
HAL Id: hal-03748574
https://hal.science/hal-03748574v1

Preprint submitted on 9 Aug 2022 (v1), last revised 25 Oct 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive scaling of the learning rate by second order
automatic differentiation

Alban Gossard, Frédéric de Gournay

To cite this version:
Alban Gossard, Frédéric de Gournay. Adaptive scaling of the learning rate by second order automatic
differentiation. 2022. �hal-03748574v1�

https://hal.science/hal-03748574v1
https://hal.archives-ouvertes.fr

Adaptive scaling of the learning rate by second order
automatic differentiation

Frédéric de Gournay1,2

degourna@insa-toulouse.fr

Alban Gossard1,3

alban.paul.gossard@gmail.com

1 Institut de Mathématiques de Toulouse; UMR5219; Université de Toulouse; CNRS
2 INSA, F-31077 Toulouse, France 3 UPS, F-31062 Toulouse Cedex 9, France

August 9, 2022

Abstract
In the context of the optimization of Deep Neural Networks, we propose to rescale the learning

rate using a new technique of automatic differentiation. If (1C, 1M) represents respectively the
computational time and memory footprint of the gradient method, the new technique increase
the overall cost to either (1.5C, 2M) or (2C, 1M). This rescaling has the appealing characteristic
of having a natural interpretation, it allows the practitioner to choose between exploration of
the parameter set and convergence of the algorithm. The rescaling is adaptive, it depends on
the data and on the direction of descent. The rescaling is tested using the simple strategy
of exponential decay, a method with comprehensive hyperparameters that requires no tuning.
When compared to standard algorithm with optimized hyperparameters, this algorithm exhibit
similar convergence rates and is also empirically shown to be more stable than standard method.

1 Introduction
The optimization of Deep Neural Networks (DNNs) has received tremendous attention over the past
years. Training DNNs amounts to minimize the expectation of non-convex random functions in a
high dimensional space Rd. If J : Rd → R denotes this expectation, the problem reads

min
Θ∈Rd

J (Θ), (1)

with Θ the parameters. Optimization algorithms compute iteratively Θk, an approximation of a
minimizer of (1) at iteration k, by the update rule

Θk+1 = Θk − τkΘ̇k, (2)

where τk is the learning-rate and Θ̇k is the update direction. The choice of Θ̇k encodes the type of
algorithm used. This work focuses on the choice of the learning rate τk.

There is a trade-off in the choice of this learning rate. Indeed high values of τk allows exploration
of the parameters space and slowly decaying step size ensures convergence in accordance to the
famous Robbins-Monro algorithm [35]. This decaying condition may be met by defining the step as
τk = τ0k

−α with τ0 being the initial step size and 1
2 < α < 1 a constant. The choice of the initial

learning rate and its decay are left to practitioners and these hyperparameters have to be tuned
manually in order to obtain the best rate of convergence. For instance, they can be optimized using
a grid-search or by using more intricated strategies [39], but in all generality tuning the learning rate
and its decay factor is difficult and time consuming. The main issue is that the learning rate has no
natural scaling. The goal of this work is to propose an algorithm that, given a direction Θ̇k finds
automatically a scaling of the learning rate. This rescaling has the following advantages:

• The scaling is adaptive, it depends on the data and of the choice of direction Θ̇k.

• The scaling expresses the exploration vs. convergence trade-off. Multiplying the rescaled
learning rate by 1/2 enforces convergence whereas multiplying it by 1 allows for exploration of
the space of parameters.

1

mailto:degourna@insa-toulouse.fr
mailto:alban.paul.gossard@gmail.com

This rescaling comes at a cost and it has the following disadvantages:

• The computational costs and memory footprint of the algorithm goes from (1C, 1M) to
(1.5C, 2M) or (2C, 1M).

• The rescaling method is only available to algorithms that yield directions of descent, it excludes
momentum method and notably Adam-flavored algorithm.

• Rescaling is theoritically limited to functions whose second order derivative exists and does not
vanish. This non-vanishing condition can be compensated by L2-regularization.

1.1 Foreword
First recall that second order methods for the minimization of a deterministic C2 function Θ 7→ J (Θ)
are based on the second order Taylor expansion at iteration k:

J (Θk − τkΘ̇k) ' J (Θk)− τk〈Θ̇k,∇J (Θk)〉+
τ2
k

2
〈∇2J (Θk)Θ̇k, Θ̇k〉. (3)

If the Hessian of J is positive definite, the minimization of the left-hand side leads to the choice

Θ̇k = P−1
k ∇J (Θk) with Pk ' ∇2J (Θk) (4)

Once a direction Θ̇k is chosen, another minimization in τk entails

τk =
〈Θ̇k,∇J (Θk)〉
‖Θ̇k‖2c(Θk, Θ̇k)

, (5)

where c is the curvature of the function, and is defined as

c(Θk, Θ̇k)
def
=
〈∇2J (Θk)Θ̇k, Θ̇k〉

‖Θ̇k‖2
. (6)

A second-order driven algorithm can be decomposed in two steps: i) the choice of Pk in (4), and if
this choice leads to an update which is a direction of ascent, that is 〈Θ̇k,∇J (Θk)〉 > 0, ii) a choice
of τk by an heuristic inspired from (6) and (5).

In the stochastic setting, we denote as s 7→ Js the mapping of the random function. At iteration
k, only information on (Js)s∈Bk

can be computed where (Bk)k is a sequence of mini-batches which are
indepently drawn. If Es∈Bk

is the empirical average over the mini-batch, we define JBk
= Es∈Bk

[Js].
Given Θ, the quantity J (Θ) is deterministic, and J is the expectation of Js w.r.t. s.

1.2 Related works
Choice of Pk: The choice Pk = ∇2JBk

(Θk) in (4), leads to a choice τk = 1 and to the so-called
Newton method. It is possible in theory to compute the Hessian by automatic differentiation if it
is sparse [43], but to our knowledge it has not been implemented yet. In [27], the authors solve
Θ̇k = (∇2JBk

(Θk))−1∇JBk
(Θk) by a conjugate gradient which requires only matrix/vector product

that is affordable by automatic differentiation [9, 30]. This point of view, as well as some variants
[42, 20], suffer from high computational cost per batch and go through less data in a comparable
amount of time, leading to slower convergence at the beginning of the optimization.

Another choice is to set Pk ' ∇2JBk
(Θk) in (4) which is coined as the "Quasi-Newton" approach.

These methods directly invert a diagonal, block-diagonal or low rank approximation of the Hessian
[5, 37, 36, 29, 28, 47]. In most of these works, the Hessian is approximated by E[∇Js(θk)∇Js(θk)T],
the so-called Fisher-Information matrix, which leads to the natural gradient method [3]. Note also
the use of a low-rank approximation of the true Hessian for variance reduction in [14].

Finally, there is an interpretation of adaptive methods as Quasi-Newton methods. Amongst the
adaptive method, let us cite RMSProp [41], Adam [19], Adagrad [13] Adadelta [48]. For all these
methods Pk is as a diagonal preconditioner that reduces the variability of the step size accross the
different layers. This class of methods can be written

Θ̇k = P−1
k mk, mk ' ∇J (Θk) and Pk ' ∇2J (Θk). (7)

2

For instance, RMSProp and Adagrad use mk = ∇JBk
(Θk) whereas Adam maintains in mk an

exponential moving averaging from the past evaluations of the gradient. The RMSProp, Adam and
Adagrad optimizers build Pk such that P 2

k is a diagonal matrix whoses elements are exponential
moving average of the square of the past gradients (see [34] for example) and is an estimator of the
diagonal part of the Fisher-Information matrix.

All these methods can be incorporated in our framework as we consider the choice of Pk as a
preconditioning technique whose step is yet to be found. In a nutshell, if Pk approximates the Hessian
up to an unknown multiplicative factor, our method is able to find this multiplicative factor.

Barzilai-Borwein: The Barzilai-Borwein class of methods [4, 33, 11, 45, 6, 23] may be interpreted
as methods which aim at estimating the curvature in (6) by numerical differences using past gradient
computations. In the stochastic convex setting, the BB method is introduced in [40] for the choice
Θ̇k = ∇J (Θk) and also for variance-reducing [18] methods. It has been extended in [26] to non-convex
problems and in [24] to DNNs. Due to the variance of the gradient and possibly to a poor estimation
of the curvature by numerical differences, these methods allow to prescribe a new step at each epoch
only. In [46, 8], the step is prescribed at each iteration at the cost of computing two mini-batch
gradients per iteration. Moreover, in [46] the gradient over all the data needs to be computed at the
beginning of each epoch whereas [8] maintains an exponential moving average to avoid this extra
computation. The downside of [8] is that they still need to tune the learning rate and its decay factor
and that their method has not been tried on other choices than Pk = Id.

Our belief is that approximating by numerical differences in a stochastic setting suffers too much
from variance from the data and from the approximation error, hence we advocate in this study
exact computations of the curvature (6).

Automatic differentiation: The theory that allows to compute the matrix-vector product of
the Hessian with a certain direction is well-studied [43, 9, 15, 30] and costs 4 passes (2 forward and
backward passes) and 3 memory footprint, when the computation of the gradient costs 2 passes (1
forward and backward pass) and 1 memory footprint. We study the cost of computing the curvature
defined in (6), which to the best of our knowledge, has never been studied. Our method has a
numerical cost that is always lower than the best BB method [8].

1.3 Our contributions
We propose a change of point of view. While most of the methods presented above use first order
information to develop second order algorithms, we use second order information to tune a first order
method. The curvature (6) is computed using automatic differentiation in order to estimate the local
Lipschitz constant of the gradient and to choose a step accordingly. Our contribution is threefold:

• We propose a method that automatically rescales the learning rate using curvature information
(Section 2) and we discuss the heuristics of this method.

• We give the cost of computing the exact curvature (6) by automatic differentiation and compare
it with numerical approximation (Section 3).

• The method is tested on a vanilla algorithm. The stability and advantages of the proposed
algorithm are studied on different examples using the SGD and the RMSProp based optimizers
(Section 4).

2 Rescaling the learning rate
A second order deterministic analysis such as the one in the beginning of Section 1 yields the following
algorithm: given Θk and an update direction Θ̇k, compute c(Θk, Θ̇k) by (6), the step τk by (5) and
finally update Θk by (2). The first order analysis requires the introduction of the local directional
Lipschitz constant of the gradient

Lk = max
t∈[0,τk]

|c(Θk − tΘ̇k, Θ̇k)|, (8)

that satisfies

J (Θk − τkΘ̇k) ≤ J (Θk)− τk〈Θ̇k,∇J (Θk)〉+
τ2
k

2
Lk‖Θ̇k‖2. (9)

3

Introducing the rescaling

rk = 〈Θ̇k,∇J (Θk)〉/
(
‖Θ̇k‖2Lk

)
(10)

Then (9) turns into

J (Θk − τkrkΘ̇k) ≤ J (Θk) +
(
τ2
k − τk

) Lk
2
‖rkΘ̇k‖2. (11)

Any choice of τk in]0, 1[leads to a decrease of (11). The choice of τk = 1
2 allows faster decrease of

the right-hand side of (11). We coin the choice τk = 1 in (11) as the "exploration choice" and the
choice τk = 1

2 as the "convergence choice". The only difficulty in computing (10) is in computing Lk.
Indeed, Lk is a maximum over an unknown interval and, in the stochastic setting, we only estimate
the function J and its derivative on a batch Bk. We propose to build L̃k an estimator of Lk, we
replace the maximum by the value at t = 0 and we perform an exponential moving average in order
to average over the previously seen data. A maximum of this exponential moving average with the
current estimate is performed in order to stablize L̃k. The algorithm reads as follows:

Algorithm 1 Rescaling of the learning rate

1: Hyperparameters ε = 10−8 (numerical stabilization) and β3 = 0.9 (exponential moving
average).

2: Initialization ĉ0 = 0
3: Input (at each iteration k): a batch Bk, gk = Es∈Bk

(∇Js(Θk)) and Θ̇k a direction that
verifies 〈gk, Θ̇k〉 > 0.

4: ck = Es∈Bk

[∣∣∣〈∇2Js(Θk)Θ̇k, Θ̇k〉
∣∣∣] /‖Θ̇k‖2 . local curvature

5: ĉk = β3ĉk−1 + (1− β3)ck and c̃k = ĉk/(1− βk3) . moving average
6: L̃k = max(c̃k, ck) . stabilization
7: rk = 〈Θ̇k, gk〉/

(
2‖Θ̇k‖2L̃k

)
. learning rate

8: Output (at each iteration k): rk, a rescaling of the direction Θ̇k.
9: Usage of rescaling: The practitioner should use the update rule Θk+1 = Θk − `rkΘ̇k, where
` = 1 enforces exploration of the set of parameters and ` = 1

2 enforces convergence of the
algorithm.

