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GENUS-ONE COMPLEX QUANTUM CHERN–SIMONS THEORY

JØRGEN ELLEGAARD ANDERSEN, ALESSANDRO MALUSÀ, GABRIELE REMBADO

Abstract. We consider the geometric quantisation of Chern–Simons theory for
closed genus-one surfaces and semisimple complex algebraic groups. First we
introduce the natural complexified analogue of the Hitchin connection in Kähler
quantisation, with polarisations coming from the nonabelian Hodge hyper-Kähler
geometry of the moduli spaces of flat connections, thereby complementing the
real-polarised approach of Witten. Then we consider the connection of Witten,
and we identify it with the complexified Hitchin connection using a version of
the Bargmann transform on polarised sections over the moduli spaces.
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Introduction and main results

One of the mathematical approaches to the quantisation of classical Chern–
Simons theory [26, 27] is the geometric quantisation of the moduli spaces of flat
connections on a surface, as Witten also proposed after introducing it as a quan-
tum field theory [46]. This has first been carried out for the structure group
SU(n) [31, 14, 2, 3], and for SL(n, C) [47]. In both cases quantisation relies on a
Riemann surface structure on the base, resulting in families of quantum Hilbert
spaces parametrised by Teichmüller space and identified, up to projective fac-
tors, via the holonomy of projectively flat connections: the Hitchin connection for
SU(n), and the Hitchin–Witten connection for SL(n, C), later reformulated in a
more general setting [3, 4, 12]. The former relies on Kähler polarisation, while
the latter on real ones; a family of Kähler polarisations also exists for SL(n, C),
and comes from the hyper-Kähler nonabelian Hodge structure of the moduli space.
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Hence one may try to define a complexified analogue of the Hitchin connection
in the complexified setting, which stands as an open problem for arbitrary genus.

In this paper we unify these two approaches to the geometric quantisation
of complex Chern–Simons theory for genus-one closed surfaces, considering the
natural complexified analogue of the Hitchin connection and relating it to the
Hitchin–Witten connection via the Bargmann transform.

Let us briefly recall some aspects of the general high-genus theory. For integers
n,g > 2 denote K = SU(n), KC = SL(n, C), and let Σ be a smooth genus-g closed
oriented surface. The symplectic moduli space Mfl of isomorphism classes of
irreducible flat K-connections on Σ has natural prequantum data [26, 27], and
if Σ is endowed with a Riemann surface structure then Mfl inherits a Kähler
structure from the identification with the moduli space of isomorphism classes
of topologically trivial stable holomorphic KC-bundles on Σ [34, 19]. One can
then apply Kähler quantisation for every level k ∈ Z>0, resulting in the space of
nonabelian theta functions.

As the Riemann structure on Σ is deformed, these spaces fit into a vector
bundle on which the Hitchin connection is defined [31, 14, 3].

Starting with the complex group KC one has instead the holomorphic sym-
plectic de Rham space MdR, i.e. the moduli space of isomorphism classes of
irreducible flat KC-connections on Σ. The Chern–Simons action functional now
depends on a complex quantum level t = k+ is, and it is used to yield prequantum
data for a real symplectic structure ωt on the moduli space. A real polarisation
can then be introduced using a Riemann structure on the base, and the canonicity
of this construction is achieved by the Hitchin–Witten connection [47, 4].

On the other hand Kähler polarisations can be obtained from nonabelian Hodge
theory [30, 20, 18, 41]. If Σ is a Riemann surface then there is a non-biholomorphic
diffeomorphism MdR 'MDol with the Dolbeault space of isomorphism classes of
topologically trivial stable KC-Higgs bundles on Σ, the nonabelian Hodge corre-
spondence, endowing MdR with a second complex structure which can be com-
pleted to a hyper-Kähler triple. This is a hyper-Kähler rotation within the moduli
space of isomorphism classes of stable solutions of the self-duality/Hitchin equa-
tions on Σ [30], and in this viewpoint ωt ∈ Ω2(MdR, R) becomes a Kähler form
for a complex structure extracted from the hyper-Kähler sphere. Moreover tak-
ing monodromy data yields a non-algebraic biholomorphism MdR ' MB with
the Betti space, i.e. with the KC-character variety of Σ; this completes the triple
of nonabelian cohomological theories on Σ [42, 43], and yields the most useful
description of the moduli space for our purpose.

Hereafter we consider the exceptional case g = 1, where the above needs to be
modified to account for the emptyness of the irreducible locus. Nonetheless we
consider natural finite-dimensional descriptions of the moduli spaces, as orbifold
quotients of the subspaces of translation-invariant 1-forms with values in the Lie
subalgebras of diagonal matrices.

Importantly the same description applies to more general algebraic/Lie groups
than SU(n) ⊆ SL(n, C), using maximal toral/Cartan subalgebras, with a caveat:
for a connected simply-connected semisimple complex algebraic group KC we
will in general obtain a description of the normalisation of the De Rham and Betti
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spaces—as complex algebraic varieties [44]—a viewpoint which lends itself to
geometric quantisation. Note the normalisation map is an isomorphism for all
classical groups [40].

The first goal is to introduce (projectively) flat connections to relate the quan-
tum Hilbert spaces arising from the aforementioned Kähler polarisations, passing
through the finite-dimensional covering space of MdR. In the case of a finite-
dimensional affine symplectic space there are two natural constructions [14, 48].
The first, a close analogue of the Hitchin connection, is defined as a covariant
differential whose potential is essentially the variation of the Laplace–Beltrami
operator; the second uses the orthogonal projection on the L2-closed subspace of
holomorphic functions (the Segal–Bargmann space [16, 38]).

We thus consider these two connections on the covering space, and restrict
them to the families of linear Kähler polarisations arising from Teichmüller space:
we call them the lifted complexified Hitchin connection and the L2-connection,
respectively. Importantly however we derive the former from a connection intrin-
sically defined for sections over MdR, generalising [36, Chap 4], and we show the
following by establishing algebraic relations between the differential operators.

Theorem 1 (§ 4.1). The complexified Hitchin connection preserves holomorphicity. More-
over it is flat and mapping class group invariant.

Next we investigate the relations between this Kähler quantisation scheme and
Witten’s approach with real polarisations, i.e. with the genus-one Hitchin–Witten
connection. Over the covering space, the quantum Hilbert spaces of geometric
quantisation are isometric via the Bargmann transform [29, 48]. In our case, hav-
ing a family of polarisations of each kind, we introduce a family of Bargmann
transforms. We lift the Hitchin-Witten connection to act on families of sections
of the line bundle over the covering space and establish the following—passing
through the L2-connection.

Theorem 2 (§ 7.2). The Bargmann transform intertwines the lifted Hitchin–Witten
and complexified Hitchin connections when acting on (sufficiently regular) families of
polarised sections, in a mapping class group equivariant fashion.

Next, we focus on relating the Hilbert spaces obtained from geometric quanti-
sation on the moduli spaces themselves. Adapting the ideas in [1], which relates
the quantization of compact tori with respect to arbitrary linear polarizations, we
notice that the Bargmann transform extends to lifts of smooth sections on Mfl and
obtain the following result.

Theorem 3 (§ 8). For every value of the Teichmühller parameter, the Bargmann trans-
form defines a unitary isomorphism between the corresponding Hilbert spaces arising
from geometric quantisation on the moduli spaces.

Finally, we relate the quantum connections as intrinsically defined on the mod-
uli spaces. We consider the Bargmann-stable subspaces of Schwartz-class sections
of the prequantum line bundles (complex-analytic in the complexified case), and
the induced transpose Bargmann transform between their topological duals, and
dual versions of the Hitchin–Witten and complexified Hitchin connections. We
then embed L2 polarised sections over the moduli spaces as tempered distribu-
tions and show compatibility of all these objects, finally obtaining the following.
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Theorem 4 (§ 9). The Bargmann transform on the moduli spaces intertwines the Hitchin-
Witten and complexified Hitchin connections.

Remark 1. It should be remarked that the potentials of the Hitchin-Witten and
complexified Hitchin connections are skew-adjoint, so the Bargmann transform
can be viewed as an equivalence of unitary connections. This is yet again an ex-
ceptional feature of the genus 1, as these connections are typically not compatible
with the Hermitian structure in general. 4

Note the computation of the genus one complex quantum Chern–Simons map-
ping class group representation of [11], which was based on Witten’s explicit de-
scription of the covariant constant sections of the Hitchin–Witten connection [47],
now also applies to the complexified Hitchin connection by Thm. 4 above.

Finally we would like to add that there are related, but different works in a
similar context in [15, 22, 23, 21, 32, 45].
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1. Moduli spaces

Let Σ be a smooth oriented closed surface of genus 1, K a compact connected
simply-connected Lie group, K ↪→ KC a complexification, and k(C) := Lie

(
K(C)

)
their Lie algebras,1 and set r = rk(K).

