad1+d2−1.

First, by Thm. 3.1, Φd1,d2 is an irreducible reduced simply-laced root system,
so it must be of type A,D or E. Now the number of edges of Gd1,d2 equals∣∣∣Gd1,d2

1

∣∣∣ = (d1

2

)
+

(
d2

2

)
+ d1d2 =

(
d1 + d2

2

)
.

Then one can show that (Φd1,d2)⊥ = Cv, as a subspace of

Cd1+d2 '
⊕

i∈Gd1,d2
0

Cei⊆Cn ,

with the restriction of the standard scalar product of V , where

v :=
∑
I1

ei −
∑
I2

ei ∈ Cd1+d2 .

Hence Φd1,d2 has rank equal to dim(CΦd1,d2) = d1 + d2 − 1, and it contains

2
∣∣∣Gd1,d2

1

∣∣∣ = (d1 + d2)(d1 + d2 − 1) roots: it must be isomorphic to Ad1+d2−1. 4

6There are d1 − 1 red edges incident at i ∈ I1, and d2 incident green edges, so this operation is
not symmetric with respect to the two parts.
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Note the Weyl element (12) preserves the orthogonal complement of Cd1+d2 ⊆Cn,
so the other components of the graph are unaffected. If one only considers root
subsystems up to equivalence, it is then enough to work with disjoint unions
of “classical” crystallographs: indeed the “inner” automorphisms suffice to turn
any crystallograph into a union of those—by Thm. 4.1 and Lem. 4.1.

Putting all together we have thus in particular proved the following statement.

Corollary 4.1. Suppose Φ ′⊆Φ⊆BCn are nested root systems. Then:
• if Φ = An, Φ ′ is equivalent to a direct sum of type-A irreducible root systems;
• if Φ = Dn, Φ ′ is equivalent to a direct sum of type-A and type-D irreducible

root systems;
• if Φ = Bn, Φ ′ is a equivalent to a direct sum of type-A, type-D and type-B

irreducible root systems;
• if Φ = Cn, Φ ′ is equivalent to a direct sum of type-A, type-D and type-C

irreducible root systems.

This is coherent with the tables of [20, § 10]—with a different, more elementary
proof.

5. Root-kernel intersections

Crystallographs can also be used to describe kernel intersections of arbitrary
root subsystems Φ⊆BCn, generalising the prototype of § 1.

To this end let us work in the dual viewpoint where ΦG,c⊆V∨ for any bichro-
matic graph (G, c). Let then J be the set of red components of G, as in Rk. 4.1,
and denote Ij :=G(j)0⊆G0 the set of nodes of the component G(j)⊆G—for j ∈ J.
Finally write IR =

∐
j∈J Ij⊆G0 the set of nodes of all red components.

Proposition 5.1 (Cf. [16]). If G0 = n then there is a canonical vector space isomorphism
C|J| ' Ker

(
ΦG,c), given by

ej 7−! vIj =
eIj∣∣Ij∣∣ , eIj :=

∑
i∈Ij

ei ∈ V , (13)

denoting (ej)j the canonical basis of C|J|.
Moreover the map πU : V ! V defined by

ei 7−!

{
vIi , i ∈ IR

0 , i 6∈ IR

is the orthogonal projection onto Ker
(
ΦG,c)⊆V , where Ii⊆ IR is the (unique) part con-

taining the node i ∈ n—if it exists.

Note the vectors vIj yield an orthonormal basis of the kernel, endowed with
the restriction of the canonical scalar product.

Proof. The kernel is obtained by intersecting:

• Ker(α−ij), if { i, j } ∈ G1 is red;
• Ker(α+ij), if { i, j } ∈ G1 is green;
• Ker(αi), if { i } ∈ G1 is a loop edge.
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Hence any loop annihilates the generator ei ∈ V , and the same is true of
ei, ej ∈ V if (G, c) contains both a red and a green straight edge { i, j }. Thus only
generators attached to nodes in red components survive in the kernel intersection.

Conversely, if there is a red component on nodes Ik⊆G0, then (in the kernel)
the coordinates along the vectors ei and ej are equal for all i, j ∈ Ik, which yields
the line generated by the vector eIj of (13).

As for the second statement, one directly checks that πU
∣∣
U

= IdU and(
πU(v) | u

)
=
(
v | u

)
, v ∈ V , u ∈ U . �

6. Classification of quotients

Finally we can make further use of crystallographs to describe quotients of
root systems, which is one of the main motivations.

