Martyna K Fojcik
email: martyna.fojcik@hivolda.no

Perspectives and challenges on programming as a tool to learn mathematics

Keywords: Programming, computational thinking, mathematics education

This paper focuses on the terminology of computer programming as a tool for learning mathematics and the intersection between teaching programming and teaching mathematics. It shows different perspectives and challenges that might arise when combining these two disciplines. The foundation is the newly introduced Norwegian curriculum, where programming has been integrated into four school subjects in primary and secondary education, including mathematics. The aim is to take a closer look at the concept of 'computer programming' and 'computational thinking' and discuss in what ways programming as a tool in mathematics teaching and learning may be theorized.

Introduction

The development of digital tools in education used both inside and outside the classroom has increased in recent years. Digital tools have introduced new methods of communication, increased access to information, and streamlined daily tasks. The Ministry of Education and Research in Norway (Kunnskapsdepartementet, 2012) points out that in a digital society, it is important that pupils are given good opportunities to develop digital skills, skills that "involve being able to use digital tools, media, and resources efficiently and responsibly, to solve practical tasks, find and process information, design digital products and communicate content" (p.12).

To prepare pupils for this digital reality, many countries have changed the compulsory curriculum to facilitate the development of digital skills and programming to create a potential learning environment for future skills. The way programming was integrated to the curriculum differs from country to country. The United Kingdom had introduced a separate information technology subject called 'Computing', while the Nordic countries introduced programming and computational thinking as a separate subject or a part within the mathematics subject in primary and secondary education. In Sweden, programming is a part of 'algebra' in mathematics, while in Norway, programming has been introduced in subject's mathematics, science, music, and art and crafts [START_REF] &type=pdf Bocconi | The Nordic approach to introducing computational thinking and programming in compulsory education[END_REF].

In Norway, the new curriculum in mathematics states that: "Digital skills in mathematics refers to the ability to use graphing tools, spreadsheets, CAS, dynamic geometry software, and programming to explore and solve mathematical problems" (Utdanningsdirektoratet, 2019, p.5). This definition indicates that (1) children learning mathematics should also learn to use different digital tools in mathematics to develop their digital skills, and (2) the tools should provide opportunities to make deeper connections and understand mathematical processes when using the tool. By enlisting programming with tools like spreadsheets, graphic tools, or computer algebra systems (CAS), the curriculum indicates that programming can be a tool for teaching and learning mathematics. This definition states that programming should be used to solve mathematical problems and explore these problems as well. However, may programming be a tool to teach and learn mathematics? Is programming not a field in itself? May programming be used in a proper way to support mathematical thinking? This study aims to look at the concept of 'programming' and 'computational thinking' and discuss in what ways programming as a tool in mathematics teaching and learning may be theorized. [START_REF] Fuglestad | IKT som støtte for "inquiry" i matematikkundervisningen[END_REF] analyzed the use of digital tools by lower secondary pupils in Norway and argued that many tools can support pupils' mathematical thinking if they are used through inquiry, exploration, experimentation and if the visual and dynamic properties of software are taken advantage of, allowing the pupils to be active and to investigate mathematical patterns. The research of [START_REF] Smeets | Does ICT contribute to powerful learning environments in primary education[END_REF] also showed that digital tools give new possibilities and perspectives that can emphasize parts of mathematics that can be difficult to visualize. He concluded that the potential in digital tools lies with the pedagogical approach, and to maximize the pupils' learning outcomes, the learning activity should highlight things that would otherwise be challenging. Thus, using digital tools as if they were not digital would eliminate any potential that the technology might bring, like visualization, dynamic interaction, or active participation that would differ from using pen and paper [START_REF] Kim | Teacher beliefs and technology integration[END_REF]. [START_REF] Trouche | Managing complexity of human/machine interactions in computerized learning environments: guiding students' command process through instrumental orchestrations[END_REF] pointed the definition between the use of a digital tool. He commented that a tool can be used for many different purposes, while an artifact is a "tool before considering its users and its uses" (p.282), and an instrument can be considered when there is a meaningful relation between an artifact component and psychological component. This means that the instrument "involves the techniques and mental schemes that the user develops and applies while using the artifact" (Drijvers, 2010, p.108). This approach, the instrumental approach, emphasizes that the critical part is how "the user's conception of the instrument is formed through use" (Trouche, 2004, p.295). This suggests that not every use of a digital tool can benefit learning because it depends on how the instrument is used and how the users' thinking is changed through using the instrument. Drijvers (2015) argued that there are factors that can influence the integration between mathematics and digital tools. He mentioned (1) the design of the lesson, the activity, and the digital tool, where the activity or the task could determine if the tool would become an instrument or not; (2) the role of the teacher and teacher's competencies, where the teacher's professional development of both digital and didactical understanding is crucial; and (3) the educational context, where he argued that mathematical practices need to be related to pedagogical opportunities. This can be interpreted as creating an environment for learning and using the potential of digital tools [START_REF] Smeets | Does ICT contribute to powerful learning environments in primary education[END_REF].