1.1. Flat connections. Let A(C) be the space of connections on the trivial princi-
pal K(C)-bundle P(C) = Σ×K(C) → Σ, with the Atiyah–Bott symplectic form [13]

ω̃(C)(A,B) :=
∫
Σ
〈A∧B〉k(C) , for A,B ∈ Ω1(Σ, k(C)

)
. (1)

1Hereafter a superscript "(C)" denotes presence/absence of a superscript "C".
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Here 〈·∧ ·〉k(C) is the contraction with a suitable multiple of the Cartan–Killing
form of k(C): the pairing on k is such that the cohomology class of the canonical
3-form lies in H3

dR(K, 2πZ), and that on kC is obtained by complexification.

The moduli space M
(C)
fl of isomorphism classes of flat K(C)-connections is then

the level-zero symplectic reduction of A(C) with respect to the Hamiltonian action
of the gauge group K(C), identifying the moment map with the curvature.

We denote by ω(C) the form on the reduction, a stratified symplectic space
with singular points corresponding to degenerate gauge orbits. Below we will
describe it explicitly; see [24, 25] for the viewpoint of Higgs bundles.

Remark 1.1 (De Rham structure). The space AC comes with a linear complex struc-
ture J̃ for which (1) is of type (2, 0):

J̃(α⊗X) := α⊗ (iX) , for α ∈ Ω1(Σ, R), X ∈ kC .

A model for the tangent space at a smooth point is

T[A]M
(C)
fl = H1

dR,A
(
Σ, k(C)

)
:= H1(Ω•(Σ, AdP(C)

)
,dA

)
, (2)

where dA is the connection on the adjoint vector bundle induced by A ∈ AC.
Since J̃ commutes with dA it induces a complex structure J on (2), the de Rham

structure. We write MdR :=
(
MC

fl , J
)

the resulting de Rham space: the notation
MC

fl refers to the underlying space (possibly equipped with different complex
structures, cf. Rem. 2.2). 4

1.2. Betti viewpoint. Flat connections on P(C) → Σ may be described as topo-
logically trivial local K(C)-systems on Σ. These are classified by monodromy, so
there are identifications with character varieties:

Mfl ' Hom
(
π1(Σ),K

)/
K , MdR 'MB := Hom

(
π1(Σ),KC

)
�KC ,

taking a complex GIT quotient in the latter case (as not all KC-orbits are closed).
To give an explicit description fix a maximal torus T ⊆ K, set t := Lie(T) ⊆ k,

and let TC ⊆ KC be the connected subgroup with Lie algebra tC := t⊗C ⊆ kC.
Denote NK(T) ⊆ K the normaliser of T in K and W := NK(T)

/
T the Weyl group.

Now two commuting elements of K sit in a maximal torus, and after a con-
jugation are taken inside T ; the residual action is that of the Weyl group [17],
hence we get a homeomorphism Mfl ' T × T

/
W. Moreover the reduction of (1)

becomes the reduction of the natural translation- and Weyl-invariant symplectic
form on the Lie group T2, so the notation will not distinguish the two.

In the case of the complex group KC we explicitly restrict to representations
with values in the prescribed maximal algebraic torus TC, which in particular
have closed KC-orbits. This yields completely reducible representations, whereas
there are no irreducible ones [40] (see e.g. [39] for definitions).

Proposition 1.1 (Normalisation of the Betti space). The composition

TC × TC ' Hom
(
Z2, TC

)
−→ Hom

(
Z2,KC

)
−→MB

factors through the (set-theoretic) quotient M̃B :=
(
TC × TC

)/
W for the diagonal action

of the Weyl group. The resulting arrow χ : M̃B →MB is a normalisation map.
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Proof. By [44, 40] χ is a normalisation of the irreducible component of the trivial
representation; but since KC is semisimple and simply-connected MB itself is
irreducible [37]. �

Further M̃B carries the reduction of the translation- and Weyl-invariant com-
plex symplectic form on the Lie group TC× TC. This matches up with the genus-
one Goldman structure, defined on an open dense subset of MB, as the normal-
isation map is symplectic [40]. Similarly the de Rham complex structure J on
MdR 'MB matches up with the reduction of the invariant complex structure.

Hereafter we work on the normal singular variety M̃B ↪→ MB. For the sake of
simplicity the notation will not distinguish between the moduli spaces and their
normalisation, and neither between their complex/symplectic structures, so

MdR ' TC × TC
/
W .

Remark. There are natural embedding/projection arrows ι : Mfl � MC
fl : π, since

the diagonal Weyl group action on T (C) × T (C) commutes with the factorwise
projection TC � T and inclusion T ↪→ TC. 4

1.3. Finite-dimensional de Rham viewpoint. Calling A
(C)
0 := H1(Σ, t(C)) the de

Rham cohomology with coefficients in t(C) as a vector space, there is a natural
map A

(C)
0 → M

(C)
fl , which is (holomorphic) symplectic for the cup product on

A
(C)
0 . The monodromy factors through A

(C)
0 → H1(Σ, T (C)) ' Hom(π1(Σ), T (C)),

and the kernel of both maps is T0 := H1(Σ,Λ), where Λ := ker
(
exp : t→ T

)
. This

gives a description of (the normalisation of) M(C)
fl as the finite-dimensional quo-

tient of A(C)
0 by the discrete group K0 = T0 oW. In particular, smooth objects on

each quotient correspond to K0-equivariant ones on the associated vector space.

2. Symplectic structure and polarisations

Being a holomorphic symplectic space, (MC
fl ,ωC) has no preferred real symplec-

tic structure. However a natural one is obtained after introducing a coupling
constant in the Chern-Simons action functional, as discussed by Witten [47]. This
complex parameter t = k+ is is the level of the theory, with k > 0 an integer, and
the corresponding real symplectic form is ωt := Re(tωC).

2.1. Kähler polarisations. Let T = TΣ be the Teichmüller space of Σ, identified
with the upper half-plane H ⊆ C as usual: each class is represented by a complex
structure on Σ making it isomorphic to C/(Z⊕ τZ) for some τ ∈H. Given τ, we
denote Xτ the resulting Riemann surface.

2.1.1. Hyperkähler structures. The Hodge-∗ operator of Xτ yields a complex struc-
ture Ĩτ on A, with Kähler metric g̃τ = ω̃ · Ĩτ corresponding to the L2-pairing.
Complex structures are then naturally induced on tangent spaces at smooth
points of Mfl by acting on harmonic representatives [31, 4] (cf. Rem. 1.1). We
will denote Iτ and gτ the reduced structures on Mfl and their lifts to A0.

Deforming the conformal structure of Σ yields a fibre bundle Mfl → T of
complex manifolds with fibres (Mfl, Iτ). It is a fibrewise quotient of the complex
vector bundle A0 → T, whose fibres are the complex vector spaces

(
A0, Iτ

)
.
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The construction of the complex structure ICτ on MC
fl is more subtle, as the

Hodge-∗ operator and L2-norm on AC are not preserved by the KC-action. In-
stead, it is obtained from the identification with MDol via non-abelian Hodge the-
ory. For the purpose of this work, it will be enough to mention that ICτ is realised
on each tangent space T[A]Mfl ' H1

dR,A(Xτ, k) as the action of the Hodge-∗ opera-
tor associated to a specific metric adapted to A, its harmonic metric, on harmonic
representatives. Note furthermore that, if A ∈ A is a flat K-connection, then the
standard metric is harmonic for A, so ICτ restricts to Iτ on T[A]Mfl ⊆ T[A]M

C
fl .

The complex structure ICτ defines a hyperkähler structure together with J and
Kτ := ICτ ◦ J, and the symplectic forms corresponding to ICτ and Kτ are Re(ωC)

and −Im(ωC), respectively. It follows that ωt/|t| belongs to the family of sym-
plectic forms defined by the hyperkähler structure, corresponding to

It,τ := k ′ICτ + s ′Kτ

with k ′ = k/|t| and s ′ = s/|t|. This results in a Kähler manifold
(
MC

fl , Iτ,t,ωt,gC
τ

)
.

As in the case of Mfl, as τ varies one obtains a fibration MC
fl → T, which is also

a quotient of a (quaternionic) vector bundle AC
0 → T.

Remark 2.1. As we shall see in § 6, in suitable coordinates the metric g(C)
τ is rep-

resented by a constant tensor, trivialising the Levi-civita connection. While the
tensor itself depends on τ, the coordinates do not, so the connection is indepen-
dent of τ. 4
Remark 2.2 (Dolbeault). If s = 0 then Iτ,t = ICτ : this is the Dolbeault structure on
the moduli space MDol,τ = MDol

(
Xτ,KC

)
of isomorphism classes of (polystable)

topologically trivial KC-Higgs bundles on Xτ. This case also corresponds to the
setup of [5], which however considers the moduli stack in all genera. 4
Remark. One may also wish to consider all the Kähler structures in the family and
study the dependence of the quantisation process below on this choice, e.g. for
a fixed τ ∈ T. The same authors have addressed this problem, in the case of a
Sp(1)-symmetric hyper-Kähler manifold, in a recent pre-print [9]. 4

2.2. Real polarisations. The subspace P̃τ := Ω1,0(Xτ, kC
)
⊆ AC is ω̃t-Lagrangian,

hence it defines a linear real polarisation. This descends to an ωt-Lagrangian
subspace Pτ,[A] := H

1,0
Dol,A

(
Xτ, kC

)
⊆ T[A]M

C
fl (cf. Rem. 1.1).

