Adaline De Chenne
email: dechenna@oregonstate.edu

Elise Lockwood
email: elise.lockwood@oregonstate.edu

Listing algorithms for combinatorics problems with variable parameter values: a case study

Keywords: Combinatorics, student thinking, algorithmic thinking

In this paper, we explore how a student used computer programming to solve counting problems with variable parameter values. We present a case study where a student, Allen, used computer programming as an aid in finding a closed-form solution for C(n,k), the number of ways to select k objects from a set of n distinct objects. We document some of his difficulties, as well as aspects of his solution that were key to his success. We discuss implications for future research that examines listing algorithms to find closed-form solutions for general problem types in combinatorics.

Introduction

Combinatorics is an increasingly relevant area of mathematics due to its applications in fields such as computer science and information science. Yet, research in combinatorics education indicates that students at all levels struggle to learn combinatorics (e.g., [START_REF] Batanero | Effect of the implicit combinatorial model on combinatorial reasoning in secondary school pupils[END_REF][START_REF] Eizenberg | Students' verification strategies for combinatorial problems[END_REF]. A repeated conclusion is that attending to the objects being counted in a problem (i.e., the set of outcomes) is productive for students [START_REF] Lockwood | A set-oriented perspective on solving counting problems[END_REF], and there has been attention to how listing the outcomes can impact student understanding of underlying counting principles [START_REF] Lockwood | Combinatorial tasks and outcome listing: Examining productive listing among undergraduate students[END_REF][START_REF] Wasserman | Conceptualizing and justifying sets of outcomes with combination problems[END_REF]. Some of this work specifically focuses on students writing computer programs to list the outcomes [START_REF] Lockwood | Using conditional statements in Python to reason about sets of outcomes in combinatorial problems[END_REF][START_REF] Medova | Relation between algorithmic and combinatorial thinking of undergraduate students of applied informatics[END_REF], where the students solve a counting problem by exhaustively listing and counting the outcomes using fundamental tools of Python, such as nested for loops and conditional statements. Because this line of research allows for students to construct and reason about algorithms for the purpose of better understanding an important area of mathematics, there is motivation to examine how similar methods can be applied to other topics in combinatorics.

In our previous work we have explored students writing computer programs in Python (e.g., [START_REF] Lockwood | Using conditional statements in Python to reason about sets of outcomes in combinatorial problems[END_REF], and in these studies we have only examined students' solutions to counting problems with fixed parameter values. In these solutions, some of the parameter values are encoded as an intrinsic part of the structure of the code, such as the number of loops. However, many combinatorial problems, such as binomial identities, have variable parameter values and are almost never stated with fixed values. A next step is to examine how students can write computer programs to solve counting problems with variable parameter values. This next step has many anticipated difficulties, and in particular computational solutions to variable parameter problems often require recursion while their fixed-parameter-value counterparts do not. This can be a barrier for researchers and students, and researchers might look for alternative ways of addressing problems with variable parameter values that do not include the use of additional tools or techniques.

In this report, we analyze case-study data of a student who wrote a sequence of computer programs to aid in finding a closed-form solution for C(n,k), the number of ways to select k objects from a set of n distinct objects. In doing so, we distinguish between combinations, which are unordered collections of objects, and permutations, which are ordered collections. By presenting these data, we seek to better understand (1) how the utility and development of algorithms for problems without fixed parameter values differ from those in existing literature, and (2) some of the difficulties and successes of the student that are unique to problems without fixed parameter values.

Literature Review and Theoretical Perspective

Student difficulties in combinatorics are well documented, and they include difficulty with distinguishing between problem types [START_REF] Batanero | Effect of the implicit combinatorial model on combinatorial reasoning in secondary school pupils[END_REF] and with verifying that solutions are correct [START_REF] Eizenberg | Students' verification strategies for combinatorial problems[END_REF]. [START_REF] Lockwood | A set-oriented perspective on solving counting problems[END_REF] has proposed a set-oriented perspective to counting, which is "a way of thinking about counting that involves attending to sets of outcomes as an intrinsic component of solving counting problems" (p. 31). Sets of outcomes refer to the collections of elements being counted in a counting problem. This perspective includes examining and using properties of individual outcomes, as well as structure in the entire set of outcomes, and is reinforced by [START_REF] Wasserman | Conceptualizing and justifying sets of outcomes with combination problems[END_REF] describing how the encoding and conceptualization of sets of outcomes can influence solutions for category I and category II combination problems.