Consider thus the situation where G ′⊆G is an inclusion of crystallographs on
n > 1 nodes. By Thm. 4.1 and Lem. 4.1 we can assume both are disjoint union of
graphs of type A, B, C, D and BC, up to acting via the Weyl group.

By an “edge between two components” we mean a straight edge drawn be-
tween a pair of nodes lying in two distinct connected components; analogously
a “straight edge within a component” is a straight edge between a pair of nodes
lying within one component, and a “loop in a component” is a loop at any node
within a component.

Definition 6.1. The quotient graph G
/
G ′ is the bichromatic graph whose nodes are

given by the set
{
G ′(j)

}
j∈J of red components of G ′, and whose adjacency/colouring

is defined as follows:
• if there is a straight edge e ∈ G1 between two red components G ′(i) and

G ′(j) of G ′, put a straight edge
{
G ′(i),G ′(j)

}
of the same colour;

• if there is a straight green edge e ∈ G1 within one red component G ′(i) of
G ′, put a green loop

{
G ′(i)

}
;

• if there is a straight edge e ∈ G1 from one red component G ′(i) of G ′ to a
bichromatic component of G’, put a red loop

{
G ′(i)

}
;

• if there is a loop l ∈ G1 in a red component G ′(i) of G ′, put a loop
{
G ′(i)

}
of the same colour.

Example 6.1 (Adjacency of a quotient of crystallographs). In the following pic-
tures, which exemplify all cases of Def. 6.1, we represent by dashed lines the
edges lying in G1 \ G

′
1⊆G1.

G ′(i) G ′(j)

G ′(i) G ′(j)

Figure 21. Example: straight edge in G
/
G ′, arising from a

straight edge between two red components of G ′.
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G ′(i)

G ′(i)

Figure 22. Example: green loop edge in G
/
G ′, arising from a

green straight edge within a red component of G ′.

G ′(i) G ′(j)

G ′(i)

Figure 23. Example: red loop edge in G
/
G ′, arising from a

straight edge from a red component to a bichromatic component
of G ′.

G ′(i)

G ′(i)

Figure 24. Loop edge in G
/
G ′, arising from a loop edge within a

red component of G ′.

4

Now let U :=Ker
(
ΦG ′

)
⊆V , and consider the restriction of all other (co)roots

α ∈ ΦG \ΦG ′ to U: this yields the set (6). Clearly this set of restricted functionals
is symmetric, so by the main correspondence it is associated with a bichromatic
graph on as many nodes as dim(U) 6 n; but by Prop. 5.1 this dimension is the
number of red components of G ′, which in turn is the set of nodes of the quotient
graph in Def. 6.1: the next statement thus motivates that definition.

Theorem 6.1. One has ΦG
/
G ′ = ΦG

∣∣
U
⊆U∨.
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Proof. This follows directly by evaluating all covectors α±ij,αi ∈ V
∨ on the vectors

eIk ∈ V in (13), which provide a basis of U, and then expressing the restrictions
α±ij
∣∣
U

,αi
∣∣
U
∈ U∨ in terms of the dual basis e∨Ik . Note this latter is an orthonor-

mal basis of U∨ for the dual scalar product, since e∨Ik is mapped to the normalised

vector vIk =
eIk
|Ik|
∈ V under the isomorphism (· | ·)] : V∨ ! V . �

As a corollary we not only derive the type-A case of § 1, where the quotient
root systems are still root systems, but also verify that this is false in general: the
quotient graph is not always a crystallograph, e.g. in the following situation—
corresponding to the root-system inclusion A1⊆D4:

G ′

⊆

GD4

In this case the resulting arrangement consists of seven hyperplanes in C3, so
it is not crystallographic (cf. § 7).

Nonetheless the algorithm of Def. 6.1 yields the general way to encode all
(sub)quotients of classical irreducible root systems, and moreover it is possible to
explicitly describe the class of bichromatic graphs one obtains.

6.1. Crystallographic obstruction. Here we study the obstruction for a quotient
graph G

/
G ′ to be a crystallograph. The result is that all but one condition of

Def. 3.1 apply.

Definition 6.2. A quasi-crystallograph is a bichromatic graph (G, c) satisfying all
conditions of Def. 3.1, with the following exception: if a straight edge and a
green loop edge are incident at a common node, then the green loop edge need
not propagate at the other end of the straight edge—but the straight edge will
double.

Compare the next two figures with Figg. 13 and 14.

Figure 25. Green loop edge closure condition for quasi-
crystallographs (I).