Definition 2.1 (Real polarisations). We denote Pτ the real polarisation thus in-
duced from the subspace P̃τ ⊆ AC.

We will also denote Pτ the linear real polarisation on the subspace AC
0 ⊆ AC,

induced from P̃τ—whose K0-reduction coincides with the above.

Remark 2.3 (Symplectic transverse). By construction

Pτ,[A] ∩ T[A]Mfl = H1,0
Dol,A

(
Xτ, kC

)
∩H1

dR,A(Xτ, k) = {0} ,

so the tangent bundle TMfl ⊆ TMC
fl is transverse to the real polarisation Pτ, and

by dimension count TMC
fl ' TMfl ⊕ Pτ. On the covering space, every leaf inter-

sects A0 at exactly one point, and since K0 preserves this subspace the same is
true for Mfl. Hence the moduli space for the compact group is a global symplectic
transverse to the real polarisation Pτ. 4
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Remark 2.4. We will consider the subspace Qτ := IτPτ ⊆ AC
0 , complex conjugate

of Pτ and g̃C
τ -orthogonal to it. Under the identification AC

0 ' A0 ⊗C they corre-
spond to T0,1 A0 and T1,0 A0, for the complex structure Iτ. Hence the orthogonal
projections of A ∈ A0 onto Pτ and Qτ read

πPτ(A) =
1
2
(A−KτA) , πQτ(A) =

1
2
(A+KτA) . (3)

The above are projective isometries with inverses 1 +Kτ and 1 −Kτ. 4

Remark 2.5. Here the action of the mapping class group Γ = ΓΣ ' SL(2, Z) on
Teichmüller space amounts to that of the modular group on the upper-half plane
T 'H.

The polarisations constructed in this section only depend on Γ -orbits of Te-
ichmüller elements, i.e. on the (unmarked) Riemann surface structure. In the
Kähler-polarised setting this also holds for the Kähler metrics gC

τ and gτ, as they
are obtained via the contraction with a T-independent symplectic form. 4

3. Prequantisation and geometric quantisation

3.1. Prequantisation. There are natural prequantum data for the real symplectic
manifolds (Mfl,kω) and (MC

fl ,ωt), compatible with the inclusion Mfl ↪→ MC
fl ,

provided that k ∈ Z>0 [26, 27, 4]: the construction relies on a lift of the gauge
group action on the trivial line bundle over the affine space A(C), with cocycle
defined from the Chern–Simons action functional. Explicitly, if γ : Σ → KC is a
gague transformation, then the lifted action at A ∈ AC is the multiplication by

Θγ,A,t := exp
(
−
i

2
Re
(
WΣ,t(γ) +

∫
Σ

〈
Adγ−1 A∧ θγ

〉
kC

))
(4)

where WΣ,t is the level-t Wess-Zumino-Witten functional and θγ is the pull-back
of the Maurer-Cartan form via γ.

We denote Lk → Mfl and LC
t → MC

fl the resulting line bundles, equipped
with Hermitian metrics and with compatible prequantum connections ∇k and
∇t with curvatures F∇k = −ikω, F∇t = −iωt. In the compact case we find
the k-fold tensor power of the standard Chern–Simons line bundle, i.e. Quillen’s
determinant bundle in the viewpoint of ∂-operators [35].

Moreover there is an explicit finite-dimensional presentation in terms of the
K0-reduction of prequantum data on the covering spaces A

(C)
0 � M

(C)
fl , which

will be denoted the same; in this case the underlying Hermitian line bundles are
trivial and the prequantum connections are defined by global symplectic poten-
tials (cf. § 5). The lifted K0-action is determined by (4) on the generators. The
action of an emlement w ∈ W on A

(C)
0 can be represented by a constant-valued

gauge transformation, which pulls the Maurer-Cartan form back to 0, showing
that W acts trivially on the fibres of Lk →Mfl and LC

t →MC
fl . On the other hand,

the translation by an element a ∈ T0 ⊆ A
(C)
0 is represented by a gague transfor-

mation γ valued in T ⊆ K such that a = [θγ]. In particular, WΣ,t(γ) vanishes
since T is abelian, and (4) reduces to

Θa,A,t := Θγ,A,t = exp
(
−
i

2
ωt(A,a)

)
. (5)
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We then consider the Hilbert spaces L2,C
t = L2(MC

fl ,LC
t

)
and L2

k = L2(Mfl,Lk)
of L2-sections of the prequantum line bundles, with respect to the Liouville vol-
ume forms, and then the trivial Hilbert bundles with these fibres:

LLL2,C
t := L2,C

t ×T −→ T , LLL2
k := L2

k×T −→ T .

Analogous Hilbert spaces/bundles are defined for sections over the covering

space A
(C)
0 � M

(C)
fl . The resulting Hilbert spaces are written L̃

2,C
t = L2(AC

0 ,LC
t

)
and L̃

2
k = L2(A0,Lk), and the resulting trivial Hilbert bundles are

L̃LL
2,C
t := L̃

2,C
t × T −→ T , L̃LL

2
k := L̃

2
k × T −→ T .

3.2. Kähler quantisation. Let further τ be a variable in T, and let Iτ,t and Iτ be
the complex structures of § 2.1.1. The (0, 1)-part of the prequantum connections
define holomorphic structures on LC

t and L, and we consider as customary the
Hilbert subspaces of holomorphic sections inside L2,C

t and L2
k, denoted HC

τ,t and
Hτ,k respectively.

Finally we look at smooth T-families of holomorphic sections: in the com-
pact case these are smooth maps ϕ : Mfl × T → Lk whose fibrewise restriction
ϕ
∣∣
Mfl×{ τ }

: (Mfl, Iτ) → Lk is an Iτ-holomorphic section for τ ∈ T, and analo-
gously in the complexified case. (Intuitively we consider fibrewise Kähler quan-
tisation of the fibre bundle MC

fl,t and of its sub-bundle Mfl,k.)
Analogous Hilbert spaces and T-families of holomorphic sections are defined

for A(C)
0 →M

(C)
fl . The resulting quantum Hilbert spaces are H̃C

τ,t and H̃τ,k.

3.3. Real quantisation. As we noted in Rem. 2.3, Mfl is a global transverse for
Pτ in MC

fl . This implies that any Pτ-polarised section of LC
t → MC

fl is completely
determined by its restriction on MC

fl . On the other hand, the stabilizer in K0 of
every point of A0 acts linearly on the corresponding leaf, so that its quotient is
contractible. Therefore, any section of Lk → Mfl extends uniquely by parallel
transport to a Pτ-polarised one. Using this (T-dependent) identification, we let
L2
k = L2(Mfl,Lk

)
be the quantum space associated to Pτ.

Then the bundle arising from the fibrewise real quantisation of MC
fl is the trivial

Hilbert bundle LLL2
k = L2

k×T → T. The same construction applies verbatim for the
linear real polarisation Pτ on the covering space AC

0 →MC
fl .

Remark. The trivial bundle carries the trivial flat connection, but its trivialisation
depends on the T-dependent splitting TMC

fl ' TMfl ⊕ Pτ: hence one needs to
construct a canonical projectively flat connection, as done in [47, 4]. 4

In the following, we will often use the word "polarised" to mean with respect
to Pτ. Polarised objects with respect to the Kähler polarisation will be referred to
as holomorphic.

4. Flat quantum connections

4.1. Complexified Hitchin connection. For τ ∈ T denote T1,0 = T1,0 MC
fl (resp.

T1,0 = T1,0 M
C
fl ) the Iτ,t-holomorphic cotangent bundle (resp. the Iτ,t-holomorphic

tangent bundle), and similarly for the antiholomorphic parts. Set also TC :=
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T∗MC
fl ⊗C (resp. TC := TMC

fl ⊗C) for the complexified cotangent bundle (resp.
complexified tangent bundle).

If V is a vector on T the derivative V
[
Iτ,t
]

is a section of End(TC) swapping
T1,0 and T0,1. Then using TC = T1,0⊕T0,1 decompose

V
[
Iτ,t
]
= V

[
Iτ,t
] ′
+ V

[
Iτ,t
] ′′ ,

where the former takes values inside T1,0. Since ωt is non-degenerate there exists
a unique bi-vector field G̃C(V) such that G̃C(V) ·ωt = |t|V[Iτ,t], with an analo-
gous splitting

G̃C(V) = GC(V) +G
C
(V) ,

with GC(V) ∈ Ω0(MC
fl , T1,0⊗T1,0

)
and GC

(V) ∈ Ω0(MC
fl , T0,1⊗T0,1

)
.

