Frédéric De Gournay 
email: degourna@insa-toulouse.fr
  
Alban Gossard 
email: alban.paul.gossard@gmail.com
  
Adaptive scaling of the learning rate by second order automatic differentiation

In the context of the optimization of Deep Neural Networks, we propose to rescale the learning rate using a new technique of automatic differentiation. This technique relies on the computation of the curvature, a second order information whose computational complexity is in between the computation of the gradient and the one of the Hessian-vector product. If (1C, 1M ) represents respectively the computational time and memory footprint of the gradient method, the new technique increase the overall cost to either (1.5C, 2M ) or (2C, 1M ). This rescaling has the appealing characteristic of having a natural interpretation, it allows the practitioner to choose between exploration of the parameters set and convergence of the algorithm. The rescaling is adaptive, it depends on the data and on the direction of descent. The numerical experiments highlight the different exploration/convergence regimes.

Introduction

The optimization of Deep Neural Networks (DNNs) has received tremendous attention over the past years. Training DNNs amounts to minimize the expectation of non-convex random functions in a high dimensional space R d . If J : R d → R denotes this expectation, the problem reads

min Θ∈R d J (Θ), (1) 
with Θ the parameters. Optimization algorithms compute iteratively Θ k , an approximation of a minimizer of (1) at iteration k, by the update rule

Θ k+1 = Θ k -τ k Θk , (2) 
where τ k is the learning-rate and Θk is the update direction. The choice of Θk encodes the type of algorithm used. This work focuses on the choice of the learning rate τ k . There is a trade-off in the choice of this learning rate. Indeed high values of τ k allows exploration of the parameters space and slowly decaying step size ensures convergence in accordance to the famous Robbins-Monro algorithm [START_REF] Robbins | A stochastic approximation method[END_REF]. This decaying condition may be met by defining the step as τ k = τ 0 k -α with τ 0 being the initial step size and 1 2 < α < 1 a constant. The choice of the initial learning rate and its decay are left to practitioners and these hyperparameters have to be tuned manually in order to obtain the best rate of convergence. For instance, they can be optimized using a grid-search or by using more intricated strategies [START_REF] Samuel | Don't decay the learning rate, increase the batch size[END_REF], but in all generality tuning the learning rate and its decay factor is difficult and time consuming. The main issue is that the learning rate has no natural scaling. The goal of this work is to propose an algorithm that, given a direction Θk finds automatically a scaling of the learning rate. This rescaling has the following advantages:

• The scaling is adaptive, it depends on the data and of the choice of direction Θk .

• The scaling expresses the convergence vs. exploration trade-off. Multiplying the rescaled learning rate by 1/2 enforces convergence whereas multiplying it by 1 allows for exploration of the space of parameters.

This rescaling comes at a cost and it has the following disadvantages:

• The computational costs and memory footprint of the algorithm goes from (1C, 1M ) to (1.5C, 2M ) or (2C, 1M ).

• The rescaling method is only available to algorithms that yield directions of descent, it excludes momentum method and notably Adam-flavored algorithm.

• Rescaling is theoritically limited to functions whose second order derivative exists and does not vanish. This non-vanishing condition can be compensated by L 2 -regularization.

Foreword

First recall that second order methods for the minimization of a deterministic C 2 function Θ → J (Θ), with a Hessian that we denote ∇ 2 J , are based on the second order Taylor expansion at iteration k:

J (Θ k -τ k Θk ) J (Θ k ) -τ k Θk , ∇J (Θ k ) + τ 2 k 2 ∇ 2 J (Θ k ) Θk , Θk . (3) 
If the Hessian of J is positive definite, the minimization of the right-hand side leads to the choice

Θk = P -1 k ∇J (Θ k ) with P k ∇ 2 J (Θ k ). (4) 
Once a direction Θk is chosen, another minimization in τ k gives

τ k = Θk , ∇J (Θ k ) Θk 2 c(Θ k , Θk ) , ( 5 
)
where c is the curvature of the function, and is defined as

c(Θ k , Θk ) def = ∇ 2 J (Θ k ) Θk , Θk Θk 2 . (6) 
A second-order driven algorithm can be decomposed in two steps: i) the choice of P k in (4), and if this choice leads to an update which is a direction of ascent, that is Θk , ∇J (Θ k ) > 0, ii) a choice of τ k by an heuristic inspired from [START_REF] Biglari | Scaling on the spectral gradient method[END_REF] and [START_REF] Becker | Improving the convergence of back-propagation learning with second order methods[END_REF].

In the stochastic setting, we denote as s → J s the mapping of the random function. At iteration k, only information on (J s ) s∈B k can be computed where (B k ) k is a sequence of mini-batches which are indepently drawn. If E s∈B k is the empirical average over the mini-batch, we define

J B k = E s∈B k [J s ].
Given Θ, the quantity J (Θ) is deterministic, and J is the expectation of J s w.r.t. s.

Related works

Choice of P k : The choice P k = ∇ 2 J B k (Θ k ) in (4), leads to a choice τ k = 1 and to the so-called Newton method. It is possible in theory to compute the Hessian by automatic differentiation if it is sparse [START_REF] Walther | Computing sparse hessians with automatic differentiation[END_REF], but to our knowledge it has not been implemented yet. In [START_REF] Martens | Deep learning via hessian-free optimization[END_REF], the authors solve

Θk = ∇ 2 J B k (Θ k ) -1 ∇J B k (Θ k
) by a conjugate gradient method which requires only matrix-vector product which is affordable by automatic differentiation [START_REF] Christianson | Automatic hessians by reverse accumulation[END_REF][START_REF] Barak | Fast exact multiplication by the hessian[END_REF]. This point of view, as well as some variants [START_REF] Vinyals | Krylov subspace descent for deep learning[END_REF][START_REF] Shankar Krishnan | Neumann optimizer: A practical optimization algorithm for deep neural networks[END_REF], suffer from high computational cost per batch and go through less data in a comparable amount of time, leading to slower convergence at the beginning of the optimization. Another choice is to set 4) which is coined as the "Quasi-Newton" approach. These methods directly invert a diagonal, block-diagonal or low rank approximation of the Hessian [START_REF] Becker | Improving the convergence of back-propagation learning with second order methods[END_REF][START_REF] Schaul | No more pesky learning rates[END_REF][START_REF] Roux | Topmoumoute online natural gradient algorithm[END_REF][START_REF] Ollivier | Riemannian metrics for neural networks i: feedforward networks[END_REF][START_REF] Martens | Optimizing neural networks with kronecker-factored approximate curvature[END_REF][START_REF] Yao | Adahessian: An adaptive second order optimizer for machine learning[END_REF]. In most of these works, the Hessian is approximated by E[∇J s (θ k )∇J s (θ k ) T ], the so-called Fisher-Information matrix, which leads to the natural gradient method [START_REF] Amari | Natural gradient works efficiently in learning[END_REF]. Note also the use of a low-rank approximation of the true Hessian for variance reduction in [START_REF] Gower | Tracking the gradients using the hessian: A new look at variance reducing stochastic methods[END_REF].

P k ∇ 2 J B k (Θ k ) in (
Finally, there is an interpretation of adaptive methods as Quasi-Newton methods. Amongst the adaptive method, let us cite RMSProp [START_REF] Tieleman | Divide the gradient by a running average of its recent magnitude. coursera neural netw[END_REF], Adam [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF], Adagrad [START_REF] Duchi | Adaptive subgradient methods for online learning and stochastic optimization[END_REF] and Adadelta [START_REF] Matthew | Adadelta: an adaptive learning rate method[END_REF]. For all these methods, P k is as a diagonal preconditioner that reduces the variability of the step size across the different layers. This class of methods can be written

Θk = P -1 k m k , m k ∇J (Θ k ) and P k ∇ 2 J (Θ k ). (7) 
For instance, RMSProp and Adagrad use m k = ∇J B k (Θ k ) whereas Adam maintains in m k an exponential moving averaging from the past evaluations of the gradient. The RMSProp, Adam and Adagrad optimizers build P k such that P 2 k is a diagonal matrix whoses elements are exponential moving average of the square of the past gradients (see [START_REF] Sashank | On the convergence of adam and beyond[END_REF] for example). It is an estimator of the diagonal part of the Fisher-Information matrix.

All these methods can be incorporated in our framework as we consider the choice of P k as a preconditioning technique whose step is yet to be found. In a nutshell, if P k approximates the Hessian up to an unknown multiplicative factor, our method is able to find this multiplicative factor.