Digital skills and tools in mathematics

Programming and computational thinking

Programming has been defined in different ways. When creating a stepwise description of an algorithm for solving mathematical problems in 1843, Ada Lovelace was called "the first programmer" (Computer History Museum, s.a.), but a precise description of what it does to 'program' was not given. A technical definition of the term 'programming' separated two working methods while writing a program. The first was the process of drawing up a plan of the sequences of decomposed problems and algorithms that the program would consist of ('the programming'), and the second was to write the code in a programming language and implement the program ('the coding') [START_REF] Hartree | Automatic Calculating Machines[END_REF]. Since then, there have been many new developments in programming, changing the programming process. [START_REF] Blackwell | What is programming?[END_REF] presented the development through a concept that started with "describing calculations", then went on to "defining functions", and finally developed further into "defining and treating objects" (p.205). The methods of programming have changed when new digital developments have been integrated into the structure of programming. [START_REF] Duncan | Should your 8-year-old learn coding?[END_REF] argued that programming has "changed and developed over time as software, hardware and usage of computers has changed" (p.62) and therefore, they suggest to "use the term 'programming' for the broader activity of analysing a problem and implementing a program that solves it" (p.62, emphasis in original).

This development has made programming and coding more available, creating new easy-to-use programming languages and environments that can both write and execute the code. In recent years there has been a development of programming/coding environments for children which are based on the idea of visual programming where a program "is a set of linear sequences of 'jigsaw pizzle' pieces representing commands" (Klassner & Anderson, 2003, p.15, quotes in original). As [START_REF] Duncan | Should your 8-year-old learn coding?[END_REF] stated, "Drag-and-drop environments on the other hand do not require users to manually enter programming expressions; instead they provide the user with a selection of 'blocs' that represent programming expressions (…) This prevents novices from encountering confusing error messages, which can be very discouraging to learners" (p.65).

The access to free software prepared to start to code without previous knowledge has made the terms 'programming' and 'coding' blurred, and there are people that present these terms as synonyms [START_REF] Balanskat | Computing our future: Computer programming and coding -Priorities, school curricula and initiatives across Europe[END_REF][START_REF] Resnick | A different approach to coding[END_REF]. [START_REF] Duncan | Should your 8-year-old learn coding?[END_REF] explained that "[c]ode is a popular buzz word in today's technology driven world, and it also provides an element of mystery (there are hints of a secret code), and achievement (cracking the code)" (p.62, emphasis in original). This is clearly the opposite of [START_REF] Hartree | Automatic Calculating Machines[END_REF] division of these two terms. [START_REF] Duncan | Should your 8-year-old learn coding?[END_REF] stated that "[i]n the context of programming, traditionally coding would only refer to the last stage of the process of programming, translating a designed program into programming expressions and typing/entering these into a computer" (p.62). Computer scientists still lean up to the technical definition and consider programming to be more than coding, but people from outside computer science often do not divide between the process of scheduling the sequences and writing the code in a certain programming language. [START_REF] Papert | Mindstorms: children, computers, and powerful ideas[END_REF] argued that programming should be associated with the process of thinking when he wrote that by "teaching the computer how to think, children embark on an exploration about how they themselves think" (p.19), and then the children can use programming to construct their knowledge. He saw the possibilities of using programming as a way of thinking when solving problems. [START_REF] Wing | Computational thinking[END_REF] built on this idea by reintroducing the concept of computational thinking, CT (first used by Papert in a different context in 1980). She defines it as: "an approach to solving problems, designing systems and understanding human behaviour that draws on concepts fundamental to computing" (Wing, 2008, p.3717). In her explanation, there is a clear link between the thought processes associated with processes of abstraction and decomposition and computing.

According to Wing's definition, computational thinking is a fundamental skill, which "means more than being able to program a computer" (2006, p.33). Computational thinking is dependent neither on technology nor programming languages (Bocconi et al., 2016). [START_REF] Denning | Computational thinking[END_REF] defined it as "(…) computational thinking, or CTis not a set of concepts for programming. Instead, CT comprises ways of thinking and practicing that are sharpened and honed through practice" (p.6). The idea is to teach pupils how to think in structures so that they can gain knowledge about specifying and breaking a problem into several subproblems to find a systematic solution to the subproblems and evaluate whether the solution was useful and effective to solve the problem.