Note that curvature ck is computed with the same batch that the one used to compute gk and
Θ̇k. Several remarks are necessary to understand the limitations of rescaling.

Flatness of J and L2 regularization (line 4) If the function J is locally affine in the direction
Θ̇, then the curvature is zero and the rescaling rk becomes infinite. A standard example is the
Newton method of the 1D convex function J (Θ) =

√
1 + Θ2 which yields Θk+1 = −Θ3

k and does
not necessarily converge. This problem comes from the fact that the curvature c(Θk − tΘ̇k, Θ̇k)
has to be computed for each t ∈ [0, τk] in order to estimate Lk in (8) but this quantity is only
computed at t = 0. In DNN, the massive use of piecewise linear activation functions makes the
Hessian vanish. Note that batch normalization [17] makes matters worse. Indeed suppose that batch
normalization is used after a linear layer without bias. Let di be the matrix equal to 0 except for its
line number i which is equal to the one of Θ. Denote E the vector space spanned by (di)i. Choose a
direction Θ̇ =

∑
i λidi in E. If the parameters are changed into Θ + tΘ̇, then the ith output neuron

is multiplied by (1 + tλi). This multiplication is cancelled by the batch-normalization if the latter is
performed element-wise over the batch. The network is then insensitive to the directions in E. Since
the gradient vanishes on E, theoritically it should not be seen by the method, but this vector space
has huge dimension and numerical error can kick in and excite these directions. A similar effect can
be seen when using convolutional layer, in this case the space E is the vector space spanned by each
kernel. In order to partially solve this issue, we propose to use L2 regularization, namely we add
λ
2 ‖Θ‖

2 to the loss function, this shifts the Hessian by λId. In the area where the loss is convex, J
becomes strictly convex and this improves the convergence even if it does not ensure it.

4

Gradient preconditioning In case of gradient preconditioning Θ̇k = P−1
k gk with Pk ' ∇2J (Θk),

the advantage of rescaling is that the practitioner is allowed to approximate the Hessian up to a
multiplicative factor. Suppose indeed that instead of providing a good estimate of the Hessian,
the practitioner multiplies it at each iteration by an arbitrary factor αk ∈ R. In this case, Θ̇k is
multiplied by α−1

k but the curvature ck does not change. This means that ĉk is independent of the
previous (αs)s≤k. Finally, the rescaling rk is multiplied by αk. Hence the output of the algorithm
rkΘ̇k is independent of the sequence (αs)s≤k. Therefore, the practitioner does not need to worry
about finding the right multiplicative factor, it is accounted for by the rescaling method.

Negativeness of the curvature (line 4) The main difference beween a first-order analysis (8)
and a second-order (5) lies in handling the case when the curvature is negative. The first-order
analysis, which we choose, relies on using absolute value of the curvature, when second-order analysis
relies on more intricated methods, see [1, 7, 25, 10]. Note that the absolute value is taken inside the
batch average in line 4 and not outside. Otherwise data in the batch where 〈∇J 2(Θk)Θ̇k, Θ̇k〉 is
negative could compensate the data where it is positive, leading to a bad estimation of the curvature.

Estimating the Lipschitz constant (lines 4 to 6) The estimator of Lk must comply with two
antagonist requirements. The first one is to average the curvature over the different batches to
effectively compute the true curvature of J . The second one is to use the local curvature at point
Θk and in the direction Θ̇k which requires to forget old iterations. This advocates the use of an
exponential moving average in line 5 with the parameter β3. The maximum in Line 6 is reminiscent
of the construction of AMSGrad [34] from Adam [19], it stabilize batches where ck � c̃k. In order
to be consistent with the remark in Gradient preconditioning, the averaged quantity is the one
which does not depend on the unknown multiplicative factor αk.

Convergence analysis We advertise that the choice ` = 1
2 enforces convergence. We make clear

that it does not guarantee it. First, the analysis has been made in the non-stochastic setting. Second,
in the non-stochastic setting, the proposed algorithm diverges for the 1D , striclty convex function
Θ 7→

√
1 + Θ2. In order to recover the convergence results of [35], it is sufficient to sow instructions

like
α ≤ τkrkkδ ≤ β, (12)

with fixed α, β > 0 and δ ∈]1/2, 1[. This is the choice followed by [8] for instance. Note that
convergence analysis for curvature-dependent step is, to our knowledge, studied only in [2], for the
non-stochastic time-continuous setting.

3 Curvature computation

In this section, we state the result about the complexity of computing the curvature c(Θ, Θ̇). Any
DNN can be seen as a sequence of n operations (layers) that transforms the initial data x0 into an
output data xn. This output xn is then compared to a target via a loss function and we denote
xn+1 ∈ R the result of this loss function. Each of the transformation may depend on some parameters
θs, and they can be expressed as

xs+1 = Fs(xs, θs), ∀ 0 ≤ s ≤ n. (13)

In the above, Fs is the mapping of the sth layer, xn is the output, Fn is the loss function
and xn+1 ∈ R is the value of the loss. Let Θ = (θs)s=0..n denote the set of parameters and
X = (xs)s=0..n+1 the set of data as it is transformed through the neural network. The intermediate
data xs (resp. parameter θs) are supposed to belong to an Hilbert space Hs (resp. Gs). For each s,
we have Fs : Hs × Gs → Hs+1, and Hn+1 = R.

The gradient of J with respect to Θ is computed using automatic differentiation. This requires to
define the differentials of Fs with respect to its variables. Let ∂xFs : Hs → Hs+1, resp. ∂θFs : Gs →
Hs+1, be the differential of F at the point (xs, θs) w.r.t. x, resp. θ, and (∂xFs)?, resp. (∂θFs)?,
its adjoint. Denote by ∇2Fs the second order derivative tensor of Fs at the point (xs, θs). The

5

backward of the data X̂ = (x̂s)s=1..n+1 and the backward-gradient Θ̂ = (Θ̂s)s=0..n are defined by:{
x̂s = (∂xFs)?x̂s+1 with x̂n+1 = 1

θ̂s = (∂θFs)?x̂s+1.
(14)

In Algorithm 2, the standard backpropagation algorithm is given as well as the modifications
needed to compute the curvature.

Algorithm 2 Backpropagation with curvature computation

1: Compute and store the data X = (xs)s with a forward pass (13).
2: Compute and store the backward X̂ = (x̂s)s and Θ̂ = (θ̂s)s using (14).
3: Then ∇J (Θ) = Θ̂.
4: Choose any direction of update Θ̇ = (θ̇s)s.
5: Compute the tangent Ẋ = (ẋs)s with the following forward pass:

ẋs+1 = (∂xFs)ẋs + (∂θFs)θ̇s, ẋ0 = 0 (15)

6: Then 〈∇2J (Θ)Θ̇, Θ̇〉 =
∑
s〈x̂s+1,∇2Fs(ẋs, θ̇s)⊗ (ẋs, θ̇s)〉Hs+1

.

The proof of this algorithm is postponed to the Appendix A. In the following theorem the
complexity of computing this curvature is given.

Theorem 1 If (1C, 1M) represents respectively the computational time and memory footprint of the
standard backpropagation method, Algorithm 2 costs either (1.5C, 2M) or (2C, 1M).

By Algorithm 2, the computation of the curvature c(θ, θ̇) requires 3 passes in total and the storage
of X and X̂ whereas the computation of the gradient requires 2 passes and the storage of X. Hence
the memory footprint is multiplied by 2 and the computation time by 1.5. We show in Appendix A
how to design a divide-and-conquer algorithm that changes this cost to (2C, 1M). This result is
of importance because it states that computing the exact curvature is at least as cheap as using
numerical differences of the gradient [8].

4 Numerical experiments
The efficiency of the rescaling is tested in this section. We set ourselves in the case where the initial
parameters are randomly chosen, so that the practitioner wants a smooth transition from exploring
to converging. We choose in Algorithm 3 a simple, per epoch, exponential decay rule on the learning
rate ` from 1 to 1/2. This algorithm is coined as RED (Rescaled with Exponential Decay). We
purposely unplug any other tricks of the trade, notably Robbins-Monro convergence conditions.
Indeed, a Robbins-Monro decay rule would interfere with our analysis. Algorithm RED is not a
production algorithm, it serves at testing the "natural" properties of convergence of rescaling. In
Appendix C.5, we provide a comparison of RED with a standard SGD that has Robbins-Monro
decaying conditions. Due to the remark in Section 4, we make clear that L2-regularization is used. If
Θ 7→ Ls(Θ) is the original loss function, then the function Js is defined as Js(Θ) = Ls(Θ) + λ

2 ‖Θ‖
2.

The numerical experiments are done on the benchmark of [8]. It consists in four test cases, a
MNIST classifier [22], a CIFAR-10 classifier [21] with VGG11 [38] architecture, a CIFAR-100 classifier
with VGG19 and the classical autoencoder of MNIST described in [16]. The ReLU units are replaced
by smooth versions in order to compute the curvature term, and L2 regularization is added to each
test. The models are trained with a batch size of 256 and the number of epochs is set to 200 for
MNIST classification and 500 for the others. The precise set of parameters that allow reproductibility
is described in the Appendix B. We also give indications of the computational time on an NVIDIA
Quadro RTX 5000. Each experiment is run 3 times with different random seeds and we display the
average of the tests with a bold line, the limits of the shadow area are given by the maximum and
the minimum over the runs. When displaying the training loss or the step histories, an exponential
moving average with a factor 0.99 is applied in order to smooth the curves and gain in visibility. To

6

Algorithm 3 RED (rescaled-exponential-decay) for SGD or RMSProp preconditioning and no
convergence guaranty

1: Input parameters β2 = 0.999 (RMSProp parameter), RMSProp (boolean), λ > 0 (L2-
regularization), N (total number of epochs), ε = 10−8 (numerical stabilization).

2: Initialization v̂0 = 0, Θ0 random, ` = 1 initial step decay and η = 1/2 the step multiplicative
factor between the first and the last iterations.

3: for k = 1.. do
4: gk = Es∈Bk

[∇Js(Θk)] . gradient
5: if RMSProp then . RMSProp preconditioning
6: v̂k = β2v̂k−1 + (1− β2)g2

k and ṽk = v̂k/(1− βk2) and Pk = diag(
√
ṽk + ε)

7: else : Pk = Id
8: end if
9: Θ̇k = P−1

k gk . direction of update
10: Use Algorithm 1 and compute rk . rescaling
11: Θk+1 = Θk − `rkΘ̇k . parameters update
12: At the end of each epoch `← η

1
N `

13: end for

compare the stability of the algorithms, all the figures are duplicated in Appendix D where instead
of displaying a moving average, the quantiles are shown per epoch for one of the three runs. Note
that the training and testing loss functions are displayed with the L2 regularization term. On all
figures the x-axis is the number of epochs. Remember however that the computational cost is not
the same for the different optimizers, see Theorem 1. In Appendix C, additional experiments are
provided, where we push to the limit our algorithm, test it with momentum and compare it with [8].

4.1 RED vs manually-tuned learning rate
In this first set of experiments, we compare the RED method given in Algorithm 3 with standard SGD
and RMSProp. In order to recover these two latter algorithms, set rk = 1 in Line 10 of Algorithm 3.
The hyperparameters, namely the initial learning rate ` and its decay factor η, are optimized on the
training loss with a grid search over the 20% first epochs, these algorithm are coined as “standard
algorithm”. The results are displayed in Figure 1 for the standard algorithms (orange for SGD, blue
for RMSProp) and their RED version (red for SGD, green for RMSProp).

Training loss The analysis of the training loss shows that RED is competitive to the standard
SGD and RMSProp methods. Note however that the hyperparameters of the standard methods
have been chosen as to optimize the behavior of the training loss, hence we cannot expect the RED
method to outperform the manually-tuned methods. In Appendix C.3 we exhibit the scarce cases
where RED is beaten by manually-tuned algorithms.

Step For CIFAR, we observe an increase in the steps at the beginning of the iterations which
coincides to the important decrease of the training and testing loss functions. This might correspond
to a search for a basin of attraction of a local minimum during roughly the first 50 epochs and
then a convergence in this basin. It should be noted that the step of the standard CIFAR100 and
autoencoder is an order of magnitude smaller than their RED counterpart. Indeed larger steps on
these methods cause the algorithm to diverge. This seems to indicate that the stage of the first 10
epochs where the step is small is of importance and is well captured by the RED algorithm. The
analysis of the step seems to showcase the power of adaptive rescaling.