Remark. If g̃C
τ is the inverse of the Kähler metric, one has V[g̃C

τ ] ·ωt = −|t|V[Iτ,t],
since ω is T-independent; hence we may write G̃C(V) = −V

[
g̃C
τ

]
. In particular

G̃C(V), GC(V) and GC
(V) are symmetric tensors. 4

Remark. Since the Levi-Civita connection is independent of τ, differentiating∇gC
τ =

0 along V shows that G̃C(V) is parallel, and therefore so are its two components.
In particular GC(V) is holomorphic—we say the family of complex structures{
Iτ,t
}
τ∈T is rigid [3]. 4

Now we consider the Laplacian operator associated to the symmetric tensor
GC(V), i.e. formally ∆GC(V) = Tr

(
∇1,0
t G

C(V)∇1,0
t

)
, see op. cit. Letting V vary

yields a 1-form uC := −∆GC(•) on T, with values in differential operators acting
on smooth sections of the prequantum line bundle.

Theorem 4.1. The connection∇C := ∇Tr − 1
4|t|u

C is flat and preserves holomorphicity.2

In the proof we will use the following identities, valid for vector fields V on T:

V
[
∇t
]
= V[ωt] = 0 = ∇tωt = ∇tGC(V) ,[

∇1,0
t ,∇1,0

t

]
=F2,0
∇t = −iω2,0

t = 0,
[
∇0,1
t ,∇1,0

t

]
= F1,1
∇t = −iωt .

(6)

They come from the following facts: ∇t and ωt are independent of τ, ωt is a
Kähler form, GC(V) is parallel, and F∇t = −iωt is of bidegree (1, 1).

Proof. Choose a T-family of holomorphic sections ϕ, a vector field X on MC
fl , and

a vector field V on T. We will start by showing ∇0,1
t,X
(
V[ϕ]

)
= 1

4|t|∇
0,1
t,X
(
∆GC(V)ϕ

)
.

Using ∇0,1
t ϕ = 0 and (6) yields

∇0,1
t,X∆GC(V)ϕ = Tr

([
∇0,1
t,X,∇1,0

t

]
GC(V)∇1,0ϕ+∇1,0

t G
C(V)

[
∇0,1
t,X,∇1,0

t

]
ϕ
)

.

Since the Levi–Civita connection is flat, both commutators are controlled by the
contraction −iX ·ω. Then the symmetry of GC(V) and (6) yield

∇0,1
t,X∆GC(V)ϕ = −2iX ·

(
ωt ·GC(V)

)
· ∇1,0
t ϕ = 2i|t|

(
V
[
Iτ,t
]
X
)
· ∇tϕ ,

where in the last passage we use that the antiholomorphic parts do not contribute.

2Hence [36, Rem. 4.16] is vindicated.
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For the other term, differentiating the identity ∇0,1
t,Xϕ = 0 along V yields

0 = V
[
∇0,1
t,X
]
ϕ+∇0,1

t,XV[ϕ] =
i

2
(
V
[
Iτ,t
]
X
)
· ∇tϕ+∇0,1

t,XV[ϕ] ,

using

∇0,1
t,X =

1
2
(
(1 + iIτ,t)X

)
· ∇t , V

[
∇0,1
t,X
]
=
i

2
(
V
[
Iτ,t
]
X
)
· ∇t .

For the second statement, if V ′ is a (local) vector field on T that commutes with
V , the curvature reads〈
F∇C ,V ∧ V ′

〉
= −

1
4|t|

(
V ′
[
∆GC(V)

]
− V

[
∆GC(V ′)

])
+

1
16|t|2

[
∆GC(V),∆GC(V ′)

]
,

(7)
and we will show both summands vanish.

For the former, since G̃(V) = −V
[
g̃C
τ

]
it follows that ∆G(V) = −V

[
∆g̃C

τ

]
as

differential operators acting on holomorphic sections of LC
t . Hence

V ′
[
∆GC(V)

]
− V

[
∆GC(V ′)

]
= −V ′V

[
∆g̃C

τ

]
+ VV ′

[
∆g̃C

τ

]
=
[
V ,V ′

][
∆g̃C

τ

]
= 0 .

For the rightmost term of (7), we may use the Leibnitz rule to expand the com-
mutator

[
∇1,0
t G

C(V)∇1,0
t ,∇1,0

t G
C(V ′)∇1,0

t

]
, which vanishes because of the identi-

ties (6), and because the contractions with GC(V) and GC(V ′) commute. Hence[
∆GC(V),∆GC(V ′)

]
= Tr

[
∇1,0
t G

C(V)∇1,0
t ,∇1,0

t G
C(V ′)∇1,0

t

]
= 0 .

�

The connection of Thm. 4.1 should be compared with the Hitchin connec-
tion [31, 14, 3]. In fact, noting that the Ricci potential on Mfl vanishes, Eq. 1 of [3,
Thm. 1] is formally analogous to ∇C up to replacing t with k, while Thm. 4.1
shows it enjoys the two key properties of the original Hitchin connection. We
thus refer to this object as the complexified Hitchin connection.

Remark 4.1. The complexified Hitchin connection of Thm. 4.1 is Γ -invariant, being
based on the variation of the Laplace–Beltrami operator for the Γ -equivariant
Kähler metric (cf. [3, Lem. 6]). 4

This construction can be carried out on AC
0 , producing a Γ -invariant flat con-

nection acting on T-families of holomorphic sections of LC
t → AC

0 , which we refer
to as the lifted complexified Hitchin connection, also denoted ∇C = ∇Tr − 1

4|t|u
C.

4.2. Hitchin–Witten connection. Analogously to the previous § 4.1 consider the
Laplacians

∆G(V) := Tr
(
∇1,0G(V)∇1,0), ∆G(V) := Tr

(
∇0,1G(V)∇0,1) ,

using the variation of Iτ on Mfl. Then we have the connection

∇HW = ∇Tr −
1
2
uHW, where uHW(V) :=

1
t
∆G(V) −

1
t
∆G(V) , (8)

acting on T-families of smooth sections of Lk → Mfl. Since gτ is flat this is a
particular instance of the connection studied in [47], i.e. the genus-one analogue
of [4] (which considers the higher-genus case): we refer to it as the Hitchin–Witten
connection.
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The tensor calculus developed in [4] applies to the genus-one case as well,
and can be used to deduce flatness, analogously to the proof of Thm. 4.1 (see
also [33, 11]). What is more, Witten argues in [47] that the connection admits
an explicit trivialisation, something that was further explored for semi-simple
groups in [11, 7] and exploited in [7, 8].

Remark 4.2. Analogously to Rem. 4.1, the Hitchin–Witten connection (8) is invari-
ant for the group of bundle automorphisms of LLL2

k → TΣ defined by the mapping
class group. 4

This construction can be carried out on A0, producing a Γ -invariant flat con-
nection acting on T-families of smooth section of LK → A0, which we refer to as
the lifted Hitchin–Witten connection, also denoted ∇HW = ∇Tr − 1

2u
HW.

5. The Bargmann transform

In this section we shall recall the general facts about the geometric quantisation
on Cm, m a positive integer, and the Bargmann transform. In coordinates zj =
pj + iqj, the standard symplectic structure can be expressed as

ω =

m∑
j=1

dpj ∧ dqj =
i

2

m∑
j=1

dzj ∧ dzj .

There is a unique pre-quantum line bundle LC
 h, up to isomorphism, for every

positive real parameter  h. We will fix the trivialisation so the pre-quantum con-
nection reads ∇h = d− i hα, where α is the invariant symplectic potential

α =
i

4

m
2∑
j=1

(
zj dzj − zj dzj

)
=

1
2

m∑
j=1

(
pj dqj − qj dpj

)
.

One easily checks that the smooth functions

σ :=

(
1

2π h

)m
2

exp
(
−

1
4 h

|z|2
)

, ρ := exp

−
i

2 h

m∑
j=1

pjqj

 ,

are polarised frames for the tautological Kähler structure and the real polarisation
P = Rm, respectively.

The Hilbert space H̃C
 h from Kähler quantisation, consisting of L2 holomorphic

sections of L h, can be identified with that of holomorphic functions with finite
L2-norm with respect to the Gaussian measure σ2. The latter is called the Segal–
Bargmann space [16, 38]. We will use the notation f for a function and ϕ = fσ for
the corresponding section, and use the two viewpoints at convenience.

Analogously, an element of the quantum Hilbert space H̃P arising from P can
be viewed as either a function ψ of the variables qj alone or as the corresponding
polarised section ψρ. The intrinsic definition of the inner product uses half-forms,
but up to appropriate natural choices it can be identified with the L2-pairing for
functions on Q := iRm. We shall often abuse notation and call ψ both objects;
note that they agree on Q since ρ

∣∣
Q
≡ 1.

The two quantum Hilbert spaces are related by a non-degenerate pairing,
which for ψ in an appropriate dense subspace is the L2-pairing on Cm. This



GENUS-ONE COMPLEX QUANTUM CHERN–SIMONS 13

defines by duality a linear isomorphism B : H̃P → H̃C
 h, whose inverse we will

denote B ′, which can be written in integral form as(
B(ψ)

)
(z) =

∫
Rm

ψ(q ′)B(q ′, z)dq ,
(
B ′(ϕ)

)
(q) =

∫
Cm
ϕ(z ′)B(q, z ′)dz ′ ,

where dq ′ and dz ′ denote the respective volume forms and

B(q ′, z) :=

(
|t|3

4π3

)m
4

exp
(
−
|t|

4
(
2
∣∣q ′∣∣2 + 4iq ′ · z− z · z+|z|2

))
=

=

(
|t|3

4π3

)m
4

exp
(
−
|t|

2

∣∣q−q ′
∣∣2) exp

(
−
i|t|

2
p · (2q ′ −q)

)
.

