Rafalska Maryna
email: maryna.rafalska@univ-cotedazur.fr

Task design for promoting pupils' algorithmic thinking in problemsolving context without using computers

Keywords: Algorithm, algorithmic thinking, problem-solving, task design

The paper presents the task design aimed at the emergence of the algorithmic thinking of pupils in the problem-solving context without using computers. Discussing the results of the experimentations carried out at the grade 5 th , it aims to offer an account of the conditions and constraints for effective algorithmic problem-solving as well as to identify mechanisms that emerge.

Introduction

(Re)appearance of algorithmics and programming in school curricula of many countries has impulsed research addressing the development of pupils algorithmic thinking. In existing literature, including the one that relates to mathematical education, this concept is usually studied through the lens of programming [START_REF] Hickmott | A Scoping Review of Studies on Computational Thinking in K-12 Mathematics Classrooms[END_REF][START_REF] Bråting | Exploring the intersection of algebraic and computational thinking[END_REF]. To date, there has been limited empirical research about the conditions and constraints for the emergence of algorithmic thinking in a non-programming context. In this paper, we take a step toward addressing this need for research by studying algorithmic thinking via analysis of pupils' algorithmic activity in problem-solving context without use of computers. More precisely, we are interested in the pupils' activity related to the conception and implementation of an algorithm in order to solve a problem as well as reflecting on solutions through the analysis and proof of the algorithm. As a definition of an algorithm, we use the following one:

Algorithma problem-solving procedure that in a finite number of constructive, nonambiguous, effective and organized steps produces the answer to the given problem for all instances of this problem. (Modeste, 2012, p. 25).

This paper reports on research work in progress that has several goals. The first one is to design a set of tasks and the associated sequence of lessons aimed at the emergence of pupils' algorithmic activity. The second one is to examine whether the design is effective. In particular, to check whether and to what extent it favorize the construction, analysis and proof of the algorithms by pupils. The third one is to contribute to the development of a theory that would help to explain the mechanisms that emerged during the scenario implementation.

Theoretical framework

This study is a design-based research [START_REF] Barab | Design-based research: Putting a stake in the ground[END_REF] based on the hypothesis that unplugged problem-solving (i.e., problem-solving without using a computer [START_REF] Bell | Computer science unplugged: school students doing real computing without computers[END_REF]) constitutes a favorable context for the emergence of pupils' algorithmic thinking.

The task design draws upon principles from the Theory of Didactical Situations (TDS) [START_REF] Brousseau | Theory of didactical situations in mathematics: didactique des mathématiques[END_REF]. More specifically, the tasks were designed as a-didactical situations, where the pupils' interactions with the organized milieu are supposed to lead to the construction of the algorithms that are the optimal solution of the given problem. This implies that pupils' "basic knowledge" should be sufficient to start the work. The milieu must provide pupils with feedbacks to their trials in such a way that they can tell without teacher interferences whether they succeeded or failed. Pupils in a situation should be able to experience the limitations of their strategies developed at the earlier stages of problem-solving and make them evolve towards the algorithms that constitute a solution for the given problem.

In our choice of mathematical problem for task design, we based ourselves on the notion of fundamental problem for algorithm (FPA) proposed in [START_REF] Modeste | Enseigner l'algorithme pour quoi? Quelles nouvelles questions pour les mathématiques? Quels apports pour l'apprentissage de la preuve?[END_REF] with reference to the concept of fundamental situation from TDS [START_REF] Brousseau | Theory of didactical situations in mathematics: didactique des mathématiques[END_REF]. FPA could be seen as a problem that evokes the concept of algorithm and is adapted for the tasks design aimed at engaging the pupils in algorithmic activity. As the criteria of FPA, Modeste (ibid.) proposes the following: it should be algorithmically solvable; the notion of algorithm is indispensable for its solving; it evokes the problems that handle the algorithm as a tool (aspects of effectiveness and problem) as well as an object (aspects of complexity, proof, theoretical models). The key value of FPA is that it could be used for design of tasks/didactical situations for a class. These situations should be aligned with the criteria of FPA mentioned above. In particular, they should evoke an algorithm not only as a stepby-step procedure but also as a general problem-solving method that can be applied to all instances of the problem as well as to provide a favorable milieu for provoking questions about proof and complexity of the algorithm at stake.

Methodology

The research we report in this paper concerns the first cycle of the design that included the phases of development, a priori analysis, implementation, a posteriori analysis and refinement. The phase of development was carried out in parallel with the analysis of the strategies susceptible to appear during problem-solving. The experimentation phase used to collect data was followed by the analysis of pupils' strategies that appeared in the class. On the basis of the comparison between anticipated strategies with actual ones, we concluded about the potentialities of designed situations in promoting algorithmic activity of pupils and whether the task design should be improved.