Loss and test accuracy The rescaling aims at minimizing quickly the training loss, no conclusions
can be drawn from the analysis of the test dataset. Nevertheless, on the CIFAR experiments, an
overfitting phenomenon (minimum of the test loss) starts from the 25th epoch approximatively. The
overfitting is clearer and more pronounced on the RED method. This is in accordance with the
analysis of the step size: the automatic method seems to have converged to the maximum of the
expressivity of the network at the 50th epoch. Concerning the accuracy, it is well known that adaptive

7

T
ra
in
in
g
lo
ss

0 50 100 150 200

10 4

10 3

10 2

10 1

100
RMSProp
SGD
RED-RMSProp
RED-SGD

0 200 400

10 3

10 2

10 1

100
RMSProp
SGD
RED-RMSProp
RED-SGD

0 200 400
10 3

10 2

10 1

100

RMSProp
SGD
RED-RMSProp
RED-SGD

0 200 400

101

RMSProp
SGD
RED-RMSProp
RED-SGD

St
ep

0 50 100 150 200

10 5

10 3

10 1

101

103

0 200 400

10 9

10 7

10 5

10 3

10 1

0 200 400

10 10

10 8

10 6

10 4

10 2

100

0 200 400

10 5

10 4

10 3

10 2

10 1

T
es
ti
ng

lo
ss

0 50 100 150 200

10 1

0 200 400

100

0 200 400

2 × 100

3 × 100

4 × 100

0 200 400

101

A
cc
ur
ac
y
te
st

0 100 200
97.00%

97.50%

98.00%

98.50%

99.00%

99.50%

0 200 400
80.0%

82.0%

84.0%

86.0%

88.0%

90.0%

92.0%

0 200 400
50.0%

55.0%

60.0%

65.0%

70.0%

MNIST CIFAR10 CIFAR100 autoencoder

Figure 1: Training loss, step size, testing loss and test accuracy for the RED and manually-tuned
SGD and RMSProp optimizers. Each column gives the different test cases (resp. MNIST, CIFAR10,
CIFAR100 and autoencoder). The RED method which has no tuning gives competitive results in
comparison with the manually-tuned SGD and RMSProp optimizers.

8

R
M
SP

ro
p

0 200 400

10 3

10 2

10 1

100

0 200 400
10 7

10 5

10 3

10 1

101

0 200 400

100

101

= 0.5 = 1
= 0.5 = 1/2
= 1 = 1
= 1 = 1/2
= 1 = 1/5
= 2 = 1/2
= 2 = 1/4

0 200 400
80.0%

82.0%

84.0%

86.0%

88.0%

90.0%

92.0%

Training loss Step Testing loss Accuracy test

Figure 2: Training loss, step size, testing loss and test accuracy on the CIFAR10 classifier with
auto-RMSProp. We use different values for the initial rescaled learning rate ` and its decay factor
η. The basin of convergence mainly depends on the initial rescaled learning rate `. The factor η
stabilizes the method.

methods have poor generalization performances in the overparameterized setting in comparison
to SGD [44]. Indeed the standard RMSProp achieves lower performance on the test dataset of
CIFAR100. Surprisingly, the RED-RMSProp algorithm does not have this property.

As a conclusion of these tests, RED, which is a naive implementation of convergence/exploration
trade-off works surprisingly well on this test-set. We purposely disconnected Robbins-Monro decay
rule and the algorithm still exhibits convergence. However, the benchmark is simple and does not
encompass every issue of modern machine learning. For example it allows for large batches, yielding
good approximation of the gradient.

4.2 Influence of the step size and of the decay factor
The purpose of this section is to study influence of ` and η on the RED algorithm and to check
the exploration/convergence interpretation. As a side gain, the results of this section are the kind
of results a practitioner would obtain if he were to tune the hyperparameters ` and η of the RED
algorithm on a validation set. We show-case that the validation results would be easily interpretable.
The results are summarized in Figure 2 for the RMSProp optimizer on the CIFAR10 classifier.

It seems that the choice of ` determines the basin of attraction of the method, notice that the
choice ` = 1

2 leads to a poor accuracy of the test, whereas the choice ` = 2 leads to a poor training loss
and testing loss. However, wether we are happy or not with a method depends on the criterion, the
accuracy of the test for ` = 2 is 1% higher. This is coherent with the belief that exploration matters
at the beginning of the optimization process. The choice of ` determines the basin of attraction of the
method. Concerning the choice of η, we spot instabilities in the training loss in the case ` = 1, η = 1
from 200 to 500 epochs, these instabilities do not occur for the case η = 1

5 . This leads us to thinking
that rescaling by 1

2 indeed ensures convergence. Note that no instabilities are on the curves ` = 1
2

and some sort of instabilities (peaks in the testing loss and accuracy test) occur for the case ` = 2.
Extensive tests resulting in similar conclusions are reported in Appendix C.4.

4.3 Annealing
In order to showcase the accuracy of the rescaling, we propose a vanilla annealing method. We replace
in Algorithm 3 (RED) the Line 12 (update of the parameter `) by setting periodically ` = 1 for 5
epochs, ` = 1

2 for 13 epochs and ` = 2 for 2 epochs. These three phases are coined respectively as
"exploration","convergence" and "hyper-exploration". We favor sharp changes when letting ` oscillate
in order to easily interpret the results. This simple annealing method is coined RAn (Rescaled
Annealing). We display in Figure 3 the results for CIFAR10 and CIFAR100. On Figure 3 the shift
between the choice ` = 1

2 and ` = 2 is represented by a vertical gray line. We also display the
results for the RED algorithm for comparaison. Of importance in Figure 3 is the behavior of the
loss function. The latter increases at each "hyper-exploration" phase, and converges during the
exploration and convergence phase. A similar effect is also present but dimmer on the test loss and
accuracy. It is difficult on this test to tell the difference between ` = 1 and ` = 1

2 , although it seems
clear that ` = 2 ensures an increase of the loss function, which is at the core of annealing method

9

C
IF
A
R
-1
0

0 200 400

10 3

10 2

10 1

100
RED-SGD
RED-RMSProp
RAn-SGD
RAn-RMSProp

0 200 400

10 6

10 5

10 4

10 3

10 2

10 1

100

0 200 400

100

0 200 400
80.0%

82.0%

84.0%

86.0%

88.0%

90.0%

92.0%

C
IF
A
R
-1
00

0 200 400

10 2

10 1

100

RED-SGD
RED-RMSProp
RAn-SGD
RAn-RMSProp

0 200 400

10 5

10 3

10 1

101

0 200 400

2 × 100

3 × 100

4 × 100

6 × 100

0 200 400
50.0%

55.0%

60.0%

65.0%

70.0%

Training loss Step Testing loss Accuracy test

Figure 3: Annealing (RAn) vs Exponential decay (RED) method. The annealing method increases
the loss functions during the hyperexploration (` = 2) phase (after the vertical gray lines). This
empirically proves that the factor ` = 1 is the limiting factor that allows exploration without
increasing the loss function. The basis of attraction of the RAn method is different of the one of
RED, except possibly for CIFAR10 with RMSProp.

that aim at escaping local minima. Considering accuracy of the test, it is clear that the RAn method
finds a different local minima except maybe for the CIFAR10-RMSProp case.

4.4 Stability with respect to the averaging factor of the curvature
This section is dedicated to the study of the impact of the averaging factor of the curvature β3 on
the algorithm. A low value β3 ' 0 yields an estimation of the curvature that is less dependent of
the past iterations at the expense of having a higher variance. A value close to 1 results in a low
variance estimation but that has a bias due to old iterations. In Figure 4, the CIFAR10 classifier is
optimized using RED-SGD with values of β3 ∈ {0, 0.5, 0.9, 0.99}. Interestingly, the parameter that
gives the fastest increase of the test accuracy is β3 = 0 at the cost of more instabilities. Although
higher values of β3 lead to an underestimation of the step size, the difference of performance on the
training loss is insignificant. Overall, a value β3 ∈ [0.5, 0.99] has little impact on the convergence
rate of the algorithm and a default value of β3 = 0.9 can be considered. This parameter might be
impacted by the batch size.

5 Conclusion and discussion
We developed a framework that allows automatic rescaling of the learning rate of a descent method via
easily affordable second order information. This method introduces a new hyperparameter β3 which
has a physical meaning. The rescaled learning rate is data and direction adaptive, the practitioner
have to choose between two scalings: 1/2 and 1 that solves the trade-off issue between exploration
and stability. Numerical simulations show that a choice of exponential decrease is competitive to
manual tuning of the step in the case of SGD and RMSProp preconditioning.

The main limitation of this method is that it does not provide a theoritical framework to deal
with momentum since these methods do not necessarily yield directions of descent and do rely on per-
iteration minimization of Lyapunov functions [31]. Another drawback is the need to use C2 activation
functions, notably excluding ReLU. One way to circumvent this problem could be to work with smooth
versions of the activation function in the training phase with an adaptive smoothing parameter.
Finally, the curvature computation, also affordable in theory, requires additional implementations on
top of ready-to-use machine learning librairies, which restricts our method to rather simple networks.

10

0 200 400

10 3

10 2

10 1

100 3 = 0
3 = 0.5
3 = 0.9
3 = 0.99

(a) Training loss

0 200 400
10 3

10 2

10 1

100

(b) Step

0 200 400

100

101

(c) Testing loss

0 200 400
80.0%

82.0%

84.0%

86.0%

88.0%

90.0%

92.0%

(d) Accuracy test

Figure 4: Training loss, step size, testing loss and test accuracy on the CIFAR10 classifier with
auto-SGD. The tests are conducted with different values of the curvature averaging parameter β3. A
value β3 = 0 yields instability and β3 ∈ [0.5, 0.99] has little impact on the convergence rate.

Numerical simulations hint that overfitting, when it happens, is more pronounced on the loss
function for our method and that generalization of the RMSProp method is better.

11

References
[1] Zeyuan Allen-Zhu. Natasha 2: Faster non-convex optimization than sgd. Advances in neural information

processing systems, 31, 2018.

[2] F Alvarez and A Cabot. Steepest descent with curvature dynamical system. Journal of optimization
theory and applications, 120(2):247–273, 2004.

[3] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–276,
1998.

[4] Jonathan Barzilai and Jonathan M Borwein. Two-point step size gradient methods. IMA journal of
numerical analysis, 8(1):141–148, 1988.

[5] Sue Becker and Yann Le Cun. Improving the convergence of back-propagation learning with second order
methods. Technical Report CRG-TR-88-5, Department of Computer Science, University of Toronto,
1988.

[6] Fahimeh Biglari and Maghsud Solimanpur. Scaling on the spectral gradient method. Journal of
Optimization Theory and Applications, 158(2):626–635, 2013.

[7] Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. “convex until proven guilty”: Dimension-
free acceleration of gradient descent on non-convex functions. In International Conference on Machine
Learning, pages 654–663. PMLR, 2017.

[8] Camille Castera, Jérôme Bolte, Cédric Févotte, and Edouard Pauwels. Second-order step-size tuning of
sgd for non-convex optimization. Neural Processing Letters, pages 1–26, 2022.

[9] Bruce Christianson. Automatic hessians by reverse accumulation. IMA Journal of Numerical Analysis,
12(2):135–150, 1992.

[10] Frank E Curtis and Daniel P Robinson. Exploiting negative curvature in deterministic and stochastic
optimization. Mathematical Programming, 176(1):69–94, 2019.

[11] Yuhong Dai, Jinyun Yuan, and Ya-Xiang Yuan. Modified two-point stepsize gradient methods for
unconstrained optimization. Computational Optimization and Applications, 22(1):103–109, 2002.

[12] Alexandre Défossez, Léon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence proof of
adam and adagrad. arXiv preprint arXiv:2003.02395, 2020.

[13] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

[14] Robert Gower, Nicolas Le Roux, and Francis Bach. Tracking the gradients using the hessian: A new
look at variance reducing stochastic methods. In International Conference on Artificial Intelligence and
Statistics, pages 707–715. PMLR, 2018.

[15] Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and techniques of algorithmic
differentiation. SIAM, 2008.

[16] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural
networks. science, 313(5786):504–507, 2006.

[17] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pages 448–456. PMLR, 2015.

[18] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction.
Advances in neural information processing systems, 26, 2013.

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of the
International Conference on Learning Representations (ICLR), 2015.

[20] Shankar Krishnan, Ying Xiao, and Rif A Saurous. Neumann optimizer: A practical optimization
algorithm for deep neural networks. In Proceedings of the International Conference on Learning
Representations (ICLR), 2018.