Figure 26. Green loop edge closure condition for quasi-
crystallographs (II).
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Theorem 6.2. All quotient graphs are quasi-cristallographs.

We will prove this statement with a case-by-case analysis of the crystallograph
conditions. In all the following local pictures we depict edges lying in G1 \ G

′
1

with dashed lines—as above.

Proposition 6.1. The simply-laced part of any quotient graph is a crystallograph.

Hence by Thm. 4.1 it will be a disjoint union of graphs of type A and D.

Proof. We must prove the first condition of Def. 3.1 is satisfied for any pair of
crystallographs G ′⊆G, i.e. that suitable triangles close in the quotient.

Suppose then we have two consecutive straight red edges
{
G ′(i),G ′(j)

}
and{

G ′(j),G ′(k)
}

in G
/
G ′, for i, j,k ∈ J. This means there are red straight edges

{ i0, j0 } , { j̃0,k0 } ∈ G1 \ G
′
1 (in G) such that i0 ∈ G ′(i)0, j0, j̃0 ∈ G ′(j)0 and k0 ∈ G ′(k)0:

G ′(j) G ′(k)

G ′(i)

i0

j0

j̃0 k0

G
/
G ′ ⊇ ⊆G

Figure 27. Example: completing a red triangle in the quotient (I).

But since G is a crystallograph these three red components of G ′ are then con-
tained in a single component of G:

G ⊇ ⊆G

Figure 28. Example: completing a red triangle in the quotient (II).

In particular { i0,k0 } ∈ G1 \ G
′
1 and the red triangle closes in the quotient:
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G ′(j) G ′(k)

G ′(i)

G ⊇ ⊆G
/
G ′

Figure 29. Example: completing a red triangle in the quotient (III).

Analogous arguments work in the cases where there are two consecutive straight
edges of green/different colour. �

This is coherent with the fact that all quotients of type-A crystallographs are
crystallographs (of type-A)—and strengthens it.

Lemma 6.1. The second condition of Def. 3.1 is verified for red loop edges in G
/
G ′.

In particular if the quotient has no green loop edges then it is a crystallograph:
by Thm. 4.1 it will be a disjoint union of graphs of type A,D and B.

Hereafter a yellow straight edge (in a picture) stands for a straight edge of
either colour. 7

Proof. Suppose there is a red loop edge
{
G ′(i)

}
at a node of the quotient, and a

straight edge
{
G ′(i),G ′(j)

}
incident at the same node, for i, j ∈ J. Then we have

a straight edge { i0, j0 } ∈ G1 \ G
′
1 (in G) with i0 ∈ G ′(i)0 and j0 ∈ G ′(j)0, and one of

the following two cases:

(1) the component G ′(i) has red loop edges in G;

G ′(i) G ′(j)

i0 j0

G
/
G ′ ⊇ ⊆G

Figure 30. Example: red loop edge closure condition for quo-
tients, first case (I).

(2) there is a straight edge { ĩ0,k0 } ∈ G1 \ G
′
1 (in G) such that k0 ∈ G0 lies

within a bichromatic component of G ′.

7Recall Y = R+G in the additive RGB colour model.
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G ′(i) G ′(j)

j0

i0

ĩ0 k0

G
/
G ′ ⊇ ⊆G

Figure 31. Example: red loop edge closure condition for quo-
tients, second case (I).

In the first case the red loop edges propagate to the nodes of G ′(j)⊆G ′, since
G is a crystallograph, and moreover the straight edge { i0, j0 } will “double” (in G):

G ⊇ ⊆G

Figure 32. Example: red loop edge closure condition for quo-
tients, first case (II).

Hence the same will happen in the quotient:

G ′(i) G ′(j)

G ⊇ ⊆G
/
G ′

Figure 33. Example: red loop edge closure condition for quo-
tients, first case (III).

In the second case the red component G ′(i)⊆G ′ is contained within a bichro-
matic component of G (since it is linked to a bichromatic component of G ′ by a
straight edge); then analogously the subgraph G ′(j)⊆G ′ is also contained in that
bichromatic component of G:
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G ⊇ ⊆G

Figure 34. Example: red loop edges closure condition for quo-
tients, second case (II).

In particular there is a straight edge { j0,k0 } ∈ G1 \ G
′
1 that yields a red loop{

G ′(j)
}

in the quotient, as well as a straight edge of opposite colour { i0, j0 },
which lead to the required crystallographic configuration in the quotient:

G ′(i) G ′(j)

G ⊇ ⊆G
/
G ′

Figure 35. Example: red loop edges closure condition for quo-
tients, second case (III).