(9)

We emphasise that, in this form, the output of the Bargmann transform is a holo-
morphic section, rather than a function. In this normalisation, the Bargmann
transform is a unitary isomorphism between the quantum Hilbert spaces. These
formulæ are equivalent to those of [29, Chap. V, § 7] (or [16, Eq. 1.4]), only that
we insist in using an invariant symplectic potential and that we parametrise dif-
ferently the complex coordinates.

In the following we will often consider the operators a∗j f := zjf and ajf :=

2 h ∂f∂zj , which are mutually adjoint in H̃C
 h and often referred to as the ladder

operators. We will later use that, if πH̃ denotes the orthogonal projection of the
space of all L2 functions to the closed subspace H̃C

 h, then

πH̃(zjf) = 2 h
∂f

∂zj
. (10)

We shall use the following fundamental property of the Bargmann transform,
expressing the fact that it identifies the two quantum Hilbert spaces as Fock rep-
resentations.

Proposition 5.1 (cf. [16], § 1.8.i). If ψ is a smooth function with ψ,qjψ, ∂ψ∂qj ∈ H̃ h for
a fixed j, then B(ψ) lies in the domain of the operators aj ± a∗j , and

B
(
qjψ

)
=
i

2
(aj − a

∗
j )B(ψ) ,

B

(
∂ψ

∂qj

)
=

i

2 h
(aj + a

∗
j )B(ψ) .

(11)

Remark 5.1. The setup described in this section applies to any abstract linear
symplectic space with a Kähler and a real polarisation, the identification being
obtained by choosing any orthonormal basis of the real Lagrangian. 4

6. Coordinates and frames

In this section we define local coordinates on the moduli spaces, and fix con-
ventions for later use. The same discussion is presented in further detail for
K = SU(2) and KC = SL(2, C) in [33, 7, 36].

Consider on Σ the coordinates (x,y) induced by the identification Σ ' R2/Z2.
The choice of a basis (T1, . . . , Tr) of t induces global linear coordinates w = u+ iv

on AC
0 via the identification AC

0 ' H
1(Σ, R)⊗ tC; similarly, u defines coordinates
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on A0. Having fixed coordinates on Σ one can identify A
(C)
0 with the space of

t(C)-valued 1-forms with constant coefficients. Assuming in addition that the
basis (T1, . . . , Tr) is 〈·, ·〉kC -orthonormal then ωC =

∑r
j=1 dwj ∧ dwr+j. These

coordinates however do not trivialise the additional structure induced by a choice
of τ ∈ T, so we introduce new T-dependent ones.

Given τ = τ1 + iτ2 ∈ H, the corresponding class of Kähler structures is repre-
sented by one with holomorphic coordinate ζτ := x+ τy and Hodge ∗-operator

∗dx =
1
τ2

(
τ1 dx+|τ|2 dy

)
, ∗dy = −

1
τ2

(
dx+ τ1 dy

)
.

It is immediate to check that the standard decomposition of a tC-valued con-
nection form with constant coefficients trivially satisfies Hitchin’s equations for
this structure, meaning that its harmonic metric is the trivial one. In turn, since
harmonic forms with respect to this metric are precisely those with constant co-
efficients, the complex structure I(C)

τ is represented, in the model of A
(C)
0 just

introduced above, by the trivial Hodge ∗-operator. Note in particular that the
resulting (hyper-)Kähler structure on A

(C)
τ is linear, so the Levi-Civita connection

is trivial as claimed earlier.
An orthonormal basis of the real polarisation Pτ ⊆ AC

0 (as a complex vector
space with structure J) is given by the elements

Xj :=
Tj√
2τ2

dζτ for j ∈ { 1, . . . , r } . (12)

Fix now t = k + is with integer real part, thus selecting a Kähler structure
(AC

0 ,ωt, Iτ,t) as in § 2. We then construct a real basis for AC
0 by considering the

vectors Xj in (12) together with

Xj+r := JXj for 1 6 j 6 r, Yj := Iτ,tXj for 1 6 j 6 2r . (13)

We will denote (p,q) the corresponding linear coordinates, with p = (p1, . . . ,p2r)
and q = (q1, . . . ,q2r) corresponding to the Xj and the Yj’s, respectively. We will
call z = p+ iq the corresponding It,τ-holomorphic coordinates, and often write
A(τ,p,q) to denote the connection form corresponding to the parameters.

Definition 6.1. We denote by δ
δτ the vector fields on TΣ ×AC

0 given by

δ

δτ
=
∂

∂τ
−

2r∑
j=1

(
∂pj

∂τ

∂

∂pj
+
∂qj

∂τ

∂

∂qj

)
=
∂

∂τ
−

 2r∑
j=1

∂zj

∂τ

∂

∂zj
+
∂zj

∂τ

∂

∂zj

 . (14)

Remark 6.1. Note that differentiation along these vectors preserves the prop-
erty of being polarised with respect to both polarisations, because for every
j ∈ { 1, . . . , 2r } they commute with ∂

∂zj
and ∂

∂pj
. 4

Definition 6.2. We define operators acting on smooth functions AC
0 → C:

Mjψ := (qj + iqj+r)ψ , µjf := (zj + izj+r)f ,

Djψ :=
1
|t|

(
∂

∂qj
+ i

∂

∂qj+r

)
ψ , δjf :=

2
|t|

(
∂

∂zj
+ i

∂

∂zj+r

)
f .
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The two operators on each column commute, and (11) becomes

B ◦Mj =
i

2
(δj − µj) ◦B and B ◦Dj =

i

2
(µj + δj) ◦B.

The transition between the two coordinate systems (p,q) and (u, v) can be
obtained from the identity dζτ = dx + τdy, and from (12) and (13). In what
follows we will only need the relations

qj =
1

|t|
√

2τ2

(
−(kτ1 − sτ2)uj + (kτ2 + sτ1)vj + kuj+r − svj+r

)
,

qj+r =
1

|t|
√

2τ2

(
(kτ2 + sτ1)uj + (kτ1 − sτ2)vj − suj+r − kvj+r

)
,

(15)

and the inverse relations show that A0 ⊆ AC
0 is expressed in coordinates (p,q) by

pj =
s

|t|
qj +

k

|t|
qj+r , pj+r = −

k

|t|
qj +

s

|t|
qj+r . (16)

We are in the situation of Rem. 5.1. Our setting corresponds to the symplectic
form ωt/|t| for the quantum parameter  h = 1/|t|; we then have frames στ and ρτ
as well as a Bargmann transform Bτ for each τ.

6.1. Variations over Teichmüller space. Differentiating (15) yields

∂qj

∂τ
= −

1
4τ2

qj+r −
t

4τ2|t|
(pj + ipj+r) ,

∂qj+r

∂τ
=

1
4τ2

qj −
it

4τ2|t|
(pj + ipj+r)

(17)
and similarly for the complex coordinates and variations in τ.

Definition 6.3. For j ∈ { 1, . . . , r } we set

Xj :=
1√
2τ2

(
∂

∂uj
+ τ

∂

∂uj+r

)
∈ A0 ⊗R C ⊆ AC

0 ⊗R C .

Remark. The above are defined formally in the same way as the vectors Xj (cf. (12)),
except they are thought of as complex objects tangent to A0 rather than real objects
tangent to AC

0 . In particular they are anti-holomorphic and IτXj = −Xj. 4

Lemma 6.1. If g̃τ denotes the inverse of gτ, then

G̃

(
∂

∂τ

)
= −

∂g̃τ

∂τ
= −

i

τ2

r∑
j=1

Xj ⊗Xj , G̃

(
∂

∂τ

)
= −

∂g̃τ

∂τ
=
i

τ2

r∑
j=1

Xj ⊗Xj .

Proof. This is proven in [7, 33] for K = SU(2). The general case follows, since
A0 can be decomposed as an orthogonal direct sum of r copies of the rank-one
case. �

Corollary 6.1. The derivatives of gτ along τ and τ read

∂gτ

∂τ
(A,B) = −

i

τ2

r∑
j=1

g
(
Xj,A

)
g
(
Xj,B

)
,

∂gτ

∂τ
(A,B) =

i

τ2

r∑
j=1

g
(
Xj,A

)
g
(
Xj,B

)
.
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Proof. By the usual formula for the derivative of the inverse matrix, we have that

∂gτ

∂τ
= −gτ ·

∂g̃τ

∂τ
· gτ = gτ · G̃

(
∂

∂τ

)
· gτ ,

and the result follows. The derivative in τ is obtained the same way. �

From the formula, combined with the fact that the Levi-Civita connection of
gτ is trivial, one deduces the following.

Corollary 6.2. The covariant derivative with respect to the Hitchin–Witten connection
is given by

∇HW
τ =

∂

∂τ
−

i

2tτ2

r∑
j=1

∇Xj
∇Xj

, and ∇HW
τ =

∂

∂τ
−

i

2tτ2

r∑
j=1

∇Xj∇Xj .

