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Developing algorithmic thinking without programming  

by designing instructions for encryption 

Carina Zindel 

University of Cologne, Germany; carina.zindel@uni-koeln.de 

 

Algorithmic thinking is an important part of digital literacy, enabling learners to navigate the 

digital world with confidence. As part of a Design Research study with 22 learners in grades 5 and 

6 so far, it was investigated to what extent the children learn to think algorithmically when they 

discover an encryption algorithm without use of a programming language. It was found that some 

learners can intuitively and independently develop certain algorithmic thinking ideas (such as 

sequencing and loops) when writing instructions (=developing an algorithm). Hurdles show up in 

the degree of precision and the degree of generality of the instructions. 
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Introduction  

Digital literacy is important in order to be able to navigate the digital world in a responsible 

manner. Many IT systems in the world around us can only be used in a responsible manner if the 

basic ideas behind them are understood. Wing (2006) coined the term “computational thinking” in 

this context, “that represents a universally applicable attitude and skill set everyone, not just 

computer scientists, would be eager to learn and use” (Wing, 2006, p. 33). Computational thinking 

includes processes such as “solving problems“, “using abstraction and decomposition when 

attacking a large complex task”, or “thinking recursively” (ibid, p. 33). Hence, computational 

thinking is a different skill than programming, as “programming” relates to concepts regarding the 

syntax and semantics of programming languages. As one example, the “CS Unplugged” project 

(Bell, Rosamond, & Casey, 2012) presents several resources developed to promote computational 

thinking without a computer. 

Up to now, there have been very few learning opportunities on this topic for children in Germany, 

as computer science is not a compulsory subject throughout the country or even offered at all (cf. 

Pasternak, Hellmig & Röhner, 2018). This is due, among other things, to the way education is 

promoted. Computer science is often only offered as an elective subject from grade 9 onwards. 

Digital literacy is politically regarded as a task for all subjects, and thus especially for mathematics 

education. Therefore, it is also due to the general conditions that, due to the general educational 

aspects, algorithmic thinking should be promoted in mathematics classes as well. Besides, the 

opportunities should be used that exist due to the topics that are covered anyway. 

Theoretical background  

Although Wing (2006) proposes the term computational thinking, this type of thinking should not 

to be considered as restricted to dealing with computers. Instead, Wing (2006) stresses that 

mailto:carina.zindel@uni-koeln.de


 

 

computational thinking is an activity of humans, not of computers. It is a foundational type of 

thinking that allows humans to attack problems in a way so that they can ultimately be solved using 

a computer.  

Such considerations are not unknown to mathematics. Here, the idea of algorithm proves to be 

much older than that of computer (Möller & Collignon, 2019). Many algorithms are part of the 

mathematics curriculum, although their algorithmic nature often remains implicit. That is, certain 

algorithms are made a topic of discussion (e.g., written arithmetic procedures or solving equations), 

but it is rarely made explicit that this is an algorithm. This also leads to the fact what constitutes an 

algorithm is not defined and ideas such as "explicit sequence of steps to solve a problem" or similar 

have not been an explicit learning object in mathematics education so far.  

In order to reduce the complexity of computational thinking as a learning subject, and at the same 

time to emphasize more the role of the algorithm, this study proposes to use the term algorithmic 

thinking (AT) for capturing the kind of thinking that is necessary when designing and reflecting 

algorithms (in contrast to technical programming). There are different conceptualizations for 

specifying what is required for students to possess algorithmic thinking. Following Harlow et al. 

(2016, p. 340), five algorithmic thinking ideas are distinguished in this paper:  

- “Sequencing: Creating an ordered list of instructions to complete a task” 

- “Breaking down actions: breaking an event into smaller parts” 

- “Looping: Repeating a set of instructions multiple times” 

- “Event-driven programming: identifying how one circumstance triggers another” 

- “Message passing: coordinating actions across code or characters” 

This paper examines the extent to which AT ideas can be developed. One promising way to 

promote the development of algorithmic thinking is to engage students in  writing instructions for 

self-discovered algorithms. After all, writing is not only a learning goal in its own right, but also an 

important thinking tool (learning to write and writing to learn, cf. Morgan, 1998). Austin and 

Howson (1979, p. 167 f.) also already dealt with the connection between language and concept 

formation. Heller and Morek (2015) distinguish three different functions of academic language 

(AL) both oral and written: (1) "AL as a medium of knowledge transmission (communicative 

function)"; (2) "AL as a tool for thinking (epistemic function)"; (3) "AL as a ticket and visiting card 

(socio-symbolic function)" (ibid., p. 175). This suggests that writing promotes deeper engagement 

with the content and thus fosters deeper understanding. At the same time, instructions for 

algorithms can be conceived as a separate text genre that students need to learn (similar to 

geometric construction texts, cf. Rezat & Rezat 2017). 