Lie et al. (2020) stated that Wing presented terminology and concepts as a computer scientist, and they argue that someone "outside that community might be prone to narrowly construe the idea of CT to direct connections with number computation or computer" (p.2, emphasis in original). [START_REF] Denning | Computational thinking[END_REF], also computer scientists, defined computational thinking as "the mental skills and practices for (i) designing computations that get computers to do jobs for us, and (ii) explaining and interpreting the world as a complex of information processes" (p.4, emphasis in original). [START_REF] Curzon | Developing computational thinking in the classroom: a framework[END_REF] got into more detailed concepts of computational thinking (logic, algorithms, decomposition, patterns, abstraction, evaluation) and approaches (tinkering, creating, debugging, persevering, collaboration). [START_REF] Weintrop | Defining computational thinking for mathematics and science classrooms[END_REF] presented a model of computational thinking that has four main categories: (i) Data practices, (ii) Modeling & simulation practices, (iii) Computational problem-solving practices, and (iv) Systems thinking practices (p.135). The interesting part of this model is relevant for this argumentation is that one of the sub-categories in the group (iii) is named 'Programming', which could mean that programming is considered a narrower approach than computational thinking. This is contradictory to the technical definition of [START_REF] Hartree | Automatic Calculating Machines[END_REF] and maybe has more in common with the perception of [START_REF] Resnick | A different approach to coding[END_REF] and [START_REF] Balanskat | Computing our future: Computer programming and coding -Priorities, school curricula and initiatives across Europe[END_REF].

The modern concept of computational thinking has in some way replaced the dual term of programming as presented by [START_REF] Hartree | Automatic Calculating Machines[END_REF], making the definition of the term 'programming' different than before. In addition, the programming environment that [START_REF] Hartree | Automatic Calculating Machines[END_REF], [START_REF] Papert | Mindstorms: children, computers, and powerful ideas[END_REF][START_REF] Blackwell | What is programming?[END_REF] considered were not the ones that are used in schools today. These scholars described a version of text-based programming languages. The languages of BASIC or LOGO were simplified and adapted for children, but they were still based on detailed syntax. Today's programming environments for children (for example, Scratch, Micro:bit, LEGO, Minecraft, etc.) are designed for the purpose of being easy to use, and many children meet programming through block-based programming languages, where the children are free to construct, modify and change codes with a simple push. Today, someone learning programming does not need to have a scheduled algorithm figured out before (s)he starts to code. One can code by trials and errors and continuously modify the program without stopping the software or creating bugs, but it is unclear if this can be considering 'programming'?

Challenges in introducing programming in mathematics teaching [START_REF] Kilhamn | Algebraic thinking in the shadow of programming[END_REF] reminded that programming is a field with its own structures, rules, goals, processes, methods, and notations. The same symbol can be used both in mathematics and programming, but it does not necessarily have the same meaning. For example, '=' means equality in mathematics, but in most programming languages, it assigns a variable. This can be confusing when writing a variable like x=x+1. A common code for adding one to a variable in programming is mathematically wrong because there does not exist a value of x that could make this equation valid.

A few more challenges arise from teaching programming in mathematics. Firstly, the syntax in programming differs from one programming language to another, and mathematical symbols can have different meanings. How does it affect pupils learn to use the equal sign differently in programming and mathematics, and then change the programming language and use ':' as equality. This would be confusing for the pupils that would need to be specified and clear in the syntax they use, as well as the terms and structures that each programming language represents. In Norway, there are not any national criteria for choosing a programming language, and each school, teacher or subject could use different software.

Secondly, programming, as mentioned before, is a field with its own rules and structures. The definition of programming differs between computer science and other disciplines, and many concepts are used to describe different approaches and actions. The terminology from computer science is not easy to translate to other situations and contexts, and much of the argumentation consists of explaining approaches from computer science used in other contexts. There are differences in syntax and in structure, different approaches in solving a mathematical problem with 'pen and paper' or solving it through the creation of new software. However, programming was implemented in four school subjects in Norway without explanation on how these disciplines could be combined. Currently, it is up to each teacher to choose how they want to implement programming in their subjects. It could be a part of computer science, or as simplified coding and gaming to motivate pupils in cases in different subjects, or as a tool for learning the subjects more in-depth. There is a lack of research on what would be most beneficial for the pupils, at their grade and in certain subjects, and how programming could be helping them to learn and develop skills.