(18)

Lemma 6.2. The symmetric tensor GC is determined by the identities

GC

(
∂

∂τ

)
= −

it

τ2|t|

r∑
j=1

(
∂

∂zj
+ i

∂

∂zj+r

)
⊗

(
∂

∂zj
+ i

∂

∂zj+r

)
,

GC

(
∂

∂τ

)
= −

it

τ2|t|

r∑
j=1

(
∂

∂zj
− i

∂

∂zj+r

)
⊗

(
∂

∂zj
− i

∂

∂zj+r

)
.

Proof. Since the decomposition AC
0 = A0 ⊕ JA0 is orthogonal, and since J is an

isometry, the metric gC
τ splits as the sum of two blocks gτ and J∗gτ = J · gτ · J.

Correspondingly, its inverse also splits as the sum

g̃C
τ = g̃τ ⊕

(
J−1 · g̃τ · J−1) = g̃τ ⊕ (J · g̃τ · J) .

Since both J and the splitting of AC
0 are independent of the Teichmüller parameter,

the derivatives of g̃τ with respect to τ and τ also decompose in a similar way,
whence

∂g̃C
τ

∂τ
=
i

τ2

r∑
j=1

(
Xj ⊗Xj + JXj ⊗ JXj

)
,

∂g̃C
τ

∂τ
= −

i

τ2

r∑
j=1

(
Xj ⊗Xj + JXj ⊗ JXj

)
.

Moreover a direct computation shows that

dzj
(
Xl
)
=
δjl

2

(
1 +

t

|t|

)
, dzj+r

(
Xl
)
=
iδjl

2

(
1 +

t

|t|

)
,

dzj
(
JXl
)
= −

iδjl

2

(
1 −

t

|t|

)
, dzj+r

(
JXl
)
=

1δjl
2

(
1 −

t

|t|

)
.

Therefore the components of Xj and JXj of type (1, 0) with respect to Iτ,t are

X
′
j =

1
2

(
1 +

t

|t|

)(
∂

∂zj
+ i

∂

∂zj+r

)
, (JXj)

′ = −
i

2

(
1 −

t

|t|

)(
∂

∂zj
+ i

∂

∂zj+r

)
,

respectively. We conclude that

Xj ⊗Xj + JXj ⊗ JXj =
t

|t|

(
∂

∂zj
+ i

∂

∂zj+r

)⊗2

,

and the first identity in the statement is proven. The second is analogous. �
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Corollary 6.3. The covariant derivative with respect to the complexified Hitchin connec-
tion is given by

∇C
τ =

∂

∂τ
−

i

4τ2t

r∑
j=1

(
∇zj + i∇zj+r

)2
, ∇C

τ =
∂

∂τ
−

i

4τ2t

r∑
j=1

(
∇zj − i∇zj+r

)2
.

7. Identification of the connections on the covering spaces

7.1. The L2-connection. Let U ⊆ T be an open subset and f : AC
0 × U → C a

smooth function whose fibrewise restriction

f
∣∣
τ
:= f

∣∣
AC

0×{τ }
: AC

0 → C

lies in H̃C
τ,t for every τ ∈ U. Let V be a tangent vector on T and assume that

V[fστ] is L2

Definition 7.1 (L2-connection). The covariant derivative of ϕ := fστ along V with
respect to the L2-connection is

∇L2

V ϕ := πH̃
(
V[ϕ]

)
.

Proposition 7.1 ([14], § 1a). Suppose thatϕ = fσ and V are as above, and that moreover
ϕ lies in the domain of the ladder operators and their two-fold compositions. Then

∇L2

V ϕ = ∇C
Vϕ .

Proof. Following the proof of [3, p. 311], for τ ∈ T and X a vector field of type
(1, 0) on AC

0 , the adjoint operator of ∇X on L2(AC
0 ,LC

t ) is (∇X)∗ = divX−∇X.
Since the vector fields Xj are constant and of type (1, 0), it follows that

〈∇Xj
∇Xj

ϕ|ϕ ′〉 = 〈∇Xj
ϕ|∇∗

Xj
ϕ ′〉 = 〈∇Xj

ϕ|∇Xjϕ
′〉 = 0

for all ϕ ′ ∈ H̃C
τ,t and j ∈ { 1, . . . , r }, and similarly for JXj. Hence πH̃τ

(
uC(V)ϕ

)
= 0

which yields

∇C
Vϕ = πH̃

(
∇C
Vϕ
)
= πH̃

(
V[ϕ]

)
= ∇L2

V ϕ .

�

In the next § 7.2 we will use the explicit local expression of the L2-connection.
This can be obtained by writing the derivative ∂ϕ

∂τ using the vector field δ
δτ

from (14) and then combining (17) with (10). This leads to

∇L2

τ ϕ =
δf

δτ
στ −

i

16τ2

r∑
j=1

(
tδ2
jf+ tµ

2
jf− 4izj+r

∂f

∂zj
+ 4izj

∂f

∂zj

)
στ . (19)

7.2. Conjugation of the Hitchin–Witten connection. Consider a T-family ψ of
functions on A0, corresponding to a family of sections ψρτ on AC

0 . We will show
its (lifted) Hitchin–Witten covariant derivative along ∂

∂τ is

∇HW
τ (ψρτ) =

∂ψ

∂τ
ρτ +

it

8tτ2

r∑
j=1

(
tD2
jψ− 2|t|MjDjψ+ tM2

jψ
)
ρτ . (20)
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Next we study the polarised extension of the right-hand side to AC
0 , and then

restrict it to Qτ, proving the result is the section

Ext
(
∇HW
τ (ψρ)

)∣∣∣∣
Qτ

=
∂ψ

∂τ
+
it

8τ2

r∑
j=1

(
D2
j +M

2
j

)
ψ , (21)

where Ext takes polarised extensions.
Finally we study the Bargmann transform of (21), assuming that each sum-

mand is L2 and that ψ is regular enough so that

Bτ

(
δψ

δτ

)
=
δBτ(ψ)

δτ
and Bτ

(
δψ

δτ

)
=
δBτ(ψ)

δτ
. (22)

Then we obtain the following reformulation of Thm. 2.

Theorem 7.1. Let U ⊆ T be open, and ψ : U×AC
0 → C a smooth family of polarised

functions satisfying (22) such that ψ
∣∣
Qτ

lies in the domain of all two-fold compositions
of ladder operators. Then

Bτ

(
∇HW
τ (ψρ)

∣∣∣
Qτ

)
= ∇L2

τ

(
Bτ

(
ψ
∣∣
Qτ

))
,

Bτ

(
∇HW
τ (ψρ)

∣∣∣
Qτ

)
= ∇L2

τ

(
Bτ

(
ψ
∣∣
Qτ

))
.

In the proof we will use

πQτXj =
it

2|t|

(
∂

∂qj
− i

∂

∂qj+r

)
, πQτXj = −

it

2|t|

(
∂

∂qj
+ i

∂

∂qj+r

)
,

gτ(A,Xj) =
it

|t|

(
qj − iqj+r

)
gτ(A,Xj) = −

it

|t|

(
qj + iqj+r

)
,

(23)
for j ∈ { 1, . . . , r } and A ∈ A0, obtained from Def. 6.3, (3), and (15).

Proof. It is enough to verify the statement for the derivative in τ. We start by
proving (20). Using (18) we have

∇HW
τ (ψρτ) =

∂ψ

∂τ
ρτ +ψ

∂ρτ

∂τ
−

i

2tτ2

r∑
j=1

∇Xj
∇Xj

(ψρτ) . (24)

To expand ρτ note |t|p · q is the ωt-pairing of the projections of a vector onto
Pτ and Qτ. For A ∈ A0 this can be written s

2gτ(A,A), using (3), hence

ψ
∂ρτ

∂τ
=

st

4τ2t

r∑
j=1

M2
jψρτ ,

by Cor. 6.1 and (23). Similarly using ωt
∣∣
A0

= kω, and that Xj is of type (1, 0) for
Iτ, one finds

∇Xj
ρτ = −

t

2
gτ(A,Xj)ρτ and ∇Xj

∇Xj
ρτ =

t2

4

(
gτ(A,Xj)

)2
ρτ .
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Moreover, since ψ is a polarised function, so are all its derivatives, so using Def. 6.3
and (23) one has

Xj[ψ] = −
it

2
Djψ and Xj

[
Xj[ψ]

]
= −

t2

4
D2
jψ .

Combining these relations and expanding the second-order operator in (24) yields

∇HW
τ (ψρτ) =

∂ψ

∂τ
ρτ +

it

8tτ2

r∑
j=1

((
tD2
j − 2|t|MjDj + tM2

j

)
ψ

)
ρτ ,

which is equivalent to (20), as desired.
Next we study the polarised extension of the above and establish (21). In fact,

each individual term in (20) is a polarised object (restricted to A0), except for the
term ∂ψ

∂τ , which can be expanded as

∂ψ

∂τ
=
δψ

δτ
−

1
4τ2

r∑
j=1

((
qj+r +

t

|t|
(pj + ipj+r)

)
∂ψ

∂qj
−

(
qj −

it

|t|
(pj + ipj+r)

)
∂ψ

∂qj+r

)
,

using (14) and (17) and the polarisation condition on ψ. By Rem. 6.1, the deriva-
tive δψδτ is polarised, while using (16) we can re-write

∂ψ

∂τ

∣∣∣∣
A0

=
δψ

δτ
−

1
4τ2

r∑
j=1

(
qj+r

∂ψ

∂qj
− qj

∂ψ

∂qj+r
−
it2

|t|
MjDjψ

)
.

