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Introduction

The constructions of geometric quantisation offer a recipe for addressing problems related to the quantum mechanics of an object moving in an arbitrary, possibly curved, phase space [START_REF] Guillemin | Geometric Asymptotics[END_REF][START_REF] Woodhouse | Geometric Quantization. Oxford Mathematical Monographs[END_REF]. The process, essentially mimicking canonical quantisation, is fundamentally based on the structure of a symplectic manifold. Two of the main goals are to obtain operators subject to commutation relations prescribed by the Poisson bracket, and unitary representations of groups associated to Hamiltonian flows, although there are strong limitations to the extent to which these can be achieved in general. One of the most typical problematic points of the construction is the need for a polarisation, whose existence is generally not guaranteed, nor is its uniqueness ever satisfied. Further, the choice of a particular polarisation poses serious constraints on which functions and Hamiltonian flows can be quantised.

One way to obtain a polarisation is to assume that there exist a complex structure compatible with the symplectic form, thus it is rather common in geometric quantisation to work with Kähler manifolds [START_REF] Charles | Quantization of Compact Symplectic Manifolds[END_REF][START_REF] Woodhouse | Geometric Quantization. Oxford Mathematical Monographs[END_REF]. For instance, this approach to quantisation has been successfully applied to Chern-Simons theory [START_REF] Andersen | Asymptotic faithfulness of the quantum SU(n) representations of the mapping class groups[END_REF][START_REF] Andersen | The Hitchin-Witten Connection and Complex Quantum Chern-Simons Theory[END_REF][START_REF] Axelrod | Geometric quantization of Chern-Simons gauge theory[END_REF][START_REF] Hitchin | Flat connections and geometric quantization[END_REF], also in combination with its relation with deformation quantisation [START_REF] Andersen | Hitchin's connection, Toeplitz operators and symmetry invariant deformation quantization[END_REF][START_REF] Bordemann | Toeplitz quantization of Kähler manifolds and gl(N), N → ∞ limits[END_REF][START_REF] Karabegov | Identification of Berezin-Toeplitz deformation quantization[END_REF][START_REF] Schlichenmaier | Deformation quantization of compact Kähler manifolds by Berezin-Toeplitz quantization[END_REF][START_REF] Schlichenmaier | Berezin-Toeplitz quantization and Berezin transform[END_REF][START_REF] Andersen | Asymptotic properties of the Hitchin-Witten connection[END_REF] and other approaches [START_REF] Andersen | Geometric construction of modular functors from conformal field theory[END_REF][START_REF] Andersen | Abelian conformal field theory and determinant bundles[END_REF][START_REF] Andersen | Modular functors are determined by their genus zero data[END_REF][START_REF] Andersen | Construction of the Witten-Reshetikhin-Turaev TQFT from conformal field theory[END_REF][START_REF] Laszlo | Hitchin's and WZW connections are the same[END_REF][START_REF] Andersen | The AJ-conjecture for the Teichmüller TQFT[END_REF].

In this paper instead we address the problem of applying geometric quantisation to a hyper-Kähler manifold, so in particular we have a family of Kähler forms parametrised by the space of unit-norm imaginary quaternions: This is beyond the usual setup of Kähler quantisation, where a preferred symplectic structure is fixed and the polarisation varies. The problem is somewhat dual to that of choosing a polarisation and study the dependence of geometric quantisation on that choice [START_REF] Andersen | Hitchin's connection, Toeplitz operators and symmetry invariant deformation quantization[END_REF][START_REF] Andersen | A Hitchin Connection for a Large Class of Families of Kähler Structures[END_REF]. Indeed in our situation the ambiguity resides in the symplectic form itself: Having picked one, a Kähler polarisation is automatically assigned.

The first motivation for considering this situation originates from certain moduli spaces arising in differential and algebraic geometry, often related to interesting quantisation problems: to mention a few, flat connections [START_REF] Andersen | Asymptotic faithfulness of the quantum SU(n) representations of the mapping class groups[END_REF][START_REF] Freed | Classical Chern-Simons theory[END_REF][START_REF] Hitchin | Flat connections and geometric quantization[END_REF][START_REF] Witten | Quantum field theory and the Jones polynomial[END_REF][START_REF] Witten | Quantization of Chern Simons Gauge Theory with Complex Gauge Group[END_REF] and vector bundles [START_REF] Andersen | The Verlinde formula for Higgs bundles[END_REF][START_REF] Hitchin | The Self-Duality Equations on a Riemann Surface[END_REF] over smooth Riemann surfaces, (hyper-)polygons [START_REF] Kapovich | The symplectic geometry of polygons in Euclidean space[END_REF][START_REF] Charles | On the Quantization of Polygon Spaces[END_REF], and quiver varieties [START_REF] Ginzburg | Lectures on Nakajima's quiver varieties[END_REF][START_REF] Nakajima | Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras[END_REF]. Some of these objects, such as polygons and flat SU(n)-connections, give rise to real symplectic spaces whose geometric quantisation has been broadly studied [START_REF] Andersen | Asymptotic faithfulness of the quantum SU(n) representations of the mapping class groups[END_REF][START_REF] Hitchin | Flat connections and geometric quantization[END_REF][START_REF] Axelrod | Geometric quantization of Chern-Simons gauge theory[END_REF].

Other moduli spaces however naturally arise as holomorphic symplectic spaces (e.g. flat SL n (C)-connections on a smooth surface [START_REF] Goldman | The symplectic nature of fundamental groups of surfaces[END_REF]), which sometimes are actually hyper-Kähler manifolds read in a particular complex structure (e.g. Higgs bundles on a complex projective curve [START_REF] Hitchin | The Self-Duality Equations on a Riemann Surface[END_REF]), and the aforementioned difficulties appear.

Furthermore, many of these hyper-Kähler spaces carry U(1)-actions which are holomorphic and Hamiltonian for some Kähler structures, but not for all. One important example is the U(1)-action on the Hitchin moduli space, which is Hamiltonian for the structure traditionally denoted by ω I , something which has been recently explored in the context of quantisation in [START_REF] Andersen | The Verlinde formula for Higgs bundles[END_REF]; on the other hand, Witten's description of quantum SL n (C)-Chern-Simons theory at level t = k + is [START_REF] Witten | Quantization of Chern Simons Gauge Theory with Complex Gauge Group[END_REF][START_REF] Andersen | The Hitchin-Witten Connection and Complex Quantum Chern-Simons Theory[END_REF] is based on the symplectic structure corresponding via nonabelian Hodge theory to ω t = kω I -sω K [START_REF] Hitchin | The Self-Duality Equations on a Riemann Surface[END_REF][START_REF] Donaldson | Twisted Harmonic Maps and the Self-Duality Equations[END_REF][START_REF] Simpson | Higgs bundles and local systems[END_REF][START_REF] Corlette | Flat G-bundles with canonical metrics[END_REF], for which the action is not even symplectic. Interest for this particular setting was the main motivation of other works by the authors [START_REF] Andersen | Genus-one complex quantum Chern-Simons theory[END_REF][START_REF] Malusà | Geometric Quantisation, the Hitchin-Witten Connection, and Quantum Operators in Complex Chern-Simons Theory[END_REF][START_REF] Rembado | Quantisation of Moduli Spaces and Connections[END_REF], but importantly further extensions are possible since new hyper-Kähler metrics have been attached to (wild generalisations of) Riemann surfaces, leading to a "wild" nonabelian Hodge correspondence [START_REF] Sabbah | Harmonic metrics and connections with irregular singularities[END_REF][START_REF] Biquard | Wild nonabelian Hodge theory on curves[END_REF] (see also Witten's viewpoint [START_REF] Witten | Gauge theory and wild ramification[END_REF] and § 4 below).

We will not address the case of hyper-Kähler manifolds with U(1)-actions in the present paper: Instead, we will consider a different kind of symmetry. Namely, we shall focus on the problem of constructing unitary representations of a suitable group of symmetries of a hyper-Kähler manifold (M, g, I, J, K) endowed with an isometric Sp(1)-action which transitively permutes the Kähler forms.

We will thus consider more general transformations than the Riemannian isometries which are symplectic/holomorphic for all the Kähler structures, since this is too restrictive to include the aforementioned U(1)-actions: We will instead relax this condition and consider isometries preserving the vector space generated by the Kähler forms-rather than each form individually. Let us denote Hk(M) = Hk(M, g, I, J, K) the group of such transformations, which by definition acts on the hyper-Kähler 2-sphere of complex structures (a copy of CP 1 ) by positive isometries.

1.1. Description of the main construction. Since no preferred symplectic form is given on M it makes little sense to talk about a pre-quantum line bundle over the hyper-Kähler manifold. Instead one may fix a Hermitian line bundle (L, h) on M and a family of Hermitian connections ∇ q on L → M, making it a prequantum line bundle for the symplectic form ω q ∈ Ω 2 (M) corresponding to q ∈ CP 1 . Further, let Hk'(M) be the group of automorphisms of L → M covering the Hk(M)-action: We assume it is a central U(1)-extension of Hk(M) (see § 2.2 for a cohomological reformulation of this assumption).

If M q denotes the Kähler manifold corresponding to q ∈ CP 1 , its geometric quantisation consists of the Hilbert space H q of L 2 holomorphic sections of the pre-quantum line bundle. One may then attempt, as customary, to identify the spaces H q by constructing a 1-cocycle of unitary isomorphisms parametrised by pairs of points in CP 1 . We have however chosen to proceed differently: We will exploit the compactness of the base space CP 1 and make sense of holomorphic dependence of our construction, obtaining non-trivial representations of a subgroup of Hk'(M). 1 The first step is, for each q ∈ CP 1 , to consider the action of the Sp(1)-stabiliser T q ⊆ Sp(1)-a maximal torus. This gives an orthogonal L 2 -completed decomposition of H q into subspaces H (d) q ⊆ H q on which T q acts by the d'th power of the standard representation (see Eq. ( 11)). We then consider a compact subgroup Sp 0 '(M) ⊆ Hk'(M) which commutes with the Sp(1)-action, getting analogous splittings of

H (d) q into subspaces H (d) a,q , H (d)
λ,q indexed by characters a ∈ T ∨ of a maximal torus T ⊆ Sp 0 '(M) and highest weights λ of simple Sp 0 '(M)-modules, respectively (see Eqq. ( 13) and ( 12)).

