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We give a mathematical definition of irregular conformal blocks in the genus-zero WZNW model for any simple Lie algebra, using coinvariants of modules for affine Lie algebras whose parameters match up with those of moduli spaces of irregular meromorphic connections: the open de Rham spaces. The Segal-Sugawara representation of the Virasoro algebra is used to show that the spaces of irregular conformal blocks assemble into a flat vector bundle over the space of isomonodromy times à la Klarès, and we provide a universal version of the resulting flat connection generalising the irregular KZ connection of Reshetikhin and the dynamical KZ connection of Felder-Markov-Tarasov-Varchenko.

In this paper we pursue the viewpoint that a natural mathematical formulation of conformal field theory (CFT) lies within the geometry of moduli spaces of meromorphic connections, and we take a step in this direction.

The prototype are the Knizhnik-Zamolodchikov equations (KZ) [START_REF] Knizhnik | Current algebra and Wess-Zumino model in two dimensions[END_REF], in the genus-zero Wess-Zumino-Novikov-Witten model (WZNW) for 2-dimensional CFT [START_REF] Wess | Consequences of anomalous Ward identities[END_REF][START_REF] Witten | Nonabelian bosonization in two dimensions[END_REF][START_REF] Novikov | The Hamiltonian formalism and a multivalued analogue of Morse theory[END_REF]. They were originally introduced as the partial differential equations satisfied by n-point correlators, and mathematically they amount to a flat connection on a vector bundle over the space of configurations of n-tuples of points in the complex plane [START_REF] Etingof | Lectures on representation theory and Knizhnik-Zamolodchikov equations[END_REF].

The construction of the flat connection relies on representation-theoretic constructions for affine Lie algebras, and on the Segal-Sugawara representation of the Virasoro algebra on affine-Lie-algebra modules [START_REF] Kohno | Conformal field theory and topology[END_REF]. An alternative derivation is possible via deformation quantisation of the Hamiltonian system controlling isomonodromic deformations of Fuchsian systems on the Riemann sphere [START_REF] Reshetikhin | The Knizhnik-Zamolodchikov system as a deformation of the isomonodromy problem[END_REF][START_REF] Harnad | Dual isomonodromic deformations and moment maps to loop algebras[END_REF], the Schlesinger system [START_REF] Schlesinger | Über die Lösungen gewisser linearer Differentialgleichungen als Funktionen der singulären Punkte[END_REF]. In particular the vector bundle where the KZ connection is defined comes from the quantisation of moduli spaces of meromorphic connections with tame/regular singularities (simple poles).

In this paper we develop a representation-theoretic setup for any simple finitedimensional complex Lie algebra g, in order to go beyond the case of regular singularities and allow for irregular/wild ones. We will thus define a family of modules for g and for the affine Lie algebra g associated to g, which we call "singular" modules, whose parameters match up with those of symplectic moduli spaces of (possibly irregular) meromorphic connections on the sphere, generalising Verma modules. Indeed the regular case will correspond to "tame" modules V λ ⊆ V λ , which are standard Verma modules for g ⊆ g, whose defining representations depend on characters b + → C and b + → C for Borel subalgebras b + ⊆ b + -corresponding to positive roots within the root system given by a Cartan subalgebra h ⊆ b + . Such characters are encoded by linear maps λ ∈ h ∨ , which in turn match up with local normal forms for (germs of) meromorphic connections around a simple pole via the natural residue-pairing Lg dz ⊗ Lg → C, where Lg = g ⊗ C((z)) is the (formal) loop algebra of g. Moreover, if G is the connected simply-connected Lie group integrating g, then the G-action on the coadjoint G-orbit O ⊆ g ∨ of the character corresponds to a gauge action on meromorphic connections on a trivial principal G-bundle, and repeating this construction at n 1 marked points on the sphere provides a finite-dimensional description of the moduli space of isomorphism classes of logarithmic connections with prescribed positions of the poles and residues, living on holomorphically trivial bundles: this is the open part M * dR ⊆ M dR of the de Rham space, that enters into the nonabelian Hodge correspondence on complex curves. The full de Rham space M dR is obtained by removing the requirement that the bundle be holomorphically trivial (rather just topologically trivial [6, Rem. 2.1]).

Hence classically there is a complex symplectic reduction of a product of coadjoint G-orbits O i ⊆ g ∨ , the moduli space M * dR = i O i 0 G, whose quantum counterpart is the vector space H = H g of g-coinvariants of the tensor product H = i V λ i of tame modules: the space of WZNW conformal blocks. Variations of this construction use dual modules, or integrable highest-weight modules at specific levels; others use g-invariants instead of coinvariants, but in any case one very important feature are deformations.

Namely as the positions of the simple poles vary the moduli spaces assemble into a symplectic fibre bundle M * dR → Conf n (C) over the space Conf n (C) ⊆ C n of configurations of the noncoalescing simple poles, equipped with a flat symplectic (nonlinear) Ehresmann connection: the isomonodromy connection [START_REF] Hitchin | Frobenius manifolds, Gauge theory and symplectic geometry[END_REF], defined here by the integrable Schlesinger system [START_REF] Schlesinger | Über die Lösungen gewisser linearer Differentialgleichungen als Funktionen der singulären Punkte[END_REF]. Leaves of this connection are isomonodromic families of meromorphic connections, viz. connections sharing the same monodromy data, 1 hence classically we find a flat symplectic fibre bundle. On the quantum side one thus looks for a (linear) flat connection on the conformal block bundle, to yield identifications of different fibres up to the braiding of the marked points, analogously to the symplectomorphisms defined by the nonlinear isomonodromy connection. This natural flat connection is precisely the KZ connection, which is intrinsically defined via the slot-wise action of the Sugawara operator L -1 ∈ U g on the tensor product H = i V λ i of tame modules for the affine Lie algebra. The action is compatible with that of the Lie algebra of g-valued meromorphic functions on the punctured sphere, hence induces a well defined connection on the bundle of coinvariants, which finally is identified with the bundle of conformal blocks. This is the picture that we wish to generalise on the side of the representation theory of affine Lie algebras. Namely to define generalisations of Verma modules we look at the symplectic geometry of moduli spaces of irregular meromorphic connections, which has been studied in much greater generality: for arbitrary genus, complex reductive structure groups, arbitrary polar divisor, twisted irregular types and resonant residues, all in intrinsic terms allowing for the definition of symplectic local systems [START_REF] Boalch | Symplectic manifolds and isomonodromic deformations[END_REF][START_REF]isomonodromy, and quantum Weyl groups[END_REF][START_REF]Quasi-Hamiltonian geometry of meromorphic connections[END_REF][START_REF]Geometry and braiding of Stokes data; fission and wild character varieties[END_REF][START_REF] Boalch | Twisted wild character varieties[END_REF], entering the wild nonabelian Hodge correspondence on complex curves [START_REF] Biquard | Wild nonabelian Hodge theory on curves[END_REF] (we concern ourselves here with the case of genus zero, of a simple complex group, and untwisted irregular types; see [START_REF]Hyperkähler manifolds and nonabelian Hodge theory of (irregular) curves[END_REF][START_REF]Wild character varieties, meromorphic Hitchin systems and Dynkin diagrams[END_REF] for terminology and motivation).

Hence the open de Rham spaces M * dR are still defined. Importantly one now considers isomorphism classes of connections with higher-order poles, which have local moduli parametrising the whole of the principal part-beyond the residue term. This may be formalised in terms of "deeper" coadjoint orbits of the dual Lie algebra g ∨ p , where

g p = g z z p g z p-1 i=0 g ⊗ z i ,
which is a Lie algebra of truncated g-currents, holomorphic at z = 0. Indeed the residue-pairing matches g p up with a space of meromorphic g-valued 1-forms, which we see as principal parts of (germs of) meromorphic connections on a trivial principal G-bundle at a wild singularity, and the upshot is that one still has the description M * dR = i O i 0 G: now however one considers coadjoint 1 The same G-conjugacy class of monodromy representation of the fundamental group of the punctured sphere, with the poles removed G p -orbit O i ⊆ g ∨ p , where G p = G C z z p C z is the group of (p -1)-jets of bundle automorphisms of the trivial principal G-bundle on a (formal) disc. The diagonal G-action corresponds to a change of global trivialisation of the bundle, as in the tame case (see the proof of [START_REF] Boalch | Symplectic manifolds and isomonodromic deformations[END_REF]Prop. 2.1]).

Hence we will define modules W (p) χ ⊆ W (p) χ (at depth p 1) for g p and g respectively, whose defining representations depend on elements of h ∨ p ⊆ g ∨ p in the form of the characters for a Lie subalgebra generalising the positive Borels, and so that for p = 1 they reduce to the usual tame modules (else they are "wild"). This is done in Def. 1.1, which is a variations of similar definitions considered elsewhere, and which is the best suited to our viewpoint on the spaces M * dR . For example (9) has a more general scope than the "confluent Verma modules" of [START_REF] Nagoya | Confluent KZ equations for sl N with Poincaré rank 2 at infinity[END_REF], since we allow for an arbitrary simple Lie algebra and for arbitrary irregular singularities (of arbitrary Poincaré rank). Also we do not work in Liouville theory, i.e. we do not consider modules for the Virasoro algebra as in [START_REF] Nagoya | Irregular conformal blocks, with an application to the fifth and fourth Painlevé equations[END_REF]. Our approach is closer to the "level subalgebra" of [START_REF] Fedorov | Irregular Wakimoto modules and the Casimir connection[END_REF], or rather to one of its "more reasonable" variants (see Rem. 4 of op. cit.); the other variant is used in [18, § 2.8]: in this setup the natural pairing (13) matches the parameter of the modules with half of principal parts of irregular meromorphic connections, contrary to (9) 2which is one of the motivations behind Def. 1.1 (see also § 12). In addition to the parameters of the modules (9) matching up with those of the open de Rham spaces, the other two important differences with [START_REF] Feigin | Gaudin models with irregular singularities[END_REF] is that we work at noncritical level to define flat connections on a bundle of irregular conformal blocks, and that our g p -modules are highest-weight-leading to finite-dimensional spaces of coinvariants.

The singular modules enjoy several natural generalisations of the standard properties of tame modules, some of which we gather here. We will refer to "affine" modules when g is involved, and to "finite" modules when g p is.

Theorem 1.

• The singular modules admit explicit PBW-generators (Cor. 3.1 and Cor. 3.2).

• The singular modules are smooth (Lem. 3.2). 3 • The singular modules are h-semisimple (Prop. 3.1), and the finite singular modules have finite-dimensional h-weight spaces (Prop. 3.2). • The finite singular modules are highest-weight g p -modules (Lem. 3.4).

• The singular modules are cyclically generated by a common eigenvector for the Sugawara operators { L n } n p-1 (Prop. 5.1), which is an "irregular vector of order p -1" [START_REF] Gaiotto | Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories[END_REF].

We also give a formula for the (finite) dimension of h-weight spaces of finite modules, generalising the usual Weyl characters of Verma modules, in [START_REF] Harnad | Dual isomonodromic deformations and moment maps to loop algebras[END_REF]. The combinatorial complexity still lies in the positive root lattice, so in the archetypal case of g = sl(2, C) there is a simple solution (see [START_REF] Hitchin | Frobenius manifolds, Gauge theory and symplectic geometry[END_REF]). 2 The viewpoint of op. cit. on meromorphic connections is different: at critical level κ = -h ∨ one identifies quotients of the "universal Gaudin algebra" with algebras of functions on spaces of opers with prescribed singularities for the Langlands dual group L G of G, with a view towards the geometric Langlands correspondence for loop groups [START_REF] Frenkel | Langlands correspondence for loop groups[END_REF].

3 Recall a g z -module is smooth if every vector is annihilated by z N g z ⊆ g z for N 0.

After establishing these properties we consider tensor products of singular modules labeled by marked points on the Riemann sphere, and study their space H of coinvariants for the action of g-valued meromorphic functions with poles at the marked points. Introducing generalisations of the standard filtrations/gradings of tame modules we prove the following.

Theorem 2.

• The space H is canonically identified with the space of g-coinvariants for the tensor product of finite modules (Props. 7.1, 7.2 and 8.1). • The space H is finite-dimensional if one module is tame (Cor. 7.1).

To ensure nontriviality of the space of coinvariants we explore two options: either replacing one of the modules at the marked points with its associated contragredient representation (see Prop. 8.2), or restricting the action of rational function to the subalgebra of those which vanish at an unmarked point (see Rem. 7.1).

Finally we consider deformations of the marked points, i.e. variations of the tame isomonodromy times. This is not the full set of isomonodromy times, as in the most general setup one may also vary the irregular types and give nonlinear differential equations for the invariance of Stokes data along the deformation, generalising conjugacy classes of monodromy representations (and generalising the isomonodromy times of [START_REF] Klarès | Sur une classe de connexions relatives[END_REF], but also going beyond the "generic" case of [START_REF] Jimbo | Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent[END_REF]). We briefly discuss one natural setup to introduce a space of irregular isomonodromy times in § 6.4, and we plan to pursue its quantum version in future work, which should be more closely related to to [START_REF] Fedorov | Irregular Wakimoto modules and the Casimir connection[END_REF][START_REF] Feigin | Gaudin models with irregular singularities[END_REF] (cf. the outlook section just before § A).

Thus we allow for variations of marked points at finite distance on the sphere; then we use the Sugawara operators to define a flat connection on the trivial vector bundle whose fibre is the tensor product of affine singular modules, and show this is compatible with the action of rational functions on the punctured sphere (with the same proof of the tame case). Hence the spaces of coinvariants assemble into a flat vector bundle over the space of tame isomonodromy times, so in particular their dimension is a deformation-invariant-when finite.

Using the above results it is possible to give descriptions of the flat connections on the space H of coinvariants. Considering all possible cases of our setup we recover as expected:

(1) the KZ connection [START_REF] Knizhnik | Current algebra and Wess-Zumino model in two dimensions[END_REF] ( § 9.2.1);

(2) a variation of the Cartan term of the dynamical KZ connection [START_REF] Felder | Differential equations compatible with KZ equations[END_REF] 

( § 9.2.2),
and the very same Cartan term with a slightly different setup ( § 12); (3) the general case of [START_REF] Reshetikhin | The Knizhnik-Zamolodchikov system as a deformation of the isomonodromy problem[END_REF] ( § 9.2.3), which generalises the KZ connection; (4) a generalisation of op. cit. with nontrivial action on the module at infinity ( § 9.2.4).

In particular the semiclassical limit of the flat connections indeed yields isomonodromy systems for irregular meromorphic connections on the sphere, as wanted.

Note the last two items in principle descend from a more general setup, where the point at infinity is not fixed, provided one can show how horizontal sections transform under the pull-back diagonal PSL(2, C)-action. Going in this direction, in § 11 we prove that horizontal sections of the bundle of coinvariants are naturally equivariant under the action of the subgroup of affine transformations of the complex plane, with the explicit transformation (64).

Finally we abstract the formulae for the reduced connections on the space of coinvariants in order to define a family of universal connection: these are connections ∇ p on the trivial vector bundle with fibre U(g p ) ⊗n for p 1, over the space of tame isomonodromy times, which induce the above connections on H by taking representations. 4 Since all induced connections are flat and well defined on g-coinvariants, it is natural to conjecture that the same holds for the universal connections before taking representations.