[21] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. Technical
report, Pennsylvania State University, 2009.

[22] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. at&t labs, 2010.

[23] Ting Li and Zhong Wan. New adaptive barzilai–borwein step size and its application in solving large-scale
optimization problems. The ANZIAM Journal, 61(1):76–98, 2019.

[24] Jinxiu Liang, Yong Xu, Chenglong Bao, Yuhui Quan, and Hui Ji. Barzilai–borwein-based adaptive
learning rate for deep learning. Pattern Recognition Letters, 128:197–203, 2019.

[25] Mingrui Liu and Tianbao Yang. On noisy negative curvature descent: Competing with gradient descent
for faster non-convex optimization. arXiv preprint arXiv:1709.08571, 2017.

12

[26] Ke Ma, Jinshan Zeng, Jiechao Xiong, Qianqian Xu, Xiaochun Cao, Wei Liu, and Yuan Yao. Stochastic
non-convex ordinal embedding with stabilized barzilai-borwein step size. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32, 2018.

[27] James Martens et al. Deep learning via hessian-free optimization. In International conference on machine
learning (ICML), volume 27, pages 735–742, 2010.

[28] James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pages 2408–2417. PMLR, 2015.

[29] Yann Ollivier. Riemannian metrics for neural networks i: feedforward networks. Information and
Inference: A Journal of the IMA, 4(2):108–153, 2015.

[30] Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural computation, 6(1):147–160, 1994.

[31] Boris Polyak and Pavel Shcherbakov. Lyapunov functions: An optimization theory perspective. IFAC-
PapersOnLine, 50(1):7456–7461, 2017.

[32] Boris T Polyak. Some methods of speeding up the convergence of iteration methods. Ussr computational
mathematics and mathematical physics, 4(5):1–17, 1964.

[33] Marcos Raydan. The barzilai and borwein gradient method for the large scale unconstrained minimization
problem. SIAM Journal on Optimization, 7(1):26–33, 1997.

[34] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
Proceedings of the International Conference on Learning Representations (ICLR), 2018.

[35] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pages 400–407, 1951.

[36] Nicolas Roux, Pierre-Antoine Manzagol, and Yoshua Bengio. Topmoumoute online natural gradient
algorithm. Advances in neural information processing systems, 20, 2007.

[37] Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. In International conference
on machine learning (ICML), pages 343–351. PMLR, 2013.

[38] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In Proceedings of the International Conference on Learning Representations (ICLR), 2015.

[39] Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t decay the learning rate,
increase the batch size. arXiv preprint arXiv:1711.00489, 2017.

[40] Conghui Tan, Shiqian Ma, Yu-Hong Dai, and Yuqiu Qian. Barzilai-borwein step size for stochastic
gradient descent. Advances in neural information processing systems, 29, 2016.

[41] Tijmen Tieleman and G Hinton. Divide the gradient by a running average of its recent magnitude.
coursera neural netw. Mach. Learn, 6:26–31, 2012.

[42] Oriol Vinyals and Daniel Povey. Krylov subspace descent for deep learning. In Artificial intelligence and
statistics, pages 1261–1268. PMLR, 2012.

[43] Andrea Walther. Computing sparse hessians with automatic differentiation. ACM Transactions on
Mathematical Software (TOMS), 34(1):1–15, 2008.

[44] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal value
of adaptive gradient methods in machine learning. Advances in neural information processing systems,
30, 2017.

[45] Yunhai Xiao, Qiuyu Wang, and Dong Wang. Notes on the dai–yuan–yuan modified spectral gradient
method. Journal of computational and applied mathematics, 234(10):2986–2992, 2010.

[46] Zhuang Yang, Cheng Wang, Zhemin Zhang, and Jonathan Li. Random barzilai–borwein step size for
mini-batch algorithms. Engineering Applications of Artificial Intelligence, 72:124–135, 2018.

[47] Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael W Mahoney.
Adahessian: An adaptive second order optimizer for machine learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2021.

[48] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.

13

A Computation of the second order term
The goal of this section is to analyse the complexity of computing the curvature term and to prove
Algorithm 2 and Theorem 1. We introduce a simple setting in order to retrieve the standard
backpropagation algorithm. In Section A.2, we also give the expression of the matrix-vector product
with the Hessian [9, 30], so that the link with other automatic-differentiation techniques can be made
easily.

A.1 Proof of Algorithm 2
Forward pass A Neural Network N is a directed acyclic graph, at each node of the graph the
data are transformed and fed to the rest of the graph. The data at the output xn are then compared
to y. Since there is no cycle in the graph, there is no mathematical restriction to turn such graph
into a list. The set of parameters for layer s is denoted as θs, and we denote Θ = (θs)s=0..n the set of
parameters of N . The action of N is summed up in the following recurrence:

xs+1(Θ) = Fs(xs(Θ), θs), 0 ≤ s ≤ n− 1 (16)

where Fs is the action of the sth element (layer) of N . We suppose that the comparison of xn to y
(the loss function) is encoded in the nth-layer, so that xn+1(Θ) = Fn(xn(Θ), θn) is a real number.
We denote by X(Θ) = (xs(Θ))s=0..n the set of data as it is transformed through N . Each data xs(Θ)
is supposed to belong to an Hilbert space Hs and each parameter θs to an Hilbert space Gs. We
then have for each s

Fs : Hs × Gs → Hs+1,

and Hn+1 = R. Moreover the objective function J (Θ) is exactly xn+1(Θ). The computation of X
through the recurrence (16) is denoted as the forward pass.

Tangent Given Θ, a set of data X(Θ), and an arbitrary direction Θ̇ = (θ̇s)s=0..n, the tangent
Ẋ = (ẋs)s=0..n is defined as

ẋs = lim
τ→0

xs(Θ + τΘ̇)− xs(Θ)

τ
,

For each layer s, denote ∂xFs : Hs → Hs+1 (resp. ∂θFs : Gs → Hs+1) the differential of Fs with
respect to the parameter x (resp. θ) at the point (xs(Θ), θs). We omit the notation of the point at
which the differential is taken in order to simplify the notations. By the chain rule theorem, we have
that if ẋs exists, then the forward recurrence (16) yields

ẋs+1 = (∂xFs)ẋs + (∂θFs)θ̇s, ẋ0 = 0. (17)

A recurrence on s allows to obtain existence of Ẋ and the scaling

X(Θ + τΘ̇) = X(Θ) + τẊ +O(τ2).

Hence, if X(Θ) is computed and Θ̇ is chosen, then Ẋ, the tangent in direction Θ̇ can be computed
via the forward recurrence (17) and we have

〈∇J (Θ), Θ̇〉 = ẋn+1.

The recurrence (17) that allows the computation of Ẋ is coined as the tangent pass.

Adjoint/backward In order to compute the gradient, one resorts to the backpropagation algorithm
which allows to reverse the recurrence (17) defining the tangent and to compute directly Θ̂ = (θ̂s)s=0..n

such that
〈∇J (Θ), Θ̇〉 = ẋn+1 =

∑
s

〈θ̇s, θ̂s〉Gs

The vector Θ̂ is then equal to ∇J (Θ), provided that one uses the scalar product induced by the sum
of the scalar products in Gs. To compute Θ̂, denote ∂xF?s : Hs+1 → Hs and ∂θF?s : Hs+1 → Gs the

14

adjoints of the differentials of Fs. These adjoints are defined for all φ ∈ Hs+1 as the unique linear
mapping that verifies:

〈∂xF?s φ, ψ〉Hs
= 〈φ, ∂xFsψ〉Hs+1

∀ψ ∈ Hs
〈∂θF?s φ, ψ〉Gs = 〈φ, ∂θFsψ〉Hs+1

∀ψ ∈ Gs.

The backward of the data X̂ = (x̂s)s=1..n+1 and the backward-gradient Θ̂ = (Θ̂s)s=0..n are defined
by the reversed recurrence: {

x̂s = (∂xFs)?x̂s+1 with x̂n+1 = 1

θ̂s = (∂θFs)?x̂s+1.
(18)

The definition of the adjoint and the formula of the tangent (17) give the following equality:

〈ẋs+1, x̂s+1〉Hs+1 = 〈(∂xFs)ẋs + (∂θFs)θ̇s, x̂s+1〉Hs+1

= 〈ẋs, (∂xFs)?x̂s+1〉Hs+1
+ 〈θ̇s, (∂θFs)?x̂s+1〉Hs+1

= 〈ẋs, x̂s〉Hs
+ 〈θ̇s, θ̂s〉Gs (19)

Summing up the above equations for every s, we obtain:

ẋn+1 = 〈ẋn+1, x̂n+1〉Hn+1 = 〈ẋ0, x̂0〉Hn+1 +
∑
s

〈θ̇s, θ̂s〉Gs =
∑
s

〈θ̇s, θ̂s〉Gs ,

where we used ẋ0 = 0 and x̂n+1 = 1. We then obtain the celebrated backward propagation formula:

∇J (Θ) = Θ̂.

The complexity analysis of the computation of the gradient by the backward formula shows that
it requires the computation and the storage of the forward in order to be able to evaluate (∂xFs)?
and (∂θFs)? at the point (xs(Θ), θs).

Computing the curvature Computing the gradient of J does not require to compute the tangent
Ẋ, because the recurrence (18) defining the backward X̂ reverses the recurrence (17) that defines
the tangent Ẋ. This inversion is performed in (19). We show in this section that the tangent X̂ also
reverses the recurrence defining the second order term Ẍ defined in (20) below. Once the direction
Θ̇ is chosen, the curvature term can be computed by a forward pass. To this end, for any direction
Θ̇, introduce Ẍ = (ẍs)s=0..n+1 by:

ẍs = lim
τ→0

xs(Θ + τΘ̇)− xs(Θ)− τ ẋs
τ2

, (20)

where ẋs is the tangent defined in (17). Denote also ∇2Fs the bilinear symmetric mapping from
Hs × Gs to Hs+1 that represents the second order differentiation of Fs at point (xs(Θ), θs). It is
defined as the only bilinear symmetric mapping that verifies for every (hx, hθ)

Fs(xs(Θ) + hx, θs + hθ) =Fs(xs(Θ), θs) + ∂xFshx + ∂θFshθ +
1

2
∇2Fs(hx, hθ)⊗ (hx, hθ)

+ o(‖hx‖2 + ‖hθ‖2)

It is easy to prove that ẍs exists and verifies:

ẍs+1 = (∂xFs)ẍs +
1

2
∇2Fs(ẋs, θ̇s)⊗ (ẋs, θ̇s), ẍ0 = 0. (21)

Indeed, denote ξs = xs(Θ + τΘ̇)− xs(Θ)− τ ẋs so that ẍs = limτ→0
ξs
τ2 . We have

ξs+1 = Fs(xs(Θ + τΘ̇), θs + τ θ̇s)−Fs(xs(Θ), θs)− τ(∂xFs)ẋs − τ(∂θFs)θ̇s
= Fs(ξs + xs(Θ) + τ ẋs, θs + τ θ̇s)−Fs(xs(Θ), θs)− τ(∂xFs)ẋs − τ(∂θFs)θ̇s

= (∂xFs)ξs +
τ2

2
∇2Fs

(
ξs
τ

+ ẋs, θ̇s

)
⊗
(
ξs
τ

+ ẋs, θ̇s

)
+ o(τ2 + ‖ξs‖2). (22)

15

By a forward recurrence on (22), starting with ξ0 = 0, we have that ξs = O(τ2) so that ẍs exists.
Dividing (22) by τ2 and taking the limit yields (21).

Upon replacing Ẋ by Ẍ, the trick used in (19) can be applied and translates into:

〈ẍs+1, x̂s+1〉Hs+1 = 〈(∂xFs)ẍs +
1

2
∇2Fs(ẋs, θ̇s)⊗ (ẋs, θ̇s), x̂s+1〉Hs+1

= 〈ẍs, (∂xFs)?x̂s+1〉Hs+1 +
1

2
〈∇2Fs(ẋs, θ̇s)⊗ (ẋs, θ̇s), x̂s+1〉Hs+1

= 〈ẍs, x̂s〉Hs +
1

2
〈∇2Fs(ẋs, θ̇s)⊗ (ẋs, θ̇s), x̂s+1〉Hs+1

Summing up these equations in s and using ẍ0 = 0 and x̂n+1 = 1, we obtain

ẍn+1 = 〈ẍn+1, x̂n+1〉Hn+1

= 〈ẍ0, x̂0〉Hn+1
+
∑
s

1

2
〈∇2Fs(ẋs, θ̇s)⊗ (ẋs, θ̇s), x̂s+1〉Hs+1

=
∑
s

1

2
〈∇2Fs(ẋs, θ̇s)⊗ (ẋs, θ̇s), x̂s+1〉Hs+1

In order to conclude and prove Algorithm 2, it is sufficient to remark that J (Θ) = xn+1(Θ) so
that 1

2 〈∇
2J (Θ)Θ̇, Θ̇〉 = ẍn+1. In order to settle the notations, we give some of the expression of

∇2Fs(ẋs, θ̇s)⊗ (ẋs, θ̇s) for standard layers in Appendix A.4.