Barzilai-Borwein: The Barzilai-Borwein (BB) class of methods [START_REF] Barzilai | Two-point step size gradient methods[END_REF][START_REF] Raydan | The barzilai and borwein gradient method for the large scale unconstrained minimization problem[END_REF][START_REF] Dai | Modified two-point stepsize gradient methods for unconstrained optimization[END_REF][START_REF] Xiao | Notes on the dai-yuan-yuan modified spectral gradient method[END_REF][START_REF] Biglari | Scaling on the spectral gradient method[END_REF][START_REF] Li | New adaptive barzilai-borwein step size and its application in solving large-scale optimization problems[END_REF]] may be interpreted as methods which aim at estimating the curvature in (6) by numerical differences using past gradient computations. In the stochastic convex setting, the BB method is introduced in [START_REF] Tan | Barzilai-borwein step size for stochastic gradient descent[END_REF] for the choice Θk = ∇J (Θ k ) and also for variance-reducing methods [START_REF] Johnson | Accelerating stochastic gradient descent using predictive variance reduction[END_REF]. It has been extended in [START_REF] Ma | Stochastic non-convex ordinal embedding with stabilized barzilai-borwein step size[END_REF] to non-convex problems and in [START_REF] Liang | Barzilai-borwein-based adaptive learning rate for deep learning[END_REF] to DNNs. Due to the variance of the gradient and possibly to a poor estimation of the curvature by numerical differences, these methods allow prescribing a new step at each epoch only. In [START_REF] Yang | Random barzilai-borwein step size for mini-batch algorithms[END_REF][START_REF] Castera | Second-order step-size tuning of sgd for non-convex optimization[END_REF], the step is prescribed at each iteration at the cost of computing two mini-batch gradients per iteration. Moreover, in [START_REF] Yang | Random barzilai-borwein step size for mini-batch algorithms[END_REF] the gradient over all the data needs to be computed at the beginning of each epoch whereas [START_REF] Castera | Second-order step-size tuning of sgd for non-convex optimization[END_REF] maintains an exponential moving average to avoid this extra computation. The downside of [START_REF] Castera | Second-order step-size tuning of sgd for non-convex optimization[END_REF] is that they still need to tune the learning rate and its decay factor and that their method has not been tried on other choices than P k = Id.

Our belief is that approximating by numerical differences in a stochastic setting suffers too much from variance from the data and from the approximation error. Hence we advocate in this study for exact computations of the curvature [START_REF] Biglari | Scaling on the spectral gradient method[END_REF].

Automatic differentiation: The theory that allows to compute the matrix-vector product of the Hessian with a certain direction is well-studied [START_REF] Walther | Computing sparse hessians with automatic differentiation[END_REF][START_REF] Christianson | Automatic hessians by reverse accumulation[END_REF][START_REF] Griewank | Evaluating derivatives: principles and techniques of algorithmic differentiation[END_REF][START_REF] Barak | Fast exact multiplication by the hessian[END_REF] and costs 4 passes (2 forward and backward passes) and 3 memory footprint, when the computation of the gradient costs 2 passes (1 forward and backward pass) and 1 memory footprint. We study the cost of computing the curvature defined in [START_REF] Biglari | Scaling on the spectral gradient method[END_REF], which to the best of our knowledge, has never been studied. Our method has a numerical cost that is always lower than the best BB method [START_REF] Castera | Second-order step-size tuning of sgd for non-convex optimization[END_REF].

Our contributions

We propose a change of point of view. While most of the methods presented above use first order information to develop second order algorithms, we use second order information to tune a first order method. The curvature (6) is computed using automatic differentiation in order to estimate the local Lipschitz constant of the gradient and to choose a step accordingly. Our contribution is threefold:

• We propose a method that automatically rescales the learning rate using curvature information in Section 2.1 and we discuss the heuristics of this method in Section 2.2. The rescaling allows the practitioner to choose between three different physical regimes coined as : hyperexploration, exploration/convergence trade-off and hyperconvergence.

• We study the automatic differentiation of the curvature in Section 3 and its computational costs.

• Numerical tests are provided in Section 4 with a discussion on the three different physical regimes introduced in Section 2.1.

2 Rescaling the learning rate

Presentation and guideline for rescaling

The second order analysis of Section 1 relies on the Taylor expansion

J (Θ k -τ k Θk ) J (Θ k ) -τ k Θk , ∇J (Θ k ) + τ 2 k 2 c(Θ k , Θk ) Θk 2 ,
with c(Θ k , Θk ) given by ( 6). This Taylor expansion yields the following algorithm: given Θ k and an update direction Θk , compute c(Θ k , Θk ) by ( 6), the step τ k by [START_REF] Becker | Improving the convergence of back-propagation learning with second order methods[END_REF] and finally update the parameters Θ k by [START_REF] Alvarez | Steepest descent with curvature dynamical system[END_REF]. The first order analysis is slightly different. Starting with the second order exact Taylor expansion in integral form:

J (Θ k -τ k Θk ) = J (Θ k ) + τ k Θk , ∇J (Θ k ) + τ k t=0 (τ k -t)c(Θ k -t Θk , Θk ) Θk 2 dt,
we introduce the local directional Lipschitz constant of the gradient

L k = max t∈[0,τ k ] |c(Θ k -t Θk , Θk )|, (8) 
in order to bound the right-hand side of the Taylor expansion. One obtains

J (Θ k -τ k Θk ) ≤ J (Θ k ) -τ k Θk , ∇J (Θ k ) + τ 2 k 2 L k Θk 2 . ( 9 
)
Introducing the rescaling r k

r k = Θk , ∇J (Θ k ) Θk 2 L k (10) 
and writing τ k = r k , Equation ( 9) turns into

J (Θ k -r k Θk ) ≤ J (Θ k ) + 2 - L k 2 r k Θk 2 ∀ . ( 11 
)
Any choice of in ]0, 1[ leads to a decrease of J in [START_REF] Dai | Modified two-point stepsize gradient methods for unconstrained optimization[END_REF]. The choice = 1 2 allows faster decrease of the right-hand side of [START_REF] Dai | Modified two-point stepsize gradient methods for unconstrained optimization[END_REF]. We coin the choice = 1 in (11) as the exploration choice and the choice = 1 2 as the convergence choice. The only difficulty in computing [START_REF] Frank | Exploiting negative curvature in deterministic and stochastic optimization[END_REF] lies in the computation of L k . Indeed, L k is a maximum over an unknown interval and, in the stochastic setting, we only estimate the function J and its derivative on a batch B k .

We propose to build Lk an estimator of L k by the following rules.

• Replace the maximum over the unknown interval [0, τ k ] in [START_REF] Castera | Second-order step-size tuning of sgd for non-convex optimization[END_REF] by the value at t = 0. This is reminiscent of the Newton's method.

• Perform an exponential moving average on the past computations of r k in order to average over the data previously seen.

• Use the maximum of this latter exponential moving average and the current estimate in order to stablize Lk .

The algorithm reads as follows:

Algorithm 1 Rescaling of the learning rate 1: Hyperparameters β 3 = 0.9 (exponential moving average).

2: Initialization ĉ0 = 0 3: Input (at each iteration k):

a batch B k , g k = E s∈B k [∇J s (Θ k )]
and Θk a direction that verifies g k , Θk > 0. Note that the curvature c k is computed with the same batch that the one used to compute g k and Θk .

4: c k = E s∈B k ∇ 2 J s (Θ k ) Θk , Θk / Θk 2 local curvature 5: ĉk = β 3 ĉk-1 + (1 -β 3 )c k and ck = ĉk /(1 -β k 3 ) moving average 6: Lk = max(c k , c k ) stabilization 7: r k = Θk , g k / 2 Θk
Rescaling guidelines Given a descent direction Θk , the update rule is given by

Θ k+1 = Θ k -r k Θk ,
where is the learning-rate that has to be chosen by the practitioner and r k is the rescaling computed by Algorithm 1. In the deterministic case, has a physical interpretation:

• 1 ≥ ≥ 1
2 (Convergence/exploration trade-off). The choice = 1 (exploration) is the largest step that keeps the loss function non increasing. The choice = 1/2 (convergence) ensures the fastest convergence to the closest local minimum. It is advised to start from = 1 and decrease to = 1/2 (see Section 4.1).

• > 1 (Hyperexploration). The expected behavior is a loss function increase and large variations of the parameters. This mode can be used to escape local basin of attraction in annealing methods (see Section 4.2).

• 0 < < 1/2 (Hyperconvergence). This mode slows down the convergence. In the stochastic setting, if the practitioner has to resort to setting < 1/2 in order to obtain convergence, then some stochastic effects are of importance in the optimization procedure (see Section 4.3).

Analysis of the rescaling

Several remarks are necessary to understand the limitations and applications of rescaling.

The algorithm does not converge in the deterministic setting. Note that in the deterministic one dimensional case, when J is convex (i.e. the curvature is positive), β 3 = 0 and = 1/2, the algorithm boils down to the Newton method. It is known that the Newton method may fail to converge, even for strictly convex smooth functions. For example if we choose

J (Θ) = 1 + Θ 2 ,
the iterates of the Newton method are given by Θ k+1 = -Θ 3 k , which diverges as soon as |Θ 0 | > 1. This problem comes from the fact that the curvature c(Θ k -t Θk , Θk ) has to be computed for each t ∈ [0, τ k ] in order to estimate L k in (8) but this maximum is estimated by its value at t = 0. In this example, c(Θ k , Θk ) is a bad estimator for L k as it is too small and the resulting step is too large.