Theorem 3 (Thms. 10.1 and 10.2, and Prop. 10.1). The connection ∇ p is flat, and descends to a connection on g-coinvariants of the tensor power U(g p ) ⊗n .

These results show the singular modules provide a solid mathematical notion of irregular conformal blocks in the genus-zero WNZW model [START_REF] Gaiotto | Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories[END_REF][START_REF] Yamada | A quantum isomonodromy equation and its application to N = 2 SU(N) gauge theories[END_REF], for any simple Lie algebra (with straightforward technical extension to the semisimple case).

Recall irregular conformal blocks are central objects in the recent literature on the asymptotically-free extension of the Alday-Gaiotto-Tachikawa correspondence (AGT) [START_REF] Alday | Liouville correlation functions from four-dimensional gauge theories[END_REF][START_REF] Gaiotto | Asymptotically free n = 2 theories and irregular conformal blocks[END_REF], which however is formulated in Liouville theory (i.e. mathematically it deals with the representation theory of Virasoro algebras, rather then affine Lie algebras). Irregular extensions in Liouville theory have been obtained within the formalism of Whittaker modules, e.g. [START_REF] Feli Ńska | Whittaker pairs for the Virasoro algebra and the Gaiotto-Bonelli-Maruyoshi-Tanzini states[END_REF][START_REF] Nagoya | Irregular conformal blocks, with an application to the fifth and fourth Painlevé equations[END_REF]; in principle it should be possible to relate the latter with our construction for g = sl(2, C), in view of the duality between Liouville theory and the H + 3 -WZNW model [START_REF] Ribault | H + 3 -WZNW correlators from Liouville theory[END_REF] (then in turn our construction should generalise [START_REF] Gaiotto | Irregular singularities in the H3+ WZW model[END_REF] beyond sl(2, C), which is compatible with the duality [START_REF] Ribault | H + 3 -WZNW correlators from Liouville theory[END_REF]).

Layout of the paper

In § 1 we consider a depth p 1 to introduce singular Lie algebras S (p) ⊆ g, singular characters χ : S (p) → C, and affine/finite induced singular modules

W (p) χ ⊆ W χ .
In § 2 we explicitly match up the data (p, χ) with the local moduli for the isomorphism class of (the germ of) an irregular meromorphic connection.

In § 3 we introduce countable PBW-bases B W ⊆ W of the finite singular modules, as well as gradings and filtrations on the finite and affine singular modules: notably gradings F +

• and F ± • for the degree in the variable "z", their associated filtrations, and then h-weight gradings.

In § 4 we introduce left-module structures on (restricted) dual vector spaces W * W * . In § 5 we introduce the Sugawara operators L n for n ∈ Z, and prove that the cyclic vector w ∈ W ⊆ W is a common eigenvector for L n with n p -1. This concludes proving the properties of Thm. 1.

In § 6 we define the spaces of irregular conformal blocks H . They are quotients of tensor products H ⊆ H of finite/affine singular modules labeled by marked points on the Riemann sphere with respect to the action of g-valued meromorphic functions (and we globalise the action introducing suitable sheaves over the space of tame isomonodromy times).

In § § 7 and 8 we study coinvariants, and we prove Thm. 2 using the material of § § 3 and 4.

In § 9 we introduce the flat connection on the bundle of irregular conformal blocks, using the Sugawara operator L -1 and fixing the point at infinity. In § 9.2 we give explicit formulae for the reduced connection.

In § 10 we introduce the universal connection ∇ p at depth p 1, on the trivial vector bundle with fibre U(g p ) ⊗n over the (restricted) space of tame isomonodromy times, and we prove Thm. [START_REF] Baumann | The q-Weyl group of a q-Schur algebra[END_REF].

In § 11 we introduce the action of Möbius transformations on horizontal sections of the bundle of irregular conformal blocks, and establish equivariance under affine transformations.

Finaly in § 12 we slightly modify the setup of § 1 to generalise the dynamical KZ connection, i.e. [START_REF] Felder | Differential equations compatible with KZ equations[END_REF]Eq. 3].

Lengthy computations are gathered in the appendix A.

Notation/conventions

Unless otherwise specified affine spaces, vector spaces, vector bundles, associative/Lie algebras and tensor products are defined over C.

The end of a remark is signaled by a " ".

Duals. The (algebraic) dual of a vector space W is written W ∨ = Hom(W, C), and the natural pairing W ∨ ⊗ W → C is α ⊗ w → α, w . If I is a set and W = i F i (W) an I-graded vector space then the restricted/graded dual of (W, F • ) is the I-graded vector space

W * := i∈I F i (W) ∨ ⊆ i∈I F i (W) ∨ W ∨ .
Gradings and filtrations. If (I, ) is a totally ordered set and W = i∈I F i (W) an I-graded vector space, the associated I-filtration on W is defined by the subspaces F i := j i F j (W).

If I and J are sets and

W j = i∈I F (j) 
i (W j ) a J-family of I-graded vector spaces, the tensor product I J -grading on W = j∈J W j is defined by the subspaces

F i := j∈J F (j) i(j) ,
for i : J → I .

If further (I, ) is a totally ordered Z-module then the tensor product I-filtration on W is defined by the subspaces

F i := j∈J i(j) i F i , for i ∈ I .
Lie-algebraic constructions. Let L be a Lie algebra. The abelianisation of L is the abelian Lie algebra L ab := L L, L , and the opposite of L is the Lie algebra L op on the same vector space, with bracket X, Y L op := Y, X L for X, Y ∈ L.

If p 1 is an integer and "z" a variable then the associate Lie algebra of depth p is

L p := L z z p L z L ⊗ C z z p C z , coming with a projection L p L 1 = L.
There is then a canonical vector space isomorphism L p p-1 i=0 L ⊗ z i , which can be upgraded to an isomorphism of Lie algebras if one defines a Lie bracket on the direct sum by truncating terms of degree greater than p -1.

If W is a left L-module then the space of L-coinvariants is W L := W LW, where LW := X∈L XW ⊆ W-in particular L ab is the space of ad L -coinvariants.

Setup

Let g be a finite-dimensional simple Lie algebra, and h ⊆ g a Cartan subalgebra. Let then R + ⊆ R ⊆ h ∨ be a choice of positive roots within the root system R = R g, h , and R -:= -R + the subset of negative roots. Then there is a triangular decomposition g = n -⊕ h ⊕ n + , where n ± is the maximal positive/negative nilpotent subalgebra defined by the subset of positive/negative roots:

n ± := α∈R ± g α , g α := X ∈ g ad H -α(H) X = 0 for H ∈ h .
Equip g with the minimal nondegenerate ad g -invariant symmetric bilinear form (• | •) : g ⊗ g → C-so the highest root has length √ 2. Consider then the (formal) loop algebra Lg = g((z)) := g ⊗ C((z)), and let g (•|•) = g Lg ⊕ CK be the associated affine Lie algebra. The Lie bracket of g is defined by K ∈ Z( g) and

X ⊗ f, Y ⊗ g g = X, Y g ⊗ fg + c(X ⊗ f, Y ⊗ g)K , for f, g ∈ C((z)), X, Y ∈ g , (1)
where c : Lg ∧ Lg → C is the Lie-algebra cocycle defined by

c(X ⊗ f, Y ⊗ g) := (X | Y) • Res z=0 (gdf) , (2) 
and where in turn Res z=0 ω := f -1 for ω = i f i z i dz ∈ C((z)) dz.

Then there is an analogous decomposition g = n -⊕ h ⊕ n + , where

n + := (n + ⊗ 1) ⊕ zg z , n -:= z -1 g z -1 ⊕ (n -⊗ 1) , h := (h ⊗ 1) ⊕ CK .
Finally let b ± := h ⊕ n ± be the positive/negative Borel subalgebras associated to the sets of positive/negative roots, and b ± := (b ± ⊗ 1) ⊕ zg z ⊕ CK.

Hereafter we drop the "⊗1" from the notation for vector subspaces of the constant part g ⊆ Lg, and the subscripts from the Lie brackets.

Remark. The dual Coxeter number h ∨ of the quadratic Lie algebra g, (• | •) is half of the eigenvalue for the adjoint action of the standard quadratic tensor on g [START_REF] Kac | Infinite-dimensional Lie algebras[END_REF].

More precisely let (X k ) k be a basis of g, (X k ) k the (• | •)-dual basis, and define

Ω := k X k ⊗ X k ∈ g ⊗2 ,
i.e. intrinsically the element corresponding to Id g ∈ g ⊗ g ∨ in the duality g ∨ g induced by (• | •). The projection of Ω to the universal enveloping algebra is the quadratic Casimir

C = K X k X k ∈ U(g) , (3) 
which is a central element-by the invariance of (• | •). The adjoint action of C on g is thus a homothety, and we define h ∨ by ad

C X = k X k , [X k , X] = 2h ∨ X , for X ∈ g .
We will also need a generalisation of the standard quadratic tensor Ω. For m, l ∈ Z define

Ω ml := k X k z m ⊗ X k z l ∈ Lg ⊗2 , (4) 
with the shorthand notation Xz i = X ⊗ z i for X ∈ g and i ∈ Z. Then the identity

[C, X] = k X k X k , X = 0, valid for all X ∈ g, also implies k X k z m • X k , X z l + X k , X z m • X k z l = 0 , for m, l ∈ Z 0 . (5) 
1.1. Singular modules. For an integer p 1 consider the singular Lie subalgebra S (p) ⊆ b + (of depth p), defined by

S (p) := b + z + z p g z ⊕ CK , (6) 
so that S (1) = b + .

Lemma 1.1.

There is an identification of abelian Lie algebras

S (p) ab h p ⊕ CK . (7) 
Proof. We can define a linear surjection π : S (p) h p ⊕ CK with kernel

S (p) , S (p) = n + z + z p g z , (8) 
by setting

p-1 i=0 (H i + X i ) ⊗ z i + z p f + aK -→ p-1 i=0 H i ⊗ z i + aK ,
where f ∈ g z , a ∈ C, H i ∈ h, and X i ∈ n + for i ∈ { 0, . . . , p -1 }.

Characters of (6) are coded by linear maps S (p) ab → C, i.e. by elements of h ∨ p plus the choice of a level κ ∈ C for the central element-using [START_REF]isomonodromy, and quantum Weyl groups[END_REF]. We split the notation: for p = 1 write λ ∈ h ∨ the linear map, and for p 2 write it (λ, q) ∈ h ∨ p , where q = (a 1 , . . . , a p-1 ) ∈ h p h ∨ p-1 i=1 h ⊗ z i ∨ . We will refer to χ = χ(λ, q, κ) : S (p) → C as a singular character (of depth p), and we denote C χ the 1-dimensional left U S (p) -module defined by it. We also refer to λ as the tame part of the singular character, and to q as the wild part.

Remark. This hints to the dictionary with irregular meromorphic connections on the Riemann sphere: λ corresponds to a semisimple formal residue at a simple pole (a tame/regular singularity), and q to an untwisted irregular type at a higher-order pole (a wild/irregular singularity), see § 2.

We will use the uniform notation λ = a 0 when this distinction is not relevant.

Definition 1.1 (Affine singular modules).

• The affine singular module (of depth p) for the singular character χ is

W = W (p) χ := Ind U g U S (p) C χ = U g ⊗ U S (p) C χ . (9) 
• We write V = V χ := W

χ , and call it the tame affine module for the character χ = χ(λ, κ) : b + → C.

The latter item is the standard definition of an affine Verma module, and by definition these are level-κ modules. 5 Now denote w = [1 ⊗ 1] ∈ W the cyclic vector; then using ( 7) and (8) yields

z p g z w = (0) = n + z w , Hz i w = a i , Hz i w , for H ∈ h, i ∈ { 0, . . . , p -1 } , (10) 
plus Kw = κw. This generalises the relations satisfied by the highest-weight vector in a tame module. Consider now the subspace W -:= U g z -1 w ⊆ W. Because of (10) it equals W -= U n -w, so it is naturally a left U n --module with cyclic vector wand it is canonically isomorphic to U n -as vector space. Further matching up cyclic vectors yields an isomorphism W - V of left U g z -1 -modules, regardless of p 1 and q ∈ h p h ∨ . Note we implicitly use a C-basis of U g as provided by the Poincaré-Birkhoff-Witt theorem (PBW) for countabledimensional Lie algebras. Consider then the subspace W := U g z w ⊆ W, which is naturally a left U g z -module and which will play a more important role. An inductive proof on the length of monomials-with base (10)-shows that z p g z W = (0), so the g z -action factorises through the finite-dimensional quotient g z g p and we naturally have a left U(g p )-module. Further W = U n - p w since b + p w = Cw, so in particular W U(n - p ) as vector spaces, independently of χ.

Remark. Here we use the triangular decomposition

g p = n - p ⊕ h p ⊕ n + p and the inclusion b + p = n + p ⊕ h p ⊆ g p . One has n + p = b + p , b + p and b + p ab
h p , so by [START_REF]Hyperkähler manifolds and nonabelian Hodge theory of (irregular) curves[END_REF] there is a canonical identification W Ind

U(g p ) U(b + p ) C χ = U(g p ) ⊗ U(b + p ) C χ , (11) 
where we keep the notation χ : b + p → C for the character defined by (λ, q) ∈ h ∨ pthe level κ is lost.

Definition 1.2 (Finite singular modules).

• We call W = W (p) χ ⊆ W the finite singular module (of depth p) for the singular character χ.

• We write V = V χ = W (1)
χ , and call it the tame finite singular module for the character χ = χ(λ) : b + → C. 5 Beware a "regular" Verma modules is a Verma module defined by a dominant weight λ ∈ h. This is why we prefer using "tame".

The latter item is the standard definition of a finite Verma module. Analogously to the above, the finite tame module is canonically embedded as a U(g)submodule, namely as the subspace W -∩ W = U(g)w ⊆ W.

On the whole there is an identification of left U n --modules

W U n -⊗ U(n -) U(n - p ) , (12) 
independent of χ.

1.2. Algebricity. The structure of W as left-module is controlled by algebraic elements, not by arbitrary formal power series. More precisely define Lg alg = g z ±1 := g ⊗ C z ±1 , and then g alg Lg alg using the restriction of the cocycle [START_REF] Arnol'd | The cohomology ring of the group of dyed braids[END_REF]. These are the algebraic loop algebra and the algebraic affine Lie algebra of g, respectively. Replacing "g z " by "g[z]" in (9) then yields left U g alg -modules, temporarily denoted W alg , generated by a cyclic vector w alg ∈ W alg .

On the other hand the modules W are left U g alg -modules via the inclusion U g alg → U g , and composing with the canonical projection

U g W U g Ann U g (w)
yields a linear map ι : U g alg → W.

Lemma 1.2. The map ι induces an isomorphism W alg W of left U g alg -modules.

Proof. By (10) the map ι is surjective, since W is generated by the cyclic vector over U Lg alg . Its kernel is

Ker(ι) = Ann U g (w) ∩ U g alg = Ann U g alg (w alg ) .
Hence the action of meromorphic g-valued functions on the singular modules is given by Laurent polynomials only. We will drop the subscript "alg" from all notations.