A.2 Hessian-vector dot product
We now turn our attention to showing how to compute ∇2J (Θ)Θ̇ in our setting. The results are
known [9, 30]. We emphasize that the computation of the curvature is simplier than the Hessian-vector
product. In our setting, the trick that allows the computation of the Hessian-vector product is based
on the following ideas

• The mapping Θ̇ 7→ 1
2 〈∇

2J (Θ)Θ̇, Θ̇〉 is bilinear. If we differentiate with automatic differentiation
this mapping with respect to Θ̇, we retrieve ∇2J (Θ)Θ̇.

• Because X(Θ) is fixed, the aforementioned mapping is defined by a single forward recurrence.
Hence only one additional backward recurrence should be sufficient to compute ∇2J (Θ)Θ̇.

In order to make explicit this backward recurrence, we need to introduce two vectors As ∈ Hs
and Bs ∈ Gs that are defined by the implicit equation:

〈As, a〉Hs
+ 〈Bs, b〉Gs = 〈∇2Fs(ẋs, θ̇s)⊗ (a, b), x̂s+1〉Hs+1

∀(a, b) ∈ Hs × Gs.

The existence and uniqueness of (As, Bs) is just Riesz theorem applied to the linear form on Hs×Gs:

(a, b) 7→ 〈∇2Fs(ẋs, θ̇s)⊗ (a, b), x̂s+1〉Hs+1
.

Construct X̃ = (x̃s)s and Θ̃ = (θ̃s)s by a backward recurrence using{
x̃s = (∂xF)?x̃s+1 +As with x̃n+1 = 0

θ̃s = (∂θF)?x̃s+1 +Bs.
(23)

Then we have
∇2J (Θ)Θ̇ = Θ̃ (24)

In order to prove (24), we show that for any other direction Θ̇′, we have

〈∇2J (Θ)Θ̇, Θ̇′〉 = 〈Θ̃, Θ̇′〉

First consider Ẋ ′ the tangent associated with direction Θ̇′. We have by bilinearity of ∇2Fs and by
Algorithm 2 that

〈∇2J (Θ)Θ̇, Θ̇′〉 =
∑
s

〈∇2Fs(ẋs, θ̇s)⊗ (ẋ′s, θ̇
′
s), x̂s+1〉Hs+1

=
∑
s

〈As, ẋ′s〉+ 〈Bs, θ̇′s〉 (25)

16

By definition of X̃ and Θ̃ in (23) and by formula (17) for the tangent Ẋ ′, the following equality
holds:

〈x̃s, ẋ′s〉+ 〈θ̃s, θ̇′s〉 − 〈As, ẋ′s〉 − 〈Bs, θ̇′s〉
= 〈(∂xF)?x̃s+1, ẋ

′
s〉+ 〈(∂θF)?x̃s+1, θ̇

′
s〉 = 〈x̃s+1, ẋ

′
s+1〉

Summing up the above equation for every s, using x̃n+1 = 0, ẋ′0 = 0 and (25) yields (24).

A.3 Proof of Theorem 1
Recall that (1C, 1M) is the complexity of a gradient computation, we show how to change the overall
cost of computing the curvature from (1.5C, 2M) to (2C, 1M) by a divide-and-conquer algorithm. In
order to simplify the analysis, several simplifications are made.

• There are three kind of passes, the forward pass in (16) that computes X, the backward pass
in (18) that computes X̂ and Θ̂ and the tangent-curvature pass described in Algorithm 2
that computes the curvature. We suppose that each of these passes have roughly the same
computational cost C/2. This assumption is subject to discussion. In one hand the backward
and tangent passes require each twice as much matrix multiplication as the forward pass. On
the other hand, soft activation functions are harder to compute in the forward pass.

• We assume that storing X or X̂ has the same memory footprint 1M . Notably, we suppose
that the cost of storing the parameters Θ or the gradient Θ̂ is negligeable with respect to the
storage of the data through the network. This assumption can only be made for optimization
with large enough batches Bk.

• We suppose that we can divide the neural network in two pieces that each costs half the memory
and half the computational time. This means that we are able to find L, such that the storage
of (xs)s≤L and the storage of (xs)s≥L have same memory footprint M/2. Moreover we suppose
that performing a pass for s ≥ L or for s ≤ L costs C/2 computational time. This assumption
is reasonable and simplifies the analysis but it is of course possible to exhibit pathological
networks that won’t comply with this assumption.

• We suppose that the only cost in data transfer comes from the initialization of the parameters
Θ, the initial data x0 and the direction of descent Θ̇. Note that the computation of Θ̇ requires
the computation of the gradient Θ̂.

We now describe how to compute the curvature with (2C, 1M) and no extra data transfer. We
display the current memory load and the elapsed computational time at the end of each phase. A
visual illustration of this algorithm is proposed in Figure 5.

0. Transfer the data x0 and Θ.

1. Compute X = (xs)s and store it. For s ≥ L, compute the backward via (14) without storing it.
Cost is (3

4C, 1M)

2. Flush from memory (xs)s≥L. Cost is (3
4C,

1
2M)

3. For s ≤ L, compute the backward via (14) and store it. Cost is (1C, 1M)

4. Choose the descent direction and transfer the data Θ̇. Compute the tangent via (17) for s ≥ L.
Cost is (5

4C,M)

5. Flush from memory (x̂s)s and (xs)s<L. Cost is (5
4C, 0M)

6. For s ≥ L, compute the forward, the backward and store them. Compute the tangent for s ≥ L.
Cost is (2C, 1M)

17

Step 1.

F B T

Step 2.

F B T

Step 3.

F B T

Step 4.

F B T

Step 5.

F B T

Step 6.

F B T

Figure 5: Illustration of the divide-and-conquer algorithm of Section A.3 that changes the cost of
computating the curvature from (1.5C, 2M) to (2C, 1M). The rectangles above the letters F, B, T
represent the three different passes (in order: forward, backward and tangent). The memory usage
is represented by color-filling in the rectangles, the computations are represented by arrows on the
right of the passes. In total, the filled area never exceeds 1 rectangle, hence memory usage is 1M .
The total length of the arrows is 4 times the length of a rectangle, this represents 4 passes. The
computational time is then twice the computational time of the backward algorithm.

18

A.4 Structure of the layers
In this section, we explain how to compute the curvature for some of the standard layers used in
DNNs. First, we make clear the different kind of layers we use:

• Loss layers are parameter-free layers from Hn to R, they are denoted by L

Fn(x, θ) = L(x)

• Smooth activation layers do not have parameters and are such that Hs+1 = Hs and are
defined coordinate-wise through a smooth function Φs : R→ R with

Fs(x, θ)[i] = Φs(x[i]) ∀i.

• Linear layers or convolutional layers. The set of parameters are the weights (or kernel)
denoted θ. We suppose that these layers have no bias. They are abstractly defined as

Fs(x, θ)[i] =
∑
k,j

θ[k]x[j]1ijk

where i (resp j, k) denotes the sets of indices of the outputs (resp. the input, the weights).
The function (i, j, k) 7→ 1ijk represents the assignment of the multi-index (k, j) to i. This
affectation is either equal to 1 or 0, that is (1ijk)2 = 1ijk.

• Bias layers are layers where Hs = Hs+1 and are defined by

Fs(x, θ)[i] = xs[i] +
∑
k

1ikθ[k].

They are often concatenated with linear or convolutional layers. There is no restriction to split
a biased linear layer into the composition of a linear layer and a bias layer.

• Batch norm-layers. We split a batch-norm layer into the composition of four different layers,
the centering layer, the normalizing layer, a linear layer with diagonal weight matrix and a
bias layer. For each output index i, the centering and normalizing layers are defined by an
expectation over the batch and some input indices. This expectation is denoted as Ei. The
centering layer can be written as

Fs(x, θ)[i] = xs[i]− Ei(xs).

The normalizing layer is defined as

Fs(x, θ)[i] =
x[i]√

Ei(x2) + ε
.

For the different layers, we give the formula for the different recurrences in Table 1. We begin
with the classic backward computations, they are mainly given here to settle the notations.

B Description of the numerical experiments
All the experiments were conducted and timed using Python 3.8.11 and PyTorch 1.9 on an Intel(R)
Xeon(R) W-2275 CPU @ 3.30GHz with an NVIDIA Quadro RTX 5000 GPU. We also used the
Jean-Zay HPC facility for additional runs.

The models are trained with a batch size of 256 so that one epoch corresponds to 235 iterations
for MNIST and 196 for CIFAR. The number of epochs is set to 200 for the MNIST classification and
500 for the others. Table 2 summarizes the characteristics of the datasets used.

Concerning the tuning of the standard methods, the step size and its decay factor were searched
on a grid for the SGD and RMSProp methods. The learning rate is constant per epoch and its value
at the nth epoch is given by

τn = τ0d
n.

19

Name xs+1[i] x̂s[j] θ̂s[k]

Activation Φ(xs[i]) Φ′(xs[j])x̂s+1[j] N.A.
Linear

∑
k,j θ[k]xs[j]1ijk

∑
k,i θ[k]x̂s+1[i]1ijk

∑
j,i x̂s+1[j]xs[i]1ijk

Bias xs[i] +
∑

k 1ikθ[k] x̂s+1[j]
∑

i 1ikx̂s+1[i]
Centering xs[i]− Ei(xs) x̂s+1[j]− Ej(x̂s+1) N.A.

Normalizing

{
γ = (Ei(x

2
s) + ε)−1/2

xs+1[i] = γxs[i]
γx̂s+1[j]− xsEj [γ

3xsx̂s+1] N.A.

Name ẋs+1[i] rs = 1
2
〈∇2Fs(ẋs, θ̇s)⊗ (ẋs, θ̇s), x̂s+1〉Hs+1

Activation Φ′(xs[i])ẋs[i] 1
2

∑
i Φ′′(xs[i])ẋ2s[i]x̂s+1[i]

Linear
∑

k,j

(
θ[k]ẋs[j] + θ̇[k]xs[j]

)
1ijk

∑
k,j,i θ̇[k]ẋs[i]x̂s+1[j]1ijk

Bias ẋs[i] +
∑

k 1ikθ̇[k] 0
Centering ẋs[i]− Ei(ẋs) 0

Normalizing

{
γ̇ = −Ei[ẋsxs]γ3

ẋs+1[i] = γẋs[i] + γ̇xs[i]

{
γ̈ = −Ei(ẋ

2
s)γ3 + 3Ei(ẋsxs)γ5

rs =
∑

i
1
2

(γ̇ẋs[i] + γ̈xs[i]) x̂s+1[i]

Table 1: Quantities needed in the forward, backward and second order passes for standard layers.

Dataset MNIST CIFAR10 CIFAR100

License CC BY-SA 3.0 MIT License Unknown
Size of the training set 60000 50000 50000
Size of the testing set 10000 10000 10000
Number of channels 1 3 3
Size of the images 28× 28 32× 32 32× 32
Number of classes 10 10 100

Table 2: Summary of the datasets used.

We searched amongst the values τ0 ∈ {1×10n, 5×10n}−5≤n≤1 for the step size and d ∈ {0.97, 0.98, 0.99, 1}
for the step decay on MNIST classification and d ∈ {0.99, 0.995, 1} for the others. After 20% of the
total number of epochs, the couple (τ0, d) that achieves the best training loss decrease is chosen.

For the CIFAR experiments we used data augmentation with a random crop and an horizontal
flip. In the CIFAR100 training we added a random rotation of at most ±15°.

For reproductibility, the values used in the experiments are summarized in Table 3. Unless
explicitely stated, these are the default values used in the experiments of this work. The computing
time per epoch is reported in Table 3 for each method. The codes of RED are not optimized, especially
for the convolution layers where the backward with respect to the parameters is implemented by an
additional run of the forward. This explains why RED is twice slower than the standard methods on
the CIFAR classifiers which make intensive use of convolution layers. The total computing time to
perform all the experiments presented in this work is approximatively 700 hours.

C Additional numerical experiments

C.1 Dealing with momentum
In the core of the paper, only stochastic optimizers without momentum are presented. In this section,
we discuss the extension of our algorithm to momentum based update directions, notably momentum
with RMSProp preconditioning which is the celebrated Adam algorithm.