Another issue in DNN is the massive use of piecewise linear activation functions which can make the Hessian vanish and in this case, the rescaled algorithm may diverge. For example if the loss function is locally linear, then c k = 0 in line 4 and if we choose β 3 = 0 then r k = +∞ in line 7.

The algorithm does not converge in the stochastic setting. Let X be a vector-valued random variable and J is the function

J (Θ) = 1 2 E Θ -X 2 ,
then for any value of β 3 and for the choice = 1 2 , the rescaled algorithm yields the update

Θ k = E B k [X],
when the optimal value is Θ = E[X]. The algorithm oscillates around Θ , with oscillations depending on the variance of the gradient. This oscillating stochastic effect is well known and is the basic analysis of SGD. Since the proposed rescaling analysis is performed in a deterministic setting, it is not designed to offer any solution to this problem.

Enforcing convergence by Robbins-Monro conditions In order to enforce convergence, we can use the results of [START_REF] Robbins | A stochastic approximation method[END_REF]. It is then sufficient to sow instructions like

α ≤ r k k δ ≤ β, (12) 
with fixed α, β > 0 and δ ∈]1/2, 1[. This is the choice followed by [START_REF] Castera | Second-order step-size tuning of sgd for non-convex optimization[END_REF] for instance. Note that convergence analysis for curvature-dependent step is, to our knowledge, studied only in [START_REF] Alvarez | Steepest descent with curvature dynamical system[END_REF], for the non-stochastic time-continuous setting.

Fostering convergence with L 2 regularization In the deterministic case, the non-convergence of the algorithm is caused by vanishing eigenvalues of the Hessian. This issue can be fixed by adding a term λ 2 Θ 2 to the function Θ → J (Θ), with λ > 0. This method is coined as L 2 regularization with parameter λ. This method shifts the eigenvalues of the Hessian of J by the parameter λ. Close to the minimum, every eigenvalue of the Hessian is then positive. Although L 2 regularization does not guarantee convergence, it promotes it.

Gradient preconditioning In case of gradient preconditioning Θk = P -1 k g k with P k ∇ 2 J (Θ k ), the advantage of rescaling is that the practitioner is allowed to approximate the Hessian up to a multiplicative factor. Indeed suppose that instead of providing a good estimate of the Hessian, the practitioner multiplies it at each iteration by an arbitrary factor α k ∈ R. In this case, Θk is multiplied by α -1 k but the curvature c k does not change. This means that ĉk is independent of the previous (α s ) s≤k . Finally, the rescaling r k is multiplied by α k . Hence the output of the algorithm r k Θk is independent of the sequence (α s ) s≤k . Therefore, the practitioner does not need to worry about finding the right multiplicative factor, it is accounted for by the rescaling method.

Negativeness of the curvature (line 4)

The main difference beween a first-order analysis ( 8) and a second-order (5) lies in handling the case when the curvature is negative. The first-order analysis, which we choose, relies on using absolute value of the curvature, when second-order analysis relies on more intricated methods, see [START_REF] Allen-Zhu | Natasha 2: Faster non-convex optimization than sgd[END_REF][START_REF] Carmon | convex until proven guilty": Dimensionfree acceleration of gradient descent on non-convex functions[END_REF][START_REF] Liu | On noisy negative curvature descent: Competing with gradient descent for faster non-convex optimization[END_REF][START_REF] Frank | Exploiting negative curvature in deterministic and stochastic optimization[END_REF]. Note that the absolute value is taken inside the batch average in line 4 and not outside. Otherwise data in the batch where ∇J 2 (Θ k ) Θk , Θk is negative could compensate the data where it is positive, leading to a bad estimation of the curvature.

Heuristics in the estimation of L k (lines 5 and 6) The estimator of L k must comply with two antagonist requirements. The first one is to average the curvature over the different batches to effectively compute the true curvature of J . The second one is to use the local curvature at point Θ k and in the direction Θk which requires to forget old iterations. This advocates the use of an exponential moving average in line 5 with the parameter β 3 . The maximum in line 6 is reminiscent of the construction of AMSGrad [START_REF] Sashank | On the convergence of adam and beyond[END_REF] from Adam [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF], and it stabilizes batches where c k ck . In order to be consistent with the remark in Gradient preconditioning, the averaged quantity is the one which does not depend on the unknown multiplicative factor α k .

Computing the curvature

In this section, we focus on the computation of c(Θ, Θ) by automatic differentiation and its cost.

Main results

A Neural Network N is a directed acyclic graph and at each node of the graph, the data are transformed and fed to the rest of the graph. The data at the output x n are then compared to y. Since there is no cycle in the graph, there is no mathematical restriction to turn such graph into a list. The set of parameters for layer s is denoted as θ s , and we denote Θ = (θ s ) s=0..n the set of parameters of N . The action of N is expressed by the recurrence:

x s+1 (Θ) = F s (x s (Θ), θ s ), 0 ≤ s ≤ n -1 (13) 
where F s is the action of the s th layer of N . The output x n is then compared to a target via a loss function F n and we denote x n+1 ∈ R the result of this loss function. Let X(Θ) = (x s (Θ)) s=0..n+1 denote the set of data as it is transformed through the neural network. The intermediate data x s (Θ) (resp. parameter θ s ) are supposed to belong to an Hilbert space H s (resp. G s ). We then have for each 0 ≤ s ≤ n

F s : H s × G s → H s+1 and H n+1 = R.
The gradient of J with respect to Θ is computed using automatic differentiation. This requires to define the differentials of F s with respect to its variables. Let

∂ x F s : H s → H s+1 , resp. ∂ θ F s : G s → H s+1 , be the differential of F at the point (x s (Θ), θ s ) w.r.t. x, resp. θ. Denote (∂ x F s ) * : H s+1 → H s and (∂ θ F s ) * : H s+1 → G s the
adjoints of the differentials of F s . These adjoints are defined for all φ ∈ H s+1 as the unique linear mapping that verifies:

∂ x F * s φ, ψ Hs = φ, ∂ x F s ψ Hs+1 ∀ψ ∈ H s ∂ θ F * s φ, ψ Gs = φ, ∂ θ F s ψ Hs+1 ∀ψ ∈ G s .
Denote by ∇ 2 F s the second order derivative tensor of F s at the point (x s , θ s ). The backward of the data X = (x s ) s=1..n+1 and the backward-gradient Θ = ( Θs ) s=0..n are defined by:

xs = (∂ x F s ) * xs+1 with xn+1 = 1 θs = (∂ θ F s ) * xs+1 . (14) 
In Algorithm 2, the standard backpropagation algorithm is given as well as the modifications needed to compute the curvature. The proof of this algorithm is given in Section 3.2.

Algorithm 2 Backpropagation with curvature computation 1: Compute and store the data X = (x s ) s with a forward pass [START_REF] Duchi | Adaptive subgradient methods for online learning and stochastic optimization[END_REF].

2: Compute and store the backward X = (x s ) s and Θ = ( θs ) s using ( 14). 

ẋs+1 = (∂ x F s ) ẋs + (∂ θ F s ) θs , ẋ0 = 0 (15) 6: Then ∇ 2 J (Θ) Θ, Θ = s xs+1 , ∇ 2 F s ( ẋs , θs ) ⊗ ( ẋs , θs ) Hs+1 .
By Algorithm 2, the computation of the curvature c(θ, θ) requires 3 passes in total and the storage of X and X whereas the computation of the gradient requires 2 passes and the storage of X. Hence the memory footprint is multiplied by 2 and the computation time by 1.5. We show in Section 3.3 how to design a divide-and-conquer algorithm that changes this cost to (2C, 1M ).

Theorem 1 If (1C, 1M ) represents respectively the computational time and memory footprint of the standard backpropagation method, Algorithm 2 costs either (1.5C, 2M ) or (2C, 1M ).

This result is of importance since it states that computing the exact curvature is at least as cheap as using numerical differences of the gradient [START_REF] Castera | Second-order step-size tuning of sgd for non-convex optimization[END_REF].

Proof of Algorithm 2

The goal of this section is to analyse the complexity of computing the curvature term and to prove Algorithm 2.

Forward pass

We recall that the forward pass is computed through the recurrence

x s+1 (Θ) = F s (x s (Θ), θ s ), 0 ≤ s ≤ n.
Moreover the objective function is defined as J (Θ) = x n+1 (Θ). The computation of X through the recurrence ( 13) is denoted as the forward pass.

Tangent pass Given Θ, a set of data X(Θ), and an arbitrary direction Θ = ( θs ) s=0..n , the tangent Ẋ = ( ẋs ) s=0..n is defined as

ẋs = lim τ →0 x s (Θ + τ Θ) -x s (Θ) τ .
For each layer s, recall that ∂ x F s (resp. ∂ θ F s ) is the differential of F s with respect to the parameter x (resp. θ) at the point (x s (Θ), θ s ). From now, we omit the notation of the point at which the differential is taken in order to simplify the notations. By the chain rule theorem, we have that if ẋs exists, then the forward recurrence (13) yields

ẋs+1 = (∂ x F s ) ẋs + (∂ θ F s ) θs , ẋ0 = 0. (16) 
A recurrence on s allows obtaining existence of Ẋ and the scaling

X(Θ + τ Θ) = X(Θ) + τ Ẋ + O(τ 2 ).
Hence, if X(Θ) is computed and Θ is chosen, then Ẋ -the tangent in direction Θ -can be computed via the forward recurrence ( 16) and we have

∇J (Θ), Θ = ẋn+1 . ( 17 
)
The recurrence ( 16) which allows the computation of Ẋ is coined as the tangent pass.