In this paper, the idea is to develop algorithmic thinking by inventing an encryption algorithm 

without directly focusing on programming (similar to the examples of Bell et al., 2012). 

Encryptions are suitable because, on the one hand, they are an important topic in everyday life. On 

the other hand, they are suitable because even without programming, the algorithm must be 

described very precisely and accurately so that someone else can understand or reverse it. The basic 

idea of a symmetric encryption procedure can be experienced and learned by reinventing the Caesar 

Cipher, which is described in more detail in the design section below. In reality, of course, this is 



 

 

currently even more complex. However, since the teaching-learning arrangement should be suitable 

for grades 5/6, the Caesar Cipher was chosen as an example. 

This leads this study to the following research question: 

RQ: To what extent do children in grades 5/6 show AT ideas when writing down 

instructions (algorithms) for encryption and decryption? What hurdles are encountered? 

Methods 

The methodological framework of this study is design research (Gravemeijer & Cobb, 2006), whose 

aim is on the one hand the development of a teaching-learning arrangement in several cycles and on 

the other hand the analysis of the learning processes initiated by the teaching-learning arrangement, 

i.e., in particular typical learning pathways and hurdles. In this paper the first results of the first 

cycle are presented. 

So far, 22 learners in grades 5 and 6 have participated (a total of about 1600 minutes of video 

material). The design experiments were videotaped and passages relevant for the analysis were 

transcribed.  

To select relevant passages, those involving writing the algorithm were identified. To show the 

range of written products, four cases, some of which are very different, are contrasted below. For 

data analysis, a qualitative content analysis (Kuckartz, 2019) of these products was conducted and 

the reconstructed AT ideas were marked by ||...||. For this purpose, a deductive-inductive procedure 

drawing on the categories from above (||sequencing||, ||breaking down actions||, ||looping||, ||event-

driven programming||, ||message-passing||) was chosen to reconstruct which AT ideas learners 

address when it comes to the elements of instruction (algorithms) and which learning trajectories 

and hurdles occur.  

Design 

The learners have been working with the Caesar Cipher (cf. Allen, 2017). In this process, letters are 

shifted forward in the alphabet by a fixed key (Table 1). For example, the plaintext "hello" and key 

3 provides the ciphertext "khoor", as every character is shifted by 3 characters. 

Table 1: Clear- and walking alphabet to illustrate the Caesar Cipher (here with key k=3) 

plaintext a b c d e f g h i j k l m n o p q r s t u v w x y z 

ciphertext d e f g h i j k l m n o p q r s t u v w x y z a b c 

Table 2: Letter number table 

a b c d e f g h i j k l m 

0 1 2 3 4 5 6 7 8 9 10 11 12 

n o p q r s t u v w x y z 

13 14 15 16 17 18 19 20 21 22 23 24 25 



 

 

When numbers are assigned to the letters of the alphabet as in Table 2, the encodings can also be 

expressed mathematically by the basic arithmetic operations or modulo calculations. The encoding 

of a plaintext letter can thus be represented by the calculation   = (  +  )     26 where  ,   ∈ {0, . 

. . ,25} is the number of the plaintext and ciphertext letters, respectively, and   ∈ {1, . . . ,25} is the 

key number. As an alternative to the modulo computation, a bifurcation could also be considered: if 

  +   < 26, then set   =   +  , otherwise set   =   +   - 26. Formulas for decryption using this 

method are obtained analogously. The plaintext letter is obtained from the ciphertext letter using the 

calculation   = (  -  )     26, which can alternatively be described by the branching "if   -   > 0, 

then set   =   -  , otherwise set   =   -   + 26".  

The teaching-learning arrangement consists of three sessions of 45 minutes each. Here, the focus 

lies on the learners’ instructions they wrote down at the end of the first and the beginning of the 

second session. In the first session, the learners are first confronted with an encrypted message that 

they need to decrypt. However, they are not given explicit instructions on the Caesar Cipher, but 

rather discover the procedure by themselves. Afterwards, the learners are tasked with writing down 

instructions for their discovered procedure, for encrypting as well as for decrypting messages. The 

writing assignment demands a lot of precision, or even the ability to commit. This is different from 

oral language, where it is sometimes rather fleeting and children may contradict each other in the 

next sentence. By writing it down, a commitment is demanded, and the AT ideas in the learners’ 

instructions are made explicit. 