Incorporating momentum consists in replacing the gradient by an exponential moving average of
the past iterates of the gradients with a parameter β1 ∈ [0, 1[. In our setting, it amounts to replacing
line 9 of Algorithm 3 by lines 4 and 5 of Algorithm 4.

Momentum was introduced by Polyak [32] in the convex non-stochastic setting. It can be
interpreted as an adaptation of a convex method to a non-convex stochastic problem. We coin this
explanation as the heavy-ball analysis. Another point of view, which we denote as variance reduction,

20

Type of problem MNIST
classification

CIFAR10
classification

CIFAR100
classification

MNIST
autoencoder

Type of network LeNet
Dense

VGG11
Convolutional

VGG19
Convolutional Dense

Activation functions Tanh SoftPlus β = 5 SoftPlus β = 5 ELU

L2 regularization λ = 10−7 λ = 10−7 λ = 10−7 λ = 10−7

Loss function Cross entropy Cross entropy Cross entropy MSE

Number of epoch 200 500 500 500

Batch size 256 256 256 256
Number of epoch
for tuning 40 100 100 100

Iteration per epoch 196 235 235 196
Computing time per
epoch with the standard
SGD / RMSProp

5.3s / 5.4s 16.4s / 16.8s 36.3s / 36.9s 5.1s / 5.3s

Computing time per
epoch with auto-SGD /
auto-RMSProp

7.6s / 7.7s 30.1s / 30.5s 65s / 65s 5.7s / 5.9s

Table 3: Summary of the experiment parameters.

Algorithm 4 Adding momentum to RED
1: Initialization ĝ0 = 0.
2: for k = 1.. do
3: · · ·
4: ĝk = β1ĝk−1 + (1− β1)gk and g̃k = ĝk/(1− βk1)
5: Θ̇k = P−1

k g̃k
6: · · ·
7: end for

21

is that the exponential moving average g̃k is a better estimator of ∇J (Θk) than gk. Indeed all the
previous batches (Bm)m≤k are taken into account in the computation of g̃k. The downside is that
the averaged quantity is ∇JBm

(Θm) and not ∇JBm
(Θk), this introduces a bias in the estimation

of ∇J (Θk). With this interpretation in mind, the parameter β1 which drives the capacity of the
exponential moving average to forget the previous iterations has to be tuned between the mini-batches
gradient variance (high variance leads to high β1) and the convergence (high values of ‖Θk −Θk−1‖
lead to low choice of β1). In [19], the authors propose to solve this dilemna by taking decaying values
of β1, although in practice, the parameter β1 is constant.

Momentum: heavy ball or variance reduction? When momentum is understood as an heavy-
ball method, at iteration k there are no reasons for −Θ̇k to be a direction of descent. Because
our algorithm relies on the assumption that −Θ̇k is a direction of descent to choose a step, our
analysis falls apart and RED should be used with care. On the other hand, if momentum is a
variance reduction technique, the step has to be taken small enough in order not to bias the gradient
estimation. With this latter assumption, RED can be applied.

In order to determine if, in our case, momentum acts as an heavy ball method or as a variance
reduction technique, we study numerically when the standard Adam and SGD with momentum
optimizers yield a direction of descent. In Figure 6, the tests of Section 4.1 (Figure 1) are performed
with a momentum β1 = 0.9 and the hyperparameters were tuned using the same policy (see
Appendix B). We display in the last row of Figure 6 the percentage of direction of descent per epoch
with respect to the current batch Bk. If n is the epoch number and Kn the set of the iterations that
are in epoch n, this percentage is given by:

qn =
1

|Kn|
∑
k∈Kn

1〈gk,Θ̇k〉≥0 (26)

We observe that on classification problems, SGD with momentum and more particularly Adam
yield directions of update that are not direction of descent for JBk

. This is even more pronounced
on CIFAR10 where this can happen up to 20% of the iterations. Interestingly, this never happens
on the autoencoder except for the first iterations. Hence the heavy ball effect is important for the
classification problems in consideration.

Step choice The RED algorithm needs a rule to deal with update directions which are not
directions of descent. One possibility is to allow negative steps, which we discard since this would
annihilate the heavy-ball effect. Another possibility, which we retain, is to take the absolute value
of τ?k in line 11. In a nutshell, compute the step for the opposite direction (which is a direction of
descent) and use this step in the current direction. This choice is arbitrary and to properly tackle
the momentum case, interpretations using Lyapunov functions should be considered. The choice of
such functions is not clear and we defer such an analysis to future work.

In Figure 6 the results of the optimization using RED with momentum are displayed. The
parameters for the initial learning rate and its decay factor are the default ones ` = 1 and η = 1/2.
The RED algorithm has difficulties to converge both on the training and testing losses. The steps
chosen by RED are several orders of magnitude higher than the ones obtained by manual tuning. On
classification problems, RED follows directions of update that are not direction of descent.

Learning rate multiplication The impediment to using RED with momentum is that directions
of update are not directions of descent. This can be solved by reducing the initial learning rate ` to
take smaller steps τk so that ‖Θk −Θk−1‖ remains small.

We propose to diminish the initial learning rate by using ` = 1 − β1. This choice may seem
arbitrary but it is inspired by the proofs of convergence of [12] that have bounds which scale as
1− β1. The experiments of Figure 6 are performed with the same set of parameters except for the
initial learning rate which is set to ` = 0.1. This new set of experiments is given in Figure 7. With
this smaller learning rate, the algorithm is stable and converges. However, RED outperforms the
standard SGD with momentum and Adam only on MNIST. Of importance, on the CIFAR tests,
RED always yield direction of descent as seen from the last row of Figure 7. As ` was decreased, the
exploration is lost and hence the convergence is worse, explaining these poor convergence results.

22

T
ra
in
in
g
lo
ss

0 50 100 150 200

10 4

10 3

10 2

10 1

100

0 200 400

10 3

10 2

10 1

100

0 200 400

10 3

10 2

10 1

100

101

0 200 400
100

101

St
ep

0 50 100 150 200

10 8

10 6

10 4

10 2

100

102

104

0 200 400

10 8

10 6

10 4

10 2

100

102

104

0 200 400

10 6

10 4

10 2

100

102

0 200 400

10 4

10 3

10 2

10 1

100

T
es
ti
ng

lo
ss

0 50 100 150 200

10 1

ADAM
SGD
RED-ADAM = 1
RED-SGD = 1

0 200 400

100

101

102

103 ADAM
SGD
RED-ADAM = 1
RED-SGD = 1

0 200 400

101

102

ADAM
SGD
RED-ADAM = 1
RED-SGD = 1

0 200 400

2 × 100

3 × 100

4 × 100

6 × 100

ADAM
SGD
RED-ADAM = 1
RED-SGD = 1

A
cc
ur
ac
y
te
st

0 100 200
97.00%

97.50%

98.00%

98.50%

99.00%

99.50%

0 200 400
80.0%

82.0%

84.0%

86.0%

88.0%

90.0%

92.0%

0 200 400
50.0%

55.0%

60.0%

65.0%

70.0%

P
er
ce
nt
.
di
r.

de
sc
en
t
q n

0 100 200
88.0%

90.0%

92.0%

94.0%

96.0%

98.0%

100.0%

0 200 400

80.0%

85.0%

90.0%

95.0%

100.0%

0 200 400

95.0%

96.0%

97.0%

98.0%

99.0%

100.0%

0 200 400
98.25%

98.50%

98.75%

99.00%

99.25%

99.50%

99.75%

100.00%

MNIST CIFAR10 CIFAR100 autoencoder

Figure 6: Tests with momentum (β1 = 0.9) and ` = 1 for RED. Manually-tuned algorithms (orange for
SGD, blue for Adam) and their RED version (red for SGD, green for Adam) are given. Momentum
does not necessarily yield directions of descent (see last row), this turns RED into an unstable
algorithm.

23

Conclusion When using momentum, multiplying the steps found by RED by 1− β1 makes the
experiments fit in the framework the algorithm was proposed for. As a consequence, this causes the
loss of the exploration which is critical to speed-up the convergence. The correct way of dealing with
momentum would be to identify the Lyapunov function that has to be minimized, which is left for
future work.

C.2 Effect of the L2 regularization
An L2 regularization is introduced in our algorithm to counteract the effet of a vanishing Hessian in
the direction of update. This is a theoretical limitation and we study in this section the influence of
this regularization on the performance of RED. The same experiments than Section 4.1 are conducted
with different values of the regularization λ ∈ {10−7, 10−4}. The CIFAR100 classifier is excluded
from the experiments for computational cost reasons and because it did not give much additional
information for the comparison of the methods. The hyperparameters of the standard SGD and
RMSProp optimizers are tuned for each value of λ. We report in Figure 8 the different results,
including the ones that are shown in Section 4.1. For the MNIST and autoencoder test cases, RED
is always better than standard methods. On CIFAR10, the results are more mitigate as RMSProp
outperforms RED on the training loss when λ = 10−4 but from the test accuracy, our method still
gives better generalization. On all test cases, we observe that a value of regularization close to zero
(λ = 10−7) gives good convergence results. In the considered tests, the need of a regularization seems
to be more of a theoretical limitation than a practical one.

C.3 Impact of the network structure
This section is dedicated to the illustration of cases where the structure of the network highly impacts
the performance of the RED method. We change the structure of the networks by changing their
activation functions. The activation functions of the VGG networks in the CIFAR classifiers are
replaced by ELU functions, and by SoftPlus in the autoencoder. In Figure 9 the tests of Section 4.1 are
presented with the manually-tuned and RED methods on 3 of the experiments. These 3 experiments
use a regularization λ = 10−7 and we also give the results for λ = 10−4 on the autoencoder.

The conclusions of Section 4.1 are still valid but less pronounced. The convergence of RED
is much worse on the training loss for CIFAR100 while the test accuracy remains much better
than the standard methods for classification. On the autoencoder, auto-SGD is not very fast but
auto-RMSProp is excellent. An explanation of the poor behavior on the autoencoder for auto-SGD
could be the lack of batch normalization.

C.4 Influence of the step size and of the decay factor
The influence of the initial learning rate ` and its decay factor η is studied in Section 4.2. We
presented the tests only for RMSProp preconditioning on CIFAR10. In Figure 10, we report
additional experiments on the CIFAR10 classifier and on the MNIST autoencoder with the same set
of values for ` and η that are used in Figure 2.

The same conclusions as in Section 4.2 can me drawn. On all tests, the values that achieve one of
the best decay of the training loss are ` = 1 and η = 1/2. On CIFAR10 with auto-SGD we observe
that the values (`, η) = (1, 1) give slightly better results than (1, 1/2) but with the auto-RMSProp
optimizer, this first set of values results in instabilities. Concerning the autoencoder, surprisingly
the values ` = 2 and η = 1/4 give the best convergence after 500 epochs. We believe it is because
the autoencoder is more stable than the CIFAR10 classifier and that the good convergence of the
automatic methods on the autoencoder with ` = 2 is a fluke.

C.5 Comparison with BB and Robbins-Monro
In this section we compare our algorithm with the closest existing approach [8], named step-tuned,
where the authors approximate the curvature with a BB method. We also compare it with a
Robbins-Monro decay rule of the learning rate. We did not compare with the BB-method of [46] as
this method requires the computation of the gradient over the whole dataset at each epoch.

24

T
ra
in
in
g
lo
ss

0 50 100 150 200

10 4

10 3

10 2

10 1

100

0 200 400

10 3

10 2

10 1

100

0 200 400

10 3

10 2

10 1

100

0 200 400
100

101

St
ep

0 50 100 150 200

10 7

10 5

10 3

10 1

101

0 200 400

10 8

10 6

10 4

10 2

0 200 400

10 8

10 6

10 4

10 2

0 200 400

10 6

10 5

10 4

10 3

10 2

10 1

T
es
ti
ng

lo
ss

0 50 100 150 200

10 1

ADAM
SGD
RED-ADAM
RED-SGD

0 200 400

100

6 × 10 1

ADAM
SGD
RED-ADAM
RED-SGD

0 200 400

2 × 100

3 × 100

4 × 100
ADAM
SGD
RED-ADAM
RED-SGD

0 200 400

101
ADAM
SGD
RED-ADAM
RED-SGD

A
cc
ur
ac
y
te
st

0 100 200
97.00%

97.50%

98.00%

98.50%

99.00%

99.50%

0 200 400
80.0%

82.0%

84.0%

86.0%

88.0%

90.0%

92.0%

0 200 400
50.0%

55.0%

60.0%

65.0%

70.0%

P
er
ce
nt
.
di
r.

de
sc
en
t
q n

0 100 200
94.0%

95.0%

96.0%

97.0%

98.0%

99.0%

100.0%

0 200 400

80.0%

85.0%

90.0%

95.0%

100.0%

0 200 400

97.00%

97.50%

98.00%

98.50%

99.00%

99.50%

100.00%

0 200 400

99.600%

99.700%

99.800%

99.900%

100.000%

MNIST CIFAR10 CIFAR100 autoencoder

Figure 7: Tests with momentum (β1 = 0.9) and learning rate stabilization ` = 1− β1 = 0.1 for RED.
Manually-tuned algorithms (orange for SGD, blue for Adam) and their RED version (red for SGD,
green for Adam) are given. Lower learning rate in RED ensures that momentum yields direction of
descent at the expense of loosing the exploration of the set of parameters.