Adjoint/backward pass In order to compute the gradient, one resorts to the backpropagation algorithm which allows reversing the recurrence ( 16) that defines the tangent and computing directly Θ = ( θs ) s=0..n such that

∇J (Θ), Θ = ẋn+1 = s θs , θs Gs .
The vector Θ is then equal to ∇J (Θ), provided that one uses the scalar product induced by the sum of the scalar products of all G s . To compute Θ, we use ∂ x F * s : H s+1 → H s and ∂ θ F * s : H s+1 → G s the adjoints of the differentials of F s . The backward of the data X = (x s ) s=1..n+1 and the backwardgradient Θ = ( Θs ) s=0..n are defined by the reversed recurrence:

xs = (∂ x F s ) * xs+1 with xn+1 = 1 θs = (∂ θ F s ) * xs+1 . ( 18 
)
The definition of the adjoint and the formula of the tangent [START_REF] Hinton | Reducing the dimensionality of data with neural networks[END_REF] give the following equality:

ẋs+1 , xs+1 Hs+1 = (∂ x F s ) ẋs + (∂ θ F s ) θs , xs+1 Hs+1 = ẋs , (∂ x F s ) * xs+1 Hs+1 + θs , (∂ θ F s ) * xs+1 Hs+1
= ẋs , xs Hs + θs , θs Gs [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF] Summing up the above equations for every s, we obtain:

ẋn+1 = ẋn+1 , xn+1 Hn+1 = ẋ0 , x0 Hn+1 + s θs , θs Gs = s θs , θs Gs ,
where we use ẋ0 = 0 and xn+1 = 1. We then obtain the celebrated backward propagation formula

∇J (Θ) = Θ.
The complexity analysis of the computation of the gradient by the backward formula shows that it requires the computation and the storage of the forward pass in order to be able to evaluate

(∂ x F s ) * and (∂ θ F s ) * at the point (x s (Θ), θ s ).
Computing the curvature Equation 17 is the implicit definition of ∇J , where Ẋ is defined by the recurrence [START_REF] Hinton | Reducing the dimensionality of data with neural networks[END_REF]. The trick of automatic differentiation is to use the the backward X defined in recurrence [START_REF] Johnson | Accelerating stochastic gradient descent using predictive variance reduction[END_REF] to reverse [START_REF] Hinton | Reducing the dimensionality of data with neural networks[END_REF]. This inversion is performed in [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF] and it allows not computing the tangent Ẋ. We show in this paragraph that the backward X also reverses the recurrence defining the second order term Ẍ defined in (20) below. Once the direction Θ is chosen, the curvature term can be computed by only a forward pass. To this end, for any direction Θ, introduce Ẍ = (ẍ s ) s=0..n+1 as:

ẍs = lim τ →0 x s (Θ + τ Θ) -x s (Θ) -τ ẋs τ 2 , ( 20 
)
where ẋs is the tangent defined in [START_REF] Hinton | Reducing the dimensionality of data with neural networks[END_REF]. Recall that ∇ 2 F s : H s × G s → H s+1 is the bilinear symmetric mapping that represents the second order differentiation of F s at point (x s (Θ), θ s ). It is defined as the only bilinear symmetric mapping that verifies for every (h x , h θ ) the relation

F s (x s (Θ) + h x , θ s + h θ ) =F s (x s (Θ), θ s ) + ∂ x F s h x + ∂ θ F s h θ + 1 2 ∇ 2 F s (h x , h θ ) ⊗ (h x , h θ ) + o( h x 2 + h θ 2 )
It is easy to prove that ẍs exists and verifies:

ẍs+1 = (∂ x F s )ẍ s + 1 2 ∇ 2 F s ( ẋs , θs ) ⊗ ( ẋs , θs ), with ẍ0 = 0. (21) 
Indeed, denote

ξ s = x s (Θ + τ Θ) -x s (Θ) -τ ẋs so that ẍs = lim τ →0 ξ s τ 2 ,
we have

ξ s+1 = F s (x s (Θ + τ Θ), θ s + τ θs ) -F s (x s (Θ), θ s ) -τ (∂ x F s ) ẋs -τ (∂ θ F s ) θs = F s (ξ s + x s (Θ) + τ ẋs , θ s + τ θs ) -F s (x s (Θ), θ s ) -τ (∂ x F s ) ẋs -τ (∂ θ F s ) θs = (∂ x F s )ξ s + τ 2 2 ∇ 2 F s ξ s τ + ẋs , θs ⊗ ξ s τ + ẋs , θs + o(τ 2 + ξ s 2 ). ( 22 
)
By a forward recurrence on [START_REF] Lecun | Mnist handwritten digit database[END_REF], starting with ξ 0 = 0, we have that ξ s = O(τ 2 ) so that ẍs exists. Dividing ( 22) by τ 2 and taking the limit yields [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF].

Upon replacing Ẋ by Ẍ, the trick used in ( 19) can be applied and translates into: In order to conclude and prove Algorithm 2, it is sufficient to remark that J (Θ) = x n+1 (Θ) so that

ẍs+1 , xs+1 Hs+1 = (∂ x F s )ẍ s + 1 2 ∇ 2 F s (
1 2 ∇ 2 J (Θ) Θ, Θ = ẍn+1 .
More on automatic differentiation In Section A.1, the reader will find a method to compute the matrix-vector product with the Hessian. This method is not new and is known as the Pearlmutter's trick [START_REF] Christianson | Automatic hessians by reverse accumulation[END_REF][START_REF] Barak | Fast exact multiplication by the hessian[END_REF]. We prove this trick in our setting in order to link our computations with other automaticdifferentiation techniques. Moreover, we also give some of the expression of ∇ 2 F s ( ẋs , θs ) ⊗ ( ẋs , θs ) for standard layers in Appendix A.2 to settle the notations.

Proof of Theorem 1

Recall that (1C, 1M ) is the complexity of a gradient computation, we show how to change the overall cost of computing the curvature from (1.5C, 2M ) to (2C, 1M ) by a divide-and-conquer algorithm. In order to simplify the analysis, several simplifications are made.

Step 1.

F B T

Step 2.

F B T

Step 3.

F B T

Step 4.

F B T

Step 5.

F B T

Step 6.

F B T

Figure 1: Illustration of the divide-and-conquer algorithm that changes the cost of computating the curvature from (1.5C, 2M ) to (2C, 1M ). The rectangles above the letters F, B, T represent the three different passes (in order: forward, backward and tangent). The memory usage is represented by color-filling in the rectangles, the computations are represented by arrows on the right of the passes. In total, the filled area never exceeds 1 rectangle, hence memory usage is 1M . The total length of the arrows is 4 times the length of a rectangle, this represents 4 passes. The computational time is then twice the computational time of the standard backward algorithm.

• There are three kind of passes, the forward pass in (13) that computes X, the backward pass in ( 18) that computes X and Θ and the tangent-curvature pass described in Algorithm 2 that computes the curvature. We suppose that each of these passes have roughly the same computational cost C/2. This assumption is subject to discussion. In one hand the backward and tangent passes require each twice as much matrix multiplication as the forward pass. On the other hand, soft activation functions are harder to compute in the forward pass.

• We assume that storing X or X has the same memory footprint 1M . Notably, we suppose that the cost of storing the parameters Θ or the gradient Θ is negligeable with respect to the storage of the data through the network. This assumption can only be made for optimization with large enough batches B k .

• We suppose that we can divide the neural network in two pieces that each costs half the memory and half the computational time. This means that we are able to find L, such that the storage of (x s ) s≤L and the storage of (x s ) s≥L have same memory footprint M/2. Moreover we suppose that performing a pass for s ≥ L or for s ≤ L costs C/4 computational time. This assumption is reasonable and simplifies the analysis but it is of course possible to exhibit pathological networks that won't comply with this assumption.

• We suppose that the only cost in data transfer comes from the initialization of the parameters Θ, the initial data x 0 and the direction of descent Θ. Note that the computation of Θ requires the computation of the gradient Θ.

We now describe how to compute the curvature with (2C, 1M ) and no extra data transfer. We display the current memory load and the elapsed computational time at the end of each phase. A visual illustration of this algorithm is proposed in Figure 1. 0. Transfer the data x 0 and Θ.

1. Compute X = (x s ) s and store it. For s ≥ L, compute the backward via [START_REF] Gower | Tracking the gradients using the hessian: A new look at variance reducing stochastic methods[END_REF] without storing it.

Cost is

( 3 4 C, 1M )
2. Flush from memory (x s ) s≥L .