�

Let us finally consider green loop edges: suppose there is a green loop edge at
a node of the quotient G

/
G ′, and a straight edge incident to it.

Lemma 6.2. If a green loop edge
{
G ′(i)

}
in the quotient originates from green loop

edges at the nodes of the red component G ′(i)⊆G ′, then the second condition of Def. 3.1
is verified for G

/
G ′.

Proof. This follows as in the proof of the first case in the previous Lem. 6.1; com-
pare the following sequence of pictures with Figg. 30, 32 and 33:

G ′(i) G ′(j)

i0 j0

G
/
G ′ ⊇ ⊆G

Figure 36. Example: green loop edge closure condition for quo-
tients, first case (I).
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G ⊇ ⊆G

Figure 37. Example: green loop edge closure condition for quo-
tients, first case (II).

G ′(i) G ′(j)

G ⊇ ⊆G
/
G ′

Figure 38. Example: green loop edge closure condition for quo-
tients, first case (III).

�

The final case is the following: there is a red component G ′(i)⊆G ′ such that
there exists a green straight edge { i0, ĩ0 } ∈ G1 \ G

′
1 for (distinct) nodes i0, ĩ0 ∈

G ′(i)0, and G ′(i) is connected by a straight edge { i0, j0 } ∈ G1 \ G
′
1 to another red

component G ′(j)⊆G ′. In this case we must distinguish the case where G ′(j) is
trivial or not:

G ′(i) G ′(j)

j0

i0

ĩ0 i0

G
/
G ′ ⊇ ⊆G

Figure 39. Example: final configuration for green loop edges in
the quotient, first case (I).
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G ′(i) G ′(j)

j0

i0

ĩ0 i0

G
/
G ′ ⊇ ⊆G

Figure 40. Example: final configuration for green loop edges in
the quotient, second case (I).

In both cases, reasoning as in the proof of the second case of Lem. 6.1, the
subgraphs G ′(i),G ′(j)⊆G ′ are then contained in a bichromatic component of G.
Hence the straight edge

{
G ′(i),G ′(j)

}
will double in the quotient, but if G ′(j) is

trivial the green loop edge
{
G ′(j)

}
need not arise in G

/
G ′ (compare the following

with Figg. 34 and 35):

G ⊇ ⊆G

Figure 41. Example: final configuration for green loop edges in
the quotient, first case (II).

G ′(i) G ′(j)

G ⊇ ⊆G
/
G ′

Figure 42. Example: final configuration for green loop edges in
the quotient, first case (III).
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G ⊇ ⊆G

Figure 43. Example: final configuration for green loop edges in
the quotient, second case (II).

G ′(i) G ′(j)

G ⊇ ⊆G
/
G ′

Figure 44. Example: final configuration for green loop edges in
the quotient, second case (III).

This completes the proof of Thm. 6.2.

6.2. Exotic components. It follows that there are two new connected components
of quasi-crystallographs: starting from a component of type B or D, we can glue
green loop edges to any subset of nodes. For integers r, s > 0 we will say these
are bichromatic graphs of type Br+sCr and CrDr+s, respectively, where r is the
number of nodes with green loop edges, and s the number of nodes without—so
they have n = r+ s nodes, and we have the tautological identities BrCr = BCr,
BsC0 = Bs, C0Ds = Ds and CrDr = Cr.

GB4C2 GC2D4

Figure 45. Examples of ”exotic“ quasi-crystallographs.

Remark 6.1. The hyperplane arrangement associated with the symmetric subset
ΦBr+sCr ⊆BCn is of type Bn/Cn, where n = r+ s, so this is always crystallo-
graphic. The point is dilating any linear functional will not change the arrange-
ment, so there is no difference in having one or two loop edges at a node.
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On the contrary there is a difference between having zero or one loop edges,
so ΦCrDr+s ⊆BCn leads to an ”exotic“ hyperplane arrangement, which is not
always crystallographic (as mentioned above). We say it is of type (Br/Cr)Dr+s—
slightly changing the notation of [16]. 4

Putting all together we have proven the following classification of quasi-cristallographs,
in view of Thm. 4.1.

Corollary 6.1. All quasi-crystallographs are disjoint unions of bichromatic graphs of
type An, Bn, Cn, Dn, BCn, Br+sCr or CrDr+s, for integers n, r, s > 0.

Finally we can prove the converse of Thm. 6.2, so that in the end this is a
classification of all possible restrictions (6) of root systems onto the kernels of
their subsystems—which was one of the main goals.