25

M
N
IS
T
λ

=
1
0
−
7

0 50 100 150 200

10 4

10 3

10 2

10 1

100
RMSProp
SGD
RED-RMSProp
RED-SGD

0 50 100 150 200

10 5

10 3

10 1

101

103

0 50 100 150 200

10 1

0 100 200
97.00%

97.50%

98.00%

98.50%

99.00%

99.50%

M
N
IS
T
λ

=
1
0
−
4

0 50 100 150 200

10 2

10 1

100

101
RMSProp
SGD
RED-RMSProp
RED-SGD

0 50 100 150 200

10 5

10 4

10 3

10 2

10 1

100

0 50 100 150 200

10 1

100

0 100 200
97.00%

97.50%

98.00%

98.50%

99.00%

99.50%

C
IF
A
R
10

λ
=

1
0
−
7

0 200 400

10 3

10 2

10 1

100
RMSProp
SGD
RED-RMSProp
RED-SGD

0 200 400

10 9

10 7

10 5

10 3

10 1

0 200 400

100

0 200 400
80.0%

82.0%

84.0%

86.0%

88.0%

90.0%

92.0%

C
IF
A
R
10

λ
=

1
0
−
4

0 200 400

10 1

100

RMSProp
SGD
RED-RMSProp
RED-SGD

0 200 400

10 6

10 5

10 4

10 3

10 2

10 1

0 200 400

100

6 × 10 1

2 × 100

3 × 100

0 200 400
80.0%

82.0%

84.0%

86.0%

88.0%

90.0%

92.0%

A
ut
oe
nc

od
er
λ

=
1
0
−
7

0 200 400

101

RMSProp
SGD
RED-RMSProp
RED-SGD

0 200 400

10 5

10 4

10 3

10 2

10 1

0 200 400

101

A
ut
oe
nc

od
er
λ

=
1
0
−
4

0 200 400

101

RMSProp
SGD
RED-RMSProp
RED-SGD

0 200 400

10 5

10 4

10 3

10 2

10 1

0 200 400

101

Training loss Step Testing loss Accuracy test

Figure 8: Influence of the L2 regularization λ. Manually-tuned algorithms (orange for SGD, blue for
RMSProp) and their RED version (red for SGD, green for RMSProp) are given. For these tests, the
smaller the regularization, the best the convergence of RED.

26

T
ra
in
in
g
lo
ss

0 200 400

10 3

10 2

10 1

100
RMSProp
SGD
RED-RMSProp
RED-SGD

0 200 400
10 3

10 2

10 1

100

RMSProp
SGD
RED-RMSProp
RED-SGD

0 200 400

101

RMSProp
SGD
RED-RMSProp
RED-SGD

0 200 400

101

RMSProp
SGD
RED-RMSProp
RED-SGD

St
ep

0 200 400

10 5

10 4

10 3

10 2

10 1

100

0 200 400

10 5

10 4

10 3

10 2

10 1

100

101

0 200 400

10 5

10 4

10 3

10 2

10 1

100

0 200 400

10 6

10 5

10 4

10 3

10 2

10 1

100

T
es
ti
ng

lo
ss

0 200 400

100

4 × 10 1

6 × 10 1

2 × 100

0 200 400

2 × 100

3 × 100

4 × 100

0 200 400

101

0 200 400

101

A
cc
ur
ac
y
te
st

0 200 400
80.0%

82.0%

84.0%

86.0%

88.0%

90.0%

92.0%

0 200 400
50.0%

55.0%

60.0%

65.0%

70.0%

CIFAR10 λ = 10−7

ELU
CIFAR100 λ = 10−7

ELU
autoencoder λ = 10−7

SoftPlus
autoencoder λ = 10−4

SoftPlus

Figure 9: Impact of the activation functions. For the autoencoder we conduct the experiments with
two values of the L2 regularization λ = 10−7 and λ = 10−4. Manually-tuned algorithms (orange for
SGD, blue for RMSProp) and their RED version (red for SGD, green for RMSProp) are given.

27

T
ra
in
in
g
lo
ss

0 200 400

10 3

10 2

10 1

100

0 200 400

10 3

10 2

10 1

100

0 200 400
100

101

0 200 400
100

101

St
ep

0 200 400
10 7

10 5

10 3

10 1

101

0 200 400
10 7

10 5

10 3

10 1

101

0 200 400

10 5

10 4

10 3

10 2

10 1

0 200 400

10 5

10 4

10 3

10 2

10 1

T
es
ti
ng

lo
ss

0 200 400

100

101

= 0.5 = 1
= 0.5 = 1/2
= 1 = 1
= 1 = 1/2
= 1 = 1/5
= 2 = 1/2
= 2 = 1/4

0 200 400

100

101

= 0.5 = 1
= 0.5 = 1/2
= 1 = 1
= 1 = 1/2
= 1 = 1/5
= 2 = 1/2
= 2 = 1/4

0 200 400

101

= 0.5 = 1
= 0.5 = 1/2
= 1 = 1
= 1 = 1/2
= 1 = 1/5
= 2 = 1/2
= 2 = 1/4

0 200 400

101

= 0.5 = 1
= 0.5 = 1/2
= 1 = 1
= 1 = 1/2
= 1 = 1/5
= 2 = 1/2
= 2 = 1/4

A
cc
ur
ac
y
te
st

0 200 400
80.0%

82.0%

84.0%

86.0%

88.0%

90.0%

92.0%

0 200 400
80.0%

82.0%

84.0%

86.0%

88.0%

90.0%

92.0%

CIFAR10 SGD CIFAR10 RMSProp autoencoder SGD autoencoder RMSProp

Figure 10: Influence of the step size ` and of the decay factor η. Each column gives the different
automatic optimizers (SGD and RMSProp) on different test cases (CIFAR10 classifier and MNIST
autoencoder). This figure sums up the experiments of Figure 2 with additional tests which lead to
the same conclusions.

28

The step-tuned optimizer has several hyperparameters and we use the default ones except the
learning rate as advised in [8]. The initial learning rate of [8] is searched on the same grid than the
standard SGD (see Appendix B).

In Figure 11, the results of the optimization on the CIFAR10 classifier and on the autoencoder are
given for two values of the L2 regularization λ ∈ {10−7, 10−4}. RED algorithm is outperformed by
step-tuned only on the training loss of the CIFAR10 classifier but the learning rate of step-tuned has
been optimized for the training loss and we cannot expect better performance than step-tuned on this
criterion. It has been reported in [8] that step-tuned has poor performance on the autoencoder. RED
is significantly faster on this latter experiment. Finally, RED is more stable on every test metrics and
has better generalization than step-tuned. Step-tuned [8] requires the optimization of the learning
rate and because RED does not need any hyperparameter adjustment, our method is competitive
with this existing work. Note also that step-tuned is not available on RMSProp conditionner, when
RED handles any kind of preconditionning technique.

In Figure 12, a comparison between RLD and SGD with an exponential decay is given. The
RLD algorithm is run with two different decay values: η = 1/2 is the standard value proposed in
the algorithm and η = 1/20 is given in order to obtain the same decay as the standard SGD at the
end of the training process. We observe that on all tests, RED-SGD with η = 1/20 is outperformed
by RED-SGD with η = 1/2. It seems that the decay with η = 1/20 is too fast and does not let the
algorithm explore the space of parameters.

D Quantile plots
In this section, we display another representation of the step and train loss function of the numerical
experiments. Indeed, we choose to perform an exponential moving average of this two quantities in
order to smooth the corresponding convergence curves, this might impede with interpretation of the
curves. In this section, we display the per-epoch quantiles (5%, 25%, 50%, 75%, 95%) of the curves of
one run. The quantile display allows assessing the spread of the train loss function and of the step
amongst the different batches. The quantiles (5%, 50%, 95%) are represented by lines, the shaded
area is the zone between quantile 25% and 75%.

29

C
IF
A
R
10

λ
=

1
0
−
7

0 200 400

10 3

10 2

10 1

100

RED-SGD = 1/2
step-tuned
SGD with Robbins-Monro

0 200 400

10 2

10 1

100

0 200 400

100

0 200 400
80.0%

82.0%

84.0%

86.0%

88.0%

90.0%

92.0%

C
IF
A
R
10

λ
=

1
0
−
4

0 200 400

10 1

100

RED-SGD = 1/2
step-tuned
SGD with Robbins-Monro

0 200 400
10 3

10 2

10 1

100

0 200 400

100

6 × 10 1

2 × 100

3 × 100

0 200 400
80.0%

82.0%

84.0%

86.0%

88.0%

90.0%

92.0%

A
ut
oe
nc

od
er
λ

=
1
0
−
7

0 200 400

101

RED-SGD = 1/2
step-tuned
SGD with Robbins-Monro

0 200 400

10 3

10 2

10 1

0 200 400

101

A
ut
oe
nc

od
er
λ

=
1
0
−
4

0 200 400

101

RED-SGD = 1/2
step-tuned

0 200 400

10 3

10 2

10 1

0 200 400

101

Training loss Step Testing loss Accuracy test

Figure 11: Comparison with step-tuned [8] method. Standard SGD (blue), RED (orange and green)
and step-tuned (red) are given. RED is competitive with step-tuned except on the training loss of
the CIFAR10 classifier for which step-tuned is optimized.

30

C
IF
A
R
10

λ
=

1
0
−
7

0 200 400

10 3

10 2

10 1

100
SGD
RED-SGD = 1/2
RED-SGD = 1/20

0 200 400

10 3

10 2

10 1

0 200 400

100

4 × 10 1

6 × 10 1

2 × 100

0 200 400
80.0%

82.0%

84.0%

86.0%

88.0%

90.0%

92.0%

C
IF
A
R
10

λ
=

1
0
−
4

0 200 400
10 1

100

SGD
RED-SGD = 1/2
RED-SGD = 1/20

0 200 400
10 4

10 3

10 2

10 1

0 200 400

100

6 × 10 1

2 × 100

3 × 100

0 200 400
80.0%

82.0%

84.0%

86.0%

88.0%

90.0%

92.0%

A
ut
oe
nc

od
er
λ

=
1
0
−
7

0 200 400

101

SGD
RED-SGD = 1/2
RED-SGD = 1/20

0 200 400

10 3

10 2

10 1

0 200 400

101

A
ut
oe
nc

od
er
λ

=
1
0
−
4

0 200 400

101

SGD
RED-SGD = 1/2
RED-SGD = 1/20

0 200 400

10 3

10 2

10 1

0 200 400

101

Training loss Step Testing loss Accuracy test

Figure 12: Comparison with SGD and different learning rate decays. Standard SGD (blue), auto-
tuned (orange and green) and step-tuned (red) are given. Auto-tuned is competitive with step-tuned
except on the training loss of the CIFAR10 classifier for which step-tuned is optimized.

