Christof Weber
email: christof.weber@phlu.ch

Advantages and disadvantages of using loops in algorithms: conceptions of pre-service primary teachers learning Scratch

Keywords: Algorithmic thinking, loops, pre-service teachers, primary mathematics, Scratch

The purpose of this paper is to explore pre-service primary teachers' conceptions of loops for drawing squares in their early stages of learning Scratch. Twenty-six pairs of student teachers, all with some experience in teaching mathematics at primary school level, explain the advantages and disadvantages of using loops in Scratch. Qualitative content analysis of their written explanations revealed three categories: (1) the higher efficiency of loops is seen as a clear advantage, (2) their narrower range of applicability as a clear disadvantage, and with regard to (3) the cognitive demand of loops, the responses are contradictory. In addition to some misconceptions, we could identify a key fact that student teachers must know in order to competently handle loops in Scratch, that is different outputs may occur from the same instruction if the instruction is inside a loop.

Introduction

In computer science, imperative programming is a programming paradigm that uses sequences of instructions to control the flow of a program. The loop construct is a specific instruction type used to manage and control flow: it denotes a sequence of instructions-the loop body-that are specified once but may be carried out several times in succession. The purpose of this study is to find out how pre-service primary teachers who are novice programmers think about loops and how they use loops for solving a geometrical problem. Although loops are indispensable for algorithms and thus essential for algorithmic thinking, empirical research shows that the use of loops is challenging to novices. So, how do pre-service primary teachers think about the value of the concept of loops?

In contrast to the traditional approach of examining the loop programs of novice programmers, we examine their responses to a question which asks about the advantages and disadvantages of the loop concept in Scratch. For this purpose, our student teachers had first learned how to develop an algorithm that draws a square using the programming environment Scratch. We chose this approach because our interest is a better understanding of primary teachers' thinking in loops, with an aim of better understanding algorithmic thinking more generally. Second, drawing regular polygons such as a square is a common task in primary school textbooks. Third, due to its block-based and visual nature, Scratch seems to be appropriate not only for representing algorithms, but also for introducing primary school children and their teachers to programming. Furthermore, Scratch's instruction "repeat (number)" for count-controlled loops does not require a loop counter variable (which is difficult to master for novice programmers, see [START_REF] Cetin | Students' understanding of loops and nested loops in computer programming: An APOS theory perspective[END_REF][START_REF] Lagrange | Algorithmics[END_REF]. In a self-paced learning unit designed for primary teacher training, our student teachers had to solve several geometric problems and represent their algorithms using flowcharts (on paper) before realizing them using Scratch (on the computer). As a result, they should learn some central concepts of algorithmic thinking such as thinking in loops. The learning materials contained several tasks, and also metacognitive reflec-tion questions on their learning. In the last task of the learning unit, they were asked to set up an algorithm to draw an arbitrary regular n-gon (n is to be entered as input). Consequently, to solve this general geometrical problem, they had to use loops not with a fixed number of repetitions (e.g. 4) but with a variable upper loop bound. Since generalization and algebraic thinking is beyond the scope of this paper, the corresponding results cannot be investigated and discussed here.

In this study, we address the following question: What are primary student teachers' perspectives on the advantages and disadvantages of the loop concept, after they have been introduced to it?

Thinking in loops as a constituent element of algorithmic thinking

As theoretical computer science shows, a system of data-manipulation rules which follows the imperative programming paradigm must offer three constructs so that all theoretically computable problems can actually be solved by an algorithm: sequence, repetition (loops), and selection (conditionals) (Böhm-Jacopini-theorem, see Curzon et al. 2019, p. 525). In addition, two types of loops are distinguished, count-controlled loops (modeled by "repeat (number)" in Scratch or "for" in other programming languages) and event-controlled loops ("repeat until (condition)" or "while").

Since algorithms are mathematical objects that solve computable problems, algorithmic thinking is a specific way of dealing with algorithms, namely the design and analysis of algorithms. To do this at a sufficiently explicit level, algorithms must be accessible in a suitable symbolic representation, such as in a programming language. For example, as Lagrange points out, if "[...] formal notation for algorithms [...] is a vehicle for abstraction rather than for execution on a computer" (2020, p. 45), then algorithmic thinking is involved in the development of an algorithm that draws a regular polygon, but not in its implementation in a programming language. Since loops are a constituent element of algorithms, thinking in loops can also be considered as a constituent element of algorithmic thinking. Accordingly, to introduce students to algorithmic thinking, we can familiarize them with the loop concept and have them solve tasks such as drawing a regular polygon. In the corresponding algorithm, only the simple loop type of count-controlled loops is needed, because the number of iterations is already explicitly known at the time of entering the loop.

