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Abstract. In this work, the modeling and numerical resolution in the multidimensional framework of the
interaction between the congested shallow water model and a polytropic air pocket dynamics are addressed.
A weak coupling strategy is adopted and the air pocket connectivity is obtained by comparing there horizontal
supports. Several numerical simulations illustrate the relevance of the model and the robustness of the numerical
strategy. In particular, the method seems well suited to the numerical study of the hydraulics of underground
rivers and coastal caves such as the Cosquer cave, and to the simulation of the marine energy converter such as
the oscillating water column.
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1. Introduction. This work focuses on flows, both free surface and roof constrained,
showing air pockets whose evolution can significantly affect the flow. This type of flow can
be found in the natural environment in underground rivers, in submerged coastal caves
[14] or under the ice pack, in pipe flow, especially sewage in case of flooding or pumping
[29], and for several marine energy converter devices such as the oscillating water column
[18, §6]. Paradoxically, the air pocket modeling is necessary to avoid the formation of (vac-
uum) pockets, and in particular the simulation of pumping in deep aquifers [22].

The modeling of air pockets above a free-surface flow is a two-phase liquid-gas prob-
lem [13, 28]. There is a large literature on this issue both from the point of view of model-
ing and numerical resolution [35], especially in the context of flow in a pipe. According to
the applications, two types of models are described: the incompressible two-phase model
[3, 11, 12] for two-fluid problems, or the compressible two-phase model [15, 25] for prob-
lems with gas. The complexity of these models makes numerical simulation impossible
at the scale of interest here (several km3). In our geophysical flow context, reduced mod-
els of water wave equations such as shallow water models are usually used [27]. To take
into account the roof constraint, a particular modeling and numerical scheme have been
proposed in the literature [5, 8, 10, 20, 26]. The current work is devoted to coupling with
the air pressure in the air pocket that can form between the free surface and the roof. This
issue with vertical integrated models has been considered in [1] for incompressible flows.
In our context, the air phase cannot be considered as incompressible because its domain,
complement of the water domain in the opening see Fig. 1, is an unknown of the prob-
lem. In [9], the authors propose an integrated incompressible/compressible model for the
liquid-gas problem. Nevertheless, the model is well posed (hyperbolic) only for a small
or large relative speed between the two phases. In [19], a two-fluid two-pressure verti-
cal integrated model is proposed. This work concludes on the remark that the speed of
sound is large even in the air phase. This means that the relaxation time of the pressure
in the air phase is small enough to consider quasi-steady air dynamics. Our approach is
based on a polytropic modeling of the air pocket dynamics [33]. Air pocket merging and
splitting are taken into account to allow for several different application contexts and in-
crease the robustness of the method. The proposed model is nonlinear, hyperbolic with
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FIG. 1. Illustration of the unknowns of the congested shallow water model with air pockets modeling (2.1),
(2.2), (2.3), (2.4), (2.5), (2.6), (2.7) and (2.8).

congested areas (leading locally to elliptical behavior), and integro-differential (due to the
air pressure calculated from the pocket volume). To avoid the resolution of a large stencil
matrix, we propose a weak coupling between the water and air dynamics. Thanks to these
choices, the numerical resolution of the model is quite fast compared to the cited litera-
ture, which allowed us to simulate scenarios with a sensitivity analysis of some parameters
as illustrated in the §5.5.

2. Mathematical modeling. This section is devoted to the mathematical description
of the free-surface flow constrained by a roof and coupled with air pocket dynamics using
a vertical integrated model. Let us first describe the unknowns used and illustrated in
Fig. 1. On a horizontal domain x ∈Ω ⊂ RD with D ∈ {1,2}, we consider two given surfaces
B (t , x) ≤ R (t , x) playing respectively the role of the bathymetry and the roof. Between
the two surfaces, a shallow water type model is considered following [20]. More precisely,
the unknowns are the mean vertical velocity u (t , x) and the water depth h (t , x), see §2.1.
Where the flow reaches the roof, i.e. h = H with the opening H = R −B , the roof reaction
acts as a surface pressure p (t , x) so that the flow remains restricted by the roof. In this
previous work, the pressure in the air is considered as a given parameter. However, it does
not correspond to several physical experiments like Torricelli’s experiment, see §5.2. To
overcome this drawback, we assume that the air can be considered as a polytropic gas,
then the air pressure p̊ (t , x) is an unknown satisfying the Laplace law.

2.1. Fluid modeling. We briefly recall the congested shallow water model as pro-
posed in [20]. The congested shallow water model reads

(2.1)
∂t h + ∇· (hu

) = 0
∂t

(
hu

) + ∇· (hu ⊗u
) = −h∇φ(

h, p, p̊,B
)

with the potential of conservative forces

(2.2) φ
(
h, p, p̊,B

)= g (B +h)+ p + p̊

ρ

and the density of the water ρ > 0. The pressure acting on the flow at the surface of the flow
is decomposed into the roof reaction p (t , x) and the pressure in the air p̊ (t , x). In [20], the
air pressure p̊ in not modeled but assumed to be a given parameter, and in practice it
is set to zero. The roof reaction p is such that the water depth remains below the roof.
As mentioned in [20], the model is not well-posed without looking for the roof reaction
among the positive functions. More precisely, it is sought so that the following constraint
is satisfied

(2.3) min
(
H −h, p

)
= 0.
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The solution where the water level sticks to the roof exists when there is no connection
with the air above the water, see §5.2. In [10], the authors propose a numerical strategy
based on the neighbors to determine if the air can reach the roof. However, this solution
does not fixe all situations, for exemple is does not recover all the possible steady states,
see §5.1.

2.2. Air pockets modeling. As Baliani explained in 1630, water is not attracted by the
roof but pushed by the air outside the cavity. We assume here that the relaxation time of
the pressure in the air is small enough so that the pressure is uniform by pockets, ie.

(2.4) p̊ (t , x) =
Np

(
h
)

∑

i=1
Pi (t )1

Ωi

(
h
) (x) with h = H −h

where Np

(
h
)
∈ N is the number of pockets, defined by the number of connexe sets of

support of h, and Ωi

(
h
)
⊂Ω is the support of the i th pocket, defined for 1 ≤ i ≤ Np

(
h
)

by

the i th connexe set of support of h (the order of numbering from 1 to Np has no impact). It
remains to define the pressure values Pi (t ). Note that the pressure p̊ (t , x) has no physical
meaning outside the pockets x 6∈ Ωi but must be defined for the relevance of the model
(2.1). Similar to the roof reaction p that disappears where water does not reach the roof,
we consider that the air pressure disappears outside the pockets.