Proposition 6.2. All quasi-crystallographs are quotient graphs.

Proof. By Cor. 6.1, it is enough to prove the statement for all components, since
taking quotients and disjoint unions of crystallographs are commutative opera-
tions: if G ′ =

∐
I G
′
i is a subgraph of G =

∐
I Gi, so that G ′i⊆Gi for i ∈ I, then by

definition
G
/
G ′ =

∐
I

Gi
/
G ′i .

Moreover if G ′ is a totally disconnected graph on n > 1 nodes then G
/
G ′ = G, so

certainly all crystallographic components arise.
Finally consider the crystallograph Gr,s obtained as the disjoint union of r > 0

graphs of type A1, and s > 0 graphs of type A0:

· · ·

· · ·
Gr,s =

s times

r times

Figure 46. The graph Gr,s.

This is naturally embedded as a subgraph of both Br+2s and Dr+2s, and one
readily verifies that

GBr+2s
/
Gr,s = GBr+sCr , GDr+2s

/
Gr,s = GCrDr+s .

Indeed in both cases the quotient has r+ s nodes and all possible straight edges,
and in the former case it also has all red loop edges; finally there are s green loop
edges at the nodes corresponding to the nontrivial red components of Gr,s—and
no other. �
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Hence in conclusion all the information about restricted hyperplane arrange-
ments is encoded in a quasi-crystallograph, but there is some clear redundancy
that will be taken care of in the next section.

7. Hyperplane arrangements

Of course Ker(Φ)⊆V only depends on Φ⊆V∨ \ { 0 } up to dilation of each
covector, i.e. on the subset P(Φ) :=π(Φ)⊆P

(
V∨
)

of the projective dual space,
using the canonical projection

π : V∨ \ { 0 }−!P
(
V∨
)
=:
(
V∨ \ { 0 }

)/
C× .

In particular in our situation we may restrict to positive systems Φ+⊆Φ of roots,
and further to reduced ones.

Now the bichromatic graph of a root system is already naturally associated
with a choice of a positive system, since it has one (unoriented) edge for each
opposite pair ±α ∈ Φ; on the contrary we kept track of short/long roots for non-
simply-laced types, by having loop edges of two different colours, which now
ought to be fused into a single loop edge (of a different colour).

Introduce thus the extended set of (primary) colours {R,G,B }, where now
”blue“ is allowed.

Definition 7.1. A trichromatic graph is a graph G = (G0,G1,m) equipped with a
colour function c : G1 ! {R,G,B }, such that c(e,me) 6= c(e ′,me ′) if e = e ′⊆G0.

A trichromatic subgraph of (G, c) is a subgraph G ′⊆G equipped with the re-
stricted colour function c ′ = c

∣∣
G ′1

.

By definition bichromatic graphs are (all the) trichromatic graphs (G, c) with
c(G1)⊆ {R,G }. This way the relevant terminology about bichromatic graphs can
be naturally translated here—e.g. being simply-laced (= loopless), etc.

Now our viewpoint is that the adjacency of a trichromatic graph on n > 1
nodes can be used to encode certain hyperplane arrangements in V = Cn, viz.
certain lines in V∨, as follows. For i 6= j ∈ n denote

H±ij :=Ker
(
α±ij
)
=

∑
k

αkek ∈ V

∣∣∣∣∣∣ αi ±αj = 0

⊆V ,

and

Hi :=Ker(αi) =

∑
k

αkek

∣∣∣∣∣∣ αi = 0

⊆V ,

identifying the covectors αi = e∨i ∈ V
∨ with the linear coordinates V ! C in

the basis (e1, . . ., en). Then the root-hyperplane arrangements of the classical root
systems are

HAn−1 =
{
H−
ij

∣∣∣ i 6= j ∈ n} , HDn = HAn−1 ∪
{
H+
ij

∣∣∣ i 6= j ∈ n}⊆P
(
V∨
)

,

and
HBn = HCn = HBCn = HDn ∪ {Hi | i ∈ n }⊆P

(
V∨
)

.

Now if H⊆HBCn we associate a trichromatic graph GH with it. It has nodes
GH

0 = n, and its adjacency/colouring are prescribed as follows:
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(1) if H−
ij ∈ H, put a red straight edge e = { i, j } ∈ GH

1 ;

i j

H−
ij ∈ HG1 3

Figure 47. Projective correspondence, straight edges (I).

(2) if H+
ij ∈ H, put a green straight edge e = { i, j } ∈ GH

1 ;

i j

H+
ij ∈ HG1 3

Figure 48. Projective correspondence, straight edges (II).