Our main assumption is that the subspaces H (d) λ,q ⊆ H q are finite-dimensional, which is satisfied in a number of situations, and (at first) that they assemble into a finite-rank smooth vector bundle over CP 1 . In this case we establish that the bundles H (d) λ → CP 1 carry natural Sp(1)-invariant Hermitian connections, isomorphic to a finite direct sum of bundles of the form L d ⊗ V λ : Here L → CP 1 is the Sp(1)-equivariant line bundle with connection associated to the standard representation of T q for any q ∈ CP 1 , and V λ is the simple Sp 0 '(M)-module of highest weight λ (see Thm. 2.1). In the general case, still assuming finitedimensionality, we will thus directly work with the above tensor product (see Rem. 2.4).

Then we define H

(d)
λ,j to be the finite-dimensional super Hilbert space obtained by taking the holomorphic cohomology of L d ⊗ V λ → CP 1 , where j indexes the multiplicity of V λ as sub-Sp 0 '(M)-module of H (d) λ,q . This is isomorphic 1 We discuss in § A the traditional identifications of the Hilbert spaces via holonomy of a flat connection; this approach trivialises the representations of the Sp(1)-factor produced by the main construction.

to the irreducible super representation W (d) ⊗ V λ of Hk 0 '(M), where

W (d) := H 0 (CP 1 , L d ) ⊕ H 1 (CP 1 , L d ).
Finally we consider the L 2 -completed orthogonal direct sum of the superspaces H (d) λ,j over j, λ and d ∈ Z, getting to a Hilbert space H equipped with a unitary representation of the subgroup Hk 0 '(M) ⊆ Hk'(M) generated by Sp 0 '(M) and Sp(1): This is the end of the construction of § 2, which can be summarised in the following main result (when the suitable hypotheses apply, e.g. § § 3 and 4).

Theorem. Suppose (M, g, I, J, K) is a hyper-Kähler manifold carrying a faithful isometric Sp(1)-action which transitively permutes the hyper-Kähler 2-sphere, identified to CP 1 . Then:

• let Sp 0 (M) ⊆ Iso(M, g) be a (connected) compact subgroup commuting with the Sp(1)-action and preserving (I, J, K); • choose an Sp(1)-equivariant family of connections on a fixed Hermitian line bundle L → M prequantising all Kähler forms, and consider the central extension Sp 0 '(M) → Sp 0 (M) given by automorphisms of the line bundle covering the Sp 0 (M)-action; • decompose the Kähler-quantisation Hilbert spaces into isotypical components for the action of Sp(1)-stabilisers of points q ∈ CP 1 , and for the commuting Sp 0 '(M)-action; • finally assemble these components into a finite-rank vector bundle

H (d) λ → CP 1 . Then H (d) λ
→ CP 1 carries a canonical Hermitian connection (cf. Thm. 2.1), and its holomorphic cohomology yields all tensor products of unitary simple Sp 0 '(M)-and super Sp(1)-modules (cf, Thm. 2.2).

Hence this in particular involves decompositions of quantum Hilbert spaces by circle actions, as in [START_REF] Andersen | The Verlinde formula for Higgs bundles[END_REF], but contrary to op. cit. we do not work in a preferred Kähler structure (and quantise all of them).

Moreover we consider the generating series for the ranks of the families H (d) , H (d) a of Hilbert spaces, and for the multiplicities of the representations W (d) ⊗ V λ in the Hilbert space H. We establish algebraic relations between these generating series, as well as localisation formulae under certain assumptions: See Thm. 2.6).

We further discuss the case where M carries a hyper-Kähler potential which is also a moment map for the T q -actions (see § 2.9). If the hyper-Kähler potential is proper then we get finite-dimensional isotypical components as requested, but we also discuss other ways to ensure this: one version of the general principle that "quantisation and reduction commute", involving proper moment maps, and Hartog's theorem (see § 2.7).

Applications and further directions.

In § 3 we showcase applications of the main construction: The first one is a hyper-Kähler vector space V of real dimension 4n, with n ∈ Z 1 . In this case

Hk(V) Sp(n) • Sp(1) , identifying V
H n (cf. Rem. 3.1). Indeed under this isomorphism Sp(1) acts on V via right multiplication of unit-norm imaginary quaternions, and commutes with the natural Sp(n)-action. Further the norm associated to the hyper-Kähler metric provides a hyper-Kähler potential and we can apply the abstract construction (see Thmm. 3.1 and 3.2).

But importantly there are many more examples of (nonflat) Sp(1)-symmetric hyper-Kähler manifolds. Examples include moduli spaces of magnetic monopoles on R 3 by the work of Atiyah-Hitchin and Taubes [START_REF] Atiyah | Low energy scattering of non-Abelian monopoles[END_REF] or equivalently, by the work of Donaldson [START_REF] Donaldson | Nahm's equations and the classification of monopoles[END_REF], the moduli spaces of based rational maps from CP 1 to itself; moduli spaces of framed SU(r)-instantons on R 4 , by the work of Maciocia [START_REF] Maciocia | Metrics on the moduli spaces of instantons over Euclidean 4-space[END_REF]; the hyper-Kähler structure on nilpotent orbits, by the work of Kronheimer [START_REF] Kronheimer | Instantons and the geometry of the nilpotent variety[END_REF], and more generally the hyper-Kähler Swann bundle over any quaternionic Kähler manifold [START_REF] Swann | HyperKähler and quaternionic Kähler geometry[END_REF]. In four dimensions a complete classification of Sp(1)symmetric hyper-Kähler manifolds is given (up to finite finite covers) by the work of Gibbons-Pope [START_REF] Gibbons | The positive action conjecture and asymptotically Euclidean metrics in quantum gravity[END_REF] and by Atiyah-Hitchin [START_REF] Atiyah | Low energy scattering of non-Abelian monopoles[END_REF]: The three examples are the flat metric on H, the Taub-NUT metric, and the hyper-Kähler metric on the moduli space of charge-2 monopoles, i.e. the Atiyah-Hitchin manifold.

We establish in § 3.2 and 3.3 that the theorems 2.1, 2.2 and 2.6 (or slight modifications thereof) apply to some of these examples, producing a quantisation and corresponding irreducible unitary (super) representations of distinguished groups of hyper-Kähler isometries.
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2. Abstract Sp(1)-symmetric hyper-Kähler quantisation 2.1. Hyper-Kähler manifolds and their symmetry groups. Let n be a positive integer and M a smooth manifold of dimension 4n. Definition 2.1. A hyper-Kähler structure on M is a Riemannian metric g and an ordered triple (I, J, K) of covariant constant orthogonal automorphism of T M satisfying the quaternionic identities

I 2 = J 2 = K 2 = IJK = -Id T M .
It follows that I, J, K are g-skew-symmetric global sections of End(T M) → M, and we denote su(2) M the three-dimensional real Lie algebra they span.

The hyper-Kähler 2-sphere of complex structures of (M, g, I, J, K) is

S IJK := I q = aI + bJ + cK q = (a, b, c) ∈ R 3 , a 2 + b 2 + c 2 = 1 ⊆ su(2) M .
(1) As usual we identify (1) with the 2-sphere of unit-norm imaginary quaternions, i.e. CP 1 as a Kähler manifold. In particular for q ∈ CP 1 there is a (real) symplectic form on M defined by ω q (v, w) := g I q v, w , for v, w ∈ T M .

The triple M q := (M, I q , ω q ) is a Kähler manifold, and for further use we let µ q = dvol ∈ Ω top (M) the Liouville volume form-independent of q ∈ CP 1 as it agrees with the Riemannian volume form of (M, g).

Remark 2.1. The above data can be encoded in a fibration π CP 1 : Z → CP 1 of Kähler manifolds over the Riemann sphere, the twistor space of (M, g, I, J, K) [START_REF] Hitchin | Hyperkähler manifolds[END_REF]. This family comes with a global trivialisation Z M × CP 1 as a smooth fibre bundle, but not as a symplectic/complex fibre bundle; nonetheless the natural complex structure on Z makes Z → CP 1 into a holomorphic fibre bundle (cf. op. cit.), and further T Z → CP 1 has a natural Hermitian structure defined by the fibrewise Hermitian metrics. Now consider the group Sp(M) = Sp(M, g, I, J, K) ⊆ Iso(M, g) of Riemannian isometries of (M, g) preserving the Kähler forms ω q for q ∈ CP 1 (or equivalently the complex structures I q ), often referred to as the hyper-unitary group. Denoting Aut 0 (Z) the group of holomorphic automorphisms of Z → CP 1 over the identity that preserve the Hermitian structure, there is a natural morphism

ρ : Sp(M) -→ Aut 0 (Z), (2) 
given by the fibrewise action of Sp(M). We shall consider a group of isometries that preserve the hyper-Kähler structure in a looser sense, relaxing the condition that differentials should commute with I, J, and K individually. Definition 2.2. Let Hk(M) ⊆ Iso(M, g) be the subgroup stabilising the Lie algebra su(2) M :

Hk(M) = Hk(M, g, I, J, K) := ϕ ∈ Iso(M, g) Ad dϕ su(2) M = su(2) M .
Hence Hk(M) acts on su(2) M , and Sp(M) ⊆ Hk(M) is the subgroup doing so trivially. Moreover the Adjoint action on su(2) M R 3 is by positive isometries for the standard Euclidean structure, resulting in a group morphism Ad : Hk(M) -→ SO(3) , Ad : ϕ -→ Ad dϕ , and an action on the hyper-Kähler 2-sphere (1)-simply denoted q → ϕ.q.