Relation with (irregular) meromorphic connections

There are canonical vector space isomorphisms g ⊗ z i ∨ g ⊗ z -(i+1) dz, for i ∈ Z. They are induced from the nondegenerate LG-invariant residue-pairing

Lg dz × Lg -→ C, (X ⊗ ω, Y ⊗ g) -→ (X | Y) • Res z=0 (gω) , (13) 
where Lg dz := g ⊗ C((z)) dz, G is a connected simply-connected (simple) Lie group with Lie algebra g, and LG the associated loop group.

Thus after fixing a level κ ∈ C the families of singular modules ( 9) and ( 11) are both naturally parametrised by elements

A = dQ + Λ dz z ∈ z -1 h z -1 dz . ( 14 
)
Namely the residue term Λz -1 dz ∈ h ⊗ z -1 dz corresponds to the tame part λ ∈ h ∨ of a singular character, and the irregular type

Q = p-1 i=1 A i z i ∈ h((z)) h z , with A i ∈ h for all i , is such that d(A i z -i ) = -iA i z -i-1 dz ∈ h ⊗ z -i-1 dz corresponds to the wild part a i ∈ h ⊗ z i ∨ .
The meromorphic 1-forms ( 14) should be thought of as principal parts of germs of meromorphic connections at a point on a Riemann surface (with semisimple formal residue and untwisted irregular type; here we are considering "very good" orbits in the terminology of [START_REF]Wild character varieties, meromorphic Hitchin systems and Dynkin diagrams[END_REF]).

As mentioned in the introduction, the crucial facts are:

(1) g p = Lie(G p ), where G p := G C z z p C z is the group of (p -1)-jets of bundle automorphisms for the trivial principal G-bundle on a (formal) disc;

(2) the level-zero complex symplectic reduction for the diagonal G-actionon products of coadjoint G p -orbits-yields a description of an open de Rham space M * dR , viz. a moduli spaces of isomorphism classes of irregular meromorphic connections on a holomorphically trivial principal bundle over the Riemann sphere (with prescribed positions of poles and irregular types [8, § 5]; see [START_REF] Boalch | Symplectic manifolds and isomonodromic deformations[END_REF] for G = GL m (C)). Moreover the diagonal G-action will correspond to taking g-coinvariants for the tensor product of finite singular modules, generalising the tame case (see § § 7 and 8).

Remark 2.1 (Birkhoff groups/Lie algebras). Consider the subgroup B p ⊆ G p of elements with constant term 1. Then G acts on B p by conjugation, and there are natural identification G p G B p and g p g b p , where b p = Lie(B p ). 6 This yields a vector space decomposition g ∨ p g ∨ ⊕ b ∨ p : in the duality [START_REF]Wild character varieties, meromorphic Hitchin systems and Dynkin diagrams[END_REF] the former summand corresponds to formal residues with zero irregular types, and the latter to irregular types with zero residue (so in particular q ∈ b ∨ p ).

Bases, gradings and filtrations

Denote Π = { θ i } i ⊆ R + the set of simple roots, and choose an order R + = (α 1 , . . . , α s ) for the set of positive roots. If r := rk(g) we may assume

θ i = α i for i ∈ { 1, . . . , r }. Let then (F α ) α∈R + and (E α ) α∈R + be bases of n -and n + with (F α , E α ) ∈ g -α ⊕ g α , and such that (F α , H α := [E α , F α ], E α ) is an sl 2 -triple.
(We may at times write E -α := F α for the sake of a uniform notation.)

In particular (H θ ) θ∈Π is a basis of h, and we get a (ordered) Cartan-Weyl basis of g:

(X 1 , . . . , X 2s+r ) := (F α 1 , . . . , F α s , H θ 1 , . . . , H θ r , E α 1 , . . . , E α s ) . ( 15 
)
For a multi-index n ∈ Z 2s+r 0 define

X n := X n 1 1 • • • X n 2s+r
2s+r ∈ U(g) . By the PBW theorem these monomials provide a C-basis of U(g). 6 Beware to distinguish the positive/negative deeper Borel subalgebra b ± p from the Birkhoff subalgebra b p .

3.1. PBW-bases of singular modules. Let β = (β i ) i 0 be a sequence of nonnegative integers with finite support, and consider another sequence with values in the index set of the Cartan-Weyl basis [START_REF] Bott | Homogeneous vector bundles[END_REF]

, i.e. k = (k i ) i 0 ∈ { 1, . . . , r + 2s } Z 0 . Then define X k z β := i∈β -1 Z >0 X k i z β i ∈ U Lg alg .

Lemma 3.1 (PBW-basis of algebraic affine enveloping algebras).

A C-basis of U Lg alg is given by

B := X k z -β • X n • X k z β k ,β ,n,k,β , ( 16 
)
where β is nonincreasing, β is nondecreasing, and

k j k j+1 (resp. k j k j+1 ) if β j = β j+1 (resp. β j = β j+1 ).
This is one statement of the PBW theorem for the countable-dimensional Lie algebra Lg alg = g ⊗ C z ±1 -we have monomials over a totally ordered basis.

Corollary 3.1 (PBW-basis of affine singular modules).

A C-basis of the affine singular module W can be extracted from

B W := X k z -β • X n • X k z β w k ,β ,n,k,β , (17) 
where β , k , n, k, and β are as above.

Proof. The family generates over C since U Lg alg w = W, and using Lem. 3.1.

Remark.

In [START_REF] Fedorov | Irregular Wakimoto modules and the Casimir connection[END_REF] one may take β bounded above by p -1, as z p g z w = (0).

Using this set of generators we can prove smoothness.

Lemma 3.2. The singular modules are smooth.

Proof. This is clear in the finite case, as z p g z W = (0). In the affine case choose X ∈ g and an element w = X k z -β X n X k z β w of ( 17). Then the vanishing Xz N w = 0 holds for

N p + i 0 β i ∈ Z >0 ,
and the conclusion follows since ( 17) is a set of generators.

Lemma 3.3 (PBW-basis of depth-p finite enveloping algebras).

A C-basis of U g p is given by

B := X n • X k z β n,k,β , ( 18 
)
where n, k and β are as above, with the condition of Rem. 3.1. Moreover restricting to

X i , X k j ∈ n -for i ∈ { 1, . . . , 2s + r } and j 0 yields a C-basis of U(n - p ).
This is one statement of the PBW theorem for the finite-dimensional Lie algebras g p and n - p .

Corollary 3.2 (PBW-basis of finite singular modules).

A C-basis of the finite singular module W ⊆ W is given by

B W := X n • X k z β w n,k,β , (19) 
where all conditions of Lem. 3.3 apply.

Proof. The family generates since W = U(n - p )w, and using Lem. 3.3 (the generating part). But U(n - p ) has trivial intersection with the annihilator of w, hence the family is free by Lem. 3.3 (the linear independence part).

In particular W is a free rank-1 left U(n - p )-module.

3.2.

Gradings for z-degree. We first define two positive Z-gradings on W.

Definition 3.1. Choose k ∈ Z. Then:

• the subspace F - k = F - k W ⊆ W is the C-span of the vectors of (17) with i β i = k; • the subspace F + k = F + k W ⊆ W is the C-span of the vectors of (17) with i β i = k. By definition F - 0 = W, F + 0 = W -, and g ⊗ z -i F - k = F - k+i , for i 0 . (20) 
In particular W, F - • is a Z-graded g z -1 -module, where g z -1 is a Z-graded Lie algebra with grading defined by deg(g ⊗ z -i ) = i.

The other grading instead does not yield a graded module; but we can obtain one inducing a (positive) grading on W ⊆ W.

Definition 3.2. For k ∈ Z set F + k := F + k ∩ W. It follows that F + 0 = U(g)w ⊆ W, and n -⊗ z i F + k ⊆ F + k+i , for k, i 0 , (21) 
so the space W, F + • is a Z-graded n -z -module, where n -z is a Z-graded Lie algebra with grading defined by deg(n -⊗ z i ) = i.

Filtrations. We consider the filtration F -

• on W associated to the grading of Def. 3.1 for the negative z-degree. It follows from [START_REF] Feli Ńska | Whittaker pairs for the Virasoro algebra and the Gaiotto-Bonelli-Maruyoshi-Tanzini states[END_REF] that

F - k+1 = m+l=k g ⊗ z -m-1 F - l , g ⊗ z i F - k ⊆ F - k , (22) 
for k, i 0.

Finally we consider on U(g

)w = U(n -)w ⊆ W the natural filtration E • in- duced from that of U(n -), so that E 0 = Cw. Note n -E k + E k = E k+1 , ( 23 
)
and further n -acts nontrivially on the associated graded of U(g)w, E • :

n -gr(E) k ⊆ gr(E) k+1 , (24) 
where as customary gr(E) k := E k E k-1 for k ∈ Z 0 -and E -1 := (0).

Weight gradings. For

µ ∈ h ∨ define F µ W = F µ := w ∈ W H w = µ(H) w for H ∈ h ⊆ W ,
and analogously

F µ (W) = F µ := W ∩ F µ ⊆ W.
Proposition 3.1. The singular modules are h-semisimple, i.e.

W = µ∈h ∨ F µ , W = µ∈h ∨ F µ .
Proof. This follows from the fact that all elements of ( 17) and ( 19) are h-weight vectors, which in turn is proven recursively using the identities

H • X α z i w = µ + α, H X α z i w , H • H z i w = µ, H • H z i w , for α ∈ R, H, H ∈ h, i ∈ Z and w ∈ F µ .
Remark. In the finite case one may define the h p -weight spaces, i.e. the subspaces of vectors w ∈ W such that Hz i w = µ i , Hz i w for µ = (µ 0 , . . . , µ p-1 ) ∈ h ∨ p . However the very first recursion fails for p 2: if

H ∈ h is such that α, H = 0 then Hz • X -α w = a 1 , Hz X -α w -α, H X -α z • w ∈ C(X -α w)
, where w is the cyclic vector, so the finite singular modules are not h p -semisimple.

The proof of Prop. 3.1 implies all weights are contained inside λ + Q ⊆ h ∨ , where Q := ZR is the root lattice.

Remark. Consider the z-linear extension of the adjoint action h → gl(g) on Lg. Decomposing Lg = α∈R Lg α ⊕ Lh we see Lg is naturally a h ∨ -graded Lie algebra (with nontrivial weights still given by R ∪ { 0 }), and the proof of Prop. 3.1 shows the singular modules are h ∨ -graded.

In the finite case one can go further recovering the standard notion of positivity. Namely h ∨ , is a poset by defining µ µ by µ -µ ∈ Q + , where

Q + := Z 0 R + ⊆ Q is the positive root lattice. Lemma 3.4. One has F λ = Cw and W = µ λ F µ .
Proof. It follows from the fact that W is generated over U(n - p ) by a h p -weight vector annihilated by n + p : it is a highest-weight g p -module.

In particular (19) consists of weight vectors, and the line Cw ⊆ W has the highest weight.

In view of Lem. 3.4 the weight spaces are naturally parametrised by elements

ν ∈ Q + , via F ν := F λ-ν . Now for an element ν ∈ h ∨ denote Mult R + (ν) :=    m = (m α ) α ∈ Z R + 0 α∈R + m α • α = ν    ⊆ Z R + 0 ,
so that the cardinality of Mult R + (ν) is the finite number of ways of expressing ν as a Z 0 -linear combination of positive roots. In particular Mult R + (0) = { 0 },

and Mult R + (ν) = ∅ for ν ∈ Q + . Finally for m ∈ Z R + 0 denote WComp p (m) :=    ϕ = (ϕ α ) α ϕ α : { 0, . . . , p -1 } → Z 0 , p-1 i=0 ϕ α (i) = m α    ,
which is the finite set of weak p-compositions of the integers m α 0. 7 In particular WComp 1 (m) is a singleton containing the element ϕ with ϕ α (0) = m α for all α ∈ R + .

Proposition 3.2. For ν ∈ h ∨ one has dim F ν = m∈Mult R + (ν) m + p -1 m < ∞ , ( 25 
)
where m+p-1 m

:= α∈R + m α +p-1 m α .
Proof. Choose µ ∈ h ∨ and set ν = λ -µ. Then for m ∈ Mult R + (ν) and ϕ ∈ WComp p (m) consider the vector

w ϕ := p-1 i=0 α∈R + X -α z i ϕ α (i) w ∈ B W . (26) 
The family { w ϕ } ϕ ⊆ W is free since it consists of distinct elements extracted from [START_REF] Felder | Differential equations compatible with KZ equations[END_REF] (beware of the ordering in the product), and by construction w ϕ ∈ F ν .

Conversely the vectors ( 26) exhaust ( 19), from which one can extract a basis of F ν , so the conclusion follows from standard combinatorial identities. Thus Prop. 3.2 strengthen Lem. 3.4: the given sum is empty for ν ∈ Q + , and WComp p (0) is a singleton containing the element ϕ with ϕ α (i) = 0 for i ∈ { 0, . . . , p -1 }.

As expected [START_REF] Harnad | Dual isomonodromic deformations and moment maps to loop algebras[END_REF] generalises the standard fact that dim F ν = Mult R + (ν) for Verma modules, i.e. it generalises the character of Verma modules. The difference in the general case is that one must also specify a z-degree for each occurrence of a positive root.

Remark. This notion of positivity is lost with the (finite) modules of § 12: in particular they have infinite-dimensional weight spaces and are less suited to yield irregular versions of conformal blocks.

For example consider the case where ν = θ ∈ Π is a simple root. One has

Mult R + (θ) = m θ , with m θ α := δ θ,α . Also WComp p (m θ ) = ϕ θ,i i
, where

ϕ θ,i α (j) = δ α,θ δ ij for i, j ∈ { 0, . . . , p -1 }. Hence X ϕ θ,i = X -θ z i , so we recover dim F θ = p with F θ = span C X -θ w, . . . , X -θ z p-1 w .
Remark. It follows from the above that

U n + z F ν = 0 ν ν F ν , for ν ∈ Q + .
Hence the module W is locally n + z -finite, i.e. the vector spaces U n + z w ⊆ W are finite-dimensional for all w ∈ W.

One is tempted to say that W lies in a "Bernstein-Gelfand-Gelfand category O z " [START_REF] Humphreys | Representations of semisimple Lie algebras in the BGG category O[END_REF]-of h-semisimple finitely generated left U g z )-modules which are locally n + z -finite.

3.4.1. Archetypal case. One may get to the end of this story when g = sl(2, C) with the standard basis (F, H, E) and the standard A 1 -root system R = { ±α }, where α is positive and α, H = 2. Then

Q + = Z 0 α, so simply Mult R + (ν) = { m } for elements ν = mα with m ∈ Z 0 .
Thus [START_REF] Harnad | Dual isomonodromic deformations and moment maps to loop algebras[END_REF] reduces to dim

F mα = WComp p (m) = m + p -1 m . ( 27 
)
In the tame case one recovers the line generated by F m v, whereas in the general case a basis is given by

w ϕ = p-1 i=0 Fz i ϕ(i) • v , for ϕ ∈ WComp p (m) . ( 28 
)

Dual modules

In view of Prop. 3.1 we consider the restricted duals of the h ∨ -graded singular modules, i.e. the h ∨ -graded vector spaces

W * := µ∈h ∨ F ∨ µ ⊆ W ∨ , W * := µ∈h ∨ F ∨ µ ⊆ W ∨ . ( 29 
)
They are naturally equipped with a right U g -and U g p -module structure (respectively), namely

ψXz i , w = ψ, Xz i w , ψK = κ ψ , for i ∈ Z, X ∈ g, ψ ∈ W * , w ∈ W ,
and analogously in the finite case.