(3) if Hk ∈ H, put a blue loop edge l = {k } ∈ GH
1 .

k

Hk ∈ HG1 3

Figure 49. Projective correspondence, loop edges.

The conditions for the straight edges are completely analogous to the bichro-
matic case of § 2, while the case of loop edges should be compared with Figg. 4
and 5 (which are now ”fused“).

Remark 7.1. Just as in the case of root systems, a disjoint-union decomposition of
GH corresponds to a direct sum decomposition of H, and the number of hyper-

planes is |H| =
∣∣∣GH

1

∣∣∣ (cf. Rk. 3.1). 4

The above prescription singles out a special class of trichromatic graphs, which
are in natural inclusion-preserving bijection with sub-arrangements of the root-
hyperplane arrangement of type B/C: in particular GH⊆GH is a (simply-laced)
bichromatic graph as above, and the full graph is obtained by glueing blue loop
edges at some nodes.

Example 7.1. The classical root-hyperplane arrangements yields the following
trichromatic graphs: the same bichromatic graphs as in Ex. 2.1 for the simply-
laced cases, and a simply-laced complete bichromatic graph with blue loop edges
glued at each node for types B/C/BC. Hence all non-simply-laced cases are
”fused“ into a single one; see below the case on n = 4 nodes:
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G
HB4 = G

HC4 = G
HBC4

Figure 50. Example: the rank-four non-simply-laced ”classical“
trichromatic graph.

4

Of course not all subsets H⊆HBCn correspond to root-hyperplane arrange-
ments, i.e. they are not the projectification of root subsystems Φ⊆BCn (and
so are not closed under mutual reflections): but those which do happen to be
crystallographic are captured by a variation of the main definition.

Definition 7.2. A projective crystallograph is a trichromatic graph (G, c) such that
c(G)⊆ {R,G } and c(l) = B for all loop edges l ∈ G1, and satisfying the two
conditions of Def. 3.1.

By definition the ”simply-laced“ condition yields the same local pictures as in
the bichromatic case, viz. Figg. 8 9 and 10. The conditions involving loop edges
instead become the following (compare with Figg. 11, 12, 13 and 14):

Figure 51. Loop edge closure condition for projective crystallo-
graphs (I).

Figure 52. Loop edge closure condition for projective crystallo-
graphs (II).

Any such graph is associated with a root-hyperplane arrangement H = HG,c,
inverting the above prescription.

Then running the same argument in the proof of Thm. 4.1 yields the following
classification.
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Corollary 7.1. Let (G, c) be a projective crystallograph on n > 1 nodes. Then G

is a disjoint union of the ”classical“ (projective crystallo)graphs G
HAm−1 , GHDm and

GHBm = GHCm = GHBCm (m 6 n), and of the simply-laced bichromatic graphs Gd1,d2

(d1 + d2 6 n).

Again up to acting via the Weyl group we can restrict to ”classical“ components
only (cf. Lem. 4.1).

The last idea is that there is a natural operation on graphs which mimics taking
the projection π : V∨ \ { 0 } ! P

(
V∨
)
. Namely, if (G, c) is bichromatic, we can

associate to it a trichromatic graph by replacing all red/green loop edges by a
(single) blue loop edge. The resulting trichromatic graph is denoted P(G, c), and
called its projectivisation; see an example below:

(G, c) = = P(G, c)

Figure 53. Example: projectivisation of a bichromatic graph.

Now if G = GΦ for some symmetric subset Φ⊆V∨ (in the dual reading), then
P(G) encodes the projectivisation P(Φ)⊆P

(
V∨
)
: indeed this latter is obtained

by replacing each pair ±α ∈ Φ of opposite roots with the line it generates, i.e.
with the hyperplane Ker(±α)⊆V , so in particular the overall operation ”fuses“
the short/long roots αi, 2αi ∈ V∨ into a single element—the new blue loop edge.

Theorem 7.1. A sub-arrangement H⊆BCn is crystallographic if and only if GH is
a projective crystallograph, or equivalently if and only if it is the projectification of a
crystallograph.

Proof. The first statement is a corollary of Thm. 3.1, since the Weyl element asso-
ciated to αi and 2αi are the same for i ∈ n.