Finally, the challenges lie within the teachers' competencies. The teachers need not only to learn how to program themselves but how to explain the program and support pupils in creating their programs as well. This could be solved by inviting computer scientists to teach programming parts at certain subjects. However, that may not give the educational and didactical results desired in the school curriculum. There could be some advantages if the pupils were taught to program by experts in their profession. Then the misunderstanding of structures, methods, terms, and syntax would not be problematic. The disadvantage of such an approach would be that the programming would be connected to computer science and used for the same purpose to create effective, friendly, and structural programs, but then there might be a lack of pedagogical or didactical approaches that children in primary and secondary school might need in their development. [START_REF] Kaup | Laereres og laererstuderendes forståelse af computationel tankegang i relation til matematikundervisningen: Et hermeneutisk litteraturinterview[END_REF] has done a research review describing how in-service teachers and pre-service teachers understand the term computational thinking and what attitude they have towards that concept. Her results showed that many participants were not familiar with computational thinking, and even if they had noticed that concept before, their understanding of what it is was superficial and simplified. Also, the study of [START_REF] Misfeldt | Surveying teachers' conception of programming as a mathematics topic following the implementation of a new mathematics curriculum[END_REF] showed that some teachers do not feel prepared to teach programming. Only 4,5% of the teachers participating in the survey answered that they feel ready "to a great extent", even though almost 70% said that these disciplines are connected and can be combined within the same subject.

Teachers' role in introducing programming in mathematics

Bocconi et al. recognize the teacher's role when they admit that: "Evidence shows that the transfer of programming skills is more likely to happen when (i) transfer is addressed in the upskilling of all teachers involved and (ii) forms an integral part of the pedagogical approach adopted in the classroom" (2018, p.6). This claim emphasizes that upgrading mathematics teachers' skills with programming may not give the wanted results if the knowledge is not adapted in a pedagogical approach. As Drijvers (2015) previously stated, teachers' development is crucial for integrating digital tools as instruments in mathematics teaching and learning. Yet, in many cases, the teachers today are confused about correct terms and methods [START_REF] Kaup | Laereres og laererstuderendes forståelse af computationel tankegang i relation til matematikundervisningen: Et hermeneutisk litteraturinterview[END_REF].

Conclusion

Can programming be a tool in mathematics? There are different definitions of 'programming', 'coding' and 'computational thinking', and these concepts are used in a variety of ways. The concepts themselves have changed in time, both because of further digital development [START_REF] Blackwell | What is programming?[END_REF][START_REF] Duncan | Should your 8-year-old learn coding?[END_REF] and the need for more interdisciplinary connections [START_REF] Wing | Computational thinking[END_REF][START_REF] Weintrop | Defining computational thinking for mathematics and science classrooms[END_REF]. The integration of programming into mathematics education in Norway creates new possibilities for the pupils (Utdanningsdirektoratet, 2020), and the implementation of digital tools can support mathematical thinking [START_REF] Fuglestad | IKT som støtte for "inquiry" i matematikkundervisningen[END_REF], Drijvers, 2015). Especially when the tool is used in a way that forms and influences the users' conception and becomes an instrument [START_REF] Trouche | Managing complexity of human/machine interactions in computerized learning environments: guiding students' command process through instrumental orchestrations[END_REF]. The remaining question is if programming can be such a tool?

The role of the teacher is significant in introducing programming with understanding and relevance (Drijvers, 2015[START_REF] &type=pdf Bocconi | The Nordic approach to introducing computational thinking and programming in compulsory education[END_REF], but the competence of today's in-service and pre-service teachers do not give them much confidence to teach programming in mathematics [START_REF] Kaup | Laereres og laererstuderendes forståelse af computationel tankegang i relation til matematikundervisningen: Et hermeneutisk litteraturinterview[END_REF][START_REF] Misfeldt | Surveying teachers' conception of programming as a mathematics topic following the implementation of a new mathematics curriculum[END_REF]. Programming has some similar elements with mathematics [START_REF] Papert | Mindstorms: children, computers, and powerful ideas[END_REF], Kilham & Bråting, 2019), and studies of teachers' attitudes towards programming in mathematics show some connections between these two disciplinaries [START_REF] Misfeldt | Surveying teachers' conception of programming as a mathematics topic following the implementation of a new mathematics curriculum[END_REF][START_REF] Kaup | Laereres og laererstuderendes forståelse af computationel tankegang i relation til matematikundervisningen: Et hermeneutisk litteraturinterview[END_REF]. Yet, there are many challenges that could arise when programming is introduced to pupils in teaching and learning mathematics, and the practical approaches of implementing and using programming as an instrument in mathematics have not been researched. There is a need for more knowledge in how programming can be used to solve and explore mathematical problems.