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In this paper, we consider the construct of algorithmic thinking in mathematics education. We are 

convinced that algorithmic thinking is an invaluable way of thinking for students to develop, and so 

we are motivated to promote theoretical discussions in the field about the nature and utility of 

algorithmic thinking. We present three examples of algorithmic thinking – a mathematical example, 

an example from a mathematician interview, and an example from an undergraduate student 

interview. We then briefly review some relevant literature related to algorithmic thinking, and we 

conclude with some avenues for future research. Our goal is to further conversations about and 

refinements of characterizations of this important topic.  
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Introduction and Motivation. 

The phrase “algorithmic thinking” (AT) has appeared intermittently in mathematics education 

literature for the past several decades (e.g., Abramovich, 2015; Knuth, 1985; Schwank, 1993; 

Stephens, 2018), and it seems to be gaining a resurgence of interest with corresponding attention in 

computation and computational thinking in mathematics settings. In this article, we explore the 

construct of algorithmic thinking in mathematics education research. We are motivated by 

observations from our research with students and mathematicians, as well as in our own 

mathematical experiences. We have noticed a certain kind of algorithmic approach to problems, 

particularly within computational, machine-based settings, which reflect the presence of algorithmic 

thinking. These approaches, and the reasoning that underlies them, seem to be useful and valuable, 

and thus they represent a phenomenon that we want to better understand. In addition, we are 

motivated by the increasing presence of the term AT in mathematics and CS education literature, 

and we want to facilitate consistency and coherence for how it might be used in mathematics 

education.  

We have two goals in this paper. First, we aim to exemplify AT within computational settings. We 

provide examples of such approaches in three ways: in mathematical examples, in interview data 

with mathematicians, and in data with undergraduate students. These examples allow us to illustrate 

what we mean by algorithmic approaches, hopefully facilitating better communication and 

discussion about the construct of AT. Second, given the existence of such algorithmic approaches 

and their reflection of AT, we briefly situate these ideas within math education literature and 

suggest ways to explore AT in future work. Ultimately, we aim to establish a shared understanding 

of algorithmic thinking, which could contribute to broader interests within the mathematics 
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education community about the nature of thinking and problem solving in an increasingly 

computational world. 

Broadly, an algorithm can be characterized as a set of steps to accomplish a given task. This broad 

definition allows for the term algorithm to include non-mathematical tasks like making a cup of 

coffee, as well as encompassing processes like the bisection method presented below. Rasmussen, 

Zandieh, King, and Teppo (2005) offered a definition of “algorithm” that serves as a useful starting 

point and highlights one way to characterize a distinction between an algorithm and a procedure in 

mathematics. Rasmussen et al. noted, “we use the term ‘procedure’ to indicate steps used to solve a 

particular task, and the term ‘algorithm’ as a reference for a generalized procedure that is effective 

across a wide range of tasks” (2005, p. 63). Implicit in this characterization is that there is often an 

underlying, generalizable approach of way of thinking on which an algorithm is based. Gravemeijer 

and van Galen (2003) made an analogy between mathematical algorithms and facts, using the 

example of the formula for area of a triangle (p. 115). To know a formula such as A = ½ b h implies 

that one can apply that formula to calculate area across a range of examples. This is consistent with 

the notion of a generalized procedure, and this is the general perspective of algorithms that we take 

in our work. Further, we acknowledge that any process could technically be considered algorithmic 

if it involves steps of any kind, but we are interested in approaches that foreground the development 

of an algorithm as opposed to only the performance or implementation of algorithms. 

The phenomenon that we discuss in this paper is the ability to develop, explain, and iterate the steps 

of an algorithm in a mathematical context. Our examples highlight algorithmic approaches within a 

computational setting because such a setting tends to foreground the value of such approaches. 

Examples of Algorithmic Approaches. 

We offer examples of algebraic approaches in three contexts: a mathematical example, an example 

from an interview with a mathematician, and an example from an interview with an undergraduate 

student. In each of these cases we explain what makes the approach algorithmic, and we also 

discuss potential affordances of such an approach. Our aim is to demonstrate what we mean by 

algorithmic approaches, and also to make the case that such approaches arise in a variety of settings 

and situations.  

An algorithmic approach in a mathematical example – the bisection method.  

We begin with a mathematical example. We focus on an example of solving equations, which is a 

classical and central topic in mathematics. The standard approach to solving f(x) = 0 is to apply a 

sequence of algebraic operations to both sides of the equation, with the ultimate goal of isolating   

on one side. This works well for certain classes of equations like polynomials of degree at most four 

and some equations involving trigonometric, exponential, and logarithmic functions. In more 

general situations it is usually not possible to find an explicit formula for the solution. However, the 

Intermediate Value Theorem tells us that a solution does exist even in very general situations: “Let f 

be a continuous function defined on the real interval [a,b]. If f(a) and f(b) have opposite signs, then f 

must have a zero at some real number c in (a,b).”  