As some authors point out, algorithmic thinking is quite important for primary school mathematics (e.g. [START_REF] Benton | Designing for learning mathematics through programming: A case study of pupils engaging with place value[END_REF][START_REF] Gleasman | Pre-service teacher's use of block-based programming and computational thinking to teach elementary mathematics[END_REF]. Therefore, primary teachers should be able to introduce their pupils to early algorithmic thinking by, for example, teaching topics such as multiplication as repeated addition or place value through programming. At the same time, many studies have shown that loops cause various difficulties for novice programmers, and not only when variable is involved in iteration or when loops are nested (for loop errors in text-oriented programing languages see Cetin 2015, for loop misconceptions of school students working with Scratch see Grover & Basu 2017, for a systematic overview see [START_REF] Swidan | Programming misconceptions for school students[END_REF].

Context and method

A total of 52 primary student teachers participated in the study, 43 (82.7%) are female and 9 (17.3%) are male. All participants had some experience in teaching mathematics, but no one had prior knowledge of programming or computer science. All of them were enrolled in two primary teacher education classes in Switzerland and had chosen mathematics as their individual focus to-wards the end of their studies. As a part of this program, I have offered a course called "Standard Written Algorithms and other Algorithms". One of its components was a self-paced learning unit called "Algorithmic Thinking in Mathematics: Introduction to Scratch" (approx. 6 to 8 lessons). By working through a series of activities in which several geometric figures (squares, further specific convex and non-convex regular polygons, etc.) had to be constructed using Scratch, the student teachers were gradually introduced-by the learning unit material, not by me in person-to different representations of algorithms (flowcharts and code) and to the three control concepts of algorithms (sequence, iteration, and selection). Thus, to learn the concept of loops, one of the first activities was to examine the effects of a piece of code (see Figure 1, left). In the following activity, the concept of loops was introduced by a (fictional) pupil who proposed to replace the four sequences of repetitive instructions with the (new) loop instruction. The task then asks the student teachers to explain the advantages and disadvantages of using loops (see Figure 1, right). This kind of task has been shown to be highly effective for learning especially for building comprehension-based, conceptual knowledge, whether used retrospectively or, as in this case, integrated into learning materials [START_REF] Bisra | Inducing self-explanation: a meta-analysis[END_REF]. Since the the advantages and disadvantages of loops were not discussed in class while working on the unit, we can analyze these students' explanations to get a fuller picture of their conceptions of the loop concept than if we were to examine their loop programs for errors.

Activity "Introduction to the loop concept":

A pupil of your class suggests that instead of using the script on the left, use the script above: What advantages and disadvantages do you see in this socalled loop? In order to obtain high quality responses, all 52 participants worked through the activities of the learning unit in pairs [START_REF] Gleasman | Pre-service teacher's use of block-based programming and computational thinking to teach elementary mathematics[END_REF][START_REF] Robins | Learning and teaching programming: A review and discussion[END_REF]. Since they had to write their answers for each activity, the data set consisted of 26 written responses, each listed several advantages and disadvantages of loops. In view of the research question, these responses will be analyzed here. Since our goal is to generate hypotheses about the algorithmic thinking of primary teachers, we did not to compare or weight them in our analysis such as by counting frequencies. Rather, we have analyzed the answers according to the qualitative content analysis [START_REF] Mayring | Qualitative Inhaltsanalyse [Qualitative content analysis[END_REF]. Three main categories, efficiency of loops, cognitive demand of using loops and applicability of loops were inductively reconstructed by repeatedly summarizing the answers with descriptive terms.

Results

We present two main findings. First, three main categories of answers emerged when the students reflected on the advantages and disadvantages of using loops (see Table 1). While some of the subcategories relate to the process of programming, others refer to the final program. Second, a key fact was identified that must be known for the successful mastering of loops, as well as two learning misconceptions. We will now provide details on each of these findings. … to problems to be solved Not every problem can be solved with the use of loops.

Seen as a disadvantage

Types of characterizations

There were three main student teachers' characterizations of the advantages and disadvantages of loops: (1) the efficiency of loops, which students related to the process of programming or to the final program, (2) the cognitive demand of loops, which students again related to programming or to the final program and (3) the applicability of loops, in terms of what kind of problems can be solved using loops. For an overview of these main categories with their subcategories, see Table 1.

Category 1: Efficiency of loops

All student teachers expressed unanimously that loops bring a gain in efficiency. We can identify two subcategories of answers, depending on whether efficiency refers to the programming process or to the final programming output.