In order to identify the mechanisms that emerge during the implementation of the developed sequence of lessons, we analyzed pupils' decisions and actions with material milieu as well as their discourses produced at the private and social levels. In particular, we paid special attention to explanations and arguments expressed inside a group and during the collective discussion regarding the question about the reasons why the strategies work.

In what follows, we first describe the problem of list sorting that, as we claim, is a fundamental problem for algorithm. Then, we present the set of designed situations, explain their link to the problem of list sorting as well as the analysis of anticipated solving strategies. We conclude the methodology section with a description of the designed sequence of lessons, experimental conditions and data collection. In the subsequent section, we present and discuss the results of the implementation of the developed lessons sequence in a class. The last section is devoted to conclusions and perspectives of the research.

The problem of list sorting

Formulation of the problem. In a model of computation with the only allowed operations of comparison and exchange, sort a non-empty list (of objects comparable two by two) according to an order relation .

We use the term "model of computation" as a set of allowed operations in reference to the computation and complexity theory [START_REF] Bilardi | Models of Computation, Theoretical[END_REF]. The relation of order in a list is a binary relation that permits to compare the lists' elements between them in a coherent way. To sort a non-empty list according to the relation of order means to find a list with the elements that are a permutation of the elements of such as . The "operation of comparison" is an operation that permits to receive the answer "yes" or "no" to the question "Is , i,j=1…n ?". The "operation of exchange" could be defined by the transposition of the elements and in the list L that allows to obtain a list where .

The formulated problem responds to all criteria described above. Indeed, it is algorithmically solvable and many sort algorithms exist. Problem-solving includes the phases of elaboration and validation of an algorithm. The existence of many sort algorithms raises the questions of their comparison from the point of view of their complexity and finding the optimal one. This provides a possibility to study an algorithm not only as a tool but also as an object. On the basis of the problem of list sorting, we designed a set of problem-solving situations that we describe in the following section.

Set of problem-solving situations

The designed sequence of problem situations includes three games using the playing cards as manipulatives. In each game, a pupil has thirteen playing cards of the same suit and a cardboard grid with predefined ten places situated in one line. At the beginning of every game a pupil shuffles the cards, chooses randomly ten cards (without looking at their values) and puts them up-side down on the grid (one card per place). The rules of the games vary from one game to another, but the goal is the same, i.e., to sort the cards in ascending order, using only the three allowed operations: "take two cards", "put the two cards in ascending order", "put the cards on the places".

Game 0 (individual).

A pupil should sort the cards individually, turning no more than two cards at a time and using the three allowed operations. There is no restriction for the number of comparisons to make (a pupil can turn the cards two by two as many times as he wants). Once the pupil thinks that all cards have been sorted, he can turn them to check this.

Game 1 (in pairs). For this game, the pupils play in pairs. Only one grid and thirteen cards of the same suit are needed. The first pupil (which we call in the following "operator") shuffles the cards, chooses randomly ten cards from thirteen and puts them on the grid without showing their values to another pupil. The second pupil ("player") must sort the cards which values he doesn't see, giving the instructions to the operator that correspond to the three allowed operations. The operator should execute the commands precisely and formally (without giving any information to the player). When the player thinks that the cards are sorted, he says "stop" and the operator turns the cards. The player wins if all cards are in the right order. The pupils exchange their roles once the player's attempt to sort the cards is finished.

Game 2 (in small groups). The pupils play in small groups of four persons. At every time there are one player and three operators that manipulate the cards on their grids. The rules of the game are the same as in the previous game, but, this time, the goal of the player is to sort the cards of all operators at the same time giving the instructions composed by the three allowed operations. The pupils exchange their roles once the player's attempt to sort the cards is finished.

Game 3 (in the whole class). This game follows the same rules as the previous one but this time, the goal is to sort the cards of all pupils of the class at the same time using the minimum possible comparisons. Each group send a delegate who has only one attempt.

Being a didactical variable, the number of cards to sort in the games could vary. But it should not be too small in order to provide a milieu sufficient to foster the development of sorting algorithms by pupils and not equal to the total number of cards (in order to avoid the "trivial" algorithm where one can deduce the final position of a card from its value).

As a possible prolongation of the proposed games, we may consider the problem-solving situations where the pupils investigate the possibility to sort more than 10 cards (11, 12, 20, 100 cards) and eventually any number of cards. The last refers to the proof of an algorithm (by recurrence, by invariant) and offers the possibility to study the complexity of an algorithm as a function of n. The notions of complexity in time and space could be also introduced considering the programming context.