As mentioned in the introduction, in this paper we suppose to have a faithful isometric Sp(1)-action on (M, g) permuting transitively (1), i.e. an injective group morphism σ : Sp(1) -→ Hk(M) ,

(3) such that Ad • σ : Sp(1) → SO(3) is the natural surjection. We may identify Sp(1) σ Sp(1) ⊆ Hk(M), and in particular there is an exact sequence

1 -→ Sp(M) -→ Hk(M) Ad --→ SO(3) -→ 1 .
Consider now a maximal compact connected subgroup Sp 0 (M) ⊆ Sp(M) commuting with (3):

Sp 0 (M) ⊆ ϕ ∈ Sp(M) σ(g)ϕ = ϕσ(g) for g ∈ Sp(1) ,
and let Hk 0 (M) ⊆ Hk(M) be the subgroup generated by Sp 0 (M) and Sp [START_REF] Andersen | Asymptotic faithfulness of the quantum SU(n) representations of the mapping class groups[END_REF]. Finally assume that σ(-Id) ∈ Sp 0 (M), which yields another exact sequence

1 -→ Sp 0 (M) -→ Hk 0 (M) Ad --→ SO(3) -→ 1 .
By construction there is a surjective morphism Sp 0 (M) × Sp(1) → Hk 0 (M) with kernel (Id, Id), (-Id, -Id) , whence an abstract identification

Hk 0 (M) = Sp 0 (M) • Sp(1) Sp 0 (M) × Sp(1) Z/2Z . (4) 
Hence we are globalising the Riemannian holonomy group of quaternion-Kähler manifolds (on tangent spaces; cf. § 3.1 for the linear case). Finally, if Aut(Z) denotes the group of automorphisms of Z → CP 1 preserving the fibrewise Hermitian structures, covering arbitrary biholomorphisms of CP 1 , we have a group morphism

ρ Z : Hk(M) → Aut(Z) , (5) 
extending (2).

Families of pre-quantum line bundles. Now assume that

ω q ∈ H 2 (M, Z) , for q ∈ CP 1 .
It follows by continuity that the cohomology class [ω q ] is independent of q.

Hence we can fix a Hermitian line bundle (L, h) over M, and a family of Hermitian connections ∇ q on L with curvatures F q = -iω q for q ∈ CP 1 .

Then for any ϕ ∈ Hk(M) the line bundle ϕ * L ⊗ L -1 → M comes with a family of flat Hermitian connections, and since isomorphism classes of such objects are parametrised by

G := H 1 M, U(1) this yields a 1-cocyle u : Hk(M) -→ C ∞ (CP 1 , G) , u : ϕ -→ ϕ * L ⊗ L -1 .

By construction the cohomology class

[u] ∈ H 1 Hk(M), C ∞ (CP 1 , G) vanishes if and only if there exists Λ ∈ C ∞ (CP 1 , G) such that ϕ * (L ⊗ Λ -1 ) L ⊗ Λ -1
. This is equivalent to saying that, after twisting L by a family of flat connections, every element of Hk(M) can be lifted to an automorphism of the family of pre-quantum line bundles: If Hk'(M) denotes the group of automorphisms of L → M covering the Hk(M)-action we thus have a central extension

1 -→ U(1) -→ Hk'(M) -→ Hk(M) -→ 1 , (6) 
as in the introduction. The simplest vanishing [u] = 0 is obtained if G is trivial (which we will see in some examples) or by the existence of a hyper-Kähler potential (which we discuss in § 2.9).

In what follows we thus assume to have fixed a family of pre-quantum connections satisfying the property above. Restricting the central extension [START_REF] Andersen | Asymptotic properties of the Hitchin-Witten connection[END_REF] to Hk 0 (M) ⊆ Hk(M) yields a second central extension

1 -→ U(1) -→ Hk 0 '(M) -→ Hk 0 (M) -→ 1 , (7) 
where Hk 0 '(M) ⊆ Hk'(M) acts on L → M preserving its structure. Since Sp( 1) has no nontrivial central U( 1)-extensions, it follows from the faithfulness of ( 3) that ( 7) is trivial when restricted to Sp(1). Hence we can lift (3) to a group morphism σ : Sp(1) -→ Hk 0 '(M) . We denote the induced central extension of Sp 0 (M) by Sp 0 '(M) ⊆ Hk 0 '(M), fitting into an exact sequence

1 -→ U(1) -→ Sp 0 '(M) -→ Sp 0 (M) -→ 1 .
We see Sp 0 '(M) is a compact Lie group commuting with the Sp(1)-action on the pre-quantum line bundle, and Hk 0 '(M) ⊆ Hk'(M) is the subgroup generated by σ Sp(1) and Sp 0 '(M).

The resulting action on the family of pre-quantum line bundles is a group morphism ρ L : Hk'(M) -→ Aut(L) , lifting [START_REF] Andersen | The AJ-conjecture for the Teichmüller TQFT[END_REF] and restricting to an action of Hk 0 '(M).

Generic elements of the central extension will be denoted ϕ ∈ Hk'(M), projecting to elements ϕ ∈ Hk(M) by forgetting the action on the fibres of L → M.

Geometric quantisation.

Following the prescription of geometric quantisation, for q ∈ CP 1 consider the separable Hilbert space

H q := ψ ∈ H 0 (M q , L) M h(ψ, ψ) dvol < ∞ ⊆ L 2 (M, L) , (8) 
using the holomorphic structure ∂ q = ∇ 0,1 q and the standard L 2 Hermitian product:

ψ | ψ := M h(ψ, ψ ) dvol , for ψ, ψ ∈ H q . ( 9 
)
Let us denote H the family of Hilbert spaces thus defined over CP 1 . By construction there are unitary isomorphisms ρ H ϕ : H q -→ H ϕ.q , for q ∈ CP 1 and ϕ ∈ Hk'(M) , explicitly given by:

ρ H ϕ ψ(m) := ρ L ϕ ψ(ρ Z ϕ -1 m) , for m ∈ M . ( 10 
)
2.4. Decomposition of H q . We will now consider the decompositions of the spaces (8) induced by the action (10) of various subgroups of Hk 0 '(M) ⊆ Hk'(M). For q ∈ CP 1 consider the stabiliser maximal torus T q ⊆ Sp(1), so the subgroup σ (T q ) ⊆ Hk 0 '(M) acts on H q by unitary operators. Its action defines an L 2completed orthogonal (inner) direct sum

H q = d∈Z H (d) q , ( 11 
)
where

H (d)
q ⊆ H q is the isotypical component corresponding to the character U( 1)

σ (T q ) -→ C × , z -→ z d ,
after fixing an identification with the standard torus U(1) ⊆ C × . Then we refine (11) using the Sp 0 '(M)-action on H

q . Namely, choosing a set of representatives { V λ } λ∈Λ for isomorphism classes of unitary simple Sp 0 '(M)modules, the Peter-Weyl theorem [60, Thm. 1.12] provides a splitting

H (d) q = λ∈Λ H (d) λ,q . ( 12 
)
Further we let Λ (d) ⊆ Λ be the subset of active representations. 2 Finally we may also consider a maximal torus T ⊆ Sp 0 '(M) and find

H (d) q = a∈T ∨ H (d) a,q , (13) 
where

H (d) a,q ⊆ H (d)
q is the isotypical component of the character a : T → C × . We denote

H (d) , H (d) a and H (d) λ
the families of Hilbert spaces thus defined over CP 1 , so that we have L 2 -completed orthogonal direct sums

H = d∈Z H (d) , λ∈Λ H (d) λ = H (d) = a∈T ∨ H (d) a . 2.5. Structure of H (d) λ .
Our main assumption is the following, unless otherwise stated:

The spaces H (d) λ,q are finite-dimensional. Now assume further (and temporarily, cf. Rem. 2.4) that the family of Hilbert spaces H (d) λ forms a smooth vector bundle over the Riemann sphere, hence a smooth vector sub-bundle of the trivial Hilbert bundle L 2 (M, L) → CP 1 . We can

then differentiate local sections ψ = ψ(q) of H (d) λ → CP 1 along vector fields on CP 1 ; then, since H (d) λ,q ⊆ L 2 (M, L) is a closed/Hilbert subspace, there are orthogonal projections π (d) λ,q : L 2 (M, L) -→ H (d) λ,q . Definition 2.3. For any tangent vector X ∈ T q CP 1 set ∇ H (d) λ X ψ q := π (d) λ,q X[ψ](q) ∈ H (d) λ,q . ( 14 
)
Remark 2.2. The same definition (of the standard L 2 -connection) can be given verbatim in the case where the families H (d) a

⊆ H (d) also constitute smooth vector bundles. 2 The subset Λ (d) is independent of q ∈ CP 1 since the Sp 0 '(M)-modules H (d) q are isomorphic under the Sp(1)-action.