Additional research has investigated combinatorics in a computational setting, such as [START_REF] Medova | Relation between algorithmic and combinatorial thinking of undergraduate students of applied informatics[END_REF] quantitatively assessing the relation between computing ability and combinatorial reasoning. In line with such work, we have examined ways to use computer programming as a means for students to interact with individual outcomes, and to write algorithms that would list the set of outcomes (e.g., [START_REF] Lockwood | Using conditional statements in Python to reason about sets of outcomes in combinatorial problems[END_REF]. We adopt the term 'listing algorithm' to refer to an algorithm that exhaustively lists and counts the set of outcomes, with the intention of being used to design a computer program. We are cognizant that algorithms are far broader in general and enumeration algorithms in combinatorics need not be used in a computer program. Hence, our use of listing algorithm is not intended to encompass all types of enumerative algorithms in combinatorics. When creating a listing algorithm, students must first decide on an appropriate way to encode the outcomes so that every outcome is represented, and no outcome is represented more than once. Then, the students must decide on an algorithm to list the set of outcomes. Hence, students have the opportunity to reason about outcomes individually, as well as the set of outcomes collectively, which reflects important aspects of a set-oriented perspective. Although there are numerous ways to write listing algorithms, the primary tools in this report are for loops and conditional statements in Python. [START_REF] Medova | Relation between algorithmic and combinatorial thinking of undergraduate students of applied informatics[END_REF] have reported on computational solutions to problems with variable parameter values done by students in a Programming 2 course, but it is unclear how students with less programming experience may approach similar problems. We have previously only had students write computer programs to solve problems with fixed parameter values, while many common combinatorial problems have variable parameter values. For example, a fixed-parametervalue problem might be "How many ways can you flip a coin 5 times if exactly 3 of the coins landed on heads," while a problem with variable parameter values is "How many ways can you flip a coin n times if exactly k of the coins landed on heads." Designing listing algorithms for problems with variable parameter values presents additional difficulties, which may include learning new computational skills such as recursion. We are motivated to examine ways that students can engage in generalizing solutions from problems with fixed parameter values.

Methods

We present a case study of one student, Allen (pseudonym), who wrote computer programs to aid in finding a closed-form solution for C(n,k) during a set of task-based interviews. These data come from a study conducted in the United States that examines the role of computing in combinatorics education. Allen was recruited from an introductory computer science class; he was selected based on a survey, which indicated that Allen had not taken a discrete class, and although he had been exposed to some counting problems in high school, he did not appear to recall formulas from that period. He also indicated that he had taught himself how to write programs in Python in high school and was interested in pursuing a degree in computer science. We chose Allen as a participant because he exhibited a strong computer science background. We interviewed Allen in person over three 90-minute sessions, and we focus on the last session in this paper. We chose these data because they provide an example of a student using computational techniques to solve a problem with variable parameter values. We do not claim that other students would produce similar results. Indeed, Allen's mastery of fundamental computer science ideas indicates that most students would not produce similar results, but we nevertheless feel our findings have useful theoretical implications about using programming to solve problems.

Task

These data occurred after Allen compared an incorrect solution to a correct solution of the Book Problem, which states "Suppose you have eight books and you want to take three of them with you on vacation. How many ways are there to do this?" The solution to this problem is C(8,3) = 56. This was the first time the authors presented a problem involving combinations (rather than permutations) to Allen, and his original solution was P(8,3) = 336. After the authors asked Allen to list the first ten outcomes that a listing algorithm would produce, Allen noticed that his solution (which he had developed for permutation problems in previous interviews) was incorrect because it produced the same outcome more than once. While Allen was able to create a listing algorithm that gave him the correct answer, he was unable at first to justify an appropriate mathematical expression by hand. The data we present in this report is of Allen finding a closed-form solution for C(n,k) by writing a sequence of computer programs to find specific values of C(n,k) and comparing those values to P(n,k), which he could produce by hand. These data were unanticipated by the authors, who did not ask Allen to find a closed-form solution for C(n,k), but in the course of the interview decided to allow Allen to pursue a solution. Allen's work occurs in three stages: writing a listing algorithm for C(8,3), writing a listing algorithm for C(n, 3) for various values of n, and writing a listing algorithm for C(n,k) for various values of n as k increased.

Allen had previously worked on problems involving Cartesian products, arrangement with repetition, and arrangement without repetition. We provided Allen access to a Jupyter notebook on a desktop computer while he was being interviewed, which allows users to write computer programs in Python as well as write prose in Markdown. Jupyter notebooks are arranged into cells, where computer programs can be written into individual cells in the same notebook. This allows for a single notebook to include multiple questions and listing algorithms simultaneously, so that the user can easily reference prior work. During the first session, we included a brief Python primer that described how to use fundamental tools in Python, such as lists, loops, and variables. Allen had already written listing algorithms for problems involving Cartesian products, arrangement with repetition, and arrangement without repetition. We provided printed problem statements and paper to write on.