 

 

The Intermediate Value Theorem says nothing about where in       the zero is, but it can help us to 

develop a strategy for computing approximations to the zero. Perhaps the most obvious approach is 

systematic guessing, and the simplest guess is the midpoint m = (a + b)/2. If we compute f(m) and 

determine its sign, we see that we can limit our attention to a smaller interval [a1, b1]: 

1. If f(m) = 0, we have stumbled upon the zero c and there is nothing more to do so we set [a1, 

b1] = [m, m]. 

2. If f(m)   0, then f has opposite signs at the two ends of either the subinterval [a, m] or the 

other subinterval [m, b]. In the former case we set [a1, b1] = [a, m], in the latter case we set 

[a1, b1] = [m, b]. 

This process can be repeated with the new interval [a1, b1], and we then obtain a new interval [a2, 

b2]. If we repeat again and again we obtain a sequence of ever smaller intervals [a3, b3], … , [an, 

bn], … . We note that c is located inside each of the subintervals, but the length of the intervals is 

halved each time. We can then conclude that if we stop this process after n steps, we know that the 

current midpoint satisfies |c – mn|   (b – a)/2
n
. This is a very different approach toward solving an 

equation than balancing the two sides of the equals sign. Rather, this approach, which is known as 

the bisection method, is inherently algorithmic, and the big idea is that by iterating steps in this 

process, we can ensure that we can find as close an approximation to the actual zero as we would 

like. In fact, this idea can be adapted into a proof of the Intermediate Value Theorem. In addition, 

this idea can be made more specific in the form of pseudocode that describes the steps more 

precisely, as in Figure 1. 

 

Figure 1: Pseudocode for an algorithm that represents the bisection method 

This algorithm may be converted into code in a suitable language, and we then have our own 

substitute for the “solve-button” on advanced calculators. This algorithmic approach to solving 

equations naturally raises some questions, such as Is this a valid way to solve an equation? What is 

gained by converting the algorithm into code and running the resulting program on examples? 

What do students gain from understanding such an approach to solving equations? We would 

consider the approach of iteratively finding the zeros of the function via the bisection method as we 

described it as inherently algorithmic because it involves first designing and then implementing an 



 

 

iterative series of steps, which could generalize regardless of the function. The iterative, algorithmic 

process is foregrounded in this approach.  

An algorithmic approach from a mathematician interview – summing primes.  

As another example of an algorithmic approach, and the importance and potential usefulness of 

such an approach, we draw on an excerpt from a conversation with a mathematician, pseudonym 

Michael, about the role of algorithms in teaching mathematics at the post-secondary level. The 

excerpt comes from one of a set of interviews we conducted with research mathematicians about 

how they use computation in their work. In the first of these interviews, the interviewer (the first 

author of this paper) noticed the mathematician returning to the importance of algorithms and what 

he called “algorithmic approaches,” so the interviewer asked him to expound on these ideas. 

Michael, a mathematical biologist, began with an example from a mathematics course that he 

regularly taught: 

Michael: It’s been interesting to observe that there are some people who just don’t get how 
to do algorithms…So for instance, a really simple example that I always have at 
least one student ask me in the computational course—I ask them to sum the first 
hundred prime numbers using MatLab, and MatLab has this function called 
Primes. And the way that function works is you put in a number, and it returns all 
the primes less than that number. And I always have students ask me, ‘but I only 
want the first hundred. I don’t know which prime is the hundredth one.’ So, and 
it’s funny because other people just go, obviously, ‘Oh pick a big number and just 
take the first hundred…And so that second one was a series of steps: pick a large 
number, plug it in the function, take the first hundred, and you’re done. The other 
ones are like, I don’t know if they don’t, can’t translate the question into a series 
of steps like that. 

To us, Michael articulated an algorithmic approach that some students were able to leverage. 

Notably, he seemed to be describing a difference between students who do or do not have such an 

approach at hand (or, we would interpret, do or do not think in such a way on such a problem), and 

he was also implying some practical ramifications for not being able to think in such a way. That is, 

without the algorithmic approach he described students get stuck on the problem and do not know 

how to proceed. We consider this a description of an algorithm and not a procedure because it 

suggests an underlying approach that could be generalizable regardless of which prime is being 

considered. Thus, it is important to help students gain access to these approaches and to try to make 

some progress on these ideas. This example sets up a distinction in this professor’s mind that there 

is something akin to thinking algorithmically (or to think in such a way as to leverage that 

approach), there are affordances to such an approach, and not everyone automatically uses that 

approach.  

An algorithmic approach in a student interview – articulating “the way a computer thinks.”  