Also we assume that the pockets dynamics are governed by three processes, i.e. split-
ting, deforming and merging, that can be describe mathematically by polytropic laws, see
[17, 33]. More precisely, introducing the the volume of the i th pocket as

(2.5) with Vi

(
h
)
=

∫

Ωi

(
h
) h dx,

the splitting of a pocket at time t∗ can be model using a parameter s ≥ 0 by

(2.6)

∀ j ∈ Li P j
(
t∗+ε)(V j

(
t∗+ε))s −Pi

(
t∗−ε)(Vi

(
t∗−ε))s −→

ε→0
0

and
∑

j∈Li

V j

(
h

(
t∗+ε)

)
−Vi

(
h

(
t∗−ε)

)
−→
ε→0

0,

the merging of pockets at time t∗ can be model using a parameter m ≥ 0 by

(2.7)

(
P j

(
t∗+ε))

1/m V j

(
h

(
t∗+ε)

)
−

∑

i∈L j

(
Pi

(
t∗−ε))

1/m Vi

(
h

(
t∗−ε)

)
−→
ε→0

0

and V j

(
h

(
t∗+ε)

)
−

∑

i∈L j

Vi

(
h

(
t∗−ε)

)
−→
ε→0

0,

and meanwhile, the deformation of the pockets can be model using a parameter d ≥ 0 by

(2.8) ∂t

(
Pi V d

i

)
= 0.

The merger is written so that if pockets with the same pressure merge, regardless of their
respective volumes, the resulting pressure should be the pressure in the original pockets.
Specific values of the polytropic parameters correspond to a particular physics. Although
the present work is designed for general polytropic processes, it is generally accepted that
the splitting process is isobaric (s = 0), the merging process is adiabatic (m = γ), while the
deformation process, if slow enough, is isothermal (d = 1).
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FIG. 2. Illustration of the unknowns and numerical parameters.

2.3. Initial conditions. In addition to the initial condition of the shallow water model,
i.e. h (0, x) = h0 (x) and u (0, x) = u0 (x), the congested model with air pocket modeling
(2.1), (2.2), (2.3), (2.4), (2.5), (2.6), (2.7) and (2.8) requires initialization of the pressure in
each pocket. The initial pockets are themselves defined from the initial water surface.
From the initial water depth, the bottom and the roof, we get the initial number of pockets

Np

(
h

0)
, the initial support of the pocket Ωi

(
h

0)
and the initial volume of each pockets

Vi

(
h

0)
with h

0
(x) = H (0, x)−h0 (x). For 1 ≤ i ≤ Np

(
h

0)
, let P 0

i ∈ R+ be the initial pressure

in each pocket, i.e. Pi (0) = P 0
i .

2.4. Boundary conditions. In the current work, we assume that the boundary of the
computational domain is not congested. It follows that the model coincides locally with
the shallow water model and its boundary conditions can be used for the fluid unknowns.
Suppose that the boundary is a wall, the whole pocket is inside the computational domain,
its volume can be computed and its evolution satisfies the dynamics presented in §2.2.
Otherwise, if the pocket reaches an open bound (fixed discharge, fixed water depth...), the
pocket extends outside the computational domain and there is missing information. In
this case, we impose the air pressure at the boundary, possibly as a function of time. Note
that the latter choice can also be considered for a pocket that is not at the boundary, to
model pumping or other devices.

3. Numerical scheme. The system (2.1), (2.2), (2.3), (2.4), (2.5), (2.6), (2.7) and (2.8)
is not trivial for several reasons. Its mathematical structure is not usual because of the
constraint (2.3). Specifically, when the flow is not congested, i.e. h < H , the system is
hyperbolic as a compressible flow, while when the flow is congested, i.e. h = H , the sys-
tem is elliptical as an incompressible flow. This difficulty imposes the use of a particularly
robust scheme, namely low-Mach and implicit, see [20]. In addition, the models is non-
linear because of (2.1), (2.8) and (2.7). Moreover, it is integro-differential because of the
volume computation (2.5). To keep the resolution efficient, we propose a numerical strat-
egy based on a weak coupling. More precisely, the water depth h and the roof reaction p
are first computed using the velocity u and the air pressure p̊ at the previous time step,
using an implicit nonlinear scheme with a small stencil. Then the velocity u and the air
pressure p̊ are computed using respectively an explicit advection scheme and a nonlinear
algebraic problem.

We consider a tessellation T of the computational domain Ω composed of polygonal
control volumes, see Fig. 2. The set of faces of the control volume k is denoted Fk , its
area is denoted mk and its neighbor by the face f ∈ Fk is denoted k f . For each face of the

tessellation, we note m f its length (with the convention m f = 1 if D = 1) and n
k f

k the unit
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normal to the face f outward from the control volume k. For further use, we also define the
compactness of the control volume by δk = mk∑

f ∈Fk
m f

. The discrete data and the unknowns

are B n
k , H

n
k and ψn

k as an approximation of the cell-averaged values of bathymetry B , the

opening H and ψ ∈ {
h,u, p, p̊

}
at the time t n .

3.1. Numerical scheme of the fluid dynamics. Due to the congestion constraint (2.3),
the numerical strategy for fluid dynamics must have two properties, namely low-Mach and
implicit [20]. Several schemes can be found in the literature see for example [4, 7, 16, 23,
24, 31, 34, 36, 37]. For practical reasons, we use the CPR scheme [31]. We give here a brief
description of the computation, see [20] for more details.

A peculiarity of the CPR scheme is that the water depth hn
k and the roof reaction pn

k
are determined secondarily from the potentialφn

k which is the real unknown of the implicit
part of the scheme. Namely we define from (2.2) the water depth

(3.1) H n
k

(
φ

)= min

(
h̃n

k

(
φ

)
,

H
n
k +λ2

k h̃n
k

(
φ

)

1+λ2
k

)
with h̃n

k

(
φ

)=
ρφ− p̊n

k

gρ
−B n

k

with the penetration parameter λk ≥ 0 (fixed as λk =
√

Lz
Lx
δk with Lx and Lz are respec-

tively the horizontal and the vertical characteristic lengths) and the roof reaction

(3.2) P n
k

(
φ

)= ρ (
φ− g

(
H n

k

(
φ

)+B n
k

))− p̊n
k .

The mass conservation of (2.1) is discretized using an implicit nonlinear finite volume
method, i.e. the water depth φn+1

? is defined such that Sn
k

(
φn+1
?

)= 0 with

(3.3) Sn
k

(
φ?

)
:=H n

k

(
φk

)−
(

hn
k − δn+1

t

mk

∑

f ∈Fk

F n
f

(
φ?