The second statement follows from the classifications of Thm. 4.1 and Cor. 7.1.
For the less trivial implication suppose (G, c) is a projective crystallograph: then
repainting its (blue) loop edges—if any—in red provides a ”lifted“ bichromatic
graph (G̃, c̃) such that P(G̃, c̃) = (G, c), and this latter is a crystallograph. 8 �

Hence up to isomorphism we obtain a classification of the hyperplane arrange-
ments of root subsystems of all classical root systems, reading from Cor. 4.1: in
particular they are direct sums of classical root-hyperplane arrangements.

8Of course other lifts are possible, e.g. putting green loop edges, which corresponds to the fact
that the (dual) root systems of type B and C have the same root-hyperplane arrangement.
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7.1. About quotients. Finally an analogous variation of the main definition can
be given for quasi-crystallographs, with a view towards encoding the hyperplane
arrangements of quotients of root systems.

Namely we can define the quotient of two nested projective crystallographs
using the same algorithm of Def. 6.1, but replacing red/green loop edges with
blue loop edges throughout.

Example 7.2 (Adjacency of a quotient of projective crystallographs). Compare the
following pictures with those of Ex. 6.1.

G ′(i)

G ′(i)

Figure 54. Example: loop edge in G
/
G ′, arising from a green

straight edge within a red component of G ′.

G ′(i) G ′(j)

G ′(i)

Figure 55. Example: loop edge in G
/
G ′, arising from a straight

edge from a red component to a bichromatic component of G ′.

G ′(i)

G ′(i)

Figure 56. Loop edge in G
/
G ′, arising from a loop edge within a

red component of G ′.

4
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By construction the resulting graph has no blue straight edges, and no red/green
loop edges, but it need not be a projective crystallograph. Nonetheless this defi-
nition leads to the following compatibility.

Lemma 7.1. Projectifications and quotients of crystallographs are commutative opera-
tions: if G ′⊆G are nested crystallographs then there is an equality

P(G)
/

P(G ′) = P
(
G
/
G ′
)

, (14)

of trichromatic graphs.

Proof. The set of nodes are the same, since (simply-laced) red components of G ′

are unaffected by operation G 7! P(G). As for the adjacency/colouring, by the
same token the simply-laced parts of both sides of (14) coincide, so we need only
show that the subsets of nodes with blue loop edges are the same.

Now let G ′(i)⊆G ′ be a red component. By definition the left-hand side of (14)
has a blue loop edge l =

{
G ′(i)

}
if and only if:

• there is a straight green edge e ∈ G1 within G ′(i);
• there is a straight edge e ∈ G1 from G ′(i) to a bichromatic component of

G ′;
• there is a loop at a node of G ′(i).

In all these cases there will be a loop l =
{
G ′(i)

}
(of the same colour) in the

quotient G
/
G ′, reasoning as in the proofs of the lemmata in § 6: this becomes blue

after projectification—i.e. on the right-hand side of (14). �

Hence the quotients of projective crystallographs are exactly the projectifica-
tions of quasi-crystallographs, in view of Thm. 6.2 and Prop. 6.2. In turn the
two ”exotic“ components of Cor. 6.1 only yield one ”exotic“ hyperplane arrange-
ment, corresponding to a simply-laced complete bichromatic graph with blue
loop edges glued at any proper subset of nodes (cf. Rk. 6.1).

This leads to the final statement, classifying all restricted root-hyperplane ar-
rangements.

Theorem 7.2. Let Φ ′⊆Φ⊆BCn be nested root systems. Then the hyperplane arrange-
ment of the restricted system (6) is isomorphic to a direct sum of hyperplane arrangements
of classical type, or of (unique) ”exotic“ type (Br/Cr)Dr+s, for integers r, s > 0—with
r+ s 6 n.

Outlook

The Borel–de Siebenthal theory [10] classifies connected closed subgroups of
maximal rank, inside connected compact Lie groups G—with a given maximal
torus T ⊆G. This can be expressed in terms of certain operations on the extended
Dyinkin diagram of g = Lie(G), and leads in particular to a classification of
maximal closed subsystems of Φg, cf. [19].

The present graph-theoretic construction instead does not rely on (extended)
Dynkin diagrams, but rather replaces them with new combinatoric objects that
retain more information. In particular we thus classify root subsystems of any
rank, not just maximal ones (cf. [24]); in principle a Lie-group theoretic ana-
logue should exist. Moreover in our viewpoint maximal root subsystems simply
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correspond to maximal sub-crystallographs, so can still be characterised in com-
binatoric fashion, encompassing e.g. maximal simply-laced complete subgraphs
in type A.

Data availability

Data sharing not applicable to this article as no datasets were generated or
analysed during the current study.