As a final example, we offer an example from an interview with a pair of undergraduate 

engineering majors who were enrolled in a vector calculus class, Corey and CJ (pseudonyms). 

These data came from a paired teaching experiment that occurred for a total of 12 hours over nine 

60-90-minute sessions, during which the students wrote Python programs to list outcomes and solve 

combinatorial problems. We present an episode from the fifth session, in which the students were 

solving the Marbles problem: Suppose you have six different marbles in a bag. Write out all of the 



 

 

possible ways you could pick two marbles out of the bag, without replacement. They were asked to 

write code that would solve the problem. CJ listed the outcomes by hand as seen in Figure 2.  

 

Figure 2: CJ’s list of outcomes for the Marbles problem 

Confident of their list, the students began to think about how to code the problem. CJ had an insight 

based on the list he had written by hand: “If we’re just trying to list – the second one it looks at has 

to be bigger than that one.” The interviewer asked him to follow up on this. CJ wrote the code in 

Figure 3, which lists pairs from the set of marbles via nested looping, where the conditional 

statement only prints outcomes in which the second term in the pair is bigger than the previous 

term. The total here acts as a counter, which is incremented each time and is printed at the end 

(yielding 15). 

   

Figure 3: CJ and Corey’s code and output for the Marbles problem 

Int. 1: CJ, you observed something in there about the second column. 
CJ: If it just goes through systematically the way a computer thinks, looking at the 

next one and then using it; then our second column always has to be bigger than 
our first column. If j is bigger than i, then it won’t ever print 2 and then 1. […] 
The i not equal to j that just makes it so it can’t be 1, 1; or 2, 2. If j was bigger 
than i, then print it. These are all the orders, it won’t ever do the same 
combination twice because it won’t choose 1 and 2; then 2 and 1.  

Corey: [Corey adds to the code in Figure 3] And j is greater than i. 
Int. 1: Cool. If you do it, can you describe how many you think you’ll get and what you 

think the outcomes will look like? Do you think – ? 
CJ: I think it’ll go through how I did it.  
Corey: I think it’ll go exactly the way he did it. 
Int. 1: Great. What about your program makes you think it’ll run through in that way? 
CJ: Looking at i first, it’s gonna go through everything that could have 1, and 

everything that’s bigger than 1. Then it’s gonna go to the next part; then it’s 
gonna go to 2; then it’s gonna look at everything that’s bigger than two and print 
everything with that. 

CJ reasoned about an algorithmic approach in this problem. This is seen when he discussed going 

systematically “the way a computer thinks,” which suggests and underlying, generalizable approach 



 

 

rather than just one procedure. He was thinking about what algorithmic process the computer might 

adopt to list the outcomes. He connected his listing process to what the computer might do and 

correctly asserted that their code would list the outcomes as he had. We argue that the students 

adopted an algorithmic approach in writing their code, and they thought about what process the 

computer might complete to accomplish a task. In this sense, kind of algorithmic thinking we are 

describing is important students’ engagement with computational practices like programming. In 

addition to helping students think about computational practices like programming, such an 

approach can also useful in highlighting combinatorial ideas. Lockwood & De Chenne (2020) 

explored how students’ reasoning about conditional statements like “if j != i” and “if j > i” 

supported students’ reasoning about permutations and combinations, respectively. Thus, the 

algorithmic thinking used to reason about programming can then also help to enrich students’ 

mathematical understanding as well.  

To summarize this section, we highlighted three instances of algorithmic approaches that emerged 

in our data and our mathematical experiences. These examples are meant to illustrate what we mean 

by algorithmic approaches and also to motivate our focus on better understanding such approaches. 

Each example shares common features – the construction of a systematic, step-by-step process 

which could (though does not have to) be programmed into a machine. We suggest that there is 

some way of thinking that underlies these algorithmic approaches, and this is what we want to try to 

characterize and understand. AT could be the construct that underlies algorithmic approaches, and, 

ultimately, these examples compel us to explore what AT might entail and why it might be 

important. Having exemplified what we mean by an algorithmic approach, we now briefly review 

mathematics education literature for existing characterizations of AT. 

Algorithmic Thinking in Mathematics Education. 

There are some perspectives in math education literature that frame AT as characterizing a way of 

thinking rather than thinking about algorithms themselves. This is in line with the approaches we 

exemplified in this paper. The phrase “algorithmic thinking” appears occasionally in mathematics 

education literature, and the construct is used in a variety of ways. Knuth (1985) proposed a 

distinction between “algorithmic thinking” and “mathematical thinking” as an effort to distinguish 

the thought processes of computer scientists from those of mathematicians. Ultimately, Knuth 

concluded that there is no such singular concept as mathematical thinking, nor is there for 

algorithmic thinking, but rather each is comprised of a set of modes of thought. Many of these 

modes overlap (e.g., formula manipulation, abstract reasoning, information structures) with a few 

exceptions. Notably, “mathematical thinking” includes the infinite while algorithmic thinking does 

not; and algorithmic thinking accounts for problem complexity (i.e., the “cost” of running an 

algorithm), which does not typically surface in mathematics. Knuth’s characterization of 

algorithmic thinking seemed to contribute primarily to highlighting some of the overlap—and some 

of the distinctions—of the disciplines of mathematics and computer science.  