To get a left action compose with a Lie algebra morphism g → g op (resp. g p → g op p ), or rather with the induced ring morphism U g → U g op = U g op (resp. U(g p ) → U(g p ) op ). In particular a Lie algebra morphism θ : g → g op has a unique Z-graded extension θ : Lg → L g op = Lg op : in the finite case one can then consider the restriction θ : g z → g z op (which is compatible with the projections g z g p and g z op g op p ); in the affine case one may further ask that θ is (• | •)-orthogonal, and extend the definition by θ(K) := -K.

In what follows we only consider morphisms of this type. 

θ 1 (E α ) = E -α , θ 1 h = Id h , for α ∈ R .
We refer to θ 0 -duals simply as dual modules, and to θ 1 -duals as contragredient modules.

Consider then the element ψ ∈ W * dual to the cyclic vector in the basis [START_REF] Felder | Differential equations compatible with KZ equations[END_REF], i.e. ψ, w = 1 and ψ vanishes on all other vectors of ( 19)-whence F ∨ λ = Cψ. Assume hereafter that θ(h) = h op (up to conjugating θ by an inner automorphism of g), and canonically identify h h op and their duals. Then we have a well defined pull-back map θ * ∈ GL(h ∨ ), which we extend z-linearly to h ⊗ z i ∨ h ∨ ⊗ z i . Moreover by orthogonality the subspace n + ⊕ n -⊆ g is θ-stable.

Lemma 4.1. The vector ψ ∈ W * satifies the relations

z p g z ψ = (0) = θ -1 (n -) z , Hz i ψ = θ * a i , Hz i ψ , for H ∈ h, i ∈ { 0, . . . , p -1 } . ( 30 
)
Proof. Use ( 10), ( 21), z p g z W = (0), and the fact that θ : g z → g z op preserves the z-grading of Def. 3.2.

In particular n -z ψ = (0) in the dual case, and n + z ψ = (0) in the contragredient case. 

F ∨ µ = F * θ * µ and E α z i F ∨ µ ⊆ F ∨ µ+θ * α , for µ ∈ h ∨ , α ∈ R, i ∈ Z,
I µ = I µ θ(H) = θ * µ, H I µ ∈ End W , for µ ∈ h ∨ , H ∈ h .
Hence for w ∈ W one has

H ψ, w = ψ, I µ θ(H) w = θ * µ, H ψ, w , whence the inclusion F ∨ µ ⊆ F * θ * µ
, and the equality follows from [START_REF] Jimbo | Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent[END_REF]. The latter inclusion follows from θ(E α )z i F µ ⊆ F µ-θ * α for α ∈ R, which is a straightforward computation using [START_REF] Alday | Liouville correlation functions from four-dimensional gauge theories[END_REF].

The same pair of arguments applies verbatim to the finite case.

Hence [START_REF] Jimbo | Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent[END_REF] is the h-weight decomposition of θ-dual singular modules, and the weights are contained inside θ * (λ + Q) ⊆ h ∨ (resp. θ * (λ + Q + )) in the affine (resp. finite) case. By Lem. 3.4 we conclude that ψ ∈ W * θ 0 is a lowest-weight vector of lowest weight θ * 0 λ = -λ, whereas ψ ∈ W * θ 1 is a highest-weight vector of highest weight θ * 1 λ = λ.

In particular in the contragredient case matching the cyclic vector with its dual yields a canonical morphism Φ : W → W * θ 1 , hence a generalisation of the Shapovalov form S : W ⊗ W -→ C , w ⊗ w -→ Φ w , w . This may be degenerate, particularly since the image of the canonical morphism is the submodule W θ := U g z ψ ⊆ W * θ , which in general is a proper submodule (e.g. in the finite dual tame case for g = sl(2, C) and λ = 0). Nonetheless we can recursively find the obstruction for ψ to generate the θ-dual module. To give a necessary condition consider the vector w = E -α z p-1 w ∈ F λ-α , for α ∈ R + . By Lem. 4.2 a linear form ψ ∈ W θ that vanishes on B W \ { w } must lie in the span of

θ -1 (E α )ψ, . . . , θ -1 (E α )z p-1 ψ ⊆ F ∨ λ-α , so consider a generic element ψ = ψ(b 0 , . . . , b p-1 ) = p-1 j=0 b j θ -1 (E α )z j ψ , with b j ∈ C .
Using z p g z W = (0) = n + z w and ψ, w = 1 yields

ψ, w = b p-1 a p-1 , H α z p-1 ,
so we need the highest irregular part to be regular (cf. § 6).

Conversely we have the following.

Proposition 4.1. One has W θ = W * θ for parameters (λ, q) in a dense subspace of the affine space h ∨ p -with respect to the strong/classical topology.

Proof. Clearly F ∨ λ ⊆ W θ , and then we reason recursively on the h ∨ -weight space decomposition of W.

Choose w ∈ B W ∩ F µ , and consider the vectors w α (k) := E -α z k w ∈ F µ-α , for α ∈ R + and k ∈ { 0, . . . , p -1 }. As w, α and k vary, the vectors w α (k) exhaust

B W ∩ F µ-α , so we must find coefficients b ij ∈ C such that ψ α (i), w α (k) = δ ik , where ψ α (i) = p-1 j=0 b ij θ -1 (E α )z j ψ ∈ F ∨ µ-α , for i ∈ { 0, . . . , p -1 } ,
and where ψ ∈ F ∨ µ is the dual of w-lying in W θ by the recursive hypothesis. Now one has Now the determinant of M = M( w, α) is a degree-p polynomial whose coefficients depend polynomially on (λ, q), hence it amounts to a polynomial function

ψ α (i), w α (k) = p-1 j=0 b ij ψ, E α z j E -α z k w ,
h ∨ p → C. Thus W θ = W *
θ by taking (λ, q) in a countable intersection of open dense subsets.

Finally we can choose a complementary subspace to W inside W, and extend ψ : W → C by zero to the whole of W-e.g. extract a PBW-basis from [START_REF] Fedorov | Irregular Wakimoto modules and the Casimir connection[END_REF]. Then one can consider the module W θ ⊆ W * θ generated by this extension over Lg, and define gradings/filtrations on W θ W θ analogously to § § 3.2 and 3.3, using the generating set ( 16), the basis [START_REF] Feigin | Gaudin models with irregular singularities[END_REF], and the standard filtration of U θ -1 (n + ) . These satisfy the analogous identities of ( 20)-( 23).

Segal-Sugawara operators

For n ∈ Z define

L n := 1 2 κ + h ∨ j∈Z k : X k z -j • X k z n+j : , (31) 
where

(X k ) k and (X k ) k are (• | •)-dual bases of g, κ = -h ∨ is a noncritical level,
and in the normal-ordered product one puts elements of g z ⊆ Lg to the right. The Sugawara operators (31) (due to Segal in this particular form) are welldefined elements of the completion U g of U g with respect to the inverse system of left ideals U g z •+1 g z U g z • g z . If follows from Lem. 3.2 that there are well-defined actions of (31) on the modules W ⊆ W.

5.1. Cyclic vector as Sugawara eigenvector. The cyclic vector w ∈ W is a common eigenvector for the Sugawara operators when n 0. To get explicit formulae for the eigenvalues we recall further euclidean properties of the Cartan-Weyl basis [START_REF] Bott | Homogeneous vector bundles[END_REF]. Then we replace the simple-root basis of h with a (• | •)-orthonormal basis, denoted (H k ) k -i.e. we "divide" by the Cartan matrix-, and for i ∈ Z we transfer the basis and the pairings to g ⊗ z i and g ⊗ z i ∨ g ∨ ⊗ z i using the canonical vector space isomorphism g g ⊗ z i . Then one has the tautological basis-independent identity

(µ | µ ) = r k=1 µ, H k z i µ , H k z j for µ ∈ h ∨ ⊗ z i , µ ∈ h ∨ ⊗ z j .
Finally denote as customary ρ := 1 2 α∈R + α ∈ h ∨ the half-sum of positive roots.

Proposition 5.1. The cyclic vector w is a common eigenvector for the operators [START_REF] Kirillov | Lectures on the orbit method[END_REF] 

with n p -1. If n > 2(p -1) then L n w = 0, else L n w = l n w with l n := 1 2 κ + h ∨ p-1 j=1-p+n (a j | a n-j ) , for n ∈ p, . . . , 2(p -1) , (32) 
and

l p-1 := 1 2 κ + h ∨ p-1 j=0 (a j | a p-1-j ) + 2p(ρ | a p-1 ) . ( 33 
)
Proof. Postponed to § A.1.

Hence the cyclic vector is an "irregular vector of order p -1" in the WZNW model-instead of the Liouville model [START_REF] Gaiotto | Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories[END_REF].

Remark 5.2. This generalises the standard fact that L n v = 0 for n > 0, and that v is an L 0 -eigenvector, with nonzero eigenvalue for generic values of λ ∈ h ∨ . Namely if p = 1 then (33) reduces to

L 0 v = ∆ λ v , ∆ λ = (λ | λ + 2ρ) 2(κ + h ∨ ) ,
reverting to the notation λ = a 0 , which recovers the conformal weight corresponding to the action of the quadratic Casimir (3).

5.2. Action on finite modules. Later we will use the action of the operator L -1 on the finite module W ⊆ W. Using z p g z W = (0) we see nonvanishing terms arise for 1 -p j p in [START_REF] Kirillov | Lectures on the orbit method[END_REF], and resolving the ordered product yields

L -1 w = 1 κ + h ∨ p j=1 k X k z -j X k z j-1 w , for w ∈ W . (34) 
As expected L -1 w ∈ W, but it can be put back into the finite module via the loop-algebra action (see § 7).

Remark. We see [START_REF] Kohno | Conformal field theory and topology[END_REF] generalises the usual formula from the tame case:

L -1 v = 1 κ + h ∨ k X k z -1 X k v , for v ∈ V . ( 35 
)

Irregular conformal blocks: first version

Consider the Riemann sphere Σ := CP 1 , choose an integer n 1 and mark points p 1 , . . . , p n ∈ Σ. Denote J = { 1, . . . , n } the ordered set of labels for the points and p = (p 1 , . . . , p n ) the ordered set of points.

Let O Σ be the structure sheaf of regular functions on Σ, seen as a (smooth) complex projective curve. Then consider the stalks O j = O Σ,p j at the marked points, their (unique) maximal ideals M j = M p j ⊆ O j of germs of functions vanishing at p j , the completions O j := lim ← -n O j M n j , and their field of fractions

O j → K j . Remark. If z j is a local coordinate on Σ vanishing at p j then O j C[z j ] , M j = z j C[z j ] , O j C z j , K j C((z j )) .
Then consider the loop algebras (Lg) j := g ⊗ K j and the associated affine Lie algebras g j (Lg) j . There are canonical isomorphisms g i g j for i, j ∈ J, and the subscripts distinguish the local picture at the marked points. Now for j ∈ J further choose an integer r j 1, and set up singular modules as in § 1. Hence consider the Lie subalgebras S (r j ) ⊆ g j , a common level κ ∈ C for the central elements, and singular characters χ j = χ(λ j , q j , κ), where λ j ∈ h ∨ and q j = (a j ) 1 , . . . , (a j ) r j -1 with (a j ) i ∈ h ⊗ z i ∨ . This yields singular modules

W (r j ) χ j =: W j ⊆ W j := W (r j )
χ j , and we consider the vector spaces

H = H p,χ := j∈J W j , H = H p,χ := j∈J W j , (36) 
where χ = (χ j ) j∈J . Clearly H ⊆ H, and the dependence on the choice of marked points is void (it becomes relevant after considering the action of g-valued meromorphic functions in § 6.2). The spaces [START_REF] Nagoya | Irregular conformal blocks, with an application to the fifth and fourth Painlevé equations[END_REF] are endowed with natural structures of left modules for the associative algebras U g ⊗n j∈J U g j and j∈J U g r j , respectively. Moreover for indices i = j ∈ J denote ι (ij) : U(Lg) ⊗2 → U(Lg) ⊗n the natural inclusion on the i-th and j-th slot, defined on pure tensors by

X ⊗ Y -→ 1 ⊗i-1 ⊗ X ⊗ 1 ⊗j-i-1 ⊗ Y ⊗ 1 ⊗n-j , ( 37 
)
for i < j, and analogously for i > j. Finally define ι (ii) : U(Lg) ⊗2 → U(Lg) ⊗n by X ⊗ Y → 1 ⊗i-1 ⊗ XY ⊗ 1 ⊗n-i . This yields an action of quadratic loop-algebra tensors on (36).

6.1. Tame isomonodromy times. We now vary part of the parameters defining the spaces [START_REF] Nagoya | Irregular conformal blocks, with an application to the fifth and fourth Painlevé equations[END_REF], namely the marked points. An admissible deformation is one where they do not coalesce, so marked points vary inside the configuration space C n := Conf n (Σ) ⊆ Σ n of ordered n-tuples of (labeled) points on Σ.

The space C n is the space of tame isomonodromy times. It is a complex manifold of dimension n.

Remark. The terminology points again to meromorphic connections on the sphere.

Namely the positions of the poles and the irregular types together control Stokes data of irregular meromorphic G-connections over the sphere. Recall Stokes data generalise the conjugacy class of the monodromy representation ν : π 1 Σ • , b → G, where Σ • := Σ \ p j j∈J is the punctured sphere with the poles removed and b ∈ Σ • a base point [START_REF]isomonodromy, and quantum Weyl groups[END_REF].

Then one may consider admissible deformations of the connections along which Stokes data do not vary, which yields by definition isomonodromic deformations. This can be set up as a system of nonlinear differential equations where the positions of the poles and the irregular types are precisely the independent variables, hence they become the "times" of isomonodromic deformations: the positions of the poles are the tame/regular times, and the rest are the wild/irregular ones.

Geometrically these differential equations constitute a nonlinear flat/integrable symplectic connection in the local system of moduli spaces M * dR of meromorphic connections, as the marked points and the irregular types vary (i.e. as the wild Riemann surface structure on the sphere varies [START_REF]Geometry and braiding of Stokes data; fission and wild character varieties[END_REF]). Now for a J-tuple χ of singular characters we consider the vector bundles H = H •,χ → C n and H = H •,χ → C n , whose fibres over p ∈ C n are the spaces [START_REF] Nagoya | Irregular conformal blocks, with an application to the fifth and fourth Painlevé equations[END_REF], respectively. We have an inclusion H ⊆ H, and global vector bundle trivialisations:

H J∈J U n -⊗ U(n -) U n - r j × C n -→ C n ,
by [START_REF]Geometry and braiding of Stokes data; fission and wild character varieties[END_REF], and the simpler

H j∈J U n - r j × C n -→ C n , by W j U n - r j .
The point here is that both vector space isomorphisms do not depend on the choice of marked points (nor on the character, cf. 6.4).

Action of meromorphic functions: punctual version.