Appendix A. Notations/conventions

Graphs. A multiset is a set S with a multiplicity function m : S ! Z>1. If the
underlying set S is finite then |m| =

∑
i∈Sm(i) ∈ Z>1 is the cardinality of (S,m).

A graph is a triple G = (G0,G1,m) consisting of a set of nodes G0 and a multiset
(G1,m) of (unoriented) edges. In turn an edge is a multiset (e,me) with |me| = 2,
and such that its underlying set lies in G0: it is a loop edge if e is a singleton, else it
is a straight edge. The forgetful function G1 ! P(G0) defined by (e,me) 7! e is the
incidence of the graph: the edge (e, em) is incident at the node(s) of e⊆G0, and
conversely.

A straight edge incident at the nodes i 6= j ∈ G0 is written e = { i, j } ∈ G1—
with m(i) = m(j) = 1—, while a loop edge incident at k ∈ G0 is l = {k }—with
m(k) = 2. These are depicted as customary:

e =

i j

l =

k

Figure 57. Straight and loop edges

A subgraph G ′ of G is obtained by removing some node or edge: if a node is
removed all its adjacent edges are also dropped, and the resulting partial order is
denoted G ′⊆G.

The disconnected/disjoint union of two graphs G and G ′ is denoted G
∐
G ′, and

underlies the disjoint union G0
∐
G ′0 of the sets of nodes.

Root systems and Weyl groups. For an integer n > 1 let V = Cn with canonical
basis (e1, . . . , en)—and scalar product (ei | ej) = δij, whenever helpful. There are
finite subsets

An−1⊆Dn⊆Bn,Cn⊆BCn⊆V \ { 0 } ,
of nested (crystallographic, irreducible) root systems, defined as follows. If e±ij :=
ei ± ej ∈ V for i, j ∈ n = { 1, . . .,n }, then

An−1 =
{
e−ij

∣∣∣ i 6= j ∈ n} , Dn = An−1 ∪
{
±e+ij

∣∣∣ i 6= j ∈ n} ,

and
Bn = Dn ∪ { ei | i ∈ n } , Cn = Dn ∪ { 2ei | i ∈ n } ,

and finally BCn = Bn ∪Cn.
The single-letter families are the classical reduced root systems, while BCn is a

nonreduced irreducible root system—the unique one of rank n, up to isomorphism,
cf. [11, Ch. VI] and [18].
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There is a dual viewpoint where BCn⊆V∨, consisting of covectors naturally
associated with the dual basis αi = e∨i ∈ V

∨—i.e. taking dual/inverse root sys-
tems. Whenever helpful we equip V∨ with the push-forward scalar product along
the vector space isomorphism (· | ·)[ : V ! V∨, and we identify (canonically) the
Weyl groups W(Φ)⊆GL(V) and W(Φ∨)⊆GL(V∨) by w 7! tw−1.

The association of Weyl reflections to roots is denoted α 7! σα.
A root subsystem of a root systemΦ⊆V is a subsetΦ ′⊆Φ such that σα(Φ ′)⊆Φ ′

for α ∈ Φ ′. The Weyl group permutes root subsystems: two such are equivalent
if they lie in the same Weyl-group orbit. This is a stricter relation than that of
isomorphism, since there are in general ”outer“ automorphisms of Φ—the iso-
morphisms of the Dynkin diagram—which also preserve root subsystems.

Hyperplane arrangements. A (linear) hyperplane arrangement H in a finite-dimensional
complex vector space V is a set of linear hyperplanes H⊆V : in this paper we only
consider finite such arrangements, and we identify hyperplanes in V with lines
in the dual space via λ 7! Ker(λ)⊆V , for λ ∈ V∨ \ { 0 }.

An isomorphism of two hyperplane arrangements H,H ′ in V is a linear auto-
morphism w ∈ GL(V) such that

{
w(H)

∣∣ H ∈ H
}
= H ′.

A sub-arrangement of H⊆P
(
V∨
)

is a subset H ′⊆H of hyperplanes of H.
The direct sum of hyperplane arrangements Hi⊆P

(
V∨
i

)
, i = 1, 2, is the set of

hyperplanes
H1 ⊕ V2, V1 ⊕H2⊆V1 ⊕ V2 , Hi ∈ Hi .

The hyperplane arrangement of a root-systemΦ⊆V∨—viz. a ”root-hyperplane
arrangement“, for short—is the set

HΦ :=
{

Ker(α)
∣∣ α ∈ Φ } ' Φ/C×⊆P

(
V∨
)

.

Such hyperplane arrangements are said to be crystallographic.
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