Link to the problem of list sorting

The games 0 to 2 can be seen as the ten elements list sorting problem in the model of computation where a number of allowed operations changes from one game to another one. Thus, in game 0, the fact that the pupils can see the values of the cards can be considered as the case where the model of computation (CM0) contains the operations of comparison, exchange, identification of the index of an element with a given value and identification of the value of an element with a given index. In game 1, the fact that a player can see if the cards were changed by the operator or not, correspond to the model of computation (CM1) with the available operations of comparison, exchange, identification of the indexes of elements that have been exchanged and the operation that provide the response "yes" or "no" to the question: "Was there an exchange of the cards during the last comparison?". The goal of game 2 to sort the cards of three persons at the same time was retained in order to prevent a player to use the information about the cards' exchanges in order to put him in the model of computation (CM2) with only available operations of comparison and exchange that corresponds to the list sorting problem formulated in the previous section.

Expected solving strategies

The game 0 aims at familiarizing pupils with the manipulatives and the rules of the games. In particular, the pupils need to understand the meaning of the three allowed operations and the actions that are forbidden (for example, to glide the cards on the grid). It is expected that the pupils will memorize the values of the cards and their positions in order to sort them (strategy in Figure 1).

Thus, the strategies that can appear will be rather the instance algorithms (that allow to sort only particular cases of the cards placement).

In game 1, due to the change of rules, the pupils cannot see the values of the cards, but they still can observe if there were exchanges or not. The strategy of memorisation of the positions of cards that were exchanged is tedious. Therefore, it is expected that the pupils will engage themselves in the research of a more economic strategy. Between the possible strategies we can imagine those that use the information about the exchange during the last comparison of two cards and those that don't . In the first category, it is possible to distinguish the family of strategies that use the information about exchanges as a condition for termination and the family where the information about exchanges is used for choosing the next pair of cards to be compared but the termination of the strategy is determined by the end of the systematic process of comparisons. For example, to the first category belongs the strategy that compares cards two per two from left to right and backwards until there are no more exchanges and where cards pairs are chosen randomly until there are no more exchanges. As examples of strategies that belong to the category , we can think of that is based on the idea to create a subset of the cards with installed local order (constituted of one card at the beginning) that will extend at each step by insertion of one card from the non-sorted part. The insertion is made by comparing a card from the non-sorted part with all cards of the sub-set starting from the most right one until a card with which there is no exchange. Another example of the strategy of the family is quick sort . If pupils don't use the information about the exchange, they are de facto placed in the next problem situation (game 2) with CM2. The strategies of the class in this case could be based, in particular, on the idea to bring one card by one on their definitive positions considering the global order (as in the selection sort, for example).

For pupils who elaborated the strategies of the class in game 1, game 2 introduces in the milieu the question about the worst case of cards placement. Thus, it is expected that certain of these strategies will evolve, the others will be abandoned and replaced by strategies of class . For example, the strategy is susceptible to become the cocktail sort algorithm and the strategy can be evolved into the insert sort algorithm. The strategy (that becomes too costly in the game 2) will be abandoned as well as quick sort algorithm (which cannot be executed in CM2).

Game 3 aimed to introduce in the milieu the question about the possibility to use the strategies elaborated in game 2 for a bigger number of operators. It was also expected that the challenge to use the minimal number of comparisons possible would allow pupils to pass from the simple observations that the strategies work to analysing their properties. This may result in an optimization of the strategies (which we showed on Figure 1 using superscript "go") or their replacement by more efficient ones from the point of view of the number of comparisons needed to solve the problem.

We hypothesize that the set of developed problem-solving situations could be used at different school levels for promoting pupils' algorithmic activity. In this paper, we are interested in the implementation of the lessons sequence at the upper primary school level drawing the following research question: "Does and to what extent the tasks design favorize the emergence of algorithmic activity of pupils of this level?"

Lessons sequence and its implementation in the class

On the basis of the developed set of problem-solving situations, we elaborated the lesson sequence in collaboration with a teacher associated with the research. It included three lessons that were implemented in the class of 5-th grade (that corresponds to pupils' age of 10-11 years) in the city centre of Lyon, France. In the first lesson of one hour, the pupils played in the games 0 to 2 according to the rules described above. The developed strategies were formulated only at the private level (pupils described them on the paper after game 1 and 2) in order to give enough time for all pupils to do their research and to elaborate the strategies without influencing on this process by ideas produced by others. The teacher didn't not intervene in the pupils' problem-solving.

At the second lesson of two hours, the teacher introduced a new challenge: to sort the cards of all pupils of the class at the same time. The pupils were asked to think in groups about the strategies to apply in case of seven cards on a grid and to count the number of the comparisons needed to solve the problem. Thus, it suggests that the assignment given in the class differed from the initial formulation of game 3 presented above. The attempt of each group to sort the cards of all pupils of the class was followed by the general discussion led by the teacher who invited pupils to explain why the proposed strategy worked (or why they thought that it would work) and if it could be optimized from the point of view of the number of comparisons. The third lesson of two hours was devoted to the following analysis of elaborated strategies. In particular, pupils may explore the possibility to sort more than 10 cards (11,12,50,100, any number of cards) using the developed strategies as well as to discuss the termination of the elaborated algorithms.