Cost is

( 3 4 C, 1 2 
M ) 3. For s ≤ L, compute the backward via ( 14) and store it.

Cost is (1C, 1M )

4. Choose the descent direction and transfer the data Θ. Compute the tangent via [START_REF] Hinton | Reducing the dimensionality of data with neural networks[END_REF] for s ≥ L.

Cost is ( 5 4 C, M ) 5. Flush from memory (x s ) s and (x s ) s<L .

Cost is ( 5 4 C, 0M ) 6. For s ≥ L, compute the forward, the backward and store them. Compute the tangent for s ≥ L.

Cost is (2C, 1M )

4 Numerical experiments In order to test the convergence/exploration trade-off, we reproduce the benchmark of [START_REF] Castera | Second-order step-size tuning of sgd for non-convex optimization[END_REF]. We set ourselves in the case where the initial parameters are randomly chosen, so that the practitioner wants a smooth transition from exploration ( = 1) to convergence ( = 1 2 ). We choose in Algorithm 3 a simple, per epoch, exponential decay rule of the learning rate from 1 to 1/2. This algorithm is coined as RED (Rescaled with Exponential Decay). We purposely unplug any other tricks of the trade, notably Robbins-Monro convergence conditions. Indeed, a Robbins-Monro decay rule would interfere with our analysis. Algorithm RED is not a production algorithm, it serves at testing the "natural" convergence properties of rescaling. In Appendix C.4, we provide a comparison of RED with a standard SGD that has Robbins-Monro decaying conditions. Due to the remark in Section 2.2, we make clear that L 2 -regularization is used. If Θ → L s (Θ) is the original loss function, then the function J s is defined as

J s (Θ) def = L s (Θ) + λ 2 Θ 2 .
Algorithm 3 RED (rescaled-exponential-decay) for SGD or RMSProp preconditioning and no convergence guaranty 1: Input parameters β 2 = 0.999 (RMSProp parameter), RMSProp (boolean), λ > 0 (L 2regularization), N (total number of epochs), ε = 10 -8 (numerical stabilization). 2: Initialization v0 = 0, Θ 0 random, = 1 initial learning rate and η = 1/2 the step multiplicative factor between the first and the last iterations. 3: for k = 1, 2, .. do 4: end if 10:

g k = E s∈B k [∇J s (Θ k )]
Θk = P -1 k g k direction of update 11:
Use Algorithm 1 and compute r k rescaling 12:

Θ k+1 = Θ k -r k Θk parameters update 13:
At the end of each epoch ← η

1 N

14: end for

The numerical experiments are done on the benchmark of [START_REF] Castera | Second-order step-size tuning of sgd for non-convex optimization[END_REF]. It consists in four test cases, a MNIST classifier [START_REF] Lecun | Mnist handwritten digit database[END_REF], a CIFAR-10 classifier [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF] with VGG11 [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] architecture, a CIFAR-100 classifier with VGG19 and the classical autoencoder of MNIST described in [START_REF] Hinton | Reducing the dimensionality of data with neural networks[END_REF]. The ReLU units are replaced by smooth versions in order to compute the curvature term, and L 2 regularization is added to each test. The models are trained with a batch size of 256 and the number of epochs is set to 200 for MNIST classification and 500 for the others. The precise set of parameters that allows reproductibility is described in Appendix B. We also give indications of the computational time on an NVIDIA Quadro RTX 5000. Each experiment is run 3 times with different random seeds and we display the average of the tests with a bold line, the limits of the shadow area are given by the maximum and the minimum over the runs. When displaying the training loss or the step histories, an exponential moving average with a factor 0.99 is applied in order to smooth the curves and gain in visibility. Note that the training and testing loss functions are displayed with the L 2 regularization term. On all figures the x-axis is the number of epochs. Remember however that the computational cost is not the same for the different optimizers, see Theorem 1.

Interpretation of the RED experiments

In this first set of experiments, we compare the RED method given in Algorithm 3 with standard SGD and RMSProp. In order to recover these two latter algorithms, set r k = 1 in line 11 of Algorithm 3. The hyperparameters, namely the initial learning rate and its decay factor η, are optimized on the training loss with a grid search over the 20% first epochs, these algorithms are coined as "standard algorithms". The results are displayed in Figure 2 for the standard algorithms (orange for SGD, blue for RMSProp) and their RED version (red for SGD, green for RMSProp).

Training loss The analysis of the training loss shows that RED is competitive to the standard SGD and RMSProp methods. Note however that the hyperparameters of the standard methods have been chosen as to optimize the behavior of the training loss, hence we cannot expect the RED method to outperform the manually-tuned methods.

Step We always observe an increase in the step for the first few epochs (50 for MNIST, 10 for CIFAR). This step increase coincides with the important decrease of the training and testing loss functions. We interpret this behavior as a search for a basin of attraction of a local minimum. It should be noted that the step of the standard CIFAR100 and autoencoder is an order of magnitude smaller than their RED counterpart. Indeed larger steps on these methods cause the algorithm to diverge. This seems to indicate that the stage of the first 10 epochs where the step is small is of importance and is well captured by the RED algorithm. Note that this behavior is the one that is implemented when using warm-up techniques [START_REF] Loshchilov | Sgdr: Stochastic gradient descent with warm restarts[END_REF]. The analysis of the step seems to showcase the power of adaptive rescaling and indicate that warm-up techniques can be handled by the rescaling. This potential is investigated in Section 4.2.

Testing loss and accuracy

The rescaling aims at minimizing quickly the training loss, no conclusions can be drawn from the analysis of the test dataset. Nevertheless, on the CIFAR experiments, an overfitting phenomenon starts from the 25 th epoch approximatively. The overfitting is clearer and more pronounced on the RED method. This is in accordance with the analysis of the step size: the rescaled method seems to have converged to the maximum of the expressivity of the network at the 50 th epoch. Concerning the accuracy, it is well known that adaptive methods have poor generalization performances in the overparameterized setting in comparison to SGD [START_REF] Ashia C Wilson | The marginal value of adaptive gradient methods in machine learning[END_REF]. Indeed the standard RMSProp achieves lower performance on the test dataset of CIFAR100. Surprisingly, the RED-RMSProp algorithm does not have this property.

As a conclusion of these tests, RED, which is a naive implementation of convergence/exploration trade-off works surprisingly well on this benchmark. We purposely disconnected Robbins-Monro decay rule and let the algorithm run way past overfitting. It still exhibits good convergence properties.

Other numerical tests

In Appendix C.1 we investigate the use of momentum with SGD and Adam on the CIFAR100 classifier. The proposed method is only available to deal with direction of descent and the directions of update given by momentum based algorithms are not necessarily direction of descent, yielding poor convergence results.

In Appendix C.2, we perform tests with smaller batches and we exhibit pathological cases where the rescaled method is highly impacted by stochasticity. The main conclusion is that the performance of the method collapses when the batch is too small compared to the number of classes. This problem in the curvature computation arises at the last layer of the neural network (linear classifier).

In Appendix C.3 we study the effet of the L 2 regularization on the CIFAR10 classifier, showing numerically that the potential theorical issues raised in Section 2.2 do not impede convergence. Finally, in Appendix C.4 we perform some comparisons with an existing BB method [START_REF] Castera | Second-order step-size tuning of sgd for non-convex optimization[END_REF] and with a SGD with Robbins-Monro decay condition.

Hyperexploration mode

In order to showcase hyperexploration, we propose a vanilla annealing method. We replace in Algorithm 3 (RED) the line 13 (update of the parameter ) by setting periodically = 1 for 5 epochs, = 1 2 for 13 epochs and = 2 for 2 epochs. These three phases are coined respectively as exploration, convergence and hyperexploration. We favor sharp changes when letting oscillate in order to easily interpret the results. This simple annealing method is coined RAn (Rescaled Annealing). We display in Figure 3 the results for CIFAR10 and CIFAR100. On Figure 3 the shift between the choice = 1 2 and = 2 is represented by a vertical gray line. We also display the results for the RED algorithm for comparaison. Of importance in Figure 3 is the behavior of the loss function. The latter increases at each hyperexploration phase, and converges during the exploration and convergence phase. A similar effect is also present but less pronounced on the testing loss and accuracy. The increase of the training loss function for = 2 is in accordance with the theory, and is at the core of annealing methods that aim at escaping local minima. These tests validate the fact that = 1 is an upper-bound for the exploration choice.

Hyperconvergence mode

In this example, we wish to study a more realistic dataset for which stochastic issues are of essence.

To that end, we use the ImageNet 1K database and load a state-of-the-art pretrained ResNet-50. This network achieves a 80.858% top-1 accuracy and a 95.434% top-5 accuracy. From the study of Appendix C.2, summarized in Section 4.1.3, we know that important stochastic problems will occur in the last layer (Linear Classifier or LC) of the DNN. Hence, we erase the parameters of the linear classifier and aim at re-training it while freezing the weights of the feature extractor (upstream section of the network). This setting is reminiscent of a toy transfer learning problem and aims at training a simple neural network with a state-of-the-art dataset.