Subcategory 1.a) A first sub-group of student teachers' answers relates efficiency to the act of programming, that is, to the process and the effort to move it forward. The student teachers argued that using loops results in fewer programming actions (such as "drag the block from the block palette into the code area") or leads to a lower expenditure of time for writing a program. The following two statements illustrate this first sub-category:

The moves and rotations need to be programmed only once, instead of four times. (P17)

The loop is a useful tool to speed up the programming of repetitive sequences. (P01)

A few students mention both effects, that fewer actions and less time are needed thanks to loops:

One advantage is that it takes much less blocks to program the script. One is thus faster. (P12)

Subcategory 1.b) Quite differently, some student teachers related efficiency to the final program, that is, to the product and its length. They suggested that the use of loops results in fewer lines of code. Some answers of this sub-category conclude that the runtime of the program will be shorter:

The efficiency of the algorithm is increased, since fewer instructions need to be executed, therefore the square can be drawn faster. (P20)

Other student teachers saw that the program therefore requires less space, and sometimes mentioned in the same breath that the shorter length also makes the program clearer:

The proposed loop makes the script more compact. Due to its compactness, it takes up less space and is therefore clearer. (P26)

Unexpectedly, a group of student teachers formulated another advantage resulting from the reduced number of instructions, namely that the size of the square can now be manipulated more easily:

The length of the sides of the square can be modified at a single instruction. (P17) With Cetin, this answer might indicate that its authors see loops as a whole, as a new object, and thus have reached the level of the "object conception of loops" (2015,159). This would mean that they no longer see the loop as a step-by-step arrangement of four individual sides, but as a single, integral object depending on one parameter (the size of the square) only.

Subcategory 1.c) A third group of answers relate efficiency to the criteria of both sub-categories, i.e. to the programming process as well as to the final program. For example:

The advantage of a loop is that it must be set only once and will still be executed four times. Thus one saves time when programming. Since one does not have to enter the instructions several times, the program is shorter and therefore clearer. (P07)

Category 2: Cognitive demand of using loops

As the statement "less space […] therefore clearer" (P26, see above) shows, some students also considered the intellectual challenge that the new concept poses to them, or its cognitive demand.

While most student teacher pairs found an adequate use of loops more demanding than the use of sequences of instructions, there are also few who stated that loops place less cognitive demand. Again, we can identify two subcategories which refer either to programming or to the program.

Subcategory 2.a)

A first group of answers concerns the process of using loops and the associated cognitive demand, which student teachers judge partly as higher, partly as lower. To illustrate, here is an answer that explains how loops are a challenge:

An additional block [the "repeat ()"-instruction, see Figure 1, C.W.] is introduced, making programming more complex. When a mistake happens, it happens everywhere (on all sides of the square) and it is more difficult to determine the origin of the mistake. (P18)

This statement reveals a challenge that one must master in order to competently handle loops: The one-to-one relation between output (in the 'stage' window) and instruction (in the code area) must be broken. This fact applies because while instructions that are not part of a loop body show (at most) one effect on the output side, any instruction within a loop can have multiple effects (at most as many effects as often the loop is run). Therefore, in the case of an unexpected output, it is not straightforward to determine from which instruction(s) of the loop body it originates.

A rather contrary, but positive view on the cognitive demand is expressed in the following answer:

Fewer errors can happen because you program fewer instructions. (P03) Subcategory 2.b) A second group of student teachers' statements refers to the final program, as they comment on the cognitive demand of reading loops. Again, it was not considered unanimously within the data set. A corresponding response is as follows:

One disadvantage is that with loops it is harder to see what exactly is being repeated. In contrast, with the full script you can follow every step. (P02)

The following response illustrates even better why loops can be demanding:

It is more difficult to follow the individual operations or steps. You can't see the individual steps that make up the square. (P06)

As already mentioned, one student teacher pair surprisingly found it easier to understand instructions located in the loop body and gives the following argument as an advantage of loops:

For schoolchildren: It is more difficult to follow when the various program steps are one after the other, instead of within a loop. (P17) This is the only response that looked at the cognitive demand of using loops for their future pupils.

Category 3: Applicability of loops

In the responses for this category, student teachers looked at the problems that can be solved with the use of loops. They expressed that instructions inside a loop do not allow as much modification or variation as those outside. In this respect, the use of loops does not allow to solve all possible problems. The following response shows this perspective very clearly:

Not all changes can be made to the shape, for example, you cannot change the thickness of each side. The loop repeats the same thing 4 times. This means that it is not possible to change anything in every single repetition that is made. The loop causes that the same instructions are repeated, so modifications in between are not possible. (P13)

Here the instructions of the loop body are considered fixed and cannot be modified. As a result, some shapes are judged to be non-drawable (which is sometimes true, but sometimes not):

A disadvantage of loops is a lower flexibility: if a rectangle or an irregular triangle is to be drawn, a loop is of no use. (P21)

The following response is somewhat more nuanced, pointing out that an instruction of the loop body may well have different consequences, at least to a certain degree ("regular" differences would be possible, others not). It focuses not on a mathematical but on a design aspect of the shape:

The thickness of the sides can be increased or decreased, but this is done regularly. If we want the sides to be of different thicknesses, we can't do this with loops. (P15)

The following response suggests how this issue could be overcome with the help of variables:

The sequence in the loop is fixed. In this case the instructions are repeated four times stubbornly and cannot be varied so easily. With the help of variables, that would be possible. (P01)

Unfortunately, this statement is not further elaborated or illustrated it with an example.