In addition, two design principles were implemented to initiate AT ideas. The design principle 

"Using your own instructions again" was implemented in such a way that at the beginning of the 

second sessions the children were asked to encode and decode again according to their own 

instructions from the first design experiment session and then to reflect on whether they had really 

only used their instructions. The design principle "confrontation with algorithms (instructions) of 

other children" was implemented in such a way that they were then confronted with another 

instruction from another group that addressed other aspects in order to sensitize them to this and to 

encourage the learners to sharpen their instructions again. 

Empirical insights 

Four of the instructions written down at the end of the first session are presented below (Table 3). 

They were chosen because their differences prove instructive for illustrating the range of written 

products. 

Florian and Aaron ||sequence|| their instructions by making several steps explicit ("pick a number," 

"move each letter in your text by its respective place," "as soon as the alphabet ends, start over"). 

Moreover, they perform ||breaking down actions|| in the process, as they sequence into several 

substeps. It should also be emphasized that they are one of the few who also intuitively implement 

||looping|| directly ("as soon as the alphabet ends, you start again from the beginning", "then 

continue with all the letters like this until they make a meaningful sentence"). Finally, they also 

show the idea of ||event-driven programming|| by formulating conditions ("when you have figured 

out the number of shifted digits"). 



 

 

Karin and John also show the idea of ||breaking down actions|| by aptly describing the shifting 

pattern of encryption and decryption ("In encryption you go letters forward", In decryption you 

always go letters back"). Thus, they also address a step of ||sequencing|| at the same time, but fold 

the steps less widely than Florian and Aaron. No ||loops|| or ||conditions|| are explicitly formulated. 

The instructions of Anna and Rebekka are very similar. They too focus on the central shift pattern 

and thus address ||sequencing|| and ||breaking down actions||, respectively. Unlike Karin and John, 

however, they do not formulate the instructions in general terms, but for a specific key, namely key 

2. Marcel and Jonas, on the other hand, do not address the algorithm per se, but rather focus on the 

input-output idea by stating that "you have to give the other person the key and then you can write 

the text". This most closely addresses the AT idea of ||message-passing||, although the statement 

remains very general. 

Table 3: written products for instructions on encoding and decoding of three learner pairs (literally 

translated from German) and reconstructed AT ideas. 

 Encryption Decryption AT ideas 

F
lo

ri
an

 &
 A

ar
o
n
 Encryption: Pick a number from 1-25 and 

move each letter in your text by that 

number. *As soon as the alphabet ends, 

start again from the beginning. 

Decryption: Look first how the letter is called 

if you shift it by all possible places. When 

you have found out the number of shifted 

digits (then continue with all letters) until 

they form a meaningful sentence. 

||sequencing||, 

||breaking 

down actions||, 

||looping||, 

||event-driven 

programming|| 

K
ar

in
 &

 

Jo
h
n
  

In the case of encryption, you 

move letters forward. 

When decrypting, you always go 

back letters. 

||sequencing||, 

||breaking 

down actions|| 

A
n
n
a 

&
 

R
eb

ek
k
a You get the encrypted letter by moving 

two letters to the right. 

You get the decoded letter by moving two 

letters to the left in the alphabet. 

||sequencing||, 

||breaking 

down actions|| 

M
ar

ce
l 

&
 J

o
n
as

  You give the key number 

to the person you want to 

write to and then you can 

write the text. 

You should drag the first word 

through all 25 possibilities and 

then use the correct principle to 

decode the other words. 

||message-

passing|| 

In summary, algorithmizing works quite well for two written products (||sequencing||, ||breaking 

down actions||). However, only one instruction also contains the idea of looping and ||event-driven 

programming||. The third treatment is more on the surface or usage level and, apart from the 

||message-passing|| aspect, does not really address the algorithm itself. So, there are some ideas 

available as resources among the learners. However, not all AT ideas are activated by all learners 

by themselves. In addition, with ||sequencing|| also - when it occurs - the degree of precision needed 

is partly unclear. 



 

 

The lack of precision also becomes clear when looking at the learners' oral statements about it. 

When asked by the teacher how John and Karin proceeded with an encoding task, John answers 

"We have always gone one further" (#2) and, when asked again by the teacher (#3), justifies this 

with "Because when you encrypt you always go forward" (#4). 

 

1 Teacher Can you briefly describe how you proceeded? 

2 John We have always gone one further. 

3 Teacher Ok, can you still explain why you always went one further? 

4 John Because when you encrypt you always go forward. 

 

With regard to ||sequencing||, John remains as general as they have formulated it in their instructions 

by only mentioning the step of going one character forward. So, he does not name any further steps 

verbally either. Afterwards, the teacher gives the order to work on the decoding task “EQTQPC” 

(plaintext is “CORONA”). John suggests in #10 to try everything from 1 to 25 and starts directly 

with the first letter of the ciphertext ("E"), which he moves to a "D".  