) ·nk f

k m f

)

and the numerical mass flux reads

F n
f

(
φ?

)
:= (

H n (
φ

)
un)

f −κδn+1
t

(
H n

(
φ

)

δ

)

f

[
φn+1]k f

k n
k f

k

where κ≥ 1 is a regularization parameter and the following notations at the face are used
(
ψ

)
f :=

ψk+ψk f

2 and
[
ψ

]k f

k :=
ψk f

−ψk

2 . The mass scheme (3.3) is solved using an Newton
fixed point, see §4 for details.

Once the potentialφn+1
k is known, the water depth and the roof reaction are computed

using (3.1) and (3.2) setting hn+1
k :=H n

k

(
φn+1

k

)
and pn+1

k :=P n
k

(
φn+1

k

)
. Then the velocity is

computed explicitly using an upwind scheme for the advection part and a centered source
term of the pressure, i.e.

(3.4)

hn+1
k un+1

k = hn
k un

k − δn+1
t

mk
hn+1

k

∑

f ∈Fk

(
φn+1)

f ·n
k f

k m f .

−δ
n+1
t

mk

∑

f ∈Fk

(
un

k

(
F n

f

(
φn+1
?

) ·nk f

k

)
+
−un

k f

(
F n

f

(
φn+1
?

) ·nk f

k

)
−

)
m f

with the positive and negative part functions defined by
(
ψ

)
± := |ψ|±ψ

2 .
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FIG. 3. Definition of the graph of connections from the pocket supports. The top figure is an example of
pockets at two successive time steps with the support of each pocket in gray. The figure below is the corresponding
graph of connection.

The numerical scheme (3.3) and (3.4) is first order in time and space. As stated in [31,
Theorem 2.3], it is entropy-stable under the condition κ≥ 1 and the implicit CFL condition

(3.5) δn+1
t ≤

min
(
δk ,δk f

)
min

(
hn+1

k ,hn+1
k f

)

2

((
hn+1un)

f ·n
k f

k + (
hn+1

)
f

√
κ
2

∣∣∣
[
φn+1

]k f

k

∣∣∣
) .

3.2. Numerical scheme of the pockets dynamics. The current section is devoted to
the main novelty of the paper, namely the pressure dynamics in air pockets. First, in §3.2.1,
we propose a strategy to identify the likely connection between pockets at time t n and time
t n+1 based on the pocket supports. Then, in §3.2.2, we solve the problem of the evolution
of the pressure inside the air pocket during a time step. Finally, to avoid numerical in-
stabilities, a regularization of the air pressure in the congested areas is necessary and is
detailed in the §3.2.4.

3.2.1. Identification and connectivity of the pockets. The discrete support of the

pockets (discrete counterpart of Ωi

(
h
)
) is defined by Pn

i =
{

k ∈T | hn
k < H

n
k

}
such that(

Pn
i ,

⋃
k∈Pn

i
Fk

)
is a connected graph. We use here the set of faces f ∈ Fk as the connec-

tivity between k and its neighbor k f . We define all pockets in this way, which means that

for any k ∈ T such that hn
k < H

n
k , there exists i such that k ∈ Pn

i and for any in j we have
Pn

i ∩Pn
j =;. The number of pockets is N n

p = card
{
Pn

i

}
and for simplicity, we assume that

the indices of the pockets are numbered from 1 to N n
p . The discrete counterpart of the

volume (2.5) is simply written

V n
i =

∑

k∈Pn
i

(
H

n
k −hn

k

)
mk .

Once the water depth hn+1
k is computed using (3.3), it is possible to define the pockets

Pn+1
1≤i≤N n+1

p
and the volume V n+1

1≤i≤N n+1
p

. Nevertheless, the information we have is only pic-

tures of the pockets at time t n and t n+1. We are missing important information in the
evolution of the pockets, in particular, which pockets at time t n led to which pockets at
time t n+1, with or without splitting and merging and at which time t∗. This is a classi-
cal problem of optimal transport [32]. However, optimal transport algorithms require a
non-negligible numerical cost, especially in a two-dimensional setting.

We propose an alternative strategy based on pocket supports. More precisely, if there
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exist a control volume k shared by two pocketsPn
i andPn+1

j , we assume that the two pock-

ets are connected, namely

Ln+1
i =

{
1 ≤ j ≤ N n+1

p |Pn
i ∩Pn+1

j 6=∅
}

and L
n+1
j =

{
1 ≤ i ≤ N n

p |Pn
i ∩Pn+1

j 6=∅
}

.

We obtained a bipartite graph
({[

1, N n
p

]
∩N,

[
1, N n+1

p

]
∩N

}
,Ln+1

1≤i≤N n
p

,L
n+1
1≤ j≤N n+1

p

)
be-

tween the pockets at time t n and the pockets at time t n+1, see Fig. 3. To simplify the
problem, we note that it can be divided into independent subproblems corresponding

to the connected subgraphs. More precisely, we define A
n+1
l ⊂

[
1, N n

p

]
∩N the set of ini-

tial pockets and An+1
l ⊂

[
1, N n+1

p

]
∩N the set of resulting pockets of the l th independent

sub-problem by

(3.6) A
n+1
l =

⋃

j∈An+1
l

L
n+1
j and An+1

l =
⋃

i∈A
n+1
l

Ln+1
i

such that

({
A

n+1
l , An+1

l

}
,Ln+1

A
n+1
l

,L
n+1
An+1

l

)
is connected, withLn+1

A
n+1
l

=
{
Ln+1

i | i ∈ A
n+1
l

}
andL

n+1
An+1

l
=

{
L

n+1
j | j ∈ An+1

l

}
. The number M n+1 of independent subproblems is such that all pockets

are considered, i.e.
M n+1⋃

l=1
A

n+1
l =

[
1, N n

p

]
∩N and

M n+1⋃
l=1

An+1
l =

[
1, N n+1

p

]
∩N.

To illustrate our definitions, we detail the case drawn in Fig. 3. There are 6 indepen-
dent subproblems, which we describe from left to right.

• The first subproblem corresponds to the graph ({{1} , {1}} , {{1}} , {{1}}) is a simple
deformation of the pocket.

• The second sub-problem ({{2,3} , {2}} , {{2} , {2}} , {{2,3}}) corresponds to the merg-
ing of two pockets. The pockets are also deformed, so it is not a simple application
of (2.7).

• The third subproblem ({{4} , {3,4}} , {{3,4}} , {{3} , {4}}) corresponds to the splitting
into two pockets. The pockets are also deformed, so it is not a simple applica-
tion of (2.6).