Proof. Given ϕ ∈ Hk 0 '(M), a local section ψ of H (d) λ → CP 1 , and a tangent vector

X ∈ T CP 1 , we have X ρ ϕ ψ = ρ ϕ (ϕ -1 * X)[ψ] , denoting ρ = ρ H . The covariant derivative ∇ X = ∇ H (d) λ X
is characterised by the following identity, for every vector ψ ∈ H

(d) λ,ϕ.q : ∇ X ψ ψ = X[ψ] ψ .
On the other hand a change of variables in [START_REF] Andersen | Geometric construction of modular functors from conformal field theory[END_REF] shows that

ρ ϕ ψ ψ = ψ ρ -1 ϕ ψ
which combined with the above yields

∇ X ρ ϕ ψ = ρ ϕ ∇ ϕ -1 * X [ψ] .
Let now L → CP 1 be the Sp(1)-equivariant Hermitian line bundle over CP 1 equipped with the (unique) Sp(1)-invariant connection ∇ associated to the standard representation of the standard maximal torus U(1) ⊆ Sp(1). Finally denote ∇ Tr the trivial connection in the trivial vector bundle V λ → CP 1 with fibre V λ for λ ∈ Λ (d) , and let m (d) λ ∈ Z >0 be the multiplicity of the simple Sp 0 '(M)-module

V λ inside H (d) q . 3
Theorem 2.1. There is an Hk 0 '(M)-invariant direct sum decomposition of Hermitian vector bundles with connections

H (d) λ = m (d) λ j=1 H (d) λ,j , ∇ H (d) λ = m (d) λ j=1 ∇ H (d) λ,j , (15) 
and an Hk 0 '(M)-equivariant isomorphism

H (d) λ,j L d ⊗ V λ , ∇ H (d) λ,j = ∇ ⊗ Id + Id ⊗∇ Tr .
Proof. For fixed λ, d consider the vector bundle Hom V λ , H

with the induced Hk 0 '(M)-action, Hermitian structure, and connection. Since all of this data is Sp 0 '(M)-equivariant, it restricts naturally to

E (d) λ := Hom Sp 0 '(M) V λ , H (d) λ
, the vector bundle of Sp 0 '(M)-linear momorphisms, and rk(E

(d) λ ) = m (d)
λ . Furthermore, it is clear that each stabiliser T q acts on E (d) λ,q via multiplication by the degree-d character, so there is an identification

E (d) λ m (d) λ j=1 L d . ( 16 
)
Now consider the evaluation map λ,q , it restricts to an isomorphism on every fibre: By [START_REF] Atiyah | The Geometry and Dynamics of Magnetic Monopoles[END_REF], this is enough to conclude. 

E (d) λ ⊗ V λ -→ H (d) λ , f ⊗ v -→ f(v) ,
λ } one can define

H (d) λ,j := L d ⊗ V λ , H (d) 
λ := L d ⊗ V λ ⊕m (d) λ .
This yields finite-rank smooth Hk 0 '(M)-equivariant Hermitian vector bundles over the Riemann sphere, equipped with Hermitian connections, defined from the combinatorial data of the multiplicities of H q as a representation, as soon as the main assumption is verified.

2.6. Quantum super Hilbert spaces and unitary representations. We now let

H (d)
λ,j be the super vector space obtained by taking the holomorphic cohomology of the bundles of isotypical components:

H (d) λ,j := H * CP 1 , H d λ,j , for j ∈ { 1, . . . , m (d) λ } . If W (d) = W (d) + ⊕ W (d)
-is the unitary super Sp(1)-representation defined by

W (d) + := H 0 CP 1 , L d , W (d) 
-:= H 1 CP 1 , L d , then H (d) λ,j W (d) ⊗ V λ as super Hk 0 '(M)-representations. Remark 2.5. One has W (d) - = W (-d) + = (0) for d ∈ Z <0 , and 
W (0) + C W (0) -.
Finally consider the nested L 2 -completed orthogonal direct sums

H := d∈Z H (d) , H (d) := λ∈Λ (d) H (d) λ , (17) 
setting as above

H (d) λ := m (d) λ j=1 H (d) λ,j . ( 18 
)
The endpoint of our construction is the following, which is our model for the hyper-Kähler quantisation of the Sp(1)-symmetric manifold (M, g, I, J, K).

Theorem 2.2.

There is a unitary action Hk 0 '(M) → U(H) preserving the splittings [START_REF] Axelrod | Geometric quantization of Chern-Simons gauge theory[END_REF] and [START_REF] Bargmann | On a Hilbert space of analytic functions and an associated integral transform part I[END_REF], and the restriction Hk 0 '(M) → U H (d) λ,j is isomorphic to W (d) ⊗ V λ as simple super Hk 0 '(M)-module. 2.7. Finite-rank conditions. We shall now consider conditions which entail finitedimensionality for the isotypical components of § 2.4, starting from the case where there is a proper moment map for the action of T q , T q := T q × T or Sp 0 '(M).

In general, if K is a compact Lie group with Lie algebra k = Lie(K), acting on a Kähler manifold X with a lifted K-action on a pre-quantum line bundle (L, ∇), there is a natural moment map µ :

X → k ∨ defined by Konstant's formula 2πi µ, ξ ∂ ∂θ = ξ H X -ξ L (19) 
for every ξ ∈ k, where ξ L is the vector field corresponding to ξ on L, ξ H X the one on X lifted horizontally, and ∂ ∂θ is the fibre-wise "angular" vector field. In this setup, we will make use of the following version of the general principle that "quantisation commutes with reduction". Theorem 2.3 ([49, 85]). If the K-action extends holomorphically to the complexified group K C , and if the moment map (19) is proper, then for every dominant weight γ of K there is an identification

Hom K V γ , H 0 (X, L) H 0 X γ , L γ ,
where V γ denotes a simple K-module of highest weight γ, X γ = X γ K is the symplectic reduction of X at level γ, and L γ is the induced (V-)bundle on X γ .

This result was first established by Guillemin and Sternberg [START_REF] Guillemin | Geometric quantization and multiplicities of group representations[END_REF] in the case X is compact, with additional regularity conditions, and then extended by Sjamaar [START_REF] Sjamaar | Holomorphic Slices, Symplectic Reduction and Multiplicities of Representations[END_REF]. The statement has been subsequently generalised in various works including those of Meinrenken [START_REF] Meinrenken | On Riemann-Roch Formulas for Multiplicities[END_REF][START_REF] Meinrenken | Symplectic Surgery and the Spin-C Dirac operator[END_REF], Meinrenken-Sjamaar [START_REF] Meinrenken | Singular reduction and quantization[END_REF], Vergne [START_REF] Vergne | Multiplicities formula for geometric quantization, part I[END_REF][START_REF] Vergne | Applications of equivariant cohomology[END_REF], Ma [START_REF] Ma | Geometric Quantization on Kähler and Symplectic Manifolds[END_REF], Ma-Zhang [START_REF] Ma | Geometric quantization for proper moment maps: The Vergne conjecture[END_REF], and Hochs-Song [START_REF] Hochs | Equivariant indices of Spinc-Dirac operators for proper moment maps[END_REF].

Returning to our setting we have moment maps

µ q : M -→ iR , µ q : M -→ iR × t ∨ , µ q : M -→ sp 0 '(M) ∨ , (20) 
identifying Lie(T q ) ∨ iR, and where t = Lie(T ) and sp 0 '(M) = Lie Sp 0 '(M) . Then Thm. 2.3 yields the following. Theorem 2.4. Suppose either of the moment maps (20) is proper for some q ∈ CP 1 , and the action of the corresponding group has a holomorphic complexification. Then the corresponding family

H (d) , H (d) a , or H (d)
λ has finite rank. Proof. Thm. 2.3 applies when X γ is a compact complex analytic space and L γ a coherent sheaf on it, which includes our setup.

Indeed properness of the moment map implies the complex analytic reduction (M q ) γ is compact for any dominant weight γ, hence the space of section of L γ is finite-dimensional [START_REF] Grauert | Coherent Analytic Sheaves[END_REF]. It follows that each irreducible representation has finite multiplicity inside H 0 (M q , L q ), so a fortiori inside H q .

Remark 2.6. Another way to ensure finite-dimensionality is to assume there are (at least) two-codimensional compactifications of the symplectic reductions, having rational singularities; then Hartogs's theorem applies on the reduction (see e.g. [START_REF] Thomason | Une formule de Lefschetz en K-théorie équivariante algébrique[END_REF] for such generalizations).

Finally finite-dimensionality can be controlled using the results of [START_REF] Wu | On the instanton complex of holomorphic Morse theory[END_REF].

Theorem 2.5 (op. cit.). Suppose the action of T q (resp. T q ) is meromorphic in the sense of Def. 2.12 of op. cit, and that it satisfies the assumption 2.14 therein. Then H (d) (resp. H λ have finite rank, we consider the (formal) generating series

H(t) = d rk H (d) • t d , (21) 
and

H t, t = d,a rk H (d) a • t d t a , (22) 
as well as

G t, t = d∈Z λ∈Λ (d) m (d) λ • t d t λ . ( 23 
)
Note that if

H (d) a
and

H (d) λ
are both finite-rank then ( 22) can be obtained from ( 23) via the substitution t λ → χ λ t , where

χ λ t = a∈E λ n (λ) a • t a ,
and where E λ is the set of weights of V λ -with multiplicities n ,

where W = N(T ) T is the Weyl group and ρ ∈ t ∨ the half-sum of positive roots. Conversely ( 23) can be recovered from [START_REF] Boalch | Through the analytic halo: fission via irregular singularities[END_REF] (when both are defined) as follows. Fix d ∈ Z and let H d ( t) be the coefficient of t d in [START_REF] Boalch | Through the analytic halo: fission via irregular singularities[END_REF]. Let λ be maximal among the weights such that t λ appears in H d ( t). In particular, the weight λ (as a Sp 0 '(M)-module) if it is the highest. Therefore, the coefficient of

t λ in H d ( t) is equal to m (d) λ . One may now consider H d ( t) -m (d)
λ χ λ ( t) and repeat the procedure inductively. Since each step strictly decreases one of the maximal weights the process terminates-exactly when the polynomial vanishes. This results in a decomposition

H d ( t) = λ∈Λ (d) m (d) λ χ λ ( t) ,
recovering all multiplicities and ultimately [START_REF] Boalch | Geometry and braiding of Stokes data; fission and wild character varieties[END_REF].

Further the generating series ( 21), [START_REF] Boalch | Through the analytic halo: fission via irregular singularities[END_REF], and (23) can sometimes be computed by localisation formulae. We refer to [START_REF] Hochs | A fixed point theorem on noncompact manifolds[END_REF] for general results, and we review here the simpler versions used in what follows.