Data Analysis

We chose this episode because it demonstrates how a student used computational techniques to aid in the development of a closed-form solution for a problem with variable parameter values. The first author identified key moments where Allen used his computer programs to reason about the relationship between C(n,k) and P(n,k). She then created an enhanced transcript of the episode by including pictures of Allen's work and screenshots of the computer programs he wrote. This analytic process allowed us to make a narrative of Allen's reasoning about C(n,k) as it relates to P(n,k), facilitating our articulation of Allen's case and the role of listing algorithms in his work .

Results

We categorize the results into three sections: listing algorithm for C(8,3), listing algorithm for C(n,3), and listing algorithms for C(n,k); this reflects the chronological order of Allen's progress, and informs us of the difficulties Allen encountered, and how he resolved them. Further, this progression demonstrates distinct steps Allen took as he generalized his listing algorithm.

Listing Algorithm for C(8,3)

Allen's first solution to the Books Problem was , which is the number of ways to arrange three of the books. However, this expression accounts for different arrangements of the books as distinct outcomes, whereas the question does not. A correct solution is

. We asked Allen to verify if his solution was correct by describing a listing algorithm, and then writing down the first ten outcomes the algorithm would produce. Allen described an algorithm that would list all arrangements of three books (which he had implemented in Python for previous problems), which is incorrect but consistent with his solution. Allen then wrote the outcomes in Figure 1. In Figure 1, the last outcome in the list was 1, 3, 2, which Allen erased and replaced with 1, 3, 4 after he realized that 1, 2, 3 and 1, 3, 2 represent the same outcome. This demonstrates that Allen's error was not due to misunderstanding the question; he was aware that the problem counted unordered combinations of books, and not arrangements of books. Allen realized that his solution was incorrect, but he was not able to find a numerical expression that accounted for different arrangements of the books being the same outcome. He then decided to implement a listing algorithm that differed from his previous algorithm by requiring that the books be placed in increasing order in any outcome. For example, the outcome 1, 3, 2 would not be counted in this new listing algorithm because the numbers are not in increasing order. He justified that enforcing the increasing order would still produce every outcome, and that every outcome would be produced only once because there is exactly one way to place the numbers in increasing order. His implementation of this listing algorithm is shown in Figure 2. Allen explains the logic of his code as:

Allen:

Say I pick book number 5 as my second book. I don't need to pick book 1, 2, 3, 4, or 5 [as the third book] in that case, so I'd only have three books to choose from.

After running his code, Allen realized that the correct solution was exactly one sixth of his original but incorrect solution; that is, that P(8,3) = 6*C(8,3). His additional work sought to justify this ratio. To create a conjecture for the value of C(7,3), Allen reasoned about the mathematical expression 8*7, indicating that he was attempting to find an empirical pattern in the expressions themselves. He seemed to reason that the correct solution would be to take his original solution, and remove the last term in the product. We take this to be an instance of empirical pattern matching, where he was hoping to recognize a pattern in the numerical solutions without reasoning about why that pattern is reflected in the set of outcomes. He was aware that his pattern matching might be incorrect, indicating that dividing by 6 "might just be luck." After changing his computer program to solve the new problem, he observed that the correct answer was 7*5, which is one sixth of his original answer, Allen decided to investigate the ratio P(n,3)/C(n,3) for other values of n. This ratio is 6 for every n.

To investigate the ratio as n increased, Allen wrote a new computer program. Because the number of books in his listing algorithm for C(8,3) was only represented by the 9 in each of his for loops (in Python, range(1, n+1) produces the numbers 1 through n), he created a variable book that could be changed. By replacing the number of books with a variable, he could create a program to calculate C(n,3) without writing a new program for every value of n. Importantly, this change did not require restructuring the algorithm to accommodate a variable parameter. Allen wrote the function in Figure 3, which inputs the number of books and returns the ratio P(books,3)/C(books,3). By iterating through multiple values for books, Allen verified that the ratio was 6 for every value of books.

Listing Algorithms for C(n,k)

After finding that P(n,3)/C(n,3)=6 for every value of n, Allen decided to see how this ratio changed as k increased. Here the number of books being selected was represented by the number of nested for loops. This is not easily changed, and creating a function that returns C(n,k) for any value of n and k would require a significant restructuring of the code. Allen's goal was not to create a listing algorithm for C(n,k), but rather to determine a closed-form solution for C(n,k). While a listing algorithm for C(n,k) may have aided him, he was able to pursue other means of generalizing his algorithms.

Rather than write a single function for C(n,k), Allen wrote two different functions for k=4 and k=5.

For each of these, he made conjectures about P(n,k)/C(n,k) before he observed the actual ratios. For both values of k, Allen's computer programs showed that the ratio was constant. Specifically, his programs returned that P(n,4)/C(n,4) = 24, and P(n,5)/C(n,5) = 120. Although his conjectures seemed to express numerical pattern recognition based on empirical data rather than conjecture based on mathematical analysis of the counting problem, his persistent comparisons between P(n,5)/C(n,5), P(n,4)/C(n,4), and P(n,3)/C (n,3) showed that the ratio between the ratios followed a pattern. In describing this pattern, he states:

Allen: What I noticed is each time you go up, you multiply by the next number. So 6 times 4 equals 24, which multiplied by 5 equals 120, which multiplied by 6 equals 720.