Given marked points p j ∈ Σ consider the effective divisor D := j∈J p j on Σ, and denote as customary O * D (Σ) = O Σ, * D (Σ) the vector space of meromorphic functions along Σ with poles at most on (the support of) D. Then let g * D (Σ) := g ⊗ O * D (Σ) be the Lie algebra of g-valued such meromorphic functions, with bracket coming from g:

[f, g](p) := f(p), g(p) ∈ g , for f, g ∈ g * D (Σ) , p ∈ Σ .
Taking Laurent expansions at p j yields a linear map τ j : O * D (Σ) → K j , and tensoring with g a linear map g * D (Σ) → Lg j ⊆ g j .

Remark. If z j is a local coordinate on Σ vanishing at p j , and f ∈ O * D (Σ), then there are coefficients f i ∈ C such that

τ j (f) = f(z j ) = i -ord p j (f) f i z i j ∈ C((z j )) ,
where ord p (f) 0 is the order of p ∈ Σ as a pole of f.

Thus there is an arrow

τ : g * D (Σ) -→ End H , τ(X ⊗ f) := j∈J X ⊗ τ j (f) (j) . (38) 
Using [START_REF] Alday | Liouville correlation functions from four-dimensional gauge theories[END_REF], and the fact that the sum of the residues of a meromorphic 1-form on Σ vanishes, shows that ( 38) is a morphism of Lie algebras.

Then the action τ : g * D (Σ) → gl H endows H with a left g * D (Σ)-module structure.

Definition 6.1 (Irregular conformal blocks space, first version).

The space of irregular conformal block at the pair (p, χ) is the space of coinvariants of the g * D (Σ)-module H:

H := H g * D = H p,χ g * D (Σ) H p,χ . (39) 
Remark. In our terminology (39) would be better called the space of singular conformal blocks, and be irregular/wild when r j 2 for some j ∈ J.

By [START_REF] Novikov | The Hamiltonian formalism and a multivalued analogue of Morse theory[END_REF], the fundamental identity inside the space of irregular conformal blocks is

X ⊗ τ i (f) (i) w = - j∈J\{ i } X ⊗ τ j (f) (j) w , (40) 
for i ∈ J, X ∈ g, f ∈ O * D (Σ) and w ∈ H, where square brackets denote equivalence classes modulo g * D (Σ) H p,χ .

Action of meromorphic functions: global version.

Now we want to globalise the action [START_REF] Novikov | The Hamiltonian formalism and a multivalued analogue of Morse theory[END_REF] over the space of configurations of n-tuples of points on the sphere, i.e. we want a map of sheaves of Lie algebras on C n .

To define the domain sheaf consider the projection

π Σ : Σ n+1 -→ Σ n , (p, p 1 , . . . , p n ) -→ (p 1 , . . . , p n ) .
Then set Σ (U ) along the divisor Y ∩ P j . Then tensoring with g yields a map of sheaves

Y := π -1 Σ (C n ) = (p, p 1 , . . . , p n ) p i = p j for i = j ⊆ Σ n+1 , so that π Σ : Y C n is
τ j : g * D -→ O C n ⊗ Lg j ⊆ O C n ⊗ g j ,
where O C n is the structure sheaf on the configuration space.

Remark. If z j is a local coordinate on Σ vanishing at p j , U = Conf n (U) for U ⊆ Σ an open affine subset, and f ∈ (π Σ ) * O * D (U ), then there are suitable functions

f i : U → C such that τ j (U )(f) = f(z j , t 1 , . . . , t n ) = i f i (t 1 , . . . , t n )z i j ∈ O C n (U ) ⊗ C((z j )) ,
using the local coordinates (t j ) j∈J on U ⊆ C n of Rem. 6.1. By definition the functions f i may have poles on the hyperplanes

t i = t j ⊆ C n .
Finally summing the action over each slot of the tensor product we have a sheaf-theoretic analogue of [START_REF] Novikov | The Hamiltonian formalism and a multivalued analogue of Morse theory[END_REF], acting on sections of H. 6.4. Irregular isomonodromy times. One may add the other possible deformations, e.g. with the following setup.

Recall the regular parts of the Cartan subalgebra and its dual are the complements of (co)root hyperplanes:

h reg := h \ α∈R Ker(α) , h ∨ reg := h ∨ \ α∈R Ker ev H α ,
and analogously for h ⊗ z i and its dual.

Then consider irregular parts q j ∈ b ∨ r j such that the most irregular coefficient (a j ) r j -1 is regular, and define an admissible deformation of as one in which the most irregular coefficient does not cross coroot hyperplanes.

Remark. This is the analogous condition as for the marked points: the open charts C n (C) ⊆ C n are regular parts for Cartan subalgebras of rank-n type-A simple Lie algebras. Doing so we get to the space of isomonodromy times

B = C n × j∈J h ∨ r j reg , (41) 
where

h ∨ r j reg = r j -2 i=1 h ⊗ z i ∨ × h ⊗ z r j -1 ∨ reg ,
and

(h ⊗ z i ) reg := Hz i H ∈ h reg ⊆ h ⊗ z i for i ∈ Z.
The space ( 41) is a complex manifold of dimension d = n + r j∈J (r j -1), where r = rk(g). As expected it coincides with the space of tame isomonodromy times if r j = 1 for j ∈ J.

Remark. If there is just one irregular module W j with r j = 2 then

B = C n × h ⊗ z ∨ reg ,
and one recovers the base space for the FMTV connection [START_REF] Felder | Differential equations compatible with KZ equations[END_REF]-up to the canonical vector space isomorphism h ⊗ z h. If further the variations of marked points are neglected then [START_REF] Reshetikhin | The Knizhnik-Zamolodchikov system as a deformation of the isomonodromy problem[END_REF] becomes the base space for the "Casimir" connection of De Concini and Millson-Toledano Laredo (DMT) [START_REF] Millson | Casimir operators and monodromy representations of generalised braid groups[END_REF][START_REF] Laredo | A Kohno-Drinfeld theorem for quantum Weyl groups[END_REF]. Then in [START_REF] Nagoya | Irregular conformal blocks, with an application to the fifth and fourth Painlevé equations[END_REF] one can let both p ∈ C n and χ ∈ j∈J h ∨ r j reg vary, getting a vector bundle over the base space [START_REF] Reshetikhin | The Knizhnik-Zamolodchikov system as a deformation of the isomonodromy problem[END_REF]. This also comes with a canonical vector bundle trivialisation, reasoning in the same way as for H ⊆ H (namely ( 12) is also independent of χ).

Finally one may extend the sheaf g * D trivially along the Cartan directions. Namely the projection π C n : B

C n is open, so one may take the naïf pullback sheaf:

π * C n g * D (U) = g * D π C n (U) , for U ⊆ B open .
If |µ| = 0 then F µ ⊆ hF µ is annihilated by π H , so we still have a surjective map

H ⊇ |µ|=0 F µ π H ---→ H , ( 44 
)
and by construction the h-action is trivialised on this subspace.

Remark. The condition |µ| = 0 is reminiscent of meromorphic connections: it is equivalent to the vanishing of the sum of the residues over Σ-in the duality (13).

7.1. Auxiliary tame module. Suppose one of the modules is tame, e.g. the last one: r n = 1 and W n = V n . Then we split the tensor product as

H = H ⊗ V n , H := j∈J W j ,
where J := J \ { n }, and we embed

H -→ H , j∈J w j -→ j∈J w j ⊗ v n ,
where v n ∈ V n is the cyclic/highest-weight vector.

Proposition 7.3. One has ι(H ) = H . Proof. Denote E (n)
• the filtration on U(g)v n ⊆ V n defined in § 3.3, which is exhaustive in this (tame) case. We will prove by induction on k 0 that ι H contains the classes of all vectors inside H ⊗ E

(n) k , noting the base follows from the identity E

(n) 0 = Cv n .
For the inductive step we use the constant version of [START_REF]Symmetries of the simply-laced quantum connections and quantisation of quiver varieties[END_REF]. For X ∈ g this shows that the class of X (n) w lies in ι H as soon as that of w ∈ H ⊗ E (n) k does, which is precisely the inductive hypothesis. Hence the conclusion follows from [START_REF] Gaiotto | Irregular singularities in the H3+ WZW model[END_REF]. Now Cv n = F λ n (V n ), so (44) yields a surjection:

H ⊇ |µ|=-λ n F µ π H ---→ H , where µ = (µ j ) j∈J ∈ h ∨ J , (45) 
writing |µ| = j∈J µ j ∈ h ∨ analogously to the above, and where F µ ⊆ H is the tensor product of the weight-gradings over J ⊆ J (analogously to [START_REF] Schlesinger | Über die Lösungen gewisser linearer Differentialgleichungen als Funktionen der singulären Punkte[END_REF]). Note the direct sum is just the weight space of weight -λ n ∈ h ∨ for the (tensor) action of h on H ; let us temporarily denote this space by H (-λ n ).

Lemma 7.1. The kernel of (45

) equals n + H ∩ H (-λ n ) ⊆ H (-λ n ).
Proof. We must show that no coinvariants can arise from the residual n --action.

To this end recall n -has nontrivial action on the associated graded of the filtration E • of § 3.3: more precisely (24) yields

n -H ⊗ gr E (n) k ⊆ H ⊗ gr E (n) k ⊕ H ⊗ gr E (n)
k+1 ⊆ H , for k ∈ Z 0 ; but there can be no vanishing of components in the latter direct summand since V n is freely generated over U(n -), and this applies in particular to

v n ∈ E (n) 0 gr E (n) 0 .
The punchline is the final identification

H H (-λ n ) n + H ∩ H (-λ n ) . ( 46 
)
7.1.1. On dimensions. To go further we use the results of § 3.4; in particular we employ the notation F ν (W j ) := F λ j -ν ⊆ W j for ν ∈ Q + -i.e. we parametrise the weights µ j = λ j -ν λ j by ν ∈ Q + . By definition the weight space of weight -λ n ∈ h ∨ for the h-action on H , denoted H (-λ n ) above, is the direct sum of the spaces F ν ⊆ H such that 0 = λ n + j∈J (λ j -ν j ), so only elements such that |ν| = |λ| ∈ h ∨ will contribute to coinvariants. This actually depends on the sum of the tame parts of the singular characters, hence we ought to change notation:

H |λ| := |ν|=|λ| F ν ⊆ H . ( 47 
) Proposition 7.4. The h-weight space H |λ| ⊆ H has dimension dim H |λ| = |ν|=|λ| j∈J m∈Mult R + (ν j ) m + r j -1 m < ∞ . ( 48 
)
Proof. It follows from [START_REF] Harnad | Dual isomonodromic deformations and moment maps to loop algebras[END_REF], taking the products of the dimensions of the weight spaces F ν j ⊆ W j . The dimension is finite since for ν ∈ Q + there are finitely many J -tuples

ν ∈ Q + J such that |ν| = ν-analogously to Mult R + (ν) < ∞.
We deduce the following.

Corollary 7.1. If one module is tame then the space of irregular conformal blocks of Def. 6.1 is finite-dimensional for all choices of marked points and singular characters.

In particular the weight space is trivial if |λ| ∈ Q + , and the simplest nontrivial case is when |λ| = 0. Then |ν| = 0 implies ν j = 0 for j ∈ J , so H 0 is the line generated by the tensor product i∈J w i of the cyclic vectors w i ∈ W i .

The next nontrivial example is when |λ| = θ ∈ Π is a simple root. Now |ν| = θ implies ν ∈ ν θ,i i , with ν θ,i j = δ ij θ for i, j ∈ J . Then one finds the singleton Mult R + ν θ,i j = δ ij m θ , with m θ α = δ αθ . On the whole (48) reduces to

dim H θ = i∈J j∈j δ ij m θ + r j -1 δ ij m θ = i∈J m θ + r i -1 m θ = i∈J r i ,
independently of the choice of simple root. A basis is given by the pure tensors

w j i := i-1 k=1 w k ⊗ F θ z j w i ⊗ n-1 k=i+1 w k ,
for i ∈ J and j ∈ { 0, . . . , r i -1 }.

Remark 7.1. One way to ensure coinvariants are nontrivial is the following: for a given configurations of points p = (p j ) j∈J consider the Lie subalgebra of g-valued meromorphic functions with poles at p j , and further with a zero elsewhere, say at p ∈ Σ \ p j j . Then the proof of Prop. 7.1 can easily be adapted working in the chart where p = ∞-as the function f i (z) = (z -t i ) -m vanishes at infinity. Thus there is still a surjection of H on the space of coinvariants, and similarly to Prop. 7.2 only constant functions lie in the kernel. Hence in this setup the kernel is trivial and H = (0) itself is the space of coinvariants.

Another way to ensure nontriviality is to put a θ-dual module in the tensor product (introduced in § 4). Further when it is tame then one still has a finitedimensional space, see § 8. 

dim H mα = m + R -1 m , where R := j∈J r j . ( 49 
)
A basis is provided by the pure tensors

w Φ = j∈J r j -1 i=0 Fz i Φ(i,j) w j , where Φ ∈ WComp R (m)-identifying { 1, . . . , R } j∈J 0, . . . , r j -1 .
Proof. Fix an integer m 0 and look for ν ∈ (Z 0 α) J satisfying |ν| = mα. Such elements are given by weak J -compositions of m, i.e. functions φ : J → Z 0 satisfying j∈J φ(j) = m, with bijection

φ -→ ν φ , ν φ j := φ(j)α .
Then by definition Mult R + ν φ j = φ(j) for j ∈ J , so we need only give elements ϕ j ∈ WComp r j φ(j) to allocate the z-degrees of the occurrences of -α at each slot of the tensor product.

The data of φ and ϕ = (ϕ j ) j is equivalent to that of the weak R-composition Φ : R → Z 0 defined by Φ(i, j) = ϕ j (i), and the result follows.

Remark. In the tame case [START_REF] Witten | Nonabelian bosonization in two dimensions[END_REF] 

simplifies to dim H mα = WComp J (m) = m + J -1 m ,
and a basis is given by the pure tensors

v φ = j∈J F φ(j) v j for φ ∈ WComp J (m) .
This is somehow the opposite of ( 28): there we had an arbitrary singular module, here we have a tensor product of arbitrarily many tame modules.

Irregular conformal blocks: second version

We now vary the setup of § 6 giving a special role to one of the marked points (e.g. the last one): choose a (• | •)-orthogonal morphism θ : g → g op and at the last marked point put a θ-dual module W θ W θ as defined in § 4. In this case the tensor product splits as

H = W n ⊗ j∈J W j , H = W n ⊗ j∈J W j , (50) 
where J = J \ { n } as in § 7.1-and omitting the subscript θ. These are naturally subspaces of Hom( W n , H ) and Hom(W n , H ), respectively, where H is as in § 7.1 and H := j∈J W j . Moreover they still assemble into trivial vector bundles H H over the space C n = Conf n (Σ)-but also over the full space (41) of isomonodromy times.

The Lie algebra of g-valued meromorphic functions on Σ acts on the leftmost tensor product of [START_REF] Yamada | A quantum isomonodromy equation and its application to N = 2 SU(N) gauge theories[END_REF]. Thinking in terms of linear maps ψ : W n → H , and using [START_REF] Novikov | The Hamiltonian formalism and a multivalued analogue of Morse theory[END_REF] and the dual actions of § 4, one has the formula

τ(X ⊗ f) ψ, w = j∈J X ⊗ τ j (f) (j) ψ, (θ(X) ⊗ τ n (f)) w ∈ H , where X ∈ g, f ∈ O * D (Σ) and w ∈ W n .
Taking coinvariants of the resulting left module yields a second version of the space of irregular conformal blocks, still denoted H . Moreover the material of § 6 goes through, and there is an action of the sheaf of Lie algebras g * D on sections of H and H.

