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Abstract10

This work aims to model the mechanical consequences of different strategies used by tree branches to11

ensure their posture despite the increasing loading due to gravity. The two known strategies of a branch to12

straighten itself are the asymmetry of maturation stress, including reaction wood formation, and eccentric13

growth. Both strategies can be observed in nature and influence the stress distribution developed in the14

branch each year. This so-called growth stress reflects the mechanical state of the branch. In this work,15

a growth stress model was developed at the cross-section level in order to quantify the bio-mechanical16

impact of each strategy. For illustration, this model was applied to the branches of two 50-year-old trees,17

one softwood Pinus pinaster and one hardwood Prunus avium, both simulated with the AMAPSim finite18

element software. The model show that in hardwoods, both strategies are efficient and that the combination19

of the two is optimal. In softwoods, the model shows that eccentricity process is less efficient. Moreover,20

eccentricity process does not necessarily act as a relevant lever for postural control. However eccentricity21

process greatly modify the profile pattern of mechanic stress. This work opens exciting experimental22

perspectives in order to understand the biomechanical process involved in the building of branches.23
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Abbreviations and notations (in order of occurrence)24

NW,TW,CW Normal Wood, Tension Wood, Compression Wood
(x, y, z) Local reference system associated with the section

O Centre of