The right-hand side expresses a polarised function on A0 and therefore

Ext

(
∂ψ

∂τ

∣∣∣∣
A0

ρτ

)∣∣∣∣∣
Qτ

=
∂ψ

∂τ

∣∣∣∣
Qτ

+
it2

4|t| τ2

r∑
j=1

MjDjψ
∣∣
Qτ

.

Combined with (20), this gives (21). We can now apply the Bargmann transform
to each term, using Prop. 5.1 and condition (22), which yields

Bτ

(
Ext

(
∇HW
τ (ψρ)

)∣∣∣
Qτ

)
=

=
δBτ(ψ)

δτ
+

i

8τ2

r∑
j=1

2i

(
zj+r

∂

∂zj
− zj

∂

∂zj+r

)
−
t

2

(
δ2
j + µ

2
j

)Bτ(ψ) ,

which agrees with (19). �

8. Bargmann transform on the moduli spaces

Throughout this section we assume τ to be fixed. We shall discuss a version of
the Bargmann transform Bτ : L2

k → HC
τ,t on the moduli spaces and prove Thm. 4.

Recall that W acts on AC
0 by linear isometries preserving A0 and the hyper-

Kähler structure, so that Pτ and Qτ are fixed. Fixing a W-invariant fundamental
domain D ⊆ A0 for T0, we obtain one for AC

0 as DC := D+ Pτ, and one for the
induced action on Qτ as DQ := DC ∩Qτ. Finally, given a ∈ T0, we will denote
ua, qa, pa, and za its coordinates in to the various frames on AC

0 .
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Using (5), a section on MC
fl is equivalent a W-invariant φ on A

(C)
0 such that

φ(p+pa,q+qa) = φ(p,q) exp
(
−i|t|

2
(p ·qa −q ·pa)

)
,

for a ∈ T0. A Pτ-polarised one corresponds to a W-invariant ψ on Qτ with

ψ(q+qa) = ψ(q
′) exp

(
i|t|

2
p · (2q+qa)

)
.

We shall often identify sections with their lifts. Note that the kernel (9) satisfies

B(q ′+qa, z) exp
(
i|t|

2
(2q ′ ·pa+pa ·qa)

)
=B(q ′, z−za) exp

(
−
i|t|

2
(p ·qa−q ·pa)

)
.

(25)

Proposition 8.1. For every fixed z, the functional Tz : L2,C
t → C defined by

Tzφ :=

(
|t|

2π

) r
2
∫
AC

0

φ(z ′)e
−

|t|
4

(
|z|2−2z·z ′+|z ′|2

)
dz ′

is bounded, and it restricts on HC
τ,t to the evaluation at z.

Proof. By uniform convergence in z ′ on compact sets, the sum

Rz(z
′) :=

∑
a∈T0

∣∣∣∣∣e−|t|
4

(
|z|2−2z·(z ′+za)+|z ′+za|

2
)∣∣∣∣∣ = ∑

a∈T0

e−
|t|
4 |z−z

′−za|
2

defines a T0-periodic smooth function on AC
0 , thus descending to MC

fl . Using
T0 ⊆ A0 and A0 ⊥ JA0, the above can be expressed in τ-independent coordinates
as R ′z(v ′) exp

(
−
|t|
4

∣∣u ′∣∣2
gC
τ

)
for a smooth periodic R ′z. Therefore Rz is L2 on MC

fl , so

|Tzφ| is bounded the L2-product of |φ| and Rz, showing continuity.
It is well known [48] that Tzϕ = ϕ(z) for ϕ ∈ H̃C

τ,t. The proof uses only the
Cauchy formula and Fubini-Tonelli, and holds for holomorphic ϕ provided the
integral converges absolutely, which we just checked to be the case. �

Theorem 8.1. There is a unitary linear mapping Bτ : L2
k → HC

τ,t given by(
Bτ(ψ)

)
(z) :=

∫
Qτ

ψ(q ′)B(q ′, z)dvolq ′ .

Proof. By a similar argument as in Prop. 8.1, for fixed z the integral defines a
bounded functional Sz : L2

k → C. Fixing ψ and varying z defines a holomorphic
section ϕ of LC

t → AC
0 . Its K0-equivariance follows from that of ψ by changing

variables and using (25) and the fact that W acts by reflections.
Suppose now that ψ is smooth. Then |ψ| is bounded on Mfl and therefore on

Qτ. In order to compute‖ϕ‖2, we first consider ϕλ(z) := ϕ(z) exp(−λ2|t||p|2) for
positive λ, and the inner products

〈ϕλ,ϕµ〉 =
|t|3r

4rπ3r|W|

∫
DC

∫
Qτ

∫
Qτ

ψ(q ′)ψ(q ′′)e−
|t|
2

(
|q−q ′|

2
+|q−q ′′|

2)
e−

|t|
2

(
(λ2+µ2)|p|2−2ip·(q ′−q ′′)

)
dq ′ dq ′′ dz .
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By absolute convergence we may apply Fubini-Tonelli, and integrating in p yields

〈ϕλ,ϕµ〉 =
|t|2r

2rπ2r|W| (λ2 + µ2)r

∫
DQ

∫
Qτ

∫
Qτ

ψ(q ′)ψ(q ′′)e−
|t|
2

(
|q−q ′|

2
+|q−q ′′|

2)
e
−

|t|

2(λ2+µ2)
|q ′−q ′′|

2

dq ′ dq ′′ dq .

Setting q ′ = ξ+αη and q ′′ = ξ−αη for α :=
√

λ2+µ2

λ2+µ2+2 gives

〈ϕλ,ϕµ〉 =
2r|t|2r

π2r|W| (λ2 + µ2 + 2)r

∫
DQ

∫
Qτ

∫
Qτ

ψ(ξ+αη)ψ(ξ−αη)e−|t|
(
|q−ξ|2+|η|2

)
dξdηdq .

By the continuity of ψ and dominated convergence we then have

L := lim
(λ,µ)→(0,0)

〈ϕλ,ϕµ〉 =
|t|2r

π2r|W|

∫
DQ

∫
Qτ

∫
Qτ

∣∣ψ(ξ)∣∣2 e−|t|(|q−ξ|2+|η|2) dξdηdq =

=
|t|r

πr|W|

∫
DQ

∫
Qτ

∣∣ψ(ξ)∣∣2 e−|t||q−ξ|2 dξdq .

Although q runs over DQ, we can use the periodicity of
∣∣ψ(ξ)∣∣2 to obtain

L =
|t|r

πr|W|

∑
a∈T0

∫
DQ

∫
DQ

∣∣ψ(ξ)∣∣2 e−|t||q+qa−ξ|2 dξdq =

=
|t|r

πr|W|

∫
DQ

∣∣ψ(ξ)∣∣2(∫
Qτ

e−|t||q+qa−ξ|
2

dq
)

dξ =
1

|W|

∫
DQ

∣∣ψ(ξ)∣∣2 dξ =‖ψ‖2 .

We proved that 〈ϕλ,ϕµ〉 tends to ‖ψ‖2 when (λ,µ) → (0, 0), so
∥∥ϕλ −ϕµ∥∥

tends to 0. By completeness of L2,C
t , then, ϕλ has a limit in that space, with norm

‖ψ‖2. Since ϕλ has pointwise limit ϕ, the two have to coincide.
We have shown that the restriction U of Bτ to the smooth sections is unitary. It

remains to prove that the continuous extension of U to L2
k coincides with Bτ. For

every z, however, the tautological identity Tz ◦U = Sz holds on smooth sections,
and extends by continuity to all of L2

k. �

Theorem 8.2. There is a unique bounded map B ′τ : L2,C
t → L2

k defined on a dense by(
B ′τ(φ)

)
(q) :=

∫
AC

0

φ(z ′)B(q, z ′)dz ′ .

Furthermore, if ϕ ∈ HC
τ,t then Bτ

(
B ′τ(ϕ)

)
= ϕ.

Throughout the proof, the symbol .
= will mean that two quantities agree up to

a constant normalisation which may depend on t, r, and |W|, but nothing else.

Proof. Fix a smooth compactly supported section φ on MC
fl , for which the integral

converges absolutely. For each q call φq its restriction to Pτ +q and consider(
F(φq)

)
(ξ) :=

∫
Pτ

φ(z)e−
i|t|
2 p·ξ dξ
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Using a change of variable and the quasi-periodicity of φ we can write(
F(φq+qa)

)
(ξ) =

∫
Pτ

φ(z+ za)e
−
i|t|
2 (p+pa)·ξ dξ =

=

∫
Pτ

φ(z)e−
i|t|
2

(
p·(ξ+qa)+pa·(ξ−q)

)
dp =

=
(
F(φq)

)
(ξ+qa)e

−
i|t|
2 pa·(ξ−q) .