Discussion

The study is related to the question of what constitutes algorithmic thinking in mathematics and the assumption that thinking in loops is a constituent element of algorithmic thinking. It explores learning to use count-controlled loops in 26 pairs of pre-service primary teachers solving a geometrical problem utilizing Scratch. Unlike previous studies [START_REF] Cetin | Students' understanding of loops and nested loops in computer programming: An APOS theory perspective[END_REF][START_REF] Grover | Measuring student learning in introductory block-based programming: Examining misconceptions of loops, variables, and boolean logic[END_REF][START_REF] Swidan | Programming misconceptions for school students[END_REF], we are not interested in student teachers' errors in their loop programs, but rather in how they explain the advantages and disadvantages of the loop concept. The reconstructed categories relate to efficiency, cognitive demand, and applicability. Although the student teachers involved had just been introduced to the loop concept, they recognize its efficiency as a first advantage. However, they only refer to surface features (fewer instructions are needed, the program is shorter), which is characteristic for novices. Second, as future specialists in teaching and learning, students address the cognitive demand of the new concept for solving problems. However, not every student pair assesses it the same: While most students found it more difficult of keeping track of the interaction of an instruction within the loop and its effect on the output, some find it easier to follow sequences of instructions structured by loops. The statements referring to the third category, the applicability of loops, mention this aspect only as a disadvantage. At this early point of their learning process, students still feel constrained by the construct, again in terms of surface features (design possibilities, possible shapes of the figure). Since loops with variable upper bounds were only brought up at the end of the learning materials, it is not surprising that no student took the expert point of view yet (only thanks to loops, a geometric problem like drawing arbitrary regular n-gons can be solved).

The analysis of our data set also provides two misconceptions: The claim that "[…] fewer instructions need to be executed, therefore the square can be drawn faster" is not correct, since a smaller number of instructions does not necessarily lead to a shorter runtime (instructions in the loop body can be executed several times). Also the claim "if a rectangle or an irregular triangle is to be drawn, a loop is of no use" is a misconception, since iterative elements are also present in polygons such as rectangles. In addition, a key fact was identified that students must be aware of: they need to consider that instructions within loops can have not just one but multiple effects on the output, so that two different outputs do not necessarily refer to two different statements. In this way, thinking algorithmically would mean not only seeing the advantages and disadvantages of loops that go beyond surface features, but also breaking the one-to-one relation between output and instruction.

We are aware of the limitations of our study, such as the small number of students involved, the type of tasks they had to do, the programming language employed, or the analysis of written responses without subsequent in-depth interviews. However, under these limited conditions, the study provides some qualitative results that complement and extend previous studies [START_REF] Cetin | Students' understanding of loops and nested loops in computer programming: An APOS theory perspective[END_REF][START_REF] Grover | Measuring student learning in introductory block-based programming: Examining misconceptions of loops, variables, and boolean logic[END_REF][START_REF] Swidan | Programming misconceptions for school students[END_REF]. Since the category system makes preliminary hypotheses, it might contribute to developing a theory of learners' thinking in loops and therefore of their algorithmic thinking. For example, future research could address the following questions: To what extent would our category system predict the advantages and disadvantages that student teachers of higher grade levels would see? Could our category system even serve as an empirically supported description of the learning trajectories in learning to use loops to solve a mathematical problem?

Figure 1 :

 1 Figure 1: An activity to introduce the loop concept

Category 2 :

 2 Cognitive demand of using loops … … in terms of programming The use of loops increases or decreases the cognitive demand on the writer of the program. Mostly seen as disadvantages, sometimes as an advantage … in terms of the program The use of loops increases or decreases the cognitive demand on the reader of the program. Category 3: Applicability of loops …

Table 1 : Categories of advantages and disadvantages primary student teachers list when learning loops

 1

	Category 1: Efficiency of loops …
	in terms of programming Using loops allows fewer programming actions. As a
		consequence, it requires lower expenditure of time for
		writing a program.
		Seen as advantages
	… in terms of the program	Using loops allows fewer lines of code, and is thus more

space-saving. As a further consequence, the size of the square is controlled via a single instruction.