From the coupon collector's problem with 1000 classes, we know that the expectation of T , the smallest batch size that obtains at least one element in each class, is approximatively 7.3K when classes are drawn independently and uniformly. We expect stochastic issues to appear when batches are of size smaller than 7.3K. The batch size used to pretrain the network is 1K, hence we test the rescaling for batch of size 1K, 2K, 4K, 8K and 16K. Since stochastic effects should be seriously mitigated for the 8K and 16K cases, these two cases represent a baseline for the training. We first discard every trick and test the rescaling for the different batch size. We adopt a fixed rescaled learning rate strategy of = 1 2 in order to converge as fast as possible. The result is given in Figure 4 top line and referred as plain training. Of importance in the top line of Figure 4 are the oscillations in the training loss, which are less pronounced as the batch size increases. Note also the stability of the top-1 and top-5 accuracies around a value that depends on the batch size. For the 16K experiment, the linear classifier achieves the top-1 and top-5 accuracies of the pre-trained weigths.

We then implement several tricks of the trade, namely repeated augmentation (RA) [START_REF] Hoffer | Augment your batch: better training with larger batches[END_REF] and label smoothing (LS) [START_REF] Szegedy | Rethinking the inception architecture for computer vision[END_REF]. The result are displayed in Figure 4, middle line. These two tricks do not seem to have any effect on the training of the linear classifier.

In the bottom line of Figure 4, we implement a decrease of the learning rate with a Cosine annealing (Cos) technique, in addition to (RA) and (LS). The (Cos) technique reduces the learning rate and enforces the hyperconvergence mode. As far as the accuracies are concerned, reducing the learning rate allows the algorithm to converge when the batches are small and is useless when the batch size is greater than 8K. This test corroborates the findings of [START_REF] Samuel | Don't decay the learning rate, increase the batch size[END_REF] and the tests of Appendix C.2.

In this benchmark, one of the important advantages of rescaling is to be able to perform several tests (batch reduction, repeated augmentation, label smoothing) without having to set the learning rate for each test. 

Influence of the averaging factor of the curvature

This section is dedicated to the study of the impact of the averaging factor of the curvature β 3 on the algorithm. A low value β 3 0 yields an estimation of the curvature that is less dependent of the past iterations at the expense of having a higher variance. A value close to 1 results in a low variance estimation but that has a bias due to old iterations. In Figure 5, the CIFAR10 classifier is optimized using RED-SGD with values of β 3 ∈ {0, 0.5, 0.9, 0.99}. Interestingly, the parameter that gives the fastest increase of the test accuracy is β 3 = 0 at the cost of more instabilities. Although higher values of β 3 lead to an underestimation of the step size, the difference of performance on the training loss is insignificant. Overall, a value β 3 ∈ [0.5, 0.99] has little impact on the convergence rate of the algorithm and a default value of β 3 = 0.9 can be considered.

Conclusion and discussion

We developed a framework that allows automatic rescaling of the learning rate of a descent method with the use of the curvature, which is an easily affordable second order information computed by automatic differentiation. This rescaling yields a data and direction adapted learning rate with a physical meaning. The practitioner can choose the behavior of the algorithm by setting the value of this rescaled learning rate. A value between 1/2 and 1 results in convergence, a value above 1 yields hyperexploration of the space of parameters and a value below 1/2 enforces convergence when stochasticity is of importance.

In the numerical examples of Section 4.1 a choice of exponential decrease is competitive to simple manual tuning of the learning rate in the case of SGD and RMSProp preconditioning. In Section 4.2, we show that the choice > 1 allows escaping basin of attraction of local minima. The more intricated benchmark of Section 4.3 show that rescaling doesn't save us from reducing the learning rate but that it allows to control the environment and compare different experiments.

The main limitation of this method is that it does not allow use of momentum. Indeed momentum methods do not necessarily yield directions of descent and do rely on per-iteration minimization of Lyapunov functions [START_REF] Polyak | Lyapunov functions: An optimization theory perspective[END_REF]. Implementing momentum methods with curvature computation is a challenge reserved for future works. Another drawback is the need to use C 2 activation functions, notably excluding ReLU. Finally, the curvature computation, also affordable in theory, requires additional implementations on top of ready-to-use machine learning librairies, which restricts, for now, our method to rather simple networks.

A Second order computation

A.1 Hessian-vector dot product

In this section, we turn our attention to showing how to compute ∇ 2 J (Θ) Θ in our setting. The results are known as the Pearlmutter's trick [START_REF] Christianson | Automatic hessians by reverse accumulation[END_REF][START_REF] Barak | Fast exact multiplication by the hessian[END_REF]. We emphasize that the computation of the curvature is simplier than the Hessian-vector product. In our setting, the trick that allows the computation of the Hessian-vector product is based on the following ideas • The mapping Θ → 1 2 ∇ 2 J (Θ) Θ, Θ is bilinear. If we differentiate with automatic differentiation this mapping with respect to Θ, we retrieve ∇ 2 J (Θ) Θ.

• Because X(Θ) is fixed, the aforementioned mapping is defined by a single forward recurrence.

Hence, only one additional backward recurrence should be sufficient to compute ∇ 2 J (Θ) Θ.

In order to make explicit this backward recurrence, we need to introduce two vectors A s ∈ H s and B s ∈ G s that are defined by the implicit equation:

A s , a Hs + B s , b Gs = ∇ 2 F s ( ẋs , θs ) ⊗ (a, b), xs+1 Hs+1 ∀(a, b) ∈ H s × G s .
The existence and uniqueness of (A s , B s ) is just Riesz theorem applied to the linear form on H s × G s :

(a, b) → ∇ 2 F s ( ẋs , θs ) ⊗ (a, b), xs+1 Hs+1 .
Construct X = (x s ) s and Θ = ( θs ) s by a backward recurrence using

xs = (∂ x F) * xs+1 + A s with xn+1 = 0 θs = (∂ θ F) * xs+1 + B s . (23) 
Then we have

∇ 2 J (Θ) Θ = Θ (24) 
In order to prove [START_REF] Liang | Barzilai-borwein-based adaptive learning rate for deep learning[END_REF], we show that for any other direction Θ , we have

∇ 2 J (Θ) Θ, Θ = Θ, Θ
First consider Ẋ the tangent associated with direction Θ . We have by bilinearity of ∇ 2 F s and by Algorithm 2 that

∇ 2 J (Θ) Θ, Θ = s ∇ 2 F s ( ẋs , θs ) ⊗ ( ẋ s , θ s ), xs+1 Hs+1 = s A s , ẋ s + B s , θ s (25) 
By definition of X and Θ in [START_REF] Li | New adaptive barzilai-borwein step size and its application in solving large-scale optimization problems[END_REF] and by formula [START_REF] Hinton | Reducing the dimensionality of data with neural networks[END_REF] for the tangent Ẋ , the following equality holds:

xs , ẋ s + θs , θ s -A s , ẋ s -B s , θ s = (∂ x F) * xs+1 , ẋ s + (∂ θ F) * xs+1 , θ s = xs+1 , ẋ s+1
Summing up the above equation for every s, using xn+1 = 0, ẋ 0 = 0 and ( 25) yields (24)

A.2 Structure of the layers

In this section, we explain how to compute the curvature for some of the standard layers used in DNNs. First, we make clear the different kind of layers we use:

• Loss layers are parameter-free layers from H n to R, they are denoted by L F n (x, θ) = L(x).

• Smooth activation layers do not have parameters and are such that H s+1 = H s . They are defined coordinate-wise through a smooth function Φ s : R → R with

F s (x, θ)[i] = Φ s (x[i]) ∀i. Name xs+1[i] xs[j] θs[k] Activation Φ(xs[i]) Φ (xs[j])xs+1[j] N.A. Linear k,j θ[k]xs[j]1 ijk k,i θ[k]xs+1[i]1 ijk j,i xs+1[j]xs[i]1ijk Bias xs[i] + k 1 ik θ[k] xs+1[j] i 1 ik xs+1[i] Centering xs[i] -Ei(xs) xs+1[j] -Ej(xs+1) N.A. Normalizing γ = (Ei(x 2 s ) + ε) -1/2 xs+1[i] = γxs[i] γ xs+1[j] -xsEj[γ 3 xs xs+1] N.A. Name ẋs+1[i] rs = 1 2 ∇ 2 Fs( ẋs, θs) ⊗ ( ẋs, θs), xs+1 H s+1 Activation Φ (xs[i]) ẋs[i] 1 2 i Φ (xs[i]) ẋ2 s [i]xs+1[i] Linear k,j θ[k] ẋs[j] + θ[k]xs[j] 1 ijk k,j,i θ[k] ẋs[i]xs+1[j]1ijk Bias ẋs[i] + k 1 ik θ[k] 0 Centering ẋs[i] -Ei( ẋs) 0 Normalizing γ = -Ei[ ẋsxs]γ 3 ẋs+1[i] = γ ẋs[i] + γxs[i] γ = -Ei( ẋ2 s )γ 3 + 3Ei( ẋsxs)γ 5 rs = i 1 2 ( γ ẋs[i] + γxs[i]) xs+1[i]
Table 1: Quantities needed in the forward, backward and second order passes for standard layers.