(26)

By the unitarity of the Fourier transform we can write

‖φ‖2 .
=

∫
DQ

∫
Pτ

∣∣φ(z)∣∣2 dpdq .
=

∫
DQ

∫
Qτ

∣∣∣(F(φq))(ξ)∣∣∣2 dξdq .

Change now variable to q− 2ξ and use (26) to obtain

‖φ‖2 .
=

∫
DQ

∫
Qτ

∣∣∣(F(φq))(q− 2ξ)
∣∣∣2 dξdq .

=

.
=
∑
a∈T0

∫
DQ

∫
DQ

∣∣∣(F(φq))(q− 2ξ− 2qa)
∣∣∣2 dξdq =

=
∑
a∈T0

∫
DQ

∫
DQ

∣∣∣(F(φq−qa))((q−qa) − 2ξ)
∣∣∣2 dξdq =

=

∫
Qτ

∫
DQ

∣∣∣(F(φq))(q− 2ξ)
∣∣∣2 dξdq .

We are ready to study the L2-norm of B ′τ(φ). Using Cauchy-Schwarz we obtain

∣∣∣(B ′τ(φ))(q)∣∣∣2 =

∣∣∣∣∣
∫
AC

0

φ(z ′)e−
|t|
2 |q−q

′|
2
e
i|t|
2 p
′·(2q−q ′) dz ′

∣∣∣∣∣
2

.
=

.
=

∣∣∣∣∣
∫
Qτ

(
F(φq ′)

)
(q ′ − 2q)e−

|t|
2 |q−q

′|
2

dq ′
∣∣∣∣∣
2

6

6 C
∫
Qτ

∣∣∣(F(φq ′))(q ′ − 2q)
∣∣∣2 dq ′

for some positive constant C. But then∥∥B ′τ(φ)∥∥2
L2
k
6
C

|W|

∫
DQ

∫
Qτ

∣∣∣(F(φq ′))(q ′ − 2q)
∣∣∣2 dq ′ dq .

=‖φ‖2
L2,C
t

.

Therefore B ′ is bounded on the dense space of smooth compactly supported
sections. On this dense, moreover, Fubini-Tonelli applies for every z, giving(

Bτ
(
B ′τ(φ)

))
(z) =

∫
A0

∫
AC

0

φ(z ′)B(q ′′, z ′)B(q ′′, z)dz ′ dq ′′ =

=

∫
AC

0

φ(z ′)

∫
A0

B(q ′′, z ′)B(q ′′, z)dq ′′ dz ′ = Tzφ .

It follows from continuity that Sz ◦B ′τ = Tz on L2,C
t , and in particular on HC

τ,t. �
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9. Identifications of the connections on the moduli spaces

In this section we use the previous results to identify the Hitchin–Witten and
complexified Hitchin connections as intrinsically defined on the moduli spaces.
The arguments that used the L2-property can be adapted building on [1, § 3.5].
We recall the convention that polarised sections, without further specifications,
will refer to Pτ—Kähler-polarised objects will be called holomorphic.

Let S = Sk be the space of smooth sections of Lk → A0 whose point-wise norm
squared function is Schwartz-class. Analogously, let SC = Sτ,t,C be the space of
Schwartz-class holomorphic sections of LC

t → AC
0 . These spaces embed densely

inside the quantum spaces L̃
2
k and H̃C

τ,t of §§ 3.3 and 3.2, respectively, for τ ∈ T.
As a consequence of its fundamental properties, the Bargmann transform re-

stricts to a morphism of Fréchet spaces Bτ : S → SC, defining a transpose map
tBτ : S

′
C → S ′ between the topological duals. It is also easy to check that the

lifts of elements of L2
k and HC

τ,t have finite L2-pairing with elements of S and SC,
respectively, resulting in embeddings ι and ιC as in the diagram in Fig. 1.

L2
k HC

τ,t

S ′k S ′τ,t,C

Bτ

ι

tBτ

ιC

Figure 1. Comparison between polarised sections and tempered distributions

Lemma 9.1. The diagram of Fig. 1 is commutative.

Proof. We must show that
(
Bτ(ψ1)

∣∣ Bτ(ψ2)
)
= (ψ1|ψ2), for ψ1 ∈ L2

k and ψ2 ∈ S.
For every a ∈ T0 let χa denote the indicator function of D+ a, so that ψχa is

L2 on A0. By dominated convergence and unitarity of Bτ, we then have

(ψ1|ψ2) =
∑
a∈T0

(ψ1χa|ψ2) =
∑
a∈T0

(
Bτ(ψ1χa)

∣∣ Bτ(ψ2)
)

.

Dominated convergence also yields
∑
aBτ

(
ψ1χa

)
= Bτ(ψ1), point-wise on AC

0 ,
and all finite partial sums are uniformly bounded in absolute by a constant, so∑
a∈T0

(
Bτ(ψ1χa)

∣∣ Bτ(ψ2)
)
=

(∑
a∈T0

Bτ(ψ1χa)

∣∣∣∣∣ Bτ(ψ2)

)
=
(
Bτ(ψ1)

∣∣ Bτ(ψ2)
)

.

�

Now we consider the dual versions of the Hitchin–Witten and complexified
Hitchin connections, as follows. Suppose T is a T-family of elements of S ′, such
that for every test section ψ ∈ S the pairing (T |ψ) is smooth over T. Then set(

∇̌HW
V T

∣∣ ψ) := V [(T |ψ)]− (T ∣∣ ∇HW
V ψ

)
, (27)
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where V is a vector field on T. This defines the dual Hitchin–Witten connection.
The dual complexified Hitchin connection ∇̌C is defined analogously, with the

caveat that the test section ψ ∈ SC needs to be extended to a τ-dependent family
in order for the right-hand side to make sense.

Lemma 9.2. The dual Bargmann transform intertwines the dual Hitchin–Witten and
the complexified Hitchin connections.

Proof. Let V be a vector field on T, T a smooth T-family of elements of S ′C, ψ ∈ S

a test section. By (27) and the defining property of the transpose map, one has(
tBτ

(
∇̌C
VT
) ∣∣∣ ψ) = V

[(
T
∣∣ Bτ(ψ))]− (T ∣∣ ∇C

VBτ(ψ)
)

.

Since ψ is a τ-independent function the sections δψδτ and δψ
δτ can be expressed

in terms of derivatives along AC
0 and coordinate multiplication. Therefore, δψδτ

and δψ
δτ are still Schwartz-class, and a standard argument using dominated con-

vergence implies that the hypotheses of Thm. 7.1 hold for ψ. It follows that(
tBτ

(
∇̌C
VT
) ∣∣∣ ψ) =

(
∇̌HW
V

tBτ(T)
∣∣∣ ψ) .

�

Thus far we have proved that the dual Bargmann transform intertwines ∇̌HW

and ∇̌C. In order to conclude the proof of Thm. 4, all is left to do is relate
these two connections, obtained working by duality on the cover A

(C)
0 , the the

connections defined intrinsically on the moduli spaces.

Proposition 9.1. The embeddings ι and ιC intertwine the Hitchin-Witten and complex-
ified Hitchin connections ∇HW and ∇C with the duals of their lifted versions.

Proof. By (27), if ψ is a smooth T-family of K0-equivariant sections on A0 and
ψ0 ∈ S ′ is a fixed test function we have that(

∇̌HW
V (ιψ)

∣∣∣ ψ0

)
= V

[∫
A0

ψ ·ψ0 dvol

]
−

∫
A0

ψ · ∇HW
V ψ0 dvol ,

for every real tangent vector V on T. Again by compactness of Mfl, ψ is bounded,
uniformly in τ up to restricting to appropriate open subsets of T, and the same
applies to its derivatives along the direction of V . By dominated convergence
then

V

[∫
A0

ψ ·ψ0 dvol

]
=

∫
A0

V
[
ψ ·ψ0

]
dvol =

(
V[ψ]

∣∣ ψ0
)

.

On the other hand, the action of the Hitchin-Witten connection on ψ reduces to
that of its potential, and we obtain∫

A0

ψ · ∇HW
V ψ0 dvol =

∫
A0

(
uHW(V)ψ

)
·ψ0 dvol =

(
ι
(
uHW(V)ψ

) ∣∣ ψ0
)

,

by integration by parts—using the fast decay of ψ0. Overall(
∇̌HW
V (ιψ)

∣∣∣ ψ0

)
=
(
V[ψ] −

1
2
uHW(V)ψ

∣∣∣ ψ0

)
=
(
ι
(
∇HW
V ψ

) ∣∣∣ ψ0

)
.

For the Kähler-polarised case, a test section ϕ ∈ S ′C may not be fixed indepen-
dently of τ, but requiring that δϕδτ = δϕ

δτ = 0 the same arguments apply. �
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Putting together the statements of this section we have proven Thm. 4.
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