Suppose the action of T q on M q has a finite number of fixed points M q ⊆ M q , and let R(T q ) be the formal completion of the character ring R(T q ) of T q -i.e. R(T q ) Z t ±1 canonically.

Since the fixed points p ∈ M q are isolated we see that Λ -1 (T p M q ) ∈ R(T q ) is invertible. Suppose now we have a decomposition

H i (M q , L q ) = d∈Z H i (M q , L q ) (d) ,
such that T q acts on H i (M q , L q ) (d) via the d'th power of the standard representation, and such that the spaces H i (M q , L q ) (d) are finite-dimensional.

Proposition 2.2 ([27, 55]

). The following formula holds:

2n i=0 (-1) i dim H i (M q , L q ) (d) t d = p∈|M q| L q,p Λ -1 (T p M q ) .
Hence if H i (M q , L q ) = (0) for i > 0 then simply

H(t) = p∈|M q| L q,p Λ -1 (T p M q ) . ( 24 
)
Considering the action of T q on M q we get an analogous result, provided T q has finitely many fixed points and all spaces

H i (M q , L q ) (d)
a,q are finite-dimensionaland interpreting the right-hand side as an element of R(T ) Z t ±1 , t ±1 i . In particular

H t, t = p∈|M q| L q,p Λ -1 (T p M q ) . ( 25 
)
Now recall that if M q is a Stein space, or has the structure of an affine scheme, then Cartan's theorem yields the vanishing of higher cohomology groups [START_REF] Cartan | Variétés analytiques complexes et cohomologie[END_REF]. Thus putting together the previous results we have established the following.

Theorem 2.6. Suppose there exists q ∈ CP 1 such that M q is a Stein space, or has the structure of an affine scheme, and that the T q -action (resp. T q -action) has finitely many fixed points. Assume further that one of the following holds:

• there is a proper moment map for the T q -action (resp. T q -action);

• there exists a compactification of the symplectic reductions with rational singularities, with boundary of codimension at least two (cf. Rem. 2.6).

Then the family H (d) (resp. H Remark 2.7. If the higher cohomology groups do not vanish one could replace (8) by the super space H q = H even (M q , L) ⊕ H odd (M q , L) , in which case case formulae [START_REF] Boalch | Global Weyl groups and a new theory of multiplicative quiver varieties[END_REF] and ( 25) hold for the super representations H q of T q and T q . (In this setup one need not assume that M q be a Stein space or an affine scheme.) Remark 2.8. Alternatively if the assumptions of Thm. 2.5 are satisfied then Wu's localisation theorem [START_REF] Wu | On the instanton complex of holomorphic Morse theory[END_REF]Thm. 3.14] yields the generating series ( 21) and ( 22) by an index computation of the fixed-point locus for the T q -and T q -action, respectively.

2.9. Sp(1)-symmetric hyper-Kähler potentials. Definition 2.4. A hyper-Kähler potential on the hyper-Kähler manifold (M, g, I, J, K) is a smooth map µ : M → R such that ω q = i∂ q ∂ q µ for every q ∈ CP 1 .

One can also use such potentials to obtain equivariant pre-quantum data, as discussed below. Assume further that µ is Sp(1)-invariant and that it generates the T q -actions, i.e. iµ : M q → iR t ∨ q is a moment map. In this case we consider the trivial Hermitian line bundle, and lift the Hk 0 (M)action by the identity on each fibre; i.e. Hk 0 '(M) = U(1) × Hk 0 (M). Natural symplectic potentials are given by

θ q = 1 2 ∂ q µ -∂ q µ ∈ Ω 1 (M) , hence ∇ q = d+ θ q
h is a pre-quantum connection for all q ∈ CP 1 , and the resulting prequantum data are Hk 0 '(M)-equivariant since µ is Sp(1)-invariant. Now if grad(µ) is complete then each T q -action extends holomorphically to C * , and if in addition µ is proper then the subspaces H (d) q are finite-dimensional by Thm 2.4. Proposition 2.3. Suppose that µ is bounded below and that it has finitely many critical values. Then the function ψ 0 := e -µ/2 h is square-summable and a holomorphic frame for every q ∈ CP 1 .

Proof. Nonvanishing and holomorphicity are straightforward consequence of the definition.

On the other hand, the L 2 -square-norm of ψ 0 can be expressed as

ψ 0 2 L 2 = M e -µ h dvol = ∞ B e -ξ h µ * (dvol) , (26) 
where B ∈ R is a lower bound for µ and µ * (dvol) the push-forward of the Liouville measure. By the Duistermaat-Heckman theorem [START_REF] Duistermaat | On the variation in the cohomology of the symplectic form of the reduced phase space[END_REF] the push-forward admits a density which restricts to a polynomial on every interval I ⊂ R not containing critical values for µ. Since there are finitely many such values, (26) splits as a finite sum of converging integrals, proving the claim.

Under the assumptions of Prop. 2.3 we thus get an isomorphism

Ψ : L 2 H 0 (M q , O, e -µ/ h dvol) (d) -→ H (d) q ,
given by Ψ(f) = fψ 0 , where the left-hand side denotes the space of d-homogeneous holomorphic functions with finite L 2 -norm with respect to e -µ/ h dvol.

Examples of applications

3.1. Hyper-Kähler vector spaces. Let n > 0 be integer and V a real vector space of dimension fn.

Definition 3.1.

A linear hyper-Kähler structure on V is a scalar product g and an ordered triple (I, J, K) of orthogonal automorphisms of V satisfying the quaternionic identities

I 2 = J 2 = K 2 = IJK = -Id V .
Equivalently, a linear hyper-Kähler structure on V may be regarded as a Hermitian representation of the quaternion algebra

H = { q = d + ai + bj + ck | a, b, c, d ∈ R } ,
on V, where the quaternionic Hermitian form is

h := g -iω I -jω J -kω K , with ω • (v, w) := g(•v, w) for • ∈ { I, J, K } .
It follows that I, J, K are g-skew-symmetric, hence they span a real Lie subalgebra su(2) V ⊆ o(V, g).

Attached to the hyper-Kähler vector space is the group Sp(V, h) ⊆ O(V, g) of R-linear endomorphisms of V preserving h-hence g and each of the forms ω I , ω J , ω K . As above we are interested in transformations that preserve the hyper-Kähler structure in a looser sense, but here we restrict to linear ones:

Hk(V) = Hk(V, g, I, J, K) := A ∈ O(V, g) Ad A su(2) V = su(2) V . ( 27 
)
As a subgroup of O(V, g), the above is compact.

Remark 3.1. We are thus slightly abusing the notation from § 2. Indeed if V is regarded as a smooth hyper-Kähler manifold then the group of all transformations preserving g and su(2) V also contains the translations, and it is in fact generated by these two kinds of transformations. In the framework of § 2 the group ( 27) thus rather coincides with Hk 0 (V), but we shall denote it Hk(V) in the linear case to simplify the notation. Remark 3.2. In this case the twistor space is a rank-2n holomorphic vector bundle π CP 1 : Z → CP 1 isomorphic to C 2n ⊗ O(1) [START_REF] Hitchin | Hyperkähler manifolds[END_REF]. The family comes with a preferred global trivialisation Z V × CP 1 as a smooth (rank-4n) vector bundle, but not as a symplectic vector bundle or as a Hermitian vector bundle.

Lemma 3.1.

There is an exact sequence of Lie groups

1 -→ Sp(V, h) -→ Hk(V) Ad --→ SO(3) -→ 1 ,
and an embedding σ : Sp(1) → Hk(V) such that Ad • σ : Sp(1) → SO( 3) is the natural surjection.

Proof. The natural Sp(1)-action on H by multiplication on the right induces the standard Sp(1)-action on the unit sphere of complex structures S IJK . The conclusion follows from a choice of identification V H ⊗ R R n as H-module.

Hence a choice of orthonormal basis for (V, h) (as a left H-module) yields an identification

Hk(V) = Sp(n) • Sp(1)
Sp(n) × Sp(1) Z/2Z , a particular case of (4). In the notation of the introduction we can thus choose Sp 0 (V) := Sp(V, h) ⊆ Hk(V) .

3.1.1. Geometric quantisation. Geometric quantisation on a Kähler vector space is straightforward and essentially unique up to the choice of a symplectic potential, which corresponds to a gauge choice on the pre-quantum line bundle. For h ∈ R >0 one considers the triple (L, h, ∇ q ), consisting of the trivial complex line bundle L := V × C → V with the tautological Hermitian metric h, and the connection ∇ q := d -i h θ q defined by the invariant symplectic potential

θ q (v)(X) = 1 2 ω q (v, X) ,
for v ∈ V a point and X a tangent vector there. The above yields pre-quantum data for (V, ω q ) at level h -1 . We may denote L q → V the line bundle to emphasize the structure we are prequantising on V.

The bundle L q comes endowed with a natural holomorphic frame

ψ 0 (q, v) := exp - 1 4 h g(v, v) ,
which is manifestly independent of q ∈ CP 1 . For each q, the resulting quantum Hilbert space consists of sections ψ = fψ 0 , with f : V → C an I q -holomorphic function with finite L 2 -norm with respect to the Gaussian measure. This space is well known to be densely generated by the polynomial functions, which induces a grading on each H q -the Fock grading. This setting is a particular case of the one discusssed in § 2.9. Indeed, on a Kähler vector space, the function µ(v) = 1 2 v 2 is a moment map for the U(1)action by scalar multiplication and a Kähler potential, and moreover

- i 2 (∂ -∂)µ = θ
is the invariant symplectic potential. Additionally, for each q ∈ CP 1 the action of T q is the standard one. Furthermore d-homogeneous holomorphic functions on a complex vector space are d-homogeneous polynomials, whence the decomposition of H q into isotypical components as a T q -module reduces to the well-known Fock grading. By the identification of the space of such homogeneous polynomials with Sym d V ∨ q , the finite-dimensional spaces H (d) q assemble into finite-rank Hermitian sub-bundles

H (d) → CP 1 of the trivial L 2 (V, L)-bundle, with a natural isomorphism Sym d Z ∨ -→ H (d)
of vector bundles over the Riemann sphere.