31

T
ra
in
in
g
lo
ss

0 50 100 150 200

10 4

10 3

10 2

10 1

100

101
RMSProp
SGD
RED-RMSProp
RED-SGD

0 200 400

10 3

10 2

10 1

100
RMSProp
SGD
RED-RMSProp
RED-SGD

0 200 400

10 3

10 2

10 1

100

RMSProp
SGD
RED-RMSProp
RED-SGD

0 200 400

101

RMSProp
SGD
RED-RMSProp
RED-SGD

St
ep

0 50 100 150 200

10 4

10 2

100

102

0 200 400

10 9

10 7

10 5

10 3

10 1

0 200 400

10 10

10 8

10 6

10 4

10 2

100

0 200 400

10 5

10 4

10 3

10 2

T
es
ti
ng

lo
ss

0 50 100 150 200

10 1

0 200 400

100

4 × 10 1

6 × 10 1

2 × 100

3 × 100

0 200 400

2 × 100

3 × 100

4 × 100

0 200 400

101

A
cc
ur
ac
y
te
st

0 100 200
9.7 × 101

9.75 × 101

9.8 × 101

9.85 × 101

9.9 × 101

9.95 × 101

0 200 400
8 × 101

9 × 101

0 200 400
5 × 101

6 × 101

7 × 101

MNIST CIFAR10 CIFAR100 autoencoder

Figure 13: Quantile plot of Figure 1

R
M
SP

ro
p

0 200 400

10 3

10 2

10 1

100

0 200 400
10 7

10 5

10 3

10 1

101

0 200 400

100

101

= 0.5 = 1
= 0.5 = 1/2
= 1 = 1
= 1 = 1/2
= 1 = 1/5
= 2 = 1/2
= 2 = 1/4

0 200 400
8 × 101

9 × 101

Training loss Step Testing loss Accuracy test

Figure 14: Quantile plot of Figure 2

32

0 200 400

10 3

10 2

10 1

100 3 = 0
3 = 0.5
3 = 0.9
3 = 0.99

(a) Training loss

0 200 400

10 2

10 1

100

(b) Step

0 200 400

100

101

(c) Testing loss

0 200 400
8 × 101

9 × 101

(d) Accuracy test

Figure 15: Quantile plot of Figure 4

33

T
ra
in
in
g
lo
ss

0 50 100 150 200

10 4

10 3

10 2

10 1

100

0 200 400

10 3

10 2

10 1

100

0 200 400

10 3

10 2

10 1

100

101

0 200 400
100

101

St
ep

0 50 100 150 200

10 5

10 3

10 1

101

103

0 200 400

10 7

10 5

10 3

10 1

101

103

0 200 400

10 5

10 3

10 1

101

0 200 400

10 4

10 3

10 2

10 1

100

T
es
ti
ng

lo
ss

0 50 100 150 200

10 1

ADAM
SGD
RED-ADAM = 1
RED-SGD = 1

0 200 400

100

101

ADAM
SGD
RED-ADAM = 1
RED-SGD = 1

0 200 400

101

ADAM
SGD
RED-ADAM = 1
RED-SGD = 1

0 200 400

2 × 100

3 × 100

4 × 100

6 × 100

ADAM
SGD
RED-ADAM = 1
RED-SGD = 1

A
cc
ur
ac
y
te
st

0 100 200
9.7 × 101

9.75 × 101

9.8 × 101

9.85 × 101

9.9 × 101

9.95 × 101

0 200 400
8 × 101

9 × 101

0 200 400
5 × 101

6 × 101

7 × 101

P
er
ce
nt
.
di
r.

de
sc
en
t
q n

0 100 200
88.0%

90.0%

92.0%

94.0%

96.0%

98.0%

100.0%

0 200 400

80.0%

85.0%

90.0%

95.0%

100.0%

0 200 400

95.0%

96.0%

97.0%

98.0%

99.0%

100.0%

0 200 400
98.25%

98.50%

98.75%

99.00%

99.25%

99.50%

99.75%

100.00%

MNIST CIFAR10 CIFAR100 autoencoder

Figure 16: Quantile plot of Figure 6

34

T
ra
in
in
g
lo
ss

0 50 100 150 200

10 4

10 3

10 2

10 1

100

0 200 400

10 3

10 2

10 1

100

0 200 400

10 3

10 2

10 1

100

0 200 400
100

101

St
ep

0 50 100 150 200

10 4

10 2

100

102

0 200 400

10 7

10 6

10 5

10 4

10 3

10 2

10 1

0 200 400

10 7

10 6

10 5

10 4

10 3

10 2

10 1

0 200 400
10 6

10 5

10 4

10 3

10 2

10 1

T
es
ti
ng

lo
ss

0 50 100 150 200

10 1

ADAM
SGD
RED-ADAM
RED-SGD

0 200 400

100

6 × 10 1

ADAM
SGD
RED-ADAM
RED-SGD

0 200 400

2 × 100

3 × 100

4 × 100
ADAM
SGD
RED-ADAM
RED-SGD

0 200 400

101
ADAM
SGD
RED-ADAM
RED-SGD

A
cc
ur
ac
y
te
st

0 100 200
9.7 × 101

9.75 × 101

9.8 × 101

9.85 × 101

9.9 × 101

9.95 × 101

0 200 400
8 × 101

9 × 101

0 200 400
5 × 101

6 × 101

7 × 101

P
er
ce
nt
.
di
r.

de
sc
en
t
q n

0 100 200
94.0%

95.0%

96.0%

97.0%

98.0%

99.0%

100.0%

0 200 400

80.0%

85.0%

90.0%

95.0%

100.0%

0 200 400

97.00%

97.50%

98.00%

98.50%

99.00%

99.50%

100.00%

0 200 400

99.600%

99.700%

99.800%

99.900%

100.000%

MNIST CIFAR10 CIFAR100 autoencoder

Figure 17: Quantile plot of Figure 7

35

M
N
IS
T
λ

=
1
0
−
7

0 50 100 150 200

10 4

10 3

10 2

10 1

100

101
RMSProp
SGD
RED-RMSProp
RED-SGD

0 50 100 150 200

10 4

10 2

100

102

0 50 100 150 200

10 1

0 100 200
9.7 × 101

9.75 × 101

9.8 × 101

9.85 × 101

9.9 × 101

9.95 × 101

M
N
IS
T
λ

=
1
0
−
4

0 50 100 150 200

10 2

10 1

100 RMSProp
SGD
RED-RMSProp
RED-SGD

0 50 100 150 200
10 5

10 4

10 3

10 2

10 1

100

0 50 100 150 200

10 1

0 100 200
9.7 × 101

9.75 × 101

9.8 × 101

9.85 × 101

9.9 × 101

9.95 × 101

C
IF
A
R
10

λ
=

1
0
−
7

0 200 400

10 3

10 2

10 1

100
RMSProp
SGD
RED-RMSProp
RED-SGD

0 200 400

10 9

10 7

10 5

10 3

10 1

0 200 400

100

4 × 10 1

6 × 10 1

2 × 100

3 × 100

0 200 400
8 × 101

9 × 101

C
IF
A
R
10

λ
=

1
0
−
4

0 200 400

10 1

100

RMSProp
SGD
RED-RMSProp
RED-SGD

0 200 400

10 6

10 5

10 4

10 3

10 2

10 1

0 200 400

100

6 × 10 1

2 × 100

0 200 400
8 × 101

9 × 101

A
ut
oe
nc

od
er
λ

=
1
0
−
7

0 200 400

101

RMSProp
SGD
RED-RMSProp
RED-SGD

0 200 400

10 5

10 4

10 3

10 2

0 200 400

101

A
ut
oe
nc

od
er
λ

=
1
0
−
4

0 200 400

101

RMSProp
SGD
RED-RMSProp
RED-SGD

0 200 400

10 5

10 4

10 3

10 2

0 200 400

101

Training loss Step Testing loss Accuracy test

Figure 18: Quantile plot of Figure 8

36

T
ra
in
in
g
lo
ss

0 200 400

10 3

10 2

10 1

100 RMSProp
SGD
RED-RMSProp
RED-SGD

0 200 400

10 3

10 2

10 1

100

RMSProp
SGD
RED-RMSProp
RED-SGD

0 200 400

101

RMSProp
SGD
RED-RMSProp
RED-SGD

0 200 400

101

RMSProp
SGD
RED-RMSProp
RED-SGD

St
ep

0 200 400

10 5

10 4

10 3

10 2

10 1

0 200 400

10 5

10 4

10 3

10 2

10 1

100

101

0 200 400

10 5

10 4

10 3

10 2

10 1

0 200 400

10 6

10 5

10 4

10 3

10 2

10 1

T
es
ti
ng

lo
ss

0 200 400

100

6 × 10 1

2 × 100

0 200 400

2 × 100

3 × 100

4 × 100

0 200 400

101

0 200 400

101

A
cc
ur
ac
y
te
st

0 200 400
8 × 101

9 × 101

0 200 400
5 × 101

6 × 101

7 × 101

CIFAR10 λ = 10−7

ELU
CIFAR100 λ = 10−7

ELU
autoencoder λ = 10−7

SoftPlus
autoencoder λ = 10−4

SoftPlus

Figure 19: Quantile plot of Figure 9

37

T
ra
in
in
g
lo
ss

0 200 400

10 3

10 2

10 1

100

0 200 400

10 3

10 2

10 1

100

0 200 400
100

101

0 200 400
100

101

St
ep

0 200 400
10 7

10 5

10 3

10 1

101

0 200 400
10 7

10 5

10 3

10 1

101

0 200 400

10 5

10 4

10 3

10 2

10 1

0 200 400

10 5

10 4

10 3

10 2

10 1

T
es
ti
ng

lo
ss

0 200 400

100

101

= 0.5 = 1
= 0.5 = 1/2
= 1 = 1
= 1 = 1/2
= 1 = 1/5
= 2 = 1/2
= 2 = 1/4

0 200 400

100

101

= 0.5 = 1
= 0.5 = 1/2
= 1 = 1
= 1 = 1/2
= 1 = 1/5
= 2 = 1/2
= 2 = 1/4

0 200 400

101

= 0.5 = 1
= 0.5 = 1/2
= 1 = 1
= 1 = 1/2
= 1 = 1/5
= 2 = 1/2
= 2 = 1/4

0 200 400

101

= 0.5 = 1
= 0.5 = 1/2
= 1 = 1
= 1 = 1/2
= 1 = 1/5
= 2 = 1/2
= 2 = 1/4

A
cc
ur
ac
y
te
st

0 200 400
8 × 101

9 × 101

0 200 400
8 × 101

9 × 101

CIFAR10 SGD CIFAR10 RMSProp autoencoder SGD autoencoder RMSProp

Figure 20: Quantile plot of Figure 10

38

C
IF
A
R
10

λ
=

1
0
−
7

0 200 400

10 3

10 2

10 1

100
RED-SGD = 1/2
step-tuned
SGD with Robbins-Monro

0 200 400

10 2

10 1

100

0 200 400

100

0 200 400
8 × 101

9 × 101

C
IF
A
R
10

λ
=

1
0
−
4

0 200 400

10 1

100

RED-SGD = 1/2
step-tuned
SGD with Robbins-Monro

0 200 400

10 2

10 1

100

0 200 400

100

6 × 10 1

2 × 100

0 200 400
8 × 101

9 × 101

A
ut
oe
nc

od
er
λ

=
1
0
−
7

0 200 400

101

RED-SGD = 1/2
step-tuned
SGD with Robbins-Monro

0 200 400

10 3

10 2

0 200 400

101

A
ut
oe
nc

od
er
λ

=
1
0
−
4

0 200 400

101

RED-SGD = 1/2
step-tuned
SGD with Robbins-Monro

0 200 400

10 3

10 2

0 200 400

101

Training loss Step Testing loss Accuracy test

Figure 21: Quantile plot of Figure 11

39

C
IF
A
R
10

λ
=

1
0
−
7

0 200 400

10 3

10 2

10 1

100 SGD
RED-SGD = 1/2
RED-SGD = 1/20

0 200 400

10 3

10 2

10 1

0 200 400

100

4 × 10 1

6 × 10 1

2 × 100

0 200 400
8 × 101

9 × 101

C
IF
A
R
10

λ
=

1
0
−
4

0 200 400
10 1

100

SGD
RED-SGD = 1/2
RED-SGD = 1/20

0 200 400

10 3

10 2

10 1

0 200 400

100

6 × 10 1

2 × 100

0 200 400
8 × 101

9 × 101

A
ut
oe
nc

od
er
λ

=
1
0
−
7

0 200 400

101

SGD
RED-SGD = 1/2
RED-SGD = 1/20

0 200 400

10 3

10 2

0 200 400

101

A
ut
oe
nc

od
er
λ

=
1
0
−
4

0 200 400

101

SGD
RED-SGD = 1/2
RED-SGD = 1/20

0 200 400

10 3

10 2

0 200 400

101

Training loss Step Testing loss Accuracy test

Figure 22: Quantile plot of Figure 12

40

	Introduction
	Foreword
	Related works
	Our contributions

	Rescaling the learning rate
	Curvature computation
	Numerical experiments
	RED vs manually-tuned learning rate
	Influence of the step size and of the decay factor
	Annealing
	Stability with respect to the averaging factor of the curvature

	Conclusion and discussion
	Computation of the second order term
	Proof of Algorithm 2
	Hessian-vector dot product
	Proof of Theorem 1
	Structure of the layers

	Description of the numerical experiments
	Additional numerical experiments
	Dealing with momentum
	Effect of the L2 regularization
	Impact of the network structure
	Influence of the step size and of the decay factor
	Comparison with BB and Robbins-Monro

	Quantile plots