After formalizing this pattern, Allen used his knowledge of a closed-form solution for P(n,k) to conjecture a closed-form solution for C(n,k), as shown in Figure 4. In this expression, X is the number of total books and Y is the number of books being selected. Allen asked the interviewers if there was a symbol for repeated multiplication, and we described the notation in the numerator. The numerator of the right side is Allen's known solution for P(n,k), and the denominator is the reciprocal of the conjectured ratio between P(n,k) and C(n,k). While Allen found this expression through numerical pattern recognition based on empirical data, he was able to justify the closed-form solution by stating that Y! is the number of ways to arrange the selected books, so dividing by Y! essentially removes all repeated occurrences of the outcomes.

Discussion

In these data, Allen appeared to have more difficulty finding an expression for C(n,k) than writing a computer program that listed the outcomes to a counting problem. And while Allen used his computer program to find such an expression, there were essentially three big ideas that he reasoned about: (1) generalizing and implementing his computer programs, (2) conjecturing about the values of C(n,k), and (3) formalizing and justifying a mathematical expression for C(n,k). The first idea was the one that seemed to pose the least challenge to Allen, after he realized that his original solution was incorrect. We differentiate between ideas (2) and (3) because they occurred at different points in the data, and because his ways of reasoning about them were different. As Allen wrote his different computer programs for C(8,3), C(n,3), C(n,4), and C(n,5), he conjectured about their values based on empirical patterns that mostly concerned how the values were written. For example, when Allen saw that C(8,3) = 7*8, and his original solution was 8*7*6, his conjecture for C(7,3) was 7*6 because his original solution would have yielded 7*6*5. That is to say, his conjecture was that the correct solution would be to remove the smallest term from the incorrect solution, and his reasoning for this was based on the observations from his computer program. In this way, Allen was projecting forward so as to anticipate future values and see if his conjectures were true, but his conjectures were based on the cardinalities of the sets of outcomes rather than the sets of outcomes themselves. It is difficult to say how much of his conjecturing would have remained the same if he had not written the computer programs himself, and instead were given a table of values for C(n,k), but we feel that a contribution to his success was repeated conjecturing followed by writing a computer program to verify if the conjecture were true. In contrast, when reasoning about (3) Allen reflected on the data he had already found to formalize a mathematical expression, and then he reasoned about the sets of outcomes as a means to justify that expression.

We do not intend to criticize Allen for his empirical conjectures during stage (2), but as mathematicians it is easy and often justifiable to place more value his reflective behavior during stage (3). However, we are also aware that stage (3) may never have occurred if not for stage (2), and we recommend other researchers to allow times where students can engage in empirical conjecturing or reasoning.

Another difficulty with writing programs to solve combinatorial problems with variable parameter values is that the output of the program is not a symbolic mathematical expression, yet mathematical analysis typically involves symbolic, closed-form expressions. The outcomes of a computer program and mathematical analysis are not the same, so they can be difficult to compare. In our data, Allen was able to create an expression for C(n,k) by comparing the value to a known similar value, P(n,k), as one parameter varied at a time. Future research could examine ways of using and analyzing computer programs with variable parameter values other than as a way to compute fixed instances of parameter values. While Allen used his computer programs to compare the values to other known values, an alternative method would be to examine the behavior of the program as the parameter values changed.

Allen created and generalized a listing algorithm for a problem that he could not solve by hand. The utility of the computer program in Allen's case was not reinforcing known mathematics, but the ability to verify conjectures about unknown mathematics. Because Allen decided on how to proceed during his work, we hypothesize that he was partially motivated because he was given agency over his mathematics. Future research could examine a computational environment as a means of solving unknown mathematics or mathematics that is unfeasible to compute by hand. In combinatorics education, this might mean using the computer to reason about sets of outcomes that students can create listing algorithms to produce, but that are difficult to count with conventional formulas and expressions. In such cases, the end goals might not be to find a closed-form solution that counts the set of outcomes, but to reason about how the size and structure of the set of outcomes changes as parameter values change.

Figure 1 :

 1 Figure 1: Allen's Partial List of Outcomes for the Books Problem

Figure 2 :

 2 Figure 2: Allen's Listing Algorithm for C(8,3)

Figure 3 :

 3 Figure 3: Allen's Listing Algorithm for C(n, 3)

Figure 4 :

 4 Figure 4: Allen's Closed-Form Solution for C(n,k), or C(X,Y)

Acknowledgment

This material is based on work supported by the National Science Foundation -Grant No. 1650943.