3.1.2. Group action on quantum spaces. The action ρ Z : Hk(V) → Aut(Z) has a natural lift to L = Z × C as ρ Z × Id. Since A * θ q = θ A.q for A ∈ Hk(V) and q ∈ CP 1 , it follows that this action preserves the structure of L as a family of pre-quantum line bundles. This defines an action ρ H on sections of H (d) by pull-back, as in [START_REF] Andersen | Abelian conformal field theory and determinant bundles[END_REF], and it is easy to check this is a graded fibrewise unitary Hk-action-covering that on hyper-Kähler 2-sphere. Theorem 3.1. For q ∈ CP 1 there is a canonical isomorphism H Sym d (V) of simple Sp(V, h)-modules, and the bundle with connection (H (d) ,

∇ H (d) ) is Hk(V)- equivariantly isomorphic to L d ⊗ Sym d (V) → CP 1 .
Proof. This follows directly from the above discussion and from Thm. 2.1: The metric g, and hence the section ψ 0 , are fixed by Sp(V, h). It is known the natural action on Sym d V ∨ q is irreducible [START_REF] Rossmann | Lie Groups: An Introduction Through Linear Groups[END_REF]. Altogether the statements of this sections establish the assumptions needed to apply Thm. 2.2, which in this particular case yields the following. Theorem 3.2 (cf. Thm. 2.2). The Sp(1)-symmetric geometric quantisation of the hyper-Kähler vector space V yields the super Hilbert space

H = d∈Z 0 H (d) ,
analogously to § 2.6. This carries a unitary Hk(V)-representation preserving the splitting, and there is an isomorphism

H (d) W (d) ⊗ Sym d (V) of simple Hk(V)-modules.
For every d 0 we thus have

dim W (d) + = (d + 1) , dim W (d) - = 0 , dim H (d) = (d + 1) 2n + d d .
The generating series ( 21) and ( 22) are obtained explicitly from the above

H(t) = 1 (1 -t) 2n , H t, t = 1 n i=1 (1 -t t i )(1 -t t -1 i )
.

On the other hand, since V q C 2n is a Stein space, and since the actions of T q and T q only fix the origin, Thm. 2.6 also applies, and the result from [START_REF] Boalch | Global Weyl groups and a new theory of multiplicative quiver varieties[END_REF] and ( 25) yields the same formulae. Now by Thm. 3.2 we see that m

(d) Sym d (V) = 1 for d ∈ Z 0 , whence G(t, t) = ∞ d=0 t d t λ Sym d (V) .

Four-dimensional examples.

As mentioned in the introduction, in dimension 4 there is a complete classification of Sp(1)-symmetric hyper-Kähler manifolds up to finite quotients: Besides H with its flat metric there are the Taub-NUT metrics on either R × S 3 or R 4 , and then the hyper-Kähler metric on the moduli space of charge-2 monopoles, the Atiyah-Hitchin manifold M AH .

3.2.1.

Taub-NUT metrics. Consider the case of M = R 4 with the Taub-NUT metric g a corresponding to a positive real parameter a-the case a = 0 corresponds to the standard flat metric on H, which we already discussed. We will denote ω a q the corresponding symplectic structures. It is well-known (e.g. [40, Rem. 1]) that

Hk(M) Sp(1) × U(1) Z 2 U(2) .
In particular there is a faithful Sp(1)-action rotating the sphere of hyper-Kähler structures, while Sp(M) = U(1) is compact and commutes with Sp(1), so we may choose Sp 0 (M) = U(1), satisfying all the assumptions from § 2. Furthermore there exists-up to isomorphism-a unique family of pre-quantum line bundles for M, since

H 2 (M, Z) = 0 = H 1 M, U (1) 
.

The action of T q = U(1) × U(1) /Z 2 ⊆ Hk(M) is studied explicitly in [40, § 3.2] for the complex structure J + corresponding to q = i. The subgroup is identified in that context with U(1) × U(1) via the isomorphism (t, s) → (ts, ts -1 ).

From Eqq. (3.10) and (3.19) of op. cit. one concludes the action of T q = U(1) × {1} on M q is Hamiltonian with moment map µ q = µ + 1 + µ + 2 (borrowing the notation from Gauduchon), which is easily seen to be proper from the definitions. Finally Prop. 1 (ibidem) provides a biholomorphism Φ a + = Φ : (M, J + ) → C 2 , and by a straightforward check this map intertwines the T q -action on M q with the standard U(1)-action on C 2 . In particular the T q -action extends holomorphically to C * , and the hypotheses of Thm. 2.4 are verified.

Thus decomposing H q with respect to the T q -action yields

H q = d∈Z 0 H (d) q ,
where the subspaces H

⊆ H q are finite-dimensional. Then we consider the action of the commuting compact group Sp 0 (M) = {1} × U(1) on H

q to refine:

H (d) q = d ∈Λ (d) H (d) d ,q
where Λ (d) ⊆ Z 0 is finite. But more can be proven, as in the following statement.

Proposition 3.1. For q = i, the pre-quantum line bundle L q admits a T q -invariant holomorphic frame ψ q such that Φ * (f) • ψ q is L 2 for every polynomial function f on C 2 .

Proof. Recall that, again in the notations of [START_REF] Gauduchon | The Taub-NUT Ambitoric Structure[END_REF], x 1 , x 2 , and x 3 are three realvalued functions on M whose span is preserved by Sp(1), which acts on them by rotations in the standard way. Furthermore, all three functions are fixed by the action of U(1) = Sp(M). Writing r = x 2 1 + x 2 2 + x 2 3 , it follows from Eqq. (3.19), (2.11), and (2.12) (ibidem) that the aforementioned moment map µ can be expressed as µ = r + a 2 (x 2 2 + x 2 3 ) . Since µ i := µ is a moment map for T i with respect to ω a i , it follows that for every g ∈ Sp(1) the function (g -1 ) * µ generates the T g.i -action with respect to ω a g.i . In particular, if g.i = j, then the flow associated to

µ j := (g -1 ) * µ = r + a 2 (x 2 1 + x 2 3
) with respect to ω a j rotates the circle spanned by ω a 3 and ω a 1 . It is therefore a Kähler potential for ω a i [START_REF] Hitchin | Hyperkähler metrics and supersymmetry[END_REF], and repeating the argument when g.i = k so is

µ k := r + a 2 (x 2 1 + x 2 2 ). Therefore the T i -invariant function ϕ = ϕ i := µ j + µ k 2 = r + a 2 2 (r 2 + x 2 1 )
is also a Kähler potential. It follows that for every g ∈ Sp(1) the function (g -1 ) * ϕ i is completely determined by q = g.i, so that ϕ q := (g -1 ) * ϕ i is well-defined, and a potential for ω a q . From this we obtain an explicit realisation of the family of pre-quantum line bundles, for which the functions ψ 0,q = e -1 2 h ϕ q define holomorphic frames. Now note the function µ is bounded below, and its only critical point is the origin-the only fixed point of the induced action. We may then apply the Duistermaat-Heckman theorem [START_REF] Duistermaat | On the variation in the cohomology of the symplectic form of the reduced phase space[END_REF] as in Prop. 2.3 to conclude that e -αµ is integrable with respect to the Taub-NUT volume dvol a for every parameter α ∈ R >0 . The same clearly applies to µ j and µ k , and from this it is easily deduced that e -αϕ q ∈ L 2 (M, dvol a ) for every q ∈ CP 1 and α > 0. In particular, the holomorphic frames constructed above are L 2 .

To conclude we recall that the two components of Φ are defined as

w 1 = e a 2 x 1 z 1 , w 2 = e -a 2 x 2 z 2 ,
where z 1 and z 2 are the standard i-holomorphic coordinates on M = H with respect to the usual flat metric (cf. [40, Eq. (3.4)]). We need to show that, for every n, m ∈ Z, the function w n 1 w m 2 ψ 0 is also L 2 . Expanding the definition of ϕ yields

1 h ϕ -2a 2 (n -m)x 1 = r h + a 2 2 h (r 2 + x 2 1 ) -2a 2 (n -m)x 1 r 2 h + a 2 4 h (r 2 + x 2 1 ) -C = 1 2 h ϕ -C 1 4 h µ j -C provided C ∈ R >0 is large enough. Furthermore, it is a simple consequence of the definitions in [40] that |z 1 | 2 +|z 2 | 2 = 2r, whence z n 1 z m 2 2 (2r) 2(n+m) µ 2(n+m) j .
Collecting the estimates and using again the Duistermaat-Heckman theorem we conclude:

M w n 1 w m 2 2 ψ 2 0 dvol a e C M µ 2(m+n) j e -1 4 h µ j dvol a < ∞ .
As a consequence of this result we have dim H 

H t, t = 1 1 -t t 1 -t t -1 .
We thus have

H = d∈Z 0 H (d) , H (d) = d ∈Λ (d) H (d) d = H 0 CP 1 , L d ⊕(d+1) .
3.2.2. The Atiyah-Hitchin manifold. Let us consider the Atiyah-Hitchin manifold M AH , the last four-dimensional case: We shall discuss the extent to which our methods apply here. The Atiyah-Hitchin manifold can be realised as the moduli space of charge-2 centred magnetic monopoles in R 3 , and it comes with a natural Riemannian metric preserved by the SO(3)-action induced by rotating monopoles. The quaternionic nature of the Bogomolny equation, of which the monopoles represented by M AH are a particular class of solutions, induces a family of almost complex structures, which can be better understood via Donaldson's description in terms of rational maps [START_REF] Donaldson | Nahm's equations and the classification of monopoles[END_REF]. More precisely, the choice of an oriented direction (affine line) in R 3 induces an identification