The NCTM handbook reported on differences between algorithmic thinking and recursive thinking. 

Although this is an interesting characterization, we note that their definition is quite broad and 

could apply to almost any process or mathematical situation. They define algorithmic thinking as 



 

 

follows: 

Algorithmic thinking is a method of thinking and guiding thought processes that uses step-by-

step procedures, requires inputs and produces outputs, requires decisions about the quality and 

appropriateness of information coming in and information going out, and monitors the thought 

processes as a means of controlling and directing the thinking process. In essence, algorithmic 

thinking is simultaneously a method of thinking and a means for thinking about one’s thinking. 

Schwank (1993) investigated what she referred to as different mental models that students might 

apply to algorithmic thinking, although she does not define algorithmic thinking in this paper. The 

types of tasks that she used to characterize algorithmic thinking were more aligned with typical 

computer science or computer programming tasks. In this work, the term “algorithmic thinking” 

implicitly referred to the types of thinking necessary to construct algorithms, although Schwank’s 

primary argument was that there are multiple ways of doing so. More recently, Abramovich (2015) 

used the phrase “algorithmic thinking” somewhat analogously to how other researchers have used 

“procedural knowledge” in conversations about the relationship between procedural knowledge and 

conceptual understanding for learning mathematics. Abramovich described how problem posing—

the cyclical act of extending a concrete (often procedural) problem to a more generalized case—

could promote a link between procedural skills and conceptual understanding. There continue to be 

new contributions to the discussion of algorithmic thinking and how it can be integrated 

meaningfully in to the mathematics curriculum (e.g., Stephens, 2018; Stephens & Kadijevich 

(2020)). Stephens (2018) argues for AT as one type of reasoning and suggests that we consider 

ways to leverage powerful developments in programming to improve mathematics education.  

Another line of research emphasizes activities and practices related to the creation of algorithms, 

such as algorithmatizing, which is an approach through which students develop algorithms through 

carefully chosen contextual problems that require students to model a particular situation, reflect on 

their solution procedures, and develop increasingly sophisticated models and procedures that can 

translate to other situations (Gavemeijer & van Galen, 2003, p. 114). The process of learning to use 

and understand algorithms implies their construction—or reinvention—on the part of students, 

rather than the acquisition of algorithms as existing objects. At the post-secondary level, students in 

a differential equations class reinvented Euler’s method for approximating solutions to differential 

equations, following the careful selection of tasks that facilitated the generalization of procedures 

(Rasmussen & King, 2000; Rasmussen et al., 2005). By engaging in algorithmitizing, which 

involves reasoning about and developing algorithms, students must necessarily think critically 

about what is entailed in that algorithm. Thus, algorithmitizing can be thought of as an external 

activity that reflects thinking about an algorithm.  

To summarize, in the mathematics education research literature, the term AT has been used and 

construed in a variety of ways. There are similarities in terms of presenting a general approach 

toward solving problems, but we think there is room to specify a more consistent and coherent 

characterization of AT in math education. (Regrettably, due to space, we do not elaborate AT in the 

computer science education literature, although that is another rich resource and set of 

perspectives).  



 

 

Future Work Toward Characterizing Algorithmic Thinking  

Having exemplified algorithmic approaches that we feel represent AT, and having briefly reviewed 

some relevant literature, we conclude with some ideas for more work that needs to be done to 

explore and elaborate the construct of AT. There is not clear consensus among research 

communities about what AT is or how it should be characterized or defined, and more work should 

be done to study explore what is entailed in AT. Once characterizations of AT are established, 

empirical studies can be designed to explore how students, instructors, and mathematicians engage 

with and employ AT. One potential future area of research is to explore how students interpret, 

evaluate, and/or debug existing algorithms. In addition, we acknowledge that AT should be framed 

within other kinds of thinking – such as computational thinking (Wing, 2006, 2008), mathematical 

thinking, or recursive thinking – and we believe that more work is needed to relate such constructs 

and terms. In this brief paper we do not have space to explore AT’s relationship to those other kinds 

of thinking, but there is potential for rich theoretical investigations. It would also be worthwhile to 

explore the computer science education literature as it relates to AT and to compare and contrast the 

development and use of algorithms in computer science versus mathematics and other fields.  
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