• The fourth sub-problem ({{5,6,7,8} , {5,6,7}} , {{5} , {5,6,7} , {7} , {7}} , {{5,6} , {6} , {6,7,8}})
illustrates the fact that a pocket can be both split and merged during a time step,
here the pocket Pn

6 .
• The last two subproblems ({{9} , {}} , {{}} , {}) and ({{} , {8}} , {} , {{}}) correspond to the

two particular cases where a pocket disappears or respectively appears. These
two cases required a particular treatment which will be explained in §3.2.3.

In practice, because of the small time step, there are never a large number of pockets in-
volved in each sub-problem.

3.2.2. Evolution of the pressure values along a time step. In this section, we focus on
solving a general pocket problem in interactions where we have removed the superscript
of time and of the subproblem number n+1

l for readability reasons. The problem can be
formulated as follows:

Knowing the bipartite graph of interactions
({

A, A
}

,LA ,LA

)
, the volume V n

i∈A
and pres-

sure P n
i∈A

of the initial pockets, and the volumes V n+1
j∈A of the resulting pockets, find the pres-

sures P n+1
j∈A in the resulting pockets following the physical processes (2.8), (2.6) and (2.7).
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FIG. 4. Illustration of the sub-steps of the pressure evolution scheme. From left to right: Unaccepted split-
ting/merging rejected by Hypothesis 1, typical deforming case, typical splitting case, typical merging case and com-
plexe case (corresponding to the fourth case of Fig. 3).

This problem is clearly ill-posed without additional assumptions. In particular be-
cause the splitting/merging times are unknown. We assume that the dynamics of the
pockets during each time step can be divided into three steps, see Fig. 4.

S1 Splitting step: The splitting only occurs at the beginning of the time step. It satis-
fies (2.6) with t∗ = t n . Hence for any i ∈ A we have

∑

j∈Li

Ṽi j =V n
i and for any j ∈ Li , P̃i j Ṽ s

i j = P n
i

(
V n

i

)s

with Ṽi j and P̃i j respectively the volume and the pressure in the pocket after split-
ting and before deforming.

S2 Deforming step: The deformation without splitting or merging occurs during the
time step. It satisfies (2.8). Hence for any i ∈ A and j ∈ Li we have

˜̃Pi j
˜̃V d

i j = P̃i j Ṽ d
i j .

with ˜̃Vi j and ˜̃Pi j respectively the volume and the pressure in the pocket after de-
forming and before merging.

S3 Merging step: The merging only occurs at the end of the time step. It satisfies
(2.7) with t∗ = t n+1. Hence for any j ∈ A we have

(
P n+1

j

) 1
m

V n+1
j =

∑

i∈L j

( ˜̃Pi j

) 1
m ˜̃Vi j and V n+1

j =
∑

i∈L j

˜̃Vi j .

The connectivity defined in §3.2.1 is not sufficient to conclude the pocket dynam-
ics with the three steps S1, S2 and S3. For example, if we consider a single initial pocket
connected to a single resulting pocket, it is possible, without further assumptions, that
during the time step the pocket is first divided, each part is deformed separately and
then merged to form the new pocket. This problem is illustrated by the first two cases
of Fig. 4. To resolve this indeterminacy, we assume in what follows that the minimum
required split/merge occurs.

HYPOTHESIS 1. Each pocket i ∈ A is split exactly into cardLi pockets.

Another missing information is the position where the pocket is split, or conversely
the position where the pockets will merge. For example, from a single initial pocket that
splits into two resulting pockets of equal volume, it is possible that the split occurs in the
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middle, resulting in a similar deformation for the two new pockets, but it is also possible
that the separation occurs at a third, and that the first pocket extends twice as much as
the second. Instead of assuming the location of the split, which can lead to significant
error for large pockets, we assume that all pockets resulting from the split are deformed
proportionally. Since this assumption holds only for the time step where the split occurs,
we expect a smaller impact on the outcome. The same problem arises when merging.

HYPOTHESIS 2.
i) All the pockets resulting from the split of the same initial pocket grow globally in a

proportional way, i.e. for any i ∈ A, there exists Γ̃i such that for any j ∈ Li one has

Ṽi j = Γ̃i
˜̃Vi j .

ii) All pockets participating in the merge of the same resulting pocket grow globally in

a proportional way, i.e. for any j ∈ A, there exists ˜̃Γ j such that for any i ∈ L j one
has

Ṽi j = ˜̃Γ j
˜̃Vi j .

Also by construction, the graph satisfies the following assumption, see §3.2.1.

HYPOTHESIS 3. The graph
({

A, A
}

,LA ,LA

)
is connected and satisfies the relation

A =
⋃
j∈A

L j and A =
⋃

i∈A

Li .

To conclude, the following assumption is necessary.

HYPOTHESIS 4. The graph
({

A, A
}

,LA ,LA

)
is acyclic, i.e. it contains no cycles.

We are now able to solve the stated problem.

PROPOSITION 1. Assume that the graph
({

A, A
}

,LA ,LA

)
with card A > 0 and card A > 0

satisfies Hypothesis 3 and 4, and the evolution of the pockets follows the three steps S1, S2
and S3 and satisfies Hypothesis 1 and 2. Then for any V n

i∈A
> 0,P n

i∈A
and V n+1

j∈A > 0, the

pressures in the pockets P n+1
j∈A are well-defined and given for any j ∈ A by

(3.7) P n+1
j = Γd−m

(
V n+1

j

)m


 ∑

i∈L j

(
Pi j V s

i j Ṽ m−s
i j

) 1
m




m

with Γ=
∑

i∈A V n
i∑

j∈A V n+1
j

and Ṽi j is the solution of the (well-posed) linear system

(3.8)

for any i ∈ A ,
∑

j∈Li

Ṽi j = V n
i

for any j ∈ A ,
∑

i∈L j

Ṽi j = ΓV n+1
j .

Proof. Using Hypothesis 3, for a given i and for all j ∈ Li we also have i ∈ L j . Using

Hypothesis 2.i) and ii), we conclude that Γ̃i = ˜̃Γ j . By convexity of the graph (Hypothesis 3),

we conclude that all the constants Γ̃i and ˜̃Γ j are the same, which we will write from now

on Γ. Also the set of connections can be browsed either for all i ∈ A considering all j ∈ Li ,
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or for all j ∈ A considering all i ∈ L j . Adding up all the connections and using the volume
conservation during the steps S1 and S3, we get

∑

i∈A

V n
i

(S1)

=
∑

i∈A

∑

j∈Li

Ṽi j
(H2)

= Γ
∑

j∈A

∑

i∈L j

˜̃Vi j
(S3)

= Γ
∑

j∈A
V n+1

j .