M AH = S(z) = uz + v z 2 -w ∈ C(z) v 2 -wu 2 = 1 =: R 0 2 ,
where the left-hand side denotes the (two-fold) universal cover of M AH . The Atiyah-Hitchin manifold is recovered from the monodromy action, generated by (u, v, w) → (-u, -v, w). The resulting map is a biholomorphism with respect to one of the aforementioned almost complex structures, establishing that the latter is integrable and the former is Kähler. Rotations around the preferred direction induce a U(1)-action of R 0 2 by

t.(u, v, w) = (tu, v, t -2 w) . ( 28 
)
As the preferred direction changes across all possible choices, this results in a family of Kähler structures parametrised by CP 1 , which is clearly rotated by the SO(3)-action (see [START_REF] Atiyah | The Geometry and Dynamics of Magnetic Monopoles[END_REF]Ch. 2]). The above identification is not isometric with respect to the Riemannian embedding R 0 2 ⊆ C 3 ; nonetheless, the Riemannian structure on M AH can be described by studying the SO(3)-orbits [START_REF] Atiyah | The Geometry and Dynamics of Magnetic Monopoles[END_REF]. The generic stabiliser of a monopole is the Klein four-group K 4 , while orbits are parametrised by k = sin(α) for an angle α ∈ 0, π 2 , resulting in a description of an open dense of M AH as the product (0, 1) × SO(3)/K 4 ; further as k → 0 the orbit degenerates to a diffeomorphic copy of RP 2 , onto which M AH deformation-retracts.

Swann's work [START_REF] Swann | HyperKähler and quaternionic Kähler geometry[END_REF] provides an obstruction to the existence of a hyper-Kähler potential. Furthermore, one sees from (28) that the stabiliser of each Kähler structure has exactly one fixed point, and since the manifold has the homotopy type of RP 2 there can be no proper moment map. Nonetheless the above homotopy equivalence yields

H 1 M AH , U(1)
H 2 (M AH , Z) Z 2Z , hence by § 2.2 there are exactly two inequivalent SO(3)-equivariant families of pre-quantum line bundles: They differ by a twist by a family of flat connections on the non-trivial complex line bundle on M AH . The family supported on the trivial bundle can be constructed by means of the Kähler potentials of Olivier [START_REF] Olivier | Complex coordinates and Kähler potential for the Atiyah-Hitchin metric[END_REF]. Namely the metric on the Atiyah-Hitchin manifold is the completion of

ds 2 = β 2 γ 2 δ 2 4k 2 (1 -k 2 )K 2 2 dm 2 + β 2 σ 2 x + γ 2 σ 2 y + δ 2 σ 2 z , (29) 
defined on (0, π 2 ) × SO(3)/K 4 . We follow the conventions of op. cit. Namely, m = k 2 is used as a coordinate in place of k, while (σ x , σ y , σ z ) is an orthonormal frame of T * SO(3) → SO(3) and the coefficients β, γ, δ ∈ R are determined by

βγ = -EK , γδ = -EK + K 2 , βδ = -EK + (1 -k 2 )K 2 ,
where

K := K(k) = π 2 0 dφ 1 -k 2 sin 2 φ , E := E(k) = π 2 0
1 -k 2 sin 2 φ dφ are the complete elliptic integrals of the first and second kind, respectively. Op. cit. then uses the Euler angles (ϕ, θ, ψ) as coordinates on SO [START_REF] Andersen | The Hitchin-Witten Connection and Complex Quantum Chern-Simons Theory[END_REF] to give an explicit Kähler potential Ω for one of the complex structures, say I 3 , preserved by rotations in the angle ϕ. This is given in of [START_REF] Olivier | Complex coordinates and Kähler potential for the Atiyah-Hitchin metric[END_REF]Eq. 55] and can be written explicitly using Eqq. ( 6), ( 24), ( 25) and ( 36) therein, getting the formula

Ω = βγ + γδ + δβ 8 + 1 8
γδ sin 2 θ cos 2 ψ + δβ sin 2 θ sin 2 ψ + γβ cos 2 θ .

Note for k ∈ (0, 1) this function extends continuously to the whole of SO(3), and the trigonometric functions of (θ, ψ) descend to the projective space at k = 0; hence the potential extends to the completion M AH . Finally, we emphasise that this potential is independent of the variable ϕ, which is to say that it is invariant under the action of the I 3 -stabiliser. It follows that Ω defines an equivariant family of potentials under the SO(3)-action, whence an equivariant family of prequantum line bundles by the usual construction, together with a holomorphic frame ψ 0 = e -1 2 h Ω for I 3 .

Proposition 3.2. The function e -αΩ is integrable on M AH for α ∈ R >0 .

Proof. From ( 29) we obtain the following expression for the volume form on (the complement of a negligible set in) M AH :

dvol = β 2 γ 2 δ 2 4k 2 (1 -k 2 )K 2 dmσ x σ y σ z .
We need to show that

(0,1)×SO(3) e -αΩ β 2 γ 2 δ 2 4k 2 (1 -k 2 )K 2 drσ x σ y σ z < ∞ .
Note that βγ 0, γδ 0, and βδ 0 yield

Ω γδ 8 .
We may then use these bounds and the Fubini-Tonelli theorem to reduce the statement to

1 0 e -α 8 γδ β 2 γ 2 δ 2 k 2 (1 -k 2 )K 2 dr < ∞ .
We will proceed by studying the asymptotic behaviour of the integrand in the limit k → 1-the integral is necessarily regular for k → 0. It is well-known that

K ∼ 1 2 log(1 -k 2 ) ,
and since E(1) = 1 we find that

βγ ∼ - 1 2 log(1 -k 2 ) , γδ ∼ 1 4 log 2 (1 -k 2 ) , βδ ∼ - 1 2 log(1 -k 2 ) ,
hence the integral converges by comparison with

1 0 exp - α 32 log 2 (1 -k 2 ) log 2 (1 -k 2 ) (1 -k 2 ) dr = ∞ 0 e -α 32 x 2 x 2 dx < ∞ .
For α = 1/ h this implies the holomorphic frame ψ 0 is L 2 , hence an element of H (0) I 3 ; in principle more L 2 holomorphic sections may be found considering functions of the holomorphic coordinates (u, v, w) on R 2 0 . If all the monomials that descend to M AH are L 2 , then one concludes that H (d) q has infinite rank for every integer d, since u a v b w c is (a -2c)-homogeneous and well-defined on M AH if a + b is even: We obtain a partial result in this direction, showing that all powers of w are L 2 .

The problem of describing u, v, and w in terms of the setup above is addressed in [START_REF] Atiyah | The Geometry and Dynamics of Magnetic Monopoles[END_REF], by making use of the twistor description and spectral curves [START_REF] Hurtubise | SU(2) monopoles of charge 2[END_REF]. Introducing parameters

k 1 = k √ 1 -k 2 K 2 , k 2 = 1 -2k 2 3k √ 1 -k 2 ,
consider the elliptic curve

y 2 = 4k 2 1 x 3 -3k 2 x 2 -
x and let ℘, ζ be its corresponding Weierstrass functions, η the real period of ζ. Suppose that a, b ∈ C are the entries of a matrix in SU(2), thought of as a parametrisation of SO(3)/K 4 , and let ξ ∈ C be such that

℘(ξ) = b a -k 2 . ( 30 
)
Then the corresponding point in M AH has holomorphic coordinates 2 , up to the sign ambiguity resulting from the monodromy. Substituting [START_REF] Charles | Quantization of Compact Symplectic Manifolds[END_REF] in the differential equation for ℘, and using g 2 and g 3 as given in [START_REF] Hurtubise | SU(2) monopoles of charge 2[END_REF], we obtain

u = sinh 2k 1 ζ(ξ) -ηξ 2 + k 1 ab℘ (ξ) k 1 a 2 ℘ (ξ) , v = cosh 2k 1 ζ(ξ) - ηξ 2 + k 1 ab℘ (ξ) , w = k 2 1 a 4 ℘ (ξ)
w = k 2 1 a -12ab 2 k 2 + 4b 3 -4a 2 b . Now since |a| 2 +|b| 2 = 1 a straightforward check shows that |w| 2 16k 4 1 (9k 2 2 + 2) ∼ 4K 2 ∼ log 2 (1 -k 2 ) , for k → 1.
Adapting the proof of Prop. 3.2 and using [START_REF] Cartan | Variétés analytiques complexes et cohomologie[END_REF] we obtain the following. Proposition 3.3. For every integer n 0 the holomorphic section w n ψ 0 is L 2 and therefore an element of H

(-2n) I 3 .
The analysis is more delicate for the functions u and v. Using (30) one can express ab in terms of ξ and write the argument of the hyperbolic functions as

Φ(ξ) = 2k 1 ζ(ξ) - ηξ 2 + k 1 ℘ (ξ) k 2 + ℘(ξ) 1 + k 2 + ℘(ξ) 2 .
It follows from the definitions and the Legendre relation that this function is periodic for the real period of ℘ and quasi-periodic for the imaginary period, with step πi, whence the sign ambiguity of u and v. Moreover one can show the poles of the summands cancel out, leaving a non-holomorphic analytic functionhallmark of the fact that the SO(3)-action does not preserve the complex structure.

In particular its real part is bounded for fixed "k".