 

10 John Ok. Then we would actually have to try out everything from 1 to 25. Then one back from E 

the D. 

11 Teacher You can write in there again and take notes. 

12 John Ah, yes. D. Ah I didn't click on it. D. Then back from Q, that's P. Then back from T one, 

that's S. Then back from Q one, that's P again. But that doesn't give a real word (laughs) 

You can see that now. 

13 Teacher Mhm. What could you do now? 

14 John Then two back, three back and then four back and then 5 back. 

15 Teacher Karin, what would you do now? What is your idea? 

16 Karin I've already tried a few combinations and I'm just about to try A, so. (long drawn out) A. 

(long drawn out) M. N. 

[…] 

22 Teacher So describe what you're doing right now. What exactly are you really doing now? 

23 John The letter back and try that until it makes a correct word. 

 

In #12, John further unfolds this process using the example. By performing the shift in steps for 

each individual element, he basically performs a ||loop||. This is also reflected in #14 when, after 

shifting one place in the alphabet, he now suggests as a further procedure "then two back, three 

back, and then four back, and then 5 back" (#14). This is a change from the written product, as 

||loops|| were not made explicit in the instructions before. This shows that he uses the idea of 

||loops|| intuitively as a structured procedure, but that he does not yet describe this process in 

general. Possibly he lacks appropriate linguistic means for this. A possible linguistic device would 

be "do … until …". He uses this in #23 to indicate the termination condition for the algorithm as a 

whole: "until it results in a correct word". 



 

 

The following is another brief look at what situational potential the design principle of "confronting 

instructions from other children" can have. Anna and Rebekka formulated their own instructions in 

an example-based manner. After Anna is confronted with Florian and Aaron's instruction, she notes 

that the instruction is "much more general" (#101). 

101 Anna This instruction is also much more general. So, I think we understood it last time in such a 

way that we should really formulate instructions for this example. So, with the right 

instruction you really come from each task also really to the solution. Both encryption and 

decryption. And ours is more related to a specific example. 



 

 

In summary, it can be stated that hurdles can be reconstructed in the degree of precision of the 

instructions or in the degree of generality. Under certain circumstances, as seen in the two scenes, 

these can be resolved by a renewed reflection on one's own instructions by executing them on 

another example or by a contrasting comparison with instructions of other children. 

Discussion 

Algorithmic thinking is important for mathematics education and first ideas can be initiated in 

grades 5/6, as shown here. The initial results of this Design Research study show how diverse the 

starting points for possible learning processes for algorithmic thinking are. Learners intuitively 

activate different AT ideas. It should be emphasized that the learners develop AT ideas in a setting 

that does not draw on any ideas of programming, but rather on the general discovery and 

description of algorithms. The empirical insights illustrate possible working mechanisms of the 

design principles investigated in this study, namely “Using your own instructions again” and 

“confrontation with algorithms (instructions) of other children”, which are suitable for eliciting 

further AT ideas 

The results presented here also make a first contribution to the discussion whether algorithmic 

thinking or programming should be learned first. It is possible that learners develop AT ideas even 

without programming, which are thus starting points for further learning processes. It would 

therefore be wasted potential to simply prescribe the programming language and so without first 

giving the learners the opportunity to develop the AT ideas themselves. This could provide a 

promising starting point for the developing of algorithmic thinking, although it is likely that some 

aspects of algorithmic thinking require programming to become fully developed. The results show 

that general principles (such as looping) could possibly first be learned in a general way, and then 

be applied to different programming languages or programming environments such as Scratch. The 

idea behind this is that the children learn and understand not only the specific handling of a tool, but 

the principles behind it. 

What is challenging is to find an appropriate level of precision and generality when writing 

instructions for algorithms. Algorithms could indeed be thematized without programming. 

However, until learners understand how a computer works, they lack a kind of alphabet of what is 

allowed as ingredients for creating an algorithm. So, it is not trivial to find or name the smallest 

building blocks that are considered valid for describing an algorithm. Here, learning opportunities 

are needed. The design principle "confronting with algorithms of other children" has revealed 

situational potential in this respect. Based on this, the children developed AT ideas on their own.  

In the next step, it will be examined to what extent implementing the instructions with Scratch 

building blocks promotes the degree of precision and to what extent further AT ideas are sharpened 

or developed. In addition, it is conceivable to check for other (mathematical) topics to what extent 

AT ideas can be developed in the respective area. 
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