Now using the polytropic formulae of each step S1, S2 and S3, we write

(
P n+1

j

) 1
m

V n+1
j

(S3)

=
∑

i∈L j

˜̃P
1
m

i j
˜̃Vi j

(S2)

=
∑

i∈L j

(
P̃i j Ṽ d

i j
˜̃V m−d

i j

) 1
m

(H2)

= Γ
m−d

m
∑

i∈L j

(
P̃i j Ṽ m

i j

) 1
m (S1)

= Γ
m−d

m
∑

i∈L j

(
Pi j V s

i j Ṽ m−s
i j

) 1
m

.

It remains to estimate the volumes Ṽi j . The linear system (3.8) is nothing else than

the volume conservation of the steps S1 and S3 using Γ̃i = ˜̃Γ j = Γ. Thanks to Hypothesis 3

and 4, the graph
({

A, A
}

,LA ,LA

)
is a tree. Hence the number of vertices card A +card A is

greater by one than the number of edges
∑

i∈A cardLi . We conclude that there is one more

equation than unknowns in (3.8). However, by adding the first equations for i ∈ A and the
last one for j ∈ A, we recover the definition of Γ. This means that an equation (any one)
can be deleted without loss of information. Since the graph is connected (Hypothesis 3),
this means that the vectors defined by the coefficients of each row of the linear system (3.8)
is a spanning set. We conclude that the (3.8) is well posed.

REMARK 1. In a one-dimensional framework (D = 1), the Hypothesis 4 holds by con-
struction. In larger dimensional framework (D > 1), since Hypothesis 3 is always satisfied, it
is easier to check the algebraic relation

(3.9) card A+card A−1 =
∑

i∈A

cardLi

that ensure that Hypothesis 4 holds. If not, see §4.

REMARK 2. The system (3.8) is composed of a Boolean matrix. Therefore, it can be writ-
ten as a lower triangular matrix by simply renumbering the unknowns and solved it by sim-
ple differences without the use of complexe linear algebra. Therefore, it can be written as a
lower triangular matrix by simply renumbering the unknowns and can be solved by simple
line differences without using complex linear algebra. However, there is no guarantee that
the solution of this system is positive, which means that the pressures calculated by (3.7)
may be unphysical negative values. See §4, in this case.

3.2.3. Particular cases of appearing and disappearing pockets. It remains to treat
the two particular cases of pockets that appear and disappear. These cases can occur phys-
ically if a vacuum (zero pressure) forms or collapses. The Torricelli’s experiment (1644) is
a historical proof. However, due to the weak coupling proposed in this work, non-physical
pockets appearing and disappearing may occur.

In the case of a disappearing pocket (card A = 0), it is possible to know if the disap-
pearance is physical or not, by looking at the pressure before the disappearance. If P n

i = 0,
there is no matter in the pocket and it can collapse, otherwise there is matter so the dis-
appearance is non physical. Except in the case of isobaric deformation (d = 0), before
collapse, the pressure should become very high and create a force opposing the collapse.

In the case of an appearing pocket (card A = 0), assuming the formation of the phys-
ical vacuum, we set the pressure inside to zero P n+1

i = 0. If the vacuum formation is not



CONGESTED SHALLOW WATER MODEL: TRAPPED AIR POCKETS MODELING 11

fluid dynamics
§3.1

pockets dynamics
§3.2

time limitation
§4.2

hn

un

p̊n
φn,q δ

n,q+1
t ⇐ (4.1)

φn,q+1 ⇐ (4.2)

∥∥Sn,q ∥∥<σ ?

ξn,q+1 ← ξn,q

∀l ∈ [
1, Mn,q ]∩N(

A
n,q
l

, A
n,q
l

)
⇐ (3.6)

q ← 0
ξn,0 ← 1

φn,0 ⇐ (2.2)

no

q ← q +1

yes

hn+1 ⇐ (3.1)

un+1 ⇐ (3.4)

p̊n+1 ⇐ (3.10)

φn,q+1 ←φn,0

ξn,q+1 ←ωξn,q

card A
n,q
l

= 0

and Pn
i 6= 0 ?

l = 1

l ← l +1

yes

q ← q +1

(3.9) ?
no

no

P
n,q
j

⇐ (3.7)

P
n,q
j

≥ 0 ?

yes

no

l = Mn,q ?

yes

no yes

FIG. 5. Flowchart of iterative processes of weak coupling. The space index has been removed for easier reading.
The notation a ← b is the numerical assignment, i.e. a takes the value of b. The notation a ⇐ (X ) means that a is
computed using the equation (X).

physical, the pocket will quickly collapse and the numerical strategy seems robust enough
to handle it, see §5.2.

The numerical treatment of all these particular cases is discussed in §4.

3.2.4. Regularization of the air pressure in the congested regions. It remains to de-
fine the air pressure in the congested areas. A trivial counterpart of (2.4) should be to set
the air pressure to zero in congested areas. Nevertheless, due to the weak coupling, this
solution leads to instabilities at the waterline. An Air pressure regularization is necessary.
Since the roof reaction is non-negative, see (2.3), the regularization support should not
be too large to prevent water from coming off the roof because of it. More precisely, the
discrete counterpart of (2.4) reads

(3.10) p̊n+1
k = max


0,


1−

∣∣∣∣∣
DPn+1

i
(k)

D

∣∣∣∣∣

2

P n+1

i




with i such that DPn+1
i

(k) = min1≤ j≤N n+1
p

DPn+1
j

(k), where DP j (k) is the distance of the

mass center of the k th control volume to the pocket P j and D > 0 is a given distance
characteristic of the regularization. The choice of the regularization profile is arbitrary,
although several profiles have been tried and the second order polynomial seems to be
well suited.

4. Pratical implementation.

4.1. Description of the time step computation. Several points need to be clarified in
solving the scheme (3.3), (3.4), (3.7) and (3.10) in practice. First, the fluid dynamics scheme
§3.1 is an ImEx (implicit explicit) nonlinear scheme and requires a fixed point algorithm
to solve. Second, the pocket dynamics §3.2 has a number of special cases and we use this
section to clarify how the algorithm handles them. A flowchart of the algorithm is drawn
in Fig. 5 to illustrate it.