Data analysis and findings

Due to the space restrictions, we report only about a part of the results that concern strategies development at first two lessons. The a posteriori analysis of the game 0 and 1 showed the consistency with the a priori analysis. In game 1 we noticed the appearance of the strategies of the two families and . The first family was represented, in particular, by the strategies , and described above. The family was represented by a selection sort algorithm developed by the pupils who didn't use the information about the exchange of the cards. Comparing the anticipated strategies with those that appeared in the game 2, we point out new elements not envisaged in the a priori analysis. This concerns the case of one pupil named Arthur that we present in the following.

In the result of all games, three groups proposed the selection sort algorithm (one group used 42 and two groups used 21 comparisons to sort seven cards). In one of these groups, we also noticed the appearance of the bubble sort. Moreover, one group proposed the insert sort with 21 comparisons, one group stopped their research on the strategy with 43 comparisons and two groups didn't succeed to develop general algorithms.

Analysis of Arthur's case of strategy development

Arthur in the game 1 elaborated the strategy described above. When the rules of the game 2 were announced by the teacher, Arthur resisted to abandon the usage of the information about the cards' changes and took the decision to apply simultaneously the strategy switching from one pupil to another (which means that every pupil executed the same strategy three times). Thus, Arthur generalized the strategy in a trivial way. However, from his actions we can infer that Arthur anticipated that implementing the strategy only one time is not sufficient and that execution of several times the same strategy will not change the order of already sorted cards.

The new challenge to sort the cards of all pupils of the class lead Arthur to understanding that his strategy would be too costly from the point of view of the number of needed comparisons. He took the decision to try to sort the cards of the pupils of his group with closed eyes. Arthur's tentative to come off the information about the cards' exchanges eventually helped him to generalize his strategy in CM2 in a non-trivial way and to obtain the insert sort strategy with 21 comparisons.

For the teacher's question if the strategy will work for the whole class, Arthur gave the positive answer referring to the experience with three pupils and added the following: Arthur:

In my head … it is logical. We make the cards number 4 and 5 … imagine that one person doesn't exchange, there are other people that could exchange … because we don't know what they have … therefore it is necessary to come back to the beginning of the grid. Because, if, for example, here [shows the place number 4 on the grid] there is an ace … it should be brought back to the beginning.

In this excerpt, Arthur explains the decisions ta.ken during strategy development. He refers to the cards number 4 and 5, but the chosen cards are used only as means to illustrate the "local" worst case (when an ace is placed on the right extremity of a subset of cards) identified by the pupil. The given example has a general character and used by the pupil to validate the elaborated strategy.

Conclusions and perspectives

The a posteriori analysis showed that the designed set of tasks supports to a large extent the development of sorting algorithms by pupils of upper primary school level. The identified individual cognitive path enriched a priory analysis. The generalisation in the game 2 could be made trivially, but the goal to sort the cards using the minimal possible number of comparisons in game 3 puts a pupil in a situation where he should search for a more efficient way to generalise the developed strategy in CM2. This case also permitted to point out the ways to improve the design for the next cycle of the design experiment. For example, the assignment of the game 2 could be modified by asking the operators to make manipulations with cards (exchanging or not exchanging) under the table or use the method of "closed eyes" for a player used by Arthur.

Besides, we revealed several mechanisms that emerged during implementation of the lessons sequence. The process of strategies development involves conjecturing, taking decisions and generalization. Artur's case showed the capacity of pupils of this level to consider the "local" worst case of the cards' placement that is crucial for evolving strategies in general sorting algorithms.

In most cases, the pupils' experience to sort cards of three operators in game 2 seems to be decisive for retaining the strategy as the one that would work for the whole class in game 3. The arguments about strategies validity produced by pupils in the private level has mostly a pragmatic character and are highly anchored in the actions made during strategies development. More research needs to be carried out to identify the favorable conditions for fostering the algorithms validation process. Future work is also likely to compare the results obtained from the experimentations at different school levels in order to study the impact of "external" conditions (age, pupils' knowledge repertoire, etc.) on the pupils' algorithmic activity in the developed situations.

Figure 1 :

 1 Figure 1: Evolution of expected pupils' strategies during problem-solving

Data collection

We collected the videos of three lessons filmed by one camera at the back of the class, videos of work of three groups of pupils at each lesson, pupils' written descriptions of developed strategies. All videos were transcribed and analyzed as well as the pupils' productions.