3.3. Moduli spaces of framed SU(r)-instantons. Let r 2 and k 0 be integers, and consider the moduli space M k,r of charge-k framed SU(r)-instantons on R4 , which is a hyper-Kähler manifold [START_REF] Atiyah | Geometry of Yang-Mills Fields[END_REF][START_REF] Donaldson | Instantons and geometric invariant theory[END_REF]. Each of its complex structures can be described in terms of the ADHM construction as follows, after fixing an identification R 4 C 2 . Consider the product

M := End C k 2 × Hom C k , C r × Hom C r , C k , with GL C k -action given by g.(α 0 , α 1 , a, b) = gα 0 g -1 , gα 1 g -1 , ga, bg -1 . 4
Let M 0 denote the set of elements of M satisfying the additional conditions (i) [α 0 , α 1 ] + ab = 0;

(ii) For all λ, µ ∈ C,

   α 0 + λ α 1 + µ a    is injective and λ -α 0 α 1 -µ b is surjec- tive.
Then the restricted U(r)-action is Hamiltonian with moment map

µ(α 0 , α 1 , a, b) := [α 1 , α * 1 ] + [α 2 , α * 2 ]
+ bb * -a * a , and there is an identification

M k,r M 0 µ U(k) . (31) 
The rotation group SO(4) acts on M k,r , and in particular the subgroup Sp(1), in identification R 4 H, transitively permutes the complex structures. Furthermore, the work of Maciocia [START_REF] Maciocia | Metrics on the moduli spaces of instantons over Euclidean 4-space[END_REF] shows that for each q ∈ CP 1 the T q -action has moment map

m 2 (A) = 1 16π 2 R 4 x 2 tr F 2 A .
This function is clearly Sp(1)-invariant, and therefore a hyper-Kähler potential, so one can construct an Sp(1)-invariant family of pre-quantum line bundle endowed with holomorphic frames as in § 2.9.

The function m 2 is not, however, a proper map: By op. cit. it corresponds under the identification [START_REF] Corlette | Flat G-bundles with canonical metrics[END_REF] to the norm-squared function f : M 0 → R, which is U(k)-invariant but not proper, on account of the open condition (ii). However Donaldson's work [START_REF] Donaldson | Instantons and geometric invariant theory[END_REF] identifies the symplectic reduction [START_REF] Corlette | Flat G-bundles with canonical metrics[END_REF] with the GIT quotient of M 0 by GL(k, C), whereupon (ii) translates into a stability condition. One may then include the semi-stable points to obtain a partial compactification M k,r := M GIT GL(k, C) , which is smooth by the work of Nakajima and Yoshioka [START_REF] Nakajima | Instanton counting on blowup. I. 4-dimensional pure gauge theory[END_REF]Cor. 2.2]. The map f descends then to a proper one on M k,r ; it is also clear that its gradient is complete on the quotient, showing that geometric quantisation on this space yields finite-rank isotypical components by Thm. 2.4. On the other hand, the codimension of the boundary M k,r \ M k,r is greather than 2, so that Hartogs's theorem allows for the extension of holomorphic functions on M k,r , which yields the finite-dimensionality of the isotypic components over this latter space.

Outlook and further perspectives

There are more spaces that fit some of the requirements for our quantisation scheme.

By the work of Kronheimer [START_REF] Kronheimer | Instantons and the geometry of the nilpotent variety[END_REF] the nilpotent (co)adjoint orbits of complex semisimple (1-connected) Lie groups are hyper-Kähler, and Swann's discussion [START_REF] Swann | HyperKähler and quaternionic Kähler geometry[END_REF] on such spaces implies in particular that they admit hyper-Kähler potentials. This is a particular instance of hyper-Kähler moduli spaces of solutions of Nahm's equations, specifically on a half-line with nilpotent boundary conditions. 5 Since Nahm's equations come naturally with a quaternionic structure and Sp(1)-action, the resulting manifolds have symmetries of the kind considered in this paper, and different choices of domain and boundary conditions give rise to different hyper-Kähler structures. For instance, semisimple boundary conditions on a half-line result in orbits of semisimple elements [START_REF] Kronheimer | A Hyper-Kählerian Structure on Coadjoint Orbits of a Semisimple Complex Group[END_REF], while the study of Nahm's equations on a compact interval leads to the cotangent bundle T * G [START_REF] Kronheimer | A hyperkahler structure on the cotangent bundle of a complex Lie group[END_REF][START_REF] Dancer | Hyperkähler metrics associated to compact Lie groups[END_REF]. By the works of Mayrand [START_REF] Mayrand | Stratified Hyperkähler Spaces and Nahm's Equations[END_REF][START_REF] Mayrand | Kempf-Ness type theorems and Nahm equations[END_REF][START_REF] Mayrand | Stratified hyperkähler spaces from semisimple Lie algebras[END_REF], the latter comes with natural Sp(1)-equivariant families of Kähler potentials and moment maps for the stabilizers T q , rather than a hyper-Kähler one, and they enjoy interesting properties that might lead to a variation of our main construction.

Also, as mentioned in the introduction, many new interesting hyper-Kähler metrics can be defined on moduli spaces of irregular connections/Higgs bundles over (wild generalisations of) Riemann surfaces [START_REF] Biquard | Wild nonabelian Hodge theory on curves[END_REF][START_REF] Witten | Gauge theory and wild ramification[END_REF], with simple examples reviewed in [START_REF] Boalch | Wild character varieties, points on the Riemann sphere and Calabi's examples[END_REF]: the "multiplicative" versions of the Eguchi-Hanson space and Calabi's examples (whose standard "additive" versions are quiver varieties on two nodes). This fits into a more general (new) multiplicative theory of quiver varieties [START_REF] Boalch | Global Weyl groups and a new theory of multiplicative quiver varieties[END_REF], involving a "fission" gluing operation generalising the TQFT construction of moduli spaces of flat connections [START_REF] Boalch | Quasi-Hamiltonian geometry of meromorphic connections[END_REF][START_REF] Boalch | Geometry and braiding of Stokes data; fission and wild character varieties[END_REF]; note that conjecturally this produces a lot more new hyper-Kähler manifolds [START_REF] Boalch | Through the analytic halo: fission via irregular singularities[END_REF], beyond (wild) nonabelian Hodge spaces.

Finally the example of § 3.3, i.e. the moduli spaces of framed SU(r)-instantons, opens the way for further discussion on the relation between the generating series produced by this new quantisation scheme and the well-known Nekrasov partition functions.

Appendix A. Comparison with the standard approach

In this section we shall correct the family of quantum Hilbert spaces H q to obtain finite-rank flat vector bundles of isotypical components (under the main assumption), as well as unitary equivalences between the quantisation of M with respect to the given Kähler polarisations.

Based on Thm. 2.1, we do this by a correcting twist of the finite-rank bundles H This new vector bundle comes with a Hk 0 '(M)-action, and we denote ∇ H (d) λ the resulting Hk 0 '(M)-invariant flat connection.

Since CP 1 is simply-connected the parallel transport defines canonical unitary isomorphisms

H (d) λ,q -→ H (d) λ,q ,
for q, q ∈ CP 1 , (

satisfying 1-cocycle identities. Analogously to the above we then define

λ∈Λ (d) H (d)
λ,q =: H Finally we can compare this representation with the one constructed in § 2.6, finding that twisting trivializes part of the action: Namely, the present super Hilbert space H (d) λ,j V λ ⊗ W (0) replaces the original H (d) λ,j V λ ⊗ W (d) as a Hk 0 '(M)-module-recalling that W (0) is the trivial one-dimensional Sp(1)-module. This should be compared with the (more) interesting irreducible representations of Hk 0 '(M) obtained from the main Thm. 2.2.

Proposition 2 . 1 .

 21 The covariant-derivative operators (14) define a ρ H -invariant Hermitian connection ∇ H (d) λ on the Hermitian vector bundle H (d) λ → CP 1 .

  which by construction of E (d) λ respects the group action, Hermitian structure, and connection. By the definition of H (d)

Remark 2 . 3 .

 23 Note the decomposition[START_REF] Atiyah | Low energy scattering of non-Abelian monopoles[END_REF] is not canonical, while the sub-bundles H (d) λ → CP 1 are uniquely determined by the Hk 0 '(M)-action. Remark 2.4. Thm. 2.1 yields an alternative definition of the bundles of isotypical components, without smoothness assumptions. Indeed for d ∈ Z, λ ∈ Λ (d) and j ∈ { 1, . . . , m

8 .

 8 Rank-generating series and localisation formulae. If either H(d) , H

  0 . If in particular Sp 0 '(M) is semisimple then the Weyl Character formula yields χ λ t = w∈W (w) t w(λ+ρ) w∈W (w) t w(ρ)

  appear in an irreducible component of H (d) q

a

  ) has finite rank, and the associated localisation formula (24) (resp. (25)) holds for the rank-generating series (21) (resp.[START_REF] Boalch | Through the analytic halo: fission via irregular singularities[END_REF]).

= 1 Theorem 3 . 3 .

 133 for all d ∈ Z 0 and d = d -2j with j ∈ { 0, . . . , d }, and we conclude that H (d) d L d for such values of d and d . The generating series (22) is the same as for the flat metric, namely

  λ ⊗ L -d , for d ∈ Z , λ ∈ Λ (d) .

  of Hilbert spaces carry a 1-cocycle of unitary isomorphisms induced from (32): This is the usual geometric quantisation construction. Now we can introduce super Hilbert spaces H (d) λ,j analogously to § 2.6, taking the holomorphic cohomology of the twisted vector bundles H (d) λ → CP 1 . Theorem A.1 (cf. Thm. 2.2). There is a unitary action Hk 0 '(M) → U H preserving the nested splittings: H := d∈Z H (d) , H (d) := λ∈Λ (d)

Note M is a space of representations of a quiver on two nodes-having a double loop-edge at one node, and a pair of opposite arrows between the two nodes-and that the action naturally extends to GL(C k ) × GL(C r ) (which controls isomorphisms of representations).

The hyper-Kähler metric on general orbits was constructed in[START_REF] Biquard | Sur les équations de Nahm et la structure de Poisson des algèbres de Lie semisimples complexes[END_REF][START_REF]Nahm/s equations and complex adjoint orbits[END_REF].
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