Starting from the approximation of the state variables at time t n , i.e. hn
?, un

? and p̊n
?,

we start by estimating the new potential using a Newton fixed point already presented in

[31]. A first estimate of the potential is given by φn,0
k =φ

(
hn

k , gρ

(
hn

k −H
n
k

)
+

λ2
k

, p̊n
k ,B n

k

)
with the
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function defined by (2.2). The time step is estimate to satisfy the implicit CFL condition
(3.5) at convergence

(4.1) δ
n,q+1
t = min


δ

n,q
t ,min

f ∈F




ξn,q min
(
δk ,δk f

)
min

(
hn,q

k ,hn,q
k f

)

2

((
hn,q un)

f ·n
k f

k + (hn,q ) f

√
κ
2

∣∣∣
[
φn,q

]k f

k

∣∣∣
)







where q is the index of the Newton fixed point and hn,q
k =H n

k

(
φ

n,q
k

)
and F=∪k∈TFk is the

set of faces of the mesh and 0 < ξn,q ≤ 1 is an adaptive CFL parameter, see §4.2, initialized
by ξn,0 = 1. Using this time step, we compute an new approximation of the potentialφn,q+1

?

thanks to

(4.2) J n,q (
φ

n,q
?

)
φ̃

n,q+1
? = Sn,q

?

(
φ

n,q
?

)
and φ

n,q+1
? =φn,q

? − φ̃n,q+1
?

with J n,q
(
φ?

)
is the Jacobian of the residual Sn,q

?

(
φ?

)
defined by (3.3). This process (time

step estimation and potential computation) is iterated until convergence. In the pres-
ent work, we consider that the fixed point is converged if the L∞-norm of the residual
Sn,q
?

(
φ

n,q
?

)
is less than a tolerance σ> 0 and in practice less than 10 iterations are needed

with σ= 10−10.
At convergence, the pockets are identified from the last approximation of the water

depth hn,q+1, see §3.2.1, and divided into M n,q subproblems corresponding to the graphs({
A

n,q
l , An,q

l

}
,Ln,q

A
n,q
l

,L
n,q

A
n,q
l

)
. For each connected group of pockets 1 ≤ l ≤ M n,q (which can

be treated in parallel), we first check if it corresponds to a pocket which disappears with
a non-zero pressure, i.e. card An,q

l = 0 with P n,q

i∈A
n,q
l

6= 0, see §3.2.2. In this case, the time

step is reduced to avoid it, see §4.2. Then we test if the pockets appear, i.e. card A
n,q
l = 0,

in which case we put P j∈A
n,q
l

= 0, see §3.2.2. Otherwise, before computing the pressure,

we check (except in a one-dimensional framework) if the problem is well posed by testing
(3.9), see Remark 1. If the graph has a cycle, we cannot compute the pressure, the time
step is reduced to reduce the number of interactions, see §4.2. However, as there is no
guarantee that the pressure is non-negative, see Remark 2, we check a posteriori for non-
negativity. If one of the new pressures is negative, we reduce the time step here too, see
§4.2. Once the new pressures P n,q

1≤ j≤N
n,q
p

are known in each pocket, the time step is com-

pleted by setting the water depth hn+1
k = H n

k

(
φ

n,q+1
k

)
with (3.1), the velocity un+1

k using

(3.4) and the air pressure p̊n+1
k using (3.10).

4.2. Time step limiting process with adaptive CFL parameter. As explained in §4.1,
there are situations where the problem is ill-posed and a time step limitation is necessary.
In these cases, we reduce the adaptive parameterization ξn,q+1 =ωξn,q with a given limit-

ing factor 0 <ω< 1. The potential is also reset by settingφn,q+1
k =φ

(
hn

k , gρ

(
hn

k −H
n
k

)
+

λ2
k

, p̊n
k ,B n

k

)

and Newton’s fixed point is stated again, see Fig. 5.

4.3. Discrete boundary conditions. As explained in §2.4, we assume that the flow at
the boundary is not congested, so the shallow water model boundary condition can be
used. For any cell i ∈ T with a face on the boundary Fi ∩∂T 6= 0, we create a ghost cell g
with the same geometry, i.e. mg =mi . We consider two cases.
wall boundary: We assume that there is a wall at the boundary such that the flow in the

ghost cell is symmetric to the flow inside, that is, hn
g = hn

i , un
g cdot

(
n

g
i

)⊥ = un
i cdot

(
n

g
i

)⊥
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and un
g cdotng

i =−un
i cdotng

i . The pressures in the pocket reaching only this type
of border are computed as within the computational domain.

open boundary: We assume that the flow is across the boundary. Many strategies exist in
the literature. We consider here only the case of a fixed water depth hn

g = H > 0

and the velocity is computed thanks to the Riemann invariant, i.e. un
g ·ng

i = un
i ·

n
g
i +2

√
g hn

i −2
√

g H . The last component is set to zero, i.e. un
g ·

(
n

g
i

)⊥ = 0. Anyway,

for all pockets that reach this type of boundary, we impose the inside pressure. For
all pockets that reach this type of border, we impose the inner pressure.

5. Numerical evidences. The present section is devoted to some numerical illustra-
tions in a one-dimensional framework (D = 1) of the numerical strategy (3.3), (3.4), (3.7)
and (3.10). For all the simulations, a regular mesh is used, i.e. for any k ∈Twe haveδk = δx .
We start with the simulation of the stationary states of the model §5.1 to illustrate the well
balanced property of the scheme. Then we reproduce the historical experiment of Torri-
celli §5.2. In these two cases, the dynamics of the air pockets do not appear, due to the
equilibrium for the former and the vacuum for the latter. Then we numerically study the
influence of the polytropic parameters of deformation §5.3 and of melting §5.4. A non-
isobaric splitting does not seem physically relevant, so it is not studied in this work. Fi-
nally, we propose a more concrete illustration by the flooding of a coastal cave during the
rise of water and the impact on the pressure inside due to wave forcing §5.5. Unless oth-
erwise specified, the physical parameters, i.e. acceleration of gravity, density of the fluid,
polytropic parameters and the computational domain are fixed at

(5.1) g = 9.81 , ρ = 103 , s = 0 , d = 1 , m = 1.4 and Ω= [0,1] .

Assuming the units are those of the International System of Units, the physical parameter
values are approximately that of geophysical applications. Similarly, the initial pressure is
set (unless specified) to 105, which corresponds to 1atm. The numerical parameters, i.e.
penetration, regularization, CFL limiting factor, distance of regularization and Newton’s
fixed point tolerance are respectively set (unless specified) to

(5.2) λ2 = δx , κ= 1 , ω= 0.5 , D= 10−2. and σ= 10−10.