• Linear layers or convolutional layers. The set of parameters are the weights (or kernel) denoted θ. We suppose that these layers have no bias. They are abstractly defined as

F s (x, θ)[i] = k,j θ[k]x[j]1 ijk
where i (resp j, k) denotes the sets of indices of the outputs (resp. the input, the weights).

The function (i, j, k) → 1 ijk represents the assignment of the multi-index (k, j) to i. This affectation is either equal to 1 or 0, that is (1 ijk ) 2 = 1 ijk .

• Bias layers are layers where H s = H s+1 and are defined by

F s (x, θ)[i] = x s [i] + k 1 ik θ[k].
They are often concatenated with linear or convolutional layers. There is no restriction to split a biased linear layer into the composition of a linear layer and a bias layer.

• Batch normalization layers. We split a batch normalization layer into the composition of four different layers, the centering layer, the normalizing layer, a linear layer with diagonal weight matrix and a bias layer. For each output index i, the centering and normalizing layers are defined by an expectation over the batch and some input indices. This expectation is denoted as E i . The centering layer can be written as

F s (x, θ)[i] = x s [i] -E i (x s ).
The normalizing layer is defined as

F s (x, θ)[i] = x[i] E i (x 2 ) + ε .
For the different layers, we give the formula for the different recurrences in Table 1. We begin with the classic backward computations, they are mainly given here to settle the notations.

B Description of the numerical experiments

All the experiments were conducted and timed using Python 3.8.11 and PyTorch 1.9 on an Intel(R) Xeon(R) W-2275 CPU @ 3.30GHz with an NVIDIA Quadro RTX 5000 GPU. We also used the Jean-Zay HPC facility for additional runs. The models are trained with a batch size of 256 so that one epoch corresponds to 235 iterations for MNIST and 196 for CIFAR. The number of epochs is set to 200 for the MNIST classification and 500 for the others. Table 2 summarizes the characteristics of the datasets used.

Concerning the tuning of the standard methods, the step size and its decay factor were searched on a grid for the SGD and RMSProp methods. The learning rate is constant per epoch and its value at the n th epoch is given by τ n = τ 0 d n .

We searched amongst the values τ 0 ∈ {1×10 n , 5×10 n } -5≤n≤1 for the step size and d ∈ {0.97, 0.98, 0.99, 1} for the step decay on MNIST classification and d ∈ {0.99, 0.995, 1} for the others. After 20% of the total number of epochs, the couple (τ 0 , d) that achieves the best training loss decrease is chosen.

For the CIFAR experiments we used data augmentation with a random crop and an horizontal flip. In the CIFAR100 training we added a random rotation of at most ±15°.

For reproductibility, the values used in the experiments are summarized in Table 3. Unless explicitely stated, these are the default values used in the experiments of this work. The computing time per epoch is reported in Table 3 for each method. The codes of RED are not optimized, especially for the convolution layers where the backward with respect to the parameters is implemented by an additional run of the forward. This explains why RED is twice slower than the standard methods on the CIFAR classifiers which make intensive use of convolution layers.

C Additional numerical experiments

C.1 Dealing with momentum

In Section 4.1, only stochastic optimizers without momentum are presented. In this section, we discuss the extension of our algorithm to momentum based update directions, notably momentum with RMSProp preconditioning which is the celebrated Adam algorithm [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF].

Incorporating momentum consists in replacing the gradient by an exponential moving average of the past iterates of the gradients with a parameter β 1 ∈ [0, 1[. In our setting, it amounts to replacing line 10 of Algorithm 3 by lines 4 and 5 of Algorithm 4. 

• • • 4: ĝk = β 1 ĝk-1 + (1 -β 1 )g k and gk = ĝk /(1 -β k 1 )
5:

Θk = P -1 k gk 6:
• • • 7: end for Momentum was introduced by Polyak [START_REF] Boris | Some methods of speeding up the convergence of iteration methods[END_REF] in the convex non-stochastic setting. It can be interpreted as an adaptation of a convex method to a non-convex stochastic problem. We coin this explanation as the heavy-ball analysis. Another point of view, which we denote as variance reduction, is that the exponential moving average gk is a better estimator of ∇J (Θ k ) than g k . Indeed all the previous batches (B m ) m≤k are taken into account in the computation of gk . The downside is that the averaged quantity is ∇J Bm (Θ m ) and not ∇J Bm (Θ k ), this introduces a bias in the estimation of ∇J (Θ k ). With this interpretation in mind, the parameter β 1 which drives the capacity of the exponential moving average to forget the previous iterations has to be tuned between the mini-batches gradient variance (high variance leads to high β 1 ) and the convergence (high values of Θ k -Θ k-1 lead to low choice of β 1 ). In [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF], the authors propose to solve this dilemna by taking decaying values of β 1 , although in practice, the parameter β 1 is constant.

Momentum: heavy ball or variance reduction? When momentum is understood as an heavyball method, at iteration k there are no reasons for -Θk to be a direction of descent. Because our algorithm relies on the assumption that -Θk is a direction of descent to choose a step, our analysis falls apart and RED should be used with care. On the other hand, if momentum is a variance reduction technique, the step has to be taken small enough in order not to bias the gradient estimation. With this latter assumption, RED can be applied.

In order to determine if, in our case, momentum acts as an heavy ball method or as a variance reduction technique, we study numerically when the standard Adam and SGD with momentum optimizers yield a direction of descent. In Figure 6 first row, the test of CIFAR100 in Section 4.1.2 is performed with a momentum β 1 = 0.9 and the hyperparameters were tuned using the same policy (see Appendix B). We display in the last column of Figure 6 first row, the percentage of direction of descent per epoch with respect to the current batch B k . If n is the epoch number and K n the set of the iterations that are in epoch n, this percentage is given by:

q n = 1 |K n | k∈Kn 1 g k , Θk ≥0 (26) 
We observe that on classification problems, SGD with momentum and more particularly Adam yield directions of update that are not direction of descent for J B k .

Step choice The RED algorithm needs a rule to deal with update directions which are not directions of descent. One possibility is to allow negative steps, which we discard since this would annihilate the heavy-ball effect. Another possibility, which we retain, is to take the absolute value of τ k in line 12. In a nutshell, compute the step for the opposite direction (which is a direction of descent) and use this step in the current direction. This choice is arbitrary and to properly tackle the momentum case, interpretations using Lyapunov functions should be considered. The choice of such functions is not clear and we defer such an analysis to future work.

In Figure 6 first row the results of the optimization using RED on CIFAR100 with momentum are displayed. The parameters for the initial learning rate and its decay factor are the default ones = 1 and η = 1/2. The RED algorithm has difficulties to converge both on the training and testing losses. We observed that the steps chosen by RED are several orders of magnitude higher than the ones obtained by manual tuning. On classification problems, RED follows directions of update that are not direction of descent.

Learning rate multiplication The impediment to using RED with momentum is that directions of update are not directions of descent. This can be solved by reducing the initial learning rate to take smaller steps τ k so that Θ k -Θ k-1 remains small.

We propose to diminish the initial learning rate by using = 1 -β 1 . This choice may seem arbitrary but it is inspired by the proofs of convergence of [START_REF] Défossez | A simple convergence proof of adam and adagrad[END_REF] that have bounds which scale as 1 -β 1 . The experiments of Figure 6 last row are performed with the same set of parameters except for the initial learning rate which is set to = 0.1. With this smaller learning rate, the algorithm is stable and converges. Of importance, RED always yield direction of descent as seen from the bottom-right of Figure 6. As was decreased, the exploration is lost, explaining these poor convergence results.

Conclusion When using momentum, decreasing the learning rate makes the experiments fit in the framework the algorithm was proposed for. As a consequence, this causes the loss of the exploration which is critical to speed-up the convergence. The correct way of dealing with momentum would be to identify the Lyapunov function that has to be minimized, which is left for future work.

C.2 Batch reduction on CIFAR

In this section, we study batch dependence on the RED method for the CIFAR datasets. Reducing the batch size mimicks harder stochastic problems while keeping the experiment in a controlled environment. In Figure 7 (column 1 and 3), we provide the results obtained for different batch size and the evolution of the training and testing loss functions per epoch. The RED parameters are an initial learning rate = 1 and a target learning rate = 1 2 after 100 epochs. A striking phenomenon 

2 rescaling factor 8 : 9 :

 289 Lk Output (at each iteration k): r k a rescaling of the direction Θk . Usage of rescaling: The practitioner should use the update rule Θ k+1 = Θ k -r k Θk , where follows the Rescaling guidelines (see below).