8.1. On coinvariants. Consider first the natural inclusion ι : W n ⊗ H → H, which can be composed with the canonical projection π H : H → H . Reasoning as in Prop. 7.1 (which may be thought of as the case W n = C) shows this composition is surjective. Then reasoning as in Prop. 7.2 shows the kernel is obtained from the action of meromorphic functions with no poles at p 1 , . . . , p n-1 ⊆ Σ, but only (at most) at the point p n . Hence there is a vector space isomorphism

H W n ⊗ H g * p n (Σ) W n ⊗ H ,
thinking of p n ∈ Σ as a divisor. Now a function with a pole at most at p n is either constant, or its Laurent expansion at p n lies in z -1 n g z -1 n ⊆ (Lg) n , where as usual z n is a local coordinate on Σ vanishing at p n . Hence a coinvariant function is uniquely determined by its restriction to W n ⊆ W n , and since now poles are not allowed we get the following.

Proposition 8.1.

There is a canonical vector space identification

H W n ⊗ H g(W n ⊗ H ) .
Thus in this case as well we can reduce the discussion to g-coinvariants for the tensor product of finite modules. Now suppose the dual module is tame, and adapt the discussion of § 7.1. We see there is a surjective map H → H , where again H = j∈J W j -embedded in H via w → ψ ⊗ w, where ψ ∈ V n is the cyclic vector. Reasoning as in Lem. 7.1 the θ -1 (n -)-action cannot give coinvariant elements, so we are left with the action of h ⊕ θ -1 (n + ).

In the dual case where θ = θ 0 = -Id g we have θ -1 (n + ) = n + , so we are essentially back to § 7.1.1. The contragredient case where θ = θ 1 (the transposition) instead allows to go further. In this case θ -1 (n + ) = n -, whence a new identification H H b -, and to trivialise the h-action we consider again the zeroweight subspace inside H . This is again [START_REF] Vinberg | Some commutative subalgebras of a universal enveloping algebra[END_REF], whose (finite) dimension is given in Prop. 7.4. Finally in this setup we can recover nontriviality, as follows. Recall we attach weights λ = (λ j ) j∈J ∈ h ∨ J to the marked points, and that we consider the sum |λ| = j∈J λ j ∈ h ∨ . The weight space is

H |λ| ⊆ H , hence H H |λ| n -H ∩ H |λ| .
Compare with [START_REF] Laredo | A Kohno-Drinfeld theorem for quantum Weyl groups[END_REF]: as expected the roles of the nilpotent subalgebras n ± are exchanged-by θ.

Proposition 8.2. Suppose n 3 and |λ| ∈ Q + : then the space of coinvariants is nontrivial-for any choice of wild parts.

A fortiori then nontriviality holds if the n-th module is not tame.

Proof. For w ∈ F |λ| (W 1 ) ⊆ W 1 consider the pure tensor

w := w ⊗ 2 i n-1 w i ∈ H |λ| .
(In brief put the cyclic in all slots except the first, and put a vector of suitable weight in the first slot.) An argument analogous to the proof of Lem. 7.1 shows that w i ∈ n -H , which means exactly that w i = 0 inside H .

More precisely denote E (j)

• the filtration on U(g)w j = U(n -)w j ⊆ W j induced from U(n -), as in § 3.3, with associated grading gr E (j)

• . Then consider the tensor product Z J 0 -grading

gr E • := j∈J gr E (j)
• , where J := J \ { 1 } .

Using [START_REF] Gaiotto | Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories[END_REF] yields

n -W 1 ⊗ gr E k ⊆ W 1 ⊗ gr E k ⊕ n-1 i=2 W 1 ⊗ gr E k+ε i ,
for k ∈ Z J 0 , where ε i ∈ Z J is the i-th vector of the canonical Z-basis. Again the vanishing of components in the latter direct summands cannot happen, since the U(n -)-action is free on singular modules.

Remark. If n = 2 instead simply H F ν (W) n -W ∩ F ν (W) for ν ∈ Q + ,
and we must further distinguish the tame/wild case.

In the tame case V = n -V ⊕ Cv, so nontriviality implies v ∈ F ν : this forces ν = 0 and H F λ (V) = Cv.

In the wild case instead write ν = α∈R + m α α for m α ∈ Z 0 , and consider the vector

w ν := α∈R + X -α z m α w ∈ F ν (W) ,
ordering again the positive roots along the Cartan-Weyl basis (15) (note this makes sense at all depths p 2). Clearly w ν ∈ n -W, since all occrrences of root vectors have positive z-degree, hence H = (0) always in this case.

Remark. One may also consider the tensor products of the grading of Def. 3.2, in addition to the h-weight grading-i.e. use the fact that every finite module is a graded n -z -module. Namely there is a decomposition

H = k∈Z J F + k , where F + k = j∈J F + k j (W j ) ,
which is preserved by the tensor product b --action, so H k∈Z J (F + k ) b -. This is a new feature: in the tame case the grading in positive z-degree is trivial.

Connection on the irregular conformal blocks bundle

Consider a particular case of the setup of § 6: mark n + 1 (ordered) points on Σ, vary the first n 1 of them, and fix singular characters at those points.

Thus we work on a closed subspace of Conf n+1 (Σ), which is naturally identified with the local chart U = Conf n (U) ⊆ C n of Rem. 6.1 where p n+1 = ∞whence { p 1 , . . . , p n } ⊆ U C. The label set becomes J = { 1, . . . , n, ∞ }, and we write J := J \ { ∞ }.

Then we have two versions of spaces of irregular conformal blocks: either we put a singular module at infinity, or a θ-dual. In any case we consider the restrictions of the vector bundles H ⊆ H over U C n (C) := Conf n (C), as well as for the sheaves (π Σ ) * O * D and g * D on U -and keep the same notation for them.

Then we want to define a connection ∇ on H → C n (C) which is compatible with the action of the sheaf of Lie algebras g * D . In the given trivialisation this will be of the form ∇ = d-, where is a 1-form on C n (C) with values in endomorphisms of the fibres, and with a view towards (generalisations of) KZ [START_REF] Knizhnik | Current algebra and Wess-Zumino model in two dimensions[END_REF] we set ,

∂ t i := L (i) -1 , for i ∈ J ,
where we use the coordinates t : C n (C) → C n of Rem. 6.1 and the Sugawara operator [START_REF] Kirillov | Lectures on the orbit method[END_REF]. This is a translation-invariant 1-form on the parallelisable manifold C n (C), so in particular d = 0. Further the actions of L -1 on different slots commute, so ∧ = 0, and the connection ∇ is (strongly) flat. 9.1. Compatibility with the action of meromorphic functions. We now consider a natural connection D on the sheaf g * D -a linear map D : g

* D → Ω 1 C n (C) ⊗ g * D satisfying Leibnitz's rule. Namely we set D(X ⊗ f) := X ⊗ df , where d: Ω 0 C n (C) → Ω 1 C n (C)
is the standard de Rham differential.

Proposition 9.1. One has

∇ τ(X ⊗ f) w = τ D(X ⊗ f) w + τ(X ⊗ f) ∇ w , (51) 
where X ∈ g, and f and w are local sections of (π Σ ) * O * D and H, respectively.

To prove this we use the following well-known fact.

Lemma 9.1 ([30], Lem. 12.8). One has the identity L -1 , Xz m = -mXz m-1 inside the completion U g of U g , for X ∈ g and m ∈ Z.

Proof of Proposition 9.1. For i ∈ J and for local sections w and X ⊗ f of H and g * D -respectively-we must prove that

∂ t i τ(X ⊗ f) w -L (i) -1 , τ(X ⊗ f) w = τ X ⊗ ∂ t i f w + τ(X ⊗ f)∂ t i w . Now for j ∈ J we have the expansions τ j (f) = k f k (t 1 , . . . , t n )z k j ,
where f k is a regular function on an open subset of C n (C), and we take the local coordinate z j = z -t j on Σ-vanishing at p j . Since ∂ t i (z j ) + δ ij = 0 one has

∂ t i τ j (f) = τ j (∂ t i f) + δ ij L -1 , τ j (f) ,
using Lem. 9.1. Hence by [START_REF] Novikov | The Hamiltonian formalism and a multivalued analogue of Morse theory[END_REF]:

∂ t i τ(X ⊗ f) w = τ X ⊗ ∂ t i f w + L -1 , X ⊗ τ i (f) (i) w + τ(X ⊗ f)(∂ t i w) ,
and we conclude with

L (i) -1 , τ(X ⊗ f) = L (i) -1 , X ⊗ τ i (f) (i) = L -1 , X ⊗ τ i (f) (i) .
Thus a reduced connection is well defined on H → C n (C), since ∇ preserves the sheaf of sections with values in the subspaces g * D H p,χ ⊆ H p,χ , by (51). We conclude the sheaf of irregular conformal blocks has a natural structure of flat vector bundle over the space of tame isomonodromy times. It follows that the dimension of the spaces of irregular conformal blocks is constant along variations of the marked points-when finite. 9.2. Description on finite modules: first version. By the results of § 7 it is possible to describe the reduction of ∇ as the g-reduction of a connection ∇ living on the vector sub-bundle H ⊆ H, and further as a connections acting on H ⊆ H when the module at infinity is tame.

The goal is to find an explicit expression for ∇. For this we will use the following elementary fact, where we further set z ∞ := z -1 -a local coordinate vanishing at infinity.

Lemma 9.2 (Expansions at irregular singularities).

For i ∈ J and for an integer m > 0 one has

τ j z -m i =    l 0 m+l-1 l z l j (t i -t j ) l (t j -t i ) m , j ∈ J \ { i } , l 0 m+l-1 l t l i z m+l ∞ , j = ∞ .
(52) 9.2.1. Tame case. Suppose r j = 1 for j ∈ J. Then using (52) with m = 1 yields

X ⊗ τ j z -1 i v j = X t j -t i v j , X ⊗ τ ∞ z -1 i v ∞ = 0 , for X ∈ g, i = j ∈ J , v j ∈ V j and v ∞ ∈ V ∞ -since z j g z j V j = (0) for j ∈ J.
Hence by [START_REF]Symmetries of the simply-laced quantum connections and quantisation of quiver varieties[END_REF] one has the following identity inside H -with tacit use of π H :

X ⊗ z -1 i (i) v ⊗ v ∞ = j∈J \{ i } X (j) t i -t j v ⊗ v ∞ ,
where v = j∈J v j ∈ H. In particular the action is trivial at infinity.

Looking at [START_REF] Millson | Casimir operators and monodromy representations of generalised braid groups[END_REF] and writing

L (i) -1 ( v ⊗ v ∞ ) = v i ⊗ v ∞ we find v i = 1 κ + h ∨ j∈J \{ i } k (X k ) (i) X (j) k t i -t j v = 1 κ + h ∨ j∈J \{ i } Ω (ij) t i -t j v , (53) 
where Ω (ij) := ι (ij) (Ω) denotes the embedding (37) of the quadratic tensor (4)with m = l = 0. One recovers the KZ connection [START_REF] Knizhnik | Current algebra and Wess-Zumino model in two dimensions[END_REF] on the sub-bundle H |λ| → H, taking V ∞ as auxiliary tame module. 9.2.2. Tame modules in the finite part. Now allow r ∞ 1 to be arbitrary. What changes is

X ⊗ τ ∞ (z -1 i ) w ∞ = r ∞ -2 l=0 t l i Xz l+1 ∞ • w ∞ ,
for X ∈ g, w ∞ ∈ W ∞ and i ∈ J , using the case m = 1 of (52). So the action is nontrivial at infinity if r ∞ 2.

Then by [START_REF]Symmetries of the simply-laced quantum connections and quantisation of quiver varieties[END_REF] one has the following identity inside H -with tacit use of π H :

X ⊗ z -1 i (i) v ⊗ w ∞ =    j∈J \{ i } X (j) t i -t j - r ∞ -2 l=0 t l i Xz l+1 (∞)    v ⊗ w ∞ .
Thus looking at [START_REF] Millson | Casimir operators and monodromy representations of generalised braid groups[END_REF] one finds

L (i) -1 ( v ⊗ w ∞ ) = v i ⊗ w ∞ + D i ( v ⊗ w)
, where v i is as in (53), and

D i ( v ⊗ w ∞ ) = 1 κ + h ∨ r ∞ -2 l=0 t l i Ω (i∞) 0,l+1 ( v ⊗ w ∞ ) ,
using again the embedding ι (i∞) (Ω 0,l+1 ) of (4) defined by [START_REF] Nagoya | Confluent KZ equations for sl N with Poincaré rank 2 at infinity[END_REF].

Remark. E.g. if r ∞ = 2 then the new operator acts by

D i ( v ⊗ w ∞ ) = Ω (i∞) 01 v ⊗ w ∞ κ + h ∨ . ( 54 
)
In this case the reduced connection is close to the dynamical KZ connection, i.e. [START_REF] Felder | Differential equations compatible with KZ equations[END_REF]Eq. 3]. We will recover the very same "dynamical" Cartan term in § 12. 9.2.3. Tame module at infinity. Suppose symmetrically r ∞ = 1, but r j is arbitrary for j ∈ J .

Proposition 9.2. One has

L (i) -1 w ⊗ v ∞ = w i ⊗ v ∞ , with w i = - 1 κ + h ∨ j∈J \{ i } r i -1 m=0 r j -1 l=0 m + l l Ω (ij) ml w (t i -t j ) l (t j -t i ) m+1 . ( 55 
) Proof. Postponed to § A.2.
This is an irregular generalisation of the KZ connection, corresponding to an action of the universal connection of [START_REF] Reshetikhin | The Knizhnik-Zamolodchikov system as a deformation of the isomonodromy problem[END_REF]. 8 Remark. The flat connection (55) is known to admit an isomonodromy system as semiclassical limit (see op. cit.): precisely the irregular isomonodromy system on CP 1 for variations of the positions of the poles (the tame isomonodromy times, as considered in [START_REF] Klarès | Sur une classe de connexions relatives[END_REF]).

This generalises the same fact from the tame case: the quantisation of the Schlesinger system [START_REF] Schlesinger | Über die Lösungen gewisser linearer Differentialgleichungen als Funktionen der singulären Punkte[END_REF] yields the KZ connection [START_REF] Reshetikhin | The Knizhnik-Zamolodchikov system as a deformation of the isomonodromy problem[END_REF][START_REF]Quantum isomonodromic deformations and the Knizhnik-Zamolodchikov equations, Symmetries and integrability of difference equations[END_REF]. 9.2.4. General case. Finally take r ∞ 1 to be generic as well.