5.1. Steady states at rest. This section is devoted to the steady state at rest of the
model (2.1), (2.2), (2.3), (2.4), (2.5), (2.6), (2.7) and (2.8). For the congested shallow water
model without air pocket modeling, the steady state at rest is defined by u (t , x) = 0 and a
constant Φ such that φ (t , x) = Φ for all (t , x) ∈ R+×R, see [20]1. In the case of air pocket
modeling, the potentialΦ is not sufficient and the pressure in each pocket is also required,
while the water depth can be deduced by

h (t , x) = max

(
0,min

(
ρΦ− p̊ (t , x)

gρ
,R (t , x)

)
−B (t , x)

)

where p̊ is deduce from Pi and h by (2.4). As for the initial condition, see §2.3, it is not
trivial to define the steady state in general because of the link between the definition of
the support of each pocket and the pressure.

Let us take an example. The bottom is set at

B (t , x) = 1.5e−
∣∣ x−0.1

0.05

∣∣2

+2.5e−
∣∣ x−0.3

0.05

∣∣2

+3e−
∣∣ x−0.5

0.05

∣∣2

+21[0.6,0.8] (x)

1The potentialΦ is in fact constant per connected part of the support of h.
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FIG. 6. §5.1 Steady states at rest. Solution of the numerical strategy (3.3), (3.4), (3.7) and (3.10) initialized to
the steady state after 100 time steps.

and the roof is set at

R (t , x) = 50(x −0.4)2 −1[0.175,0.325] (x)+4e−
∣∣ x−0.3

0.05

∣∣2

+5e−
∣∣ x−0.5

0.01

∣∣2

.

We consider three air pockets with the respective pressure from left to right

P 0
1 = 105 , P 0

2 = 0 and P 0
3 = P 0

1 −2gρ.

We set here Φ = 5g and ρ = 4 · 103. The bottom and the roof are defined in such a way
that all possible cases are present, i.e. a continuous or discontinuous bottom and roof,
especially at the waterline. In this test case, we use wall boundary conditions. The other
parameters are given by (5.1) and (5.2).

At the discrete level, the steady state is not the cell average of the continuous steady
state, in part because of the pressure regularization (3.10). In practice, to initialize to the

steady state at rest, we define an approximation of the water depth h
0
k = h (0, xk ) with xk

the center of mass of the cell. This approximation coincides with the discrete steady state
in the non-congested areas; thanks to it, we can define the support of the air pockets, and
then the atmospheric pressure p̊0

k using §3.10. Finally, the water depth is initialized using

the function (3.1) by h0
k =H 0

k (Φ).
To illustrate the well balanced property of the scheme, we plot in Fig. 6 at time t = 1

with δx = 10−3, δt = 10−2 and D= 5·10−2. The time step δt and the regularization distance
D are artificially increased to obtain a better illustration. After 100 time steps, the steady
state is preserved up to the machine error, as can be clearly seen in the horizontal velocity,
although the error is larger at roof or bottom discontinuities in congested areas.

5.2. Torricelli’s experiment. This section is devoted to the numerical realization of
the Torricelli’s experiment. We consider a piston with the open part emerged and initially
at its lowest position. During the experiment, the piston gradually rises to a level where a
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FIG. 7. §5.2 Torricelli’s experiment. Torricelli’s experiments with different velocity of the piston (left column

v = 1, middle column v = 5, right column v = 10) at several times (t = 0.25l
v where l is the line number).

vacuum pocket appears. We model this experiment using a flat bottom B (t , x) = 0 and the
following roof function

R (t , x) = 5−4
(
1[0.3,0.7] (x)+ v t1[0.45,0.55] (x)

)

where v is the velocity of the piston. The water is initially at rest u0 (x) = 0 and h0 (x) =
min

(
4, H (0, x)

)
. We use open boundary conditions with the water depth at the boundary

set to h (t ,0) = h (t ,1) = 4 and the air pressure set to 105. As for the historical experiment,
we use ρ = 13·103 (approximately the density of mercury). The other parameters are given
by (5.1) and (5.2).

In Fig. 7, the numerical results with δx = 10−3 and several velocity of the piston (col-
umns) are plotted at several times (lines). In the left column, the velocity of the piston is set
to v = 1 and is slow enough that the fluid does not detach from the roof before time t = 0.7.
At this time, the piston elevation is about 0.77 above the water surface, so the weight of the
fluid inside is 105. Then the water comes off of the roof and a vacuum pocket (P = 0) ap-
pears in the piston. In the central column, the velocity of the piston is fixed at v = 5. This
velocity is high enough to create a pocket of vacuum at the beginning of the simulation,
which quickly collapse. In the right column, the velocity of the piston is fixed at v = 10. We
observe the same vacuum formation but in this case, the pocket does not collapse before
several time steps, which seems to indicate that it does not come from a coupling artifice,
but because of the inertia of the water. We observe two types of oscillations at the free
surface and in the velocity. The small and fast oscillations appear to be spurious waves
from the weak coupling strategy. They decrease in amplitude by using finer time steps.
The larger oscillations with shock fronts are the reflection of the free surface reaching the
roof inside the piston.

5.3. Analysis of the polytropic coefficient of deformation. While it can be assumed
that deformations are isothermal when sufficiently slow, especially in groundwater ap-
plications, this is not necessarily the case for engineered devices such as marine energy
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FIG. 8. §5.3 Analysis of the polytropic coefficient of deformation. Compression of a pocket with different val-
ues of the polytropic coefficient of deformation. The dashed lines are graduations where the value of the polytropic
coefficient is calculated with (5.3).

converters. We propose a simple experiment to estimate the polytropic coefficient of de-
formation d . Consider a simple piston of uniform cross-section (rectangular or circular)
initially having a position such that the elevation of the top of the piston above the fluid
is H0 and a pressure inside P0. By lowering the piston by H0 and waiting, we obtain a
new steady state where we note h̃ the height of the pocket in the piston. Assuming that
the water level and pressure outside have not changed, we can deduce that the polytropic
coefficient of deformation is

(5.3) d =
log

(
1+ gρh̃

P0

)

log(H0)− log
(
h̃
) .

Let us illustrate the experiment by reproducing it numerically. Let a flat bottom B (t , x) =
0 and a roof function given by

R (t , x) = 5−41[0.45,0.55] (x)+ (4−min(t ,1))1[0.475,0.525] (x)

The water is initially at rest u0 (x) = 0 and h0 (x) = min
(
4, H (0, x)

)
. We use open boundary

conditions with the water depth at the boundary set to h (t ,0) = h (t ,1) = 4 and the air
pressure set to 105. Except for the polytropic coefficient of deformation d which depends
on the simulations, the other parameters are given by (5.1) and (5.2).