3 :

 3 Then ∇J (Θ) = Θ. 4: Choose any direction of update Θ = ( θs ) s . 5: Compute the tangent Ẋ = ( ẋs ) s with the following forward pass:

2 ∇ 2 F 2 ∇ 2 F 2 ∇ 2 F 1 2 ∇ 2 F

 222222122 ẋs , θs ) ⊗ ( ẋs , θs ), xs+1 Hs+1 = ẍs , (∂ x F s ) * xs+1 Hs+1 + 1 s ( ẋs , θs ) ⊗ ( ẋs , θs ), xs+1 Hs+1 = ẍs , xs Hs + 1 s ( ẋs , θs ) ⊗ ( ẋs , θs ), xs+1 Hs+1 Summing up these equations in s and using ẍ0 = 0 and xn+1 = 1, we obtain ẍn+1 = ẍn+1 , xn+1 Hn+1 = ẍ0 , x0 Hn+1 + s 1 s ( ẋs , θs ) ⊗ ( ẋs , θs ), xs+1 Hs+1 = s s ( ẋs , θs ) ⊗ ( ẋs , θs ), xs+1 Hs+1 .

4. 1

 1 Convergence/exploration trade off 4.1.1 The RED algorithm

gradient 5 :RMSProp then RMSProp preconditioning 6 : 2 k

 562 if vk = β 2 vk-1 + (1 -β 2 )g and ṽk = vk /(1 -β k2 ) and P k = diag(

Figure 2 :Figure 3 :

 23 Figure 2: Training loss, step size, testing loss and test accuracy for the RED and manually-tuned SGD and RMSProp optimizers. Each column gives the different test cases (resp. MNIST, CIFAR10, CIFAR100 and autoencoder). The RED method which has no tuning gives competitive results in comparison with the manually-tuned SGD and RMSProp optimizers.

Figure 4 :

 4 Figure 4: Training a linear classifier on ImageNet 1K with a ResNet-50 feature extractor and with different batch size for SGD.

Figure 5 :

 5 Figure 5: Training loss, step size, testing loss and test accuracy on the CIFAR10 classifier with RED-SGD. The tests are conducted with different values of the curvature averaging parameter β 3 . A value β 3 = 0 yields instability and β 3 ∈ [0.5, 0.99] has little impact on the convergence rate.

Algorithm 4 1 :

 41 Adding momentum to RED Initialization ĝ0 = 0. 2: for k = 1.. do 3:

Figure 6 :

 6 Figure 6: Tests with momentum (β 1 = 0.9) with and without the learning rate stabilization ( = 1 or = 0.1) for RED on CIFAR100. Manually-tuned algorithms (orange for SGD, blue for Adam) and their RED version (red for SGD, green for Adam) are given. Lower learning rate in RED ensures that momentum yields direction of descent at the expense of loosing the exploration of the set of parameters.

CIFAR10 λ = 10 - 7 CIFAR10Figure 9 :

 1079 Figure 9: Comparison with step-tuned [8] method on the CIFAR10 classifier. Standard SGD (blue), RED (orange) and step-tuned (green) are given. RED is competitive with step-tuned on the accuracy but not on the training loss of the CIFAR10 classifier for which step-tuned is optimized.

Table 2 :

 2 Summary of the datasets used.

	Dataset		MNIST	CIFAR10	CIFAR100
	License	CC BY-SA 3.0 MIT License Unknown
	Size of the training set	60000	50000	50000
	Size of the testing set	10000	10000	10000
	Number of channels	1		3	3
	Size of the images	28 × 28	32 × 32	32 × 32
	Number of classes	10		10	100
	Type of problem	MNIST classification	CIFAR10 classification	CIFAR100 classification	MNIST autoencoder
	Type of network	LeNet Dense		VGG11 Convolutional	VGG19 Convolutional	Dense
	Activation functions	Tanh	SoftPlus β = 5 SoftPlus β = 5	ELU
	L 2 regularization	λ = 10 -7		λ = 10 -7	λ = 10 -7	λ = 10 -7
	Loss function	Cross entropy Cross entropy	Cross entropy	MSE
	Number of epoch	200		500		500	500
	Batch size	256		256		256	256
	Number of epoch for tuning	40		100		100	100
	Iteration per epoch	196		235		235	196
	Computing time per				
	epoch with the standard	5.3s / 5.4s		16.4s / 16.8s	36.3s / 36.9s	5.1s / 5.3s
	SGD / RMSProp				
	Computing time per				
	epoch with RED-SGD /	7.6s / 7.7s		30.1s / 30.5s	65s / 65s	5.7s / 5.9s
	RED-RMSProp				

Table 3 :

 3 Summary of the experiment parameters.

Acknowledgement

This work was supported by the ANR Micro-Blind. F. de Gournay acknowledges the support of AI Interdisciplinary Institute ANITI funding, through the French "Investing for the Future-PIA3" program under the Grant Agreement ANR-19-PI3A-0004. This work was performed using HPC resources from GENCI-IDRIS (Grant 2021-AD011012210R1).

Training loss

Testing loss Accuracy test

CIFAR10

mem-CIFAR10 CIFAR100 mem-CIFAR100

Figure 7: Batch reduction on the CIFAR10 and CIFAR100 datasets. The columns 1 and 3 are the vanilla RED-algorithm and the column 2 and 4 are the patches that (partially) solve the problem when the batch size is smaller than the number of classes.

in Figure 7 (column 1 and 3) is the loss of performance of the algorithm when the batch size is smaller than the number of classes.

Because of the relationship between the batch size and the number of classes, we wish to study if the last layer -the Linear Classifier (LC) -is the layer the most impacted by the batch size reduction. The LC optimizes the parameters of hyperplanes (one per class) which separate the information given by the remaining of the network, the Feature Extractor (FE) When the batch size is too small, some classes are not represented in the batch. The corresponding hyperplanes receive update information which is oblivious to the data of their class. We believe that this effect explains the loss of performance of the LC and a lack of precision in the computation of the curvature.

In order to verify our assumption, we implement a memory layer, which is set between the FE and the LC. This memory layer stores the last 256 data given by the FE. We coin this trick a memory-DNN. Because the LC is fed with this memory, it should behave as if the batch size was 256, although the memory suffers from a slight delay, due to the fact that it is not updated for the current parameters of the FE. The memory footprint and computational load of the memory-DNN is increased by a small factor, since the FE is fed with small batches and is responsible for most of the computational load and memory footprint. In Figure 7 (column 2 and 4), we collect the results of memory-DNN. Of striking importance is a better behavior of memory-DNN compared to the standard DNN when the batch size is smaller than the number of classes.

In this test, we provide a simple remedy to avoid stochasticity issues in the training of the LC in a classification problem. More important than the memory trick is the fact that rescaling the learning rate allows us to provide a unified environment to test the method. The learning rate do not have to be adapted for each experiment, which would eventually prevent us from drawing any conclusions. 

C.3 Effect of the L 2 regularization

According to the paragraph on the L 2 regularization in Section 2.2, a regularization is introduced in our algorithm to counteract the effet of a potentially vanishing Hessian in the direction of update. This is a theoretical limitation and we study in this section the influence of this regularization on the performance of RED. We conduct the experiments of Section 4.1.2 for the CIFAR10 dataset with different values of the regularization λ ∈ {10 -7 , 10 -4 }. The hyperparameters of the standard SGD and RMSProp optimizers are tuned for each value of λ. We report in Figure 8 the different results, including the ones that are shown in Section 4.1.2. The grid search on the training loss that led to the choice of parameters for RMSProp and λ = 10 -4 yielded large step size at the cost of instabilities in the test metrics. On all test cases, we observe that a value of regularization close to zero (λ = 10 -7 ) gives good convergence results. In the considered tests, the need of a regularization seems to be more of a theoretical limitation than a practical one.

C.4 Comparison with BB and Robbins-Monro

In this section we compare our algorithm with the closest existing approach [START_REF] Castera | Second-order step-size tuning of sgd for non-convex optimization[END_REF], named step-tuned, where the authors approximate the curvature with a BB method. We also compare it with a Robbins-Monro decay rule of the learning rate for SGD. We did not compare with the BB method of [START_REF] Yang | Random barzilai-borwein step size for mini-batch algorithms[END_REF] as this method requires the computation of the gradient over the whole dataset at each epoch. The step-tuned optimizer has several hyperparameters and we use the default ones except the learning rate as advised in [START_REF] Castera | Second-order step-size tuning of sgd for non-convex optimization[END_REF]. The initial learning rate of [START_REF] Castera | Second-order step-size tuning of sgd for non-convex optimization[END_REF] is searched on the same grid than the standard SGD (see Appendix B).

In Figure 9, the results of the optimization on the CIFAR10 classifier and on the autoencoder are given for two values of the L 2 regularization λ ∈ {10 -7 , 10 -4 }. RED algorithm is outperformed by step-tuned only on the training loss but the learning rate of step-tuned has been optimized for the training loss and we cannot expect better performance than step-tuned on this criterion. Finally, RED is more stable on every test metrics and has better generalization than step-tuned.

Step-tuned [START_REF] Castera | Second-order step-size tuning of sgd for non-convex optimization[END_REF] requires the optimization of the learning rate and because RED does not need any hyperparameter adjustment, our method is competitive with this existing work. Note also that step-tuned is not available with the RMSProp preconditioner, when RED handles any kind of preconditioning technique.