Proposition 9.3. One has

L (i) -1 w ⊗ w ∞ = w i ⊗ w ∞ + D i ( w ⊗ w ∞ ), with w i as in (55) and D i ( w ⊗ w ∞ ) = 1 κ + h ∨ r i -1 m=0 r ∞ -m-1 l=0 m + l l t l i Ω (i∞) m,m+l+1 ( w ⊗ w ∞ ) . ( 56 
)
Proof. This is a generalisation of Prop. 9.2 where moreover

X ⊗ τ ∞ (z -m i ) w ∞ = r ∞ -m-1 l=0 m + l -1 l t l i Xz m+l ∞ • w ∞ ,
for X ∈ g, w ∞ ∈ W ∞ and i ∈ J , using the general case of (52). Now the action is nontrivial at infinity for r ∞ m + 1, and the result still follows from (34). 9.3. Description on finite modules: second version. Finally one may consider the setup of § 8, i.e. put a θ-dual module W θ at infinity. In the analogue of § § 9.2.1 and 9.2.3-when the module at infinity is tame-the description of the reduced connection does not change, using [START_REF] Kac | Infinite-dimensional Lie algebras[END_REF]. In the remaining cases one finds the action of the same quadratic tensors on the last slot, acting on the θ-dual. Hence in the next section we will introduce a universal versions of the reduced connection, looking at (55) and (56), to treat the two versions on the same footing. Consider then the nonautomous (quantum) Hamiltonian systems

H i = H (p) i : C n (C) → U g p ⊗|J| ,
with Hamiltonians H i = H i + H i for i ∈ J , where

H i (t) := - 1 κ + h ∨ j∈J \{ i } p-1 m,l=0 Ω (ij) ml m + l l (-1) m (t i -t j ) -1-m-l , ( 57 
)
and

H i (t) := 1 κ + h ∨ p-1 m,l=0 Ω (i∞) m,m+l+1 m + l l t l i , (58) 
as suggested by ( 55) and ( 56). These Hamiltonians are equivalent to the universal connection (at depth p):

∇ p = d-p , p = p + p , p := J H i dt i , p := J H i dt i , ( 59 
)
defined on the trivial vector bundle U(J, p)

:= C n (C) × U g p ⊗|J| → C n (C) by
means of the U(g p ) ⊗|J| -valued 1-forms p and p on the base space. This generalises [START_REF] Reshetikhin | The Knizhnik-Zamolodchikov system as a deformation of the isomonodromy problem[END_REF] with a nontrivial action at infinity. Then for every choice of singular modules labeled by J there is an action of (59) on H for p 0, which reproduces the most general case of § 9.2 (with θ-duals or not), so in particular there are induced integrable quantum Hamiltonian systems. Hence one expects (59) to be flat before taking representations, as we will show.

Remark. One directly checks that

∂ H j ∂t i - ∂ H i ∂t j = 0 , and ∂ H j ∂t i = δ ij , for i, j ∈ J , so (strong 
) flatness is equivalent to the commutativity of the quantum Hamiltonians.

10.1. Flatness at finite distance. The 1-form defining the Hamiltonians (57) can be written

p = 1 κ + h ∨ i =j∈J r (ij) p (t i -t j ) d(t i -t j ) , where r p : C \ { 0 } → g ⊗2
p is the following rational function:

r p (t) := - p-1 m,l=0 Ω ml ⊗ (-1) m m + l l t -1-m-l . ( 60 
)
Remark. It is easy to see that r p is skew-symmetric, meaning

r (ij) p (t) + r (ji) p (-t) = 0 , for t ∈ C \ { 0 } , i, j ∈ J . ( 61 
)
The study of the connection ∇ p := dp is closely related to the theory of the classical Yang-Baxter equation (CYBE) [START_REF] Belavin | Solutions of the classical Yang-Baxter equation for simple Lie algebras[END_REF]. In particular flatness (for J

3) is equivalent to the CYBE for (60) in the Lie algebra g p , i.e. to the following identity inside g ⊗3 p : r

p (t 12 ), r

p (t 13 ) + r

p (t 13 ), r

p (t 23 ) + r

p (t 12 ), r

p (t 23 ) = 0 , where t ij := t i -t j .

Theorem 10.1 (cf. [START_REF] Reshetikhin | The Knizhnik-Zamolodchikov system as a deformation of the isomonodromy problem[END_REF]). The rational function (60) is a solution of the CYBE.

Proof. We will reduce the proof to the well-known case p = 1, where g p = g. In this case we have the classical result that the rational function r 1 (t) = Ωt -1 is a skew-symmetric solution of the CYBE [START_REF] Belavin | Solutions of the classical Yang-Baxter equation for simple Lie algebras[END_REF], which is an easy consequence of the Drinfeld-Kohno relations Ω (ij) , Ω (ik) + Ω (jk) = 0, and the Arnold relations [START_REF] Arnol'd | The cohomology ring of the group of dyed braids[END_REF]:

1 t ij t jk + 1 t jk t ki + 1 t ki t ij = 0 . ( 62 
)
To prove the general case consider the identification g ⊗2 p g ⊗2 ⊗ A(2, p), where A(n, p) := C w 1 , . . . , w n I p is the quotient of the power-series ring by the ideal I p = w p 1 , . . . , w p n generated by w p 1 , . . . , w p n . In this identification Ω ml = Ω ⊗ w m 1 w l 2 , and (60) can be written

r p (t) = Ω ⊗ τ (p) (0,0) (f t ) ∈ g ⊗2 p , where f t (w i , w j ) := 1 t + w i -w j ,
and where τ (p) (0,0) (f t ) is the class mod I p of the Taylor expansion of f t at the origin. Then, up to the identification g ⊗3 p g ⊗3 ⊗ A(3, p), the CYBE follows again from (62), with t i replaced by t i -w i , for i ∈ { 1, 2, 3 }.

Hence we have an inverse system of classical r-matrices, with respect to the canonical projections g z z •+1 g z g z z • g z , corresponding to an inverse system of flat vector bundles U(n, p), ∇ p over the space of configurations of J -tuples of points in the complex plane. The inverse limit of the vector bundles is naturally identified with the trivial vector bundle with fibre U g z ⊗|J| , the completion of the n-th tensor power of the positive part of the loop algebra.

Remark. The inverse limit r ∞ (t) = lim ← -p r p (t) ∈ g ⊗2 [t -1 ] z 1 , z 2 is a solution of the CYBE in a completion of g z ⊗3 ⊗ O C 3 (C) C 3 (C) .
Analogously on the representation-theoretic side one may consider characters of the Lie subalgebra [START_REF] Boalch | Symplectic manifolds and isomonodromic deformations[END_REF]. Then S (∞) ab h z ⊕ CK, so the induced non-smooth modules W (∞) depend on infinitely many Cartan parameters (and a level κ), and are generated over U(Ln -) by a cyclic vector annihilated by n + z . Under (13) the parameters of these modules correspond to principal parts of connections with essential singularities. 10.2. Flatness overall. The 1-form defining the Hamiltonians (58) can be written

S (∞) := p 1 S (p) = b + z ⊕ CK ⊆ g , using ( 
p = 1 κ + h ∨ i∈J s (i∞) p (t i ) dt i , where s p : C \ { 0 } → g ⊗2
p is the following rational function:

s p (t) := p-1 m,l=0 Ω m,m+l+1 ⊗ m + l l t l .
Theorem 10.2. The universal connection ∇ p is flat for p 1.

Proof. Reasoning as in the proof of Thm. 10.1 consider the function g t (w i , w j ) := w j 1 -w j (t + w i ) .

Then one directly checks that the Taylor expansion of g t at the origin satisfies

s p (t) = Ω ⊗ τ (p) 
(0,0) (g t ) , and we can conclude by proving a version of the CYBE in the Lie algebra g p .

Namely by Thm. 10.1 the commutator of two Hamiltonians becomes

H i , H j = r (ij) p (t ij ), s (i∞) p 
(t i ) + r (ij) p (t ij ), s (j∞) p 
(t j ) + s (i∞) p (t i ), s (j∞) p 
(t j ) , using the fact that actions on disjoint pairs of slots commute, and the skewsymmetry (61). Now we can use the standard Drinfeld-Kohno relations to reduce flatness (for all p 1) to a variation of the Arnold relations (62), namely to the following identity:

g t i (w i , w ∞ )g t j (w j , w ∞ ) + f t ij (w i , w j ) g t i (w i , w ∞ ) -g t j (w j , w ∞ ) = 0 ,
where f t = f t (w i , w j ) is as in the proof of Thm. 10.1.

Remark 10.1. One can give a more symmetric expression of (59), with no special role for the marked point at infinity.

To this end consider the generating function

ϕ(w i , w j ) := 1 w i -w j , (63) 
which is a meromorphic function on C 2 with poles along w i = w j ⊆ C 2and only there. It can be extended (by zero) to a meromorphic function on the complex surface Σ 2 \ (∞, ∞) , so we can take Taylor expansions τ (p i ,p j ) (ϕ) of ϕ at any pair of distinct points p i , p j ∈ Σ-using the local coordinates w -1 i and w -1 j at infinity. Then analogously to the above one checks that

τ (p) (p i ,p j ) (ϕ) = r p (t ij ) , τ (p) 
(p i ,∞) (ϕ) = s p (t i ) , for points p i , p j ∈ Σ at finite distance of coordinates t i , t j ∈ C, respectively. Hence

p = 1 κ + h ∨ i =j∈J τ (p) (p i ,p j ) (ϕ) dt ij ,
and all marked points are treated the same.

Then the flatness of (59) for p 1 is equivalent to generalised Arnold relations, relating the Taylor expansions of (63) at pairs extracted from a triple of distinct points on the Riemann sphere.

Hence we find again an inverse system of flat vector bundles U(J, p), ∇ p , over the space of configurations of J -tuples of points in the complex plane. 10.3. Connection on coinvariants. The universal connection (59) is well defined for sections with values in the space of g-coinvariants of U(g p ) ⊗n .

To prove this consider the canonical embedding g → g p g b p and the universal embedding g p → U(g p ). Composing them we let g act on U(g p ) in the regular representation, and finally the tensor product action (analogous of [START_REF] Novikov | The Hamiltonian formalism and a multivalued analogue of Morse theory[END_REF] in the case of constant functions). Then we get a g-action on differential forms with values in the flat vector bundle U(J, p), ∇ p . Proposition 10.1. The g-action is flat for all p 1. Note this is a particular case of a compatibility such as (51), for constant sections of the trivial bundle C n (C) × g → C n (C), equipped with the trivial connection.

Proof. Postponed to § A.3.

It follows that (59) preserves sections with values in gU(g p ) ⊗|J| ⊆ U(g p ) ⊗|J| , so a reduced (flat) connection is well defined on the space of g-coinvariants of the tensor product. This was to be expected, as it holds for the induced connections on the bundle of irregular conformal blocks.

On conformal transformations

Consider the action of Möbius transformations on Σ = P(C 2 ), that is Analogously dilations correspond to the 1-parameter subgroup generated by H ∈ sl(2, C), and the associated infinitesimal action is given by the Euler vector field

g. t 1 : t 2 = at 1 + bt 2 : ct 1 + dt 2 , for (t 1 , t 2 ) ∈ C 2 \ { 0 }, with g = g(
d w•γ (ε) dε ε=0 = d w (1+ε) 2 t dε ε=0 = 2 i∈J t i ∂ w ∂t i , considering the path γ : ε → g 1 + ε, 0, 0, (1 + ε) -1 .
Proposition 11.1. Suppose the module at infinity is tame. Then the action of affine transformations on horizontal sections of the irregular conformal blocks bundle reads

w(t ) = i∈J exp aL (i) 0 • w(t) , (64) 
where t = (t i ) i∈J with t i = e 2a t i + b. In particular horizontal sections are invariant under translations.

Proof.

Indeed if w is a ∇ p -horizontal section of U(J, p) → C n (C) then E w = i∈J j∈J \{ i } r (ij) p (t ij ) w ,
which vanishes by the skew-symmetry (61), and which implies the statement about translations after taking g p -modules.

As for dilations, in the universal case of a ∇ p -horizontal section one finds

H 2 w = i∈J j∈J \{ i } t i r (ij) p (t ij ) w = i =j∈J t ij r (ij) p (t ij ) w ,
and we must consider the induced action on finite singular modules. Now one computes

L 0 w = 1 κ + h ∨ p j=1 k X k z -j X k z j w, for w ∈ W ,
analogously to (34), using a (• | •)-orthonormal basis (X k ) k of g. Then reasoning as in § 9.2.3 the induced slot-wise action on coinvariants is 

L (i) 0 w = - 1 κ + h ∨ j∈J \{ i }
. This is the action of an endomorphism on the finite-dimensional vector space H , and the statement follows by integrating the resulting (linear, firstorder) differential equation.

Remark. As in the tame case, the g-coinvariance implies i =j∈J Ω (ij) w + k∈J Ω (kk) w = 0 , in the space H . The action of Ω (kk) is that of the quadratic Casimir (3) on the k-th slot, so this term acts diagonally and can be exponentiated to find the usual conformal weight (cf. Rem. 5.2). The point is that in general the dilation action has further nonscalar terms.

12. Different dynamical term from infinity

In this section we generalise the dynamical KZ connection [START_REF] Felder | Differential equations compatible with KZ equations[END_REF], varying the setup of § 1.

Namely note another natural family of Lie algebras S (p) ⊆ S (p) ⊆ g is given by S (p) := h z + z p g z ⊕ CK .

The derived Lie algebra of S (1) yields the first "level subalgebra" of [START_REF] Fedorov | Irregular Wakimoto modules and the Casimir connection[END_REF], then the two differ for p 2. One can then define (smooth) induced modules W as in § 1, where W = W (p) χ depends on a character χ : S (p) → C. However one does not recover the standard affine Verma module as the starting element of the family, contrary to (9)-which is one motivation behind Def. 1.1.

Moreover one has S (p) h 2p ⊕ CK, analogously to Lem. 1.1, so for p = 1 a character is defined by elements λ ∈ h ∨ and by the irregular Cartan term µ ∈ (h ⊗ z) ∨ (plus the choice of a level κ). Hence for p = 1 we see ( 13) matches up the parameters of W with principal parts of meromorphic connections at poles of order two, but in general only poles of even order can be obtained with this construction, contrary to (9)-which is another motivation behind Def. 1.1.

Remark. The fact that the abelianisation of S (p) depends on "2p" Cartan parameters is our interpretation of the insightful Rem. 4 of [17, p. 5]. The same dilation is seen in the formulae of [18, § § 2.8, 3.4], where one allows for poles "of orders 2m α ", but prescribes "the m α most singular terms"; and also in [22, § 7], where only "the singular part of √ φ 2 " is fixed (when given a meromorphic quadratic differential φ 2 on the sphere).

Of course one may alternatively shift degrees using the canonical vector space isomorphisms g ⊗ z i g for i ∈ Z, but this breaks the duality [START_REF]Wild character varieties, meromorphic Hitchin systems and Dynkin diagrams[END_REF].

In any case one can put the module W = W (1) χ at infinity in the tensor product H, and consider the spaces of coinvariants H as in § 6. The proofs of Props. 7.1, 7.2 and 7.3 can be adjusted introducing suitable filtrations on W and W = U(g z )w, where w ∈ W is the cyclic vector, as well as the whole of § 9.1. Hence in brief one can use W as auxiliary module at infinity, which yields a different "dynamical" Cartan term in the reduced connection-with respect to (54).

Namely (54) simplifies to

D i ( v ⊗ w) = 1 κ + h ∨ k µ k H (i) k • v ⊗ w ,
where (H k ) k is a (• | •)-orthonormal basis of h, using (n + ⊕ n -) ⊗ z ∞ • w = 0, H k z ∞ • w = µ k w, and writing µ k = µ, H k z ∞ .