In Fig. 8, the numerical results with δx = 2 · 10−3 and several polytropic coefficients
of deformation are plotted at time t = 2. The top left image is calculated with cd = 0, i.e.
an isobaric deformation. As expected, the pressure inside the piston remains unchanged
and the water surface is not affected by the roof motion until it reaches the water surface.
The other results are obtained with larger polytropic coefficients of deformation and are
in good agreement with the theoretical values (5.3) plotted in dotted lines. The current
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FIG. 9. §5.4 Analysis of the polytropic coefficient of merging. Merging of two pockets with different values of
the polytropic coefficient of merging (blue line m = 0,02, green line m = 20) at time t = 2 ·10−2.

configuration is well suited to estimate d ∈ [
10−2,1

]
. To estimate higher values, a lower

initial pressure P0 is preferred.

5.4. Analysis of the polytropic coefficient of merging. This section is devoted to the
analysis of the polytropic coefficient of merging m. This parameter is quite difficult to
determine in practice because the merger is a one-time event. However, we will see that
this parameter has a small, almost negligible impact.

Let a flat bottom B (t , x) = 0 and a roof function given by

R (t , x) = 5−4
(
1[0.1,0.9] (x)−1[0.15,0.85] (x)

)
.

Initially, the water is at rest and split the chamber into two pockets, namely

u0 (x) = 0 and h0 (x) = 4+1[0.4,0.6] (x) .

To break the symmetry, the pressure in the air pockets is set to P1 = P2 = 1.25 · 105 and
P3 = P4 = 105. The initial condition is drawn in Fig. 9 by the solid black line. We use wall
boundary conditions with the air pressure set to 105. Except for the polytropic coefficient
of merging m which depends on the simulations, the other parameters are given by (5.1)
and (5.2).

In Fig. 9, the solutions with δx = 5 · 10−4 at time t = 2 · 10−2 with two values of the
polytropic coefficient of merging are plotted (blue line m = 0.02, green line m = 20). The
solution without air pressure modeling [20], is also plotted in red, of which we begin the
description. The central water column falls, resulting in the formation of two shock waves,
well known from shallow water modeling. The oscillations ahead of the shock waves are
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FIG. 10. §5.5 Submerged cave. Rising water (5.4). Initial condition (left) and solution at time t = 4 ·103 (right).

artificial and due to the numerical dispersion of the CPR scheme [31]. When the entire
water column has fallen, a new tray appears in the center.

Let us now describe the solutions with air pressure modeling, which are very similar
despite the difference in the polytropic coefficient of merging. At the beginning of the sim-
ulation, i.e. before the two air pockets merge, the pressure difference breaks the symmetry
by creating a lack of water in the high pressure pocket and an excess in the low pressure
pocket. In addition, the deformation of each pocket changes the pressure inside, which
causes a variation with the pressure outside the chamber, and then an exchange of water.
When the two air pockets merge, the pressure is suddenly equalized but the water level
is not. This creates a second wave from the pocket with the lowest pressure (and with
the highest water level) to the pocket with the highest pressure (and with the lowest water
level). We also remark that the air modeling does not significantly affect the shock waves,
nor the final plateau in place of the initial water column. The air modeling does not sig-
nificantly affect the shock waves, nor the final plateau in place of the initial water column.
The oscillations at the waterline (x = 0.1, x = 0.15, x = 0.85 and x = 0.9) are due to the
numerical dispersion of the CPR scheme, while the oscillations at the center (x ∈ [0.3,0.7])
are mainly due to the weak coupling between air and water dynamics.

5.5. Submerged cave. The last test case is an illustration of a possible application of
current work to geophysical studies. We propose a simulation of a conceptual coastal cave,
as can be the Cosquer cave [14]. This test case can also be considered as an illustration of
an oscillating water column marine energy converter [6].

Let the computational domain of Ω= [0,300], the bottom and the roof being defined
by

B (t , x) = −40+ max(0,min(x −150,60))

20
and

R (t , x) = 401[0,10] (x)+
(

max(0,min(x −140,60))

20
−35

)
1[10,110] (x)+101[210,300] (x) .

The right boundary condition is an wall and the left boundary condition is open, with the
air pressure set to 105.

We first consider a situation that mimics the sea level rise at the end of the ice age.
Initially, the water is a lake at rest: u0 (x) = 0 and h0 (x) =−36−B (0, x) and the air pressure
is fixed by the boundary value. The water depth at the left boundary is defined by

(5.4) h (t ,0) = 4+min(0.01t ,36) .

Fig. 10 shows the initial condition (left picture) and the solution at time t = 4 · 103 (right
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FIG. 11. §5.5 Submerged cave. Wave impact (5.5). Pressure inside the cave during several wave periods.

picture) with δx = 5·10−1. As the water rises, an air pocket forms and compresses, resulting
in higher pressure and a lower water level in the cave.

We then examine the impact of the tide or swell on the pressure in the cave. Initially,
the water is a lake at rest u0 (x) = 0 and h0 (x) = −B (0, x) and the atmospheric pressure is
fixed at P 0

1 = P 0
2 = 105. The water depth at the left boundary is defined by

(5.5) h (t ,0) = 40+cos

(
2πt

τ

)

Fig. 11 shows the time evolution of the pressure inside the cave for several values of the pe-
riod τ simulated with δx = 2. For small periods τ< 20, the pressure is almost unchanged.
The wavelength is smaller than the cave, so the volume of the pocket inside the cave re-
mains unchanged. For a period around τ = 20, the wavelength is close to the size of the
cave. The water level inside the cave resonates with the waves, creating large pressure
variations (almost exclusively overpressure). For periods 20 < τ< 50, the interactions with
reflected waves are destructive and pressure variations remain relatively small. For long
periods 50 < τ < 70, the water has time to rise in the cave between two waves creating an
important pressure variation (overpressure and underpressure), with small dynamic ef-
fects amplifying the amplitude of the variations. For longer periods τ > 70, the dynamic
effects disappear and the amplitude of the pressure variations is constant. These results
also depend on the geometry of the cave, especially the submerged part.

6. Conclusion. In this work, the modeling and numerical resolution in the multidi-
mensional framework of the interaction between the congested shallow water model and a
polytropic air pocket dynamics are addressed. A weak coupling strategy is adopted and the
air pocket dynamics is assumed to satisfy several assumptions. These technical choices
were made for efficiency reasons. However, in very specific situations, they can lead to
irrelevant results such as a negative pressure or the disappearance of the air phase. In
addition to these difficulties, the main lock of the current strategy lies in the dry front, pro-
hibited by the CFL condition of the ImEx regime. Several other points can improve the
physics of the model, are already covered in the literature and some strategies are directly
compatible, for example the dynamics of a floating body [21], the dispersion terms [30]
and the vertical variation of the horizontal velocity [2].
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