We see the reduced connection generalises the dynamical KZ equations, i.e. [START_REF] Felder | Differential equations compatible with KZ equations[END_REF]Eq. 3], and it coincides with it when the modules over finite points are tame. 9So we recover the Felder-Markov-Tarasov-Varchenko connection (FMTV) over variations of marked points as a particular case of this construction.

Note the whole of the FMTV connection also allows for variations of the irregular part µ ∈ (h ⊗ z) ∨ , in addition to the deformations à la Klarès considered here [START_REF] Klarès | Sur une classe de connexions relatives[END_REF]. In particular when there is only one simple pole the resulting flat connection for variations of µ is the DMT connection [START_REF] Millson | Casimir operators and monodromy representations of generalised braid groups[END_REF][START_REF] Laredo | A Kohno-Drinfeld theorem for quantum Weyl groups[END_REF], which is derived from a representation-theoretic setup in [17, § 3.11], and [18, § 3.7] (for the latter see also [START_REF] Vinberg | Some commutative subalgebras of a universal enveloping algebra[END_REF]).

Remark 12.1 (On quantisation of isomonodromy connections). Just as in the case of the KZ connection, a different derivation of these flat connections has been obtained by (filtered) deformation quantisation of isomonodromy systems, this time importantly for irregular meromorphic connections.

Namely [START_REF]isomonodromy, and quantum Weyl groups[END_REF] derived the DMT connection from the quantisation of a dual version of the Schlesinger system (related to the usual Schlesinger system by the Harnad duality [START_REF] Harnad | Dual isomonodromic deformations and moment maps to loop algebras[END_REF], i.e. the Fourier-Laplace transform). In the same spirit, the whole of FMTV connection can be obtained by quantising the isomonodromy system of Jimbo-Miwa-Môri-Sato [START_REF] Jimbo | Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent[END_REF] (see [39, § 11]; more generally see op. cit. and [START_REF]Symmetries of the simply-laced quantum connections and quantisation of quiver varieties[END_REF] for a further extension to connections with poles of order three including all the above cases).

Outlook

As explained in the introduction we also wish to consider flat quantum connections along variations of irregular types (i.e. variations of "wild" Riemann surface structures on the sphere [START_REF]Hyperkähler manifolds and nonabelian Hodge theory of (irregular) curves[END_REF]). Two viable viewpoints to introduce them are:

(1) the quantisation of the full irregular isomonodromy connections, in the spirit of [START_REF]isomonodromy, and quantum Weyl groups[END_REF][START_REF] Rembado | Simply-laced quantum connections generalising KZ[END_REF], generalising the simply-laced quantum connections (which quantise the simply-laced isomonodromy systems [START_REF]Simply-laced isomonodromy systems[END_REF]); (2) considering quantum symmetries: the quantum/Howe duality [START_REF] Baumann | The q-Weyl group of a q-Schur algebra[END_REF] was used in [START_REF] Laredo | A Kohno-Drinfeld theorem for quantum Weyl groups[END_REF] to relate KZ and the "Casimir" connection of De Concini and Millson-Toledano Laredo (DMT) [START_REF] Millson | Casimir operators and monodromy representations of generalised braid groups[END_REF], and at the level of isomonodromy systems corresponds to the Harnad duality [START_REF] Harnad | Dual isomonodromic deformations and moment maps to loop algebras[END_REF]. An analogous quantisation of the Fourier-Laplace transform may be taken here in order to turn the variations of marked points into variations of irregular types, extending the viewpoint of [9,[START_REF]Symmetries of the simply-laced quantum connections and quantisation of quiver varieties[END_REF]. Another natural direction to pursue is the higher-genus case, noting in that case the moduli spaces of connections on holomorphically trivial bundles have positive codimension inside the full de Rham spaces.

Finally one may try to introduce integrality conditions, and lift this Lie-algebra representation setup to Lie groups, with a view towards the geometric quantisation of coadjoint G p -orbits (along the lines of the Borel-Weyl-Bott theorem [START_REF] Serre | Représentations linéaires et espaces homogènes kählériens des groupes de Lie compacts[END_REF][START_REF] Tits | Sur certaines classes d'espaces homogènes de groupes de Lie[END_REF][START_REF] Bott | Homogeneous vector bundles[END_REF], or more generally of the orbit method [START_REF] Kirillov | Lectures on the orbit method[END_REF]). Another approach we will try in this direction is that of the quantisation of the nilpotent Birkhoff orbits O B ⊆ b ∨ p [START_REF] Boalch | Symplectic manifolds and isomonodromic deformations[END_REF].

G.R. is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy -GZ 2047/1, Projekt-ID 390685813.
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k := a j , H k z j for k ∈ { 0, . . . , r } and j ∈ { 0, . . . , p -1 }, and further a (j) α := a j , H α z j for α ∈ R.

By [START_REF]Hyperkähler manifolds and nonabelian Hodge theory of (irregular) curves[END_REF] we see that : X k z -j X k z n+j : w = 0 implies 1 -p j p -1 -n, so n 2(p -1) is necessary for nonvanishing terms. Now importantly for n ∈ p -1, . . . , 2(p -1) and j ∈ { 1 -p, . . . , p -1 -n } one has -j, n + j ∈ { 1 -p + n, . . . , p -1 } ⊆ { 0, . . . , p -1 }, so the normal ordered products are void in [START_REF] Kirillov | Lectures on the orbit method[END_REF]. Then for α ∈ R + and i ∈ { 1, . . . , r } one computes Proof. Using the general case of (52) yields Xz l (j) w (t i -t j ) l (t j -t i ) m .

H k z -j H k z j+n w = a
X ⊗ τ j (z -m i ) w j = r j -1 l=0 m + l -1 l Xz l j w j (t i -t j ) l (t j -t i ) m , X ⊗ τ ∞ (z -m i ) v ∞ = 0 , for X ∈ g, i = j ∈ J , w j ∈ W j and v ∞ ∈ V ∞ -since z ∞ g z ∞ V ∞ = 0 = z
The result then follows from [START_REF] Kohno | Conformal field theory and topology[END_REF].

Definition 4 . 1 (Remark 4 . 1 (

 4141 Dual singular modules). The affine (resp. finite) θ-dual singular module W * θ (resp. W * θ ) is the left U gmodule (resp. U(g p )-module) defined by the morphism θ : g → g op . The U g z )-linear inclusion map W → W then dually correspond to U g z )linear restriction maps W * θ W * θ . Dual/contragredient modules). Basic examples of morphisms θ : g → g op preserving (• | •) are the tautological θ 0 = -Id g , and the transposition θ 1 , defined by

4. 1 .Lemma 4 . 2 .

 142 Dual weight grading. Denote θ * := θ * -1 = θ -1 * , and introduce the notation F * µ ⊆ W * θ and F * µ ⊆ W * θ for the h-weight spaces. One has

  and analogously in the finite case-restricting to i ∈ Z 0 . Proof. Let I ν : W → W be the idempotent for the direct summand F µ ⊆ W, viz. the endomorphism such that I µ W(µ ) = δ µ,µ Id W(µ ) . Then by definition ψ ∈ F ∨ µ means ψ = ψ • I µ , and by construction θ(H)

  hence the given condition means BM = Id C p , where B and M are the p-by-p matrices with coefficients B ij = b ij and M jk = ψ, E α z j E -α z k w , respectively (the latter selects the component of E α z j E -α z k w ∈ F µ along the line C w, in the basis[START_REF] Felder | Differential equations compatible with KZ equations[END_REF]). A solution exists if and only if det(M) = 0.

Remark 5 . 1 ( 2 (

 512 On bases and dualities).Recall thatE ±α = H α |H α ) E ∓α . Using the pairing (• | •) : h ∨ ⊗ h ∨ → Cinduced by the minimal-form duality h h ∨ this can be written E ±α = (α|α) 2 E ∓α .

Remark 6 . 1 .

 61 Let Σ ⊇ U z -→ C be a local affine chart on Σ-so Σ C ∪ { ∞ }. Then coordinates on the open subset C n (U) := Conf n (U) ⊆ C n are given by t : C n (U) → C n , where t = (t j ) j∈J and t j (p) := z(p j )-so C n (U) Conf n (C), and C n Conf n (C) ∪ Conf n-1 (C). This yields an atlas on the configuration space.

  the universal family of n-pointed spheres. Now for j ∈ J define the hyperplane P j := p = p j ⊆ Σ n+1 , consider the effective divisor D := j∈J Y ∩ P j on Y, and let O * D = O Y, * D be the sheaf of meromorphic functions on Y with poles at most along (the support of) D. Then we have the push-forward sheaf (π Σ ) * O * D on C n , and by tensoring we obtain the sheaf of Lie algebras g * D := g ⊗ (π Σ ) * O * D . Remark. If U ⊆ C n is open then g * D (U ) is then the Lie algebra of g-valued meromorphic functions on Σ × U , such that the restriction to Σ × { p } Σ has poles at most at the set p j j∈J for all p ∈ U , as wanted. Now for U ⊆ C n open we consider the Laurent expansion τ j (U )(f) of functions f ∈ O * D π -1

7. 1 . 2 .Proposition 7 . 5 .

 1275 Archetypal case. Consider the same setup of § 3.4.1 for g = sl(2, C). In this case |λ| = mα for an integer m 0. One has

  10. Universal connectionsFix again a depth p 1, an integer n 1, and the finite ordered sets { 1, . . . , n } = J ⊆ J = { 1, . . . , n, ∞ } .8 Compare also (55) with[START_REF] Gaiotto | Irregular singularities in the H3+ WZW model[END_REF] Eqs. B.6 and B.7], where g = sl(2, C): this should be a formalisation of fn. 6 of op. cit.

  a, b, c, d) given by numbers a, b, c, d ∈ C such that ad -bc = 1. In the standard affine chart U = Σ \ { [1 : 0] } t -→ C we then have the subgroup of affine transformation of the complex plane, with diagonal action on C n (C) ⊆ C n , and with induced pull-back (right) action on sections of vector bundles over that base. In particular translations t → t + b correspond to a = d = 1 and c = 0. This is the 1-parameter subgroup corresponding to the infinitesimal generator E ∈ Lie PSL(2, C) = sl(2, C), and the associated infinitesimal action reads d w•γ (ε) γ : ε → g(1, ε, 0, 1).

  of the projection π H : H |λ| → H , and on the wholeH 2 w = L 0 -L

Appendix A. Computations A. 1 .

 1 Proof of Prop. 5.1.

H 2 µA. 2 .

 22 α z -j E α z n+j w = 0 , and(H α | H α ) 2 E α z -j E α z n+j w = H α z n w = δ n,p-1 a k z -j H k z j+n + α∈R + E α z -j E α z j+n , H α z i = (α | µ), for µ ∈ h ∨ ⊗ z i .Proof of Prop. 9.2.

  j V j . Hence by[START_REF]Symmetries of the simply-laced quantum connections and quantisation of quiver varieties[END_REF] one has the identityX ⊗ z -m i (i) w ⊗ v ∞ = w i,m,X ⊗ v ∞ inside H , where w i,m,X = -j∈J \{ i } r j -1 l=0 m + l -1 l

Note the connection of[START_REF] Reshetikhin | The Knizhnik-Zamolodchikov system as a deformation of the isomonodromy problem[END_REF] is given in universal terms: g p -modules and coinvariants are not discussed, nor are the irregular types of irregular meromorphic connections.

A composition of m α is a sequence of positive integers summing to m α ; it is a p-composition if the sequence has finite length p 1; and it is weak if zero is allowed.

Replace κ + h ∨ ∈ C with "κ" and k µ k H k ∈ h with "µ" to retrieve the exact[START_REF] Felder | Differential equations compatible with KZ equations[END_REF] Eq. 3].
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Conformal blocks in terms of finite modules: first version

Throughout this section fix a pair (p, χ) to define the spaces H ⊆ H as in [START_REF] Nagoya | Irregular conformal blocks, with an application to the fifth and fourth Painlevé equations[END_REF]. Compose the inclusion H → H with the canonical projection π H : H H to obtain a map ι : H → H .

To study the image of ι consider the tensor product filtration

where F - j

• is the filtration defined in § 3.3 on W j . By definition F -0 = H, and we push [START_REF] Ribault | H + 3 -WZNW correlators from Liouville theory[END_REF] forward to a filtration

Proposition 7.1. The map ι is surjective, Proof. We will show that F - k lies in the image of ι by induction on k 0. The base is given by F - 0 = π H H . Now we use [START_REF]Symmetries of the simply-laced quantum connections and quantisation of quiver varieties[END_REF] for a function f i ∈ O * D (Σ) with a pole at p i , and only there. Such a function is e.g. defined by f i (z) = (z -t i ) -m , with the notations of Rem. 6.1, working in a local chart containing p.

Hence τ j f i ∈ O j for j = i, and if w ∈ F k the rightmost identity of [START_REF] Gaiotto | Asymptotically free n = 2 theories and irregular conformal blocks[END_REF] shows that the right-hand side of (40) lies in F - k . Then by induction the image of ι contains F - k and all the vectors on the left-hand side of [START_REF]Symmetries of the simply-laced quantum connections and quantisation of quiver varieties[END_REF], and the conclusion follows from the leftmost identity of [START_REF] Gaiotto | Asymptotically free n = 2 theories and irregular conformal blocks[END_REF]. Proposition 7.2. One has Ker(ι) = gH ⊆ H.

Proof. Consider an element

If the function f is noncostant then it has a pole, say at p j ∈ Σ. It follows that [START_REF] Feli Ńska | Whittaker pairs for the Virasoro algebra and the Gaiotto-Bonelli-Maruyoshi-Tanzini states[END_REF], and w ∈ H = F + 0 . Thus to have element of the kernel we must restrict to f ∈ C. Then using [START_REF] Feli Ńska | Whittaker pairs for the Virasoro algebra and the Gaiotto-Bonelli-Maruyoshi-Tanzini states[END_REF] again we see that

Hence there is an identification H H g = H gH, generalising the analogous standard fact for the tame case.

To go further one may appeal to the tensor product of the weight grading of § 3.4, which is a h ∨ J -grading on H. Namely we consider the subspaces

By [START_REF] Novikov | The Hamiltonian formalism and a multivalued analogue of Morse theory[END_REF] the subspace F µ lies inside the weight space of weight |µ| := j µ j ∈ h ∨ for the tensor product h-action.

A.3. Proof of Prop. 10.1.

Proof. We prove the g-action commutes with ∇ p : Ω 0 U(n, p) → Ω 1 U(n, p) . Since the g-action is independent of the point on the base space, this is equivalent to p ⊗ Xψ -X p ⊗ ψ = 0 = p ⊗ Xψ -X p ⊗ ψ , for X ∈ g. Now by (57) one has

and analogously by (58)

for all i = j ∈ J and for all m, l ∈ Z. Finally by (4) we have k∈J Ω (ij) ml , X (k) = r X r , X z m (i) X r z l (j) + X r z m (i) X r , X z l (j) ,

where we let (X r ) r be a (• | •)-orthonormal basis of g, which vanishes by [START_REF] Biquard | Wild nonabelian Hodge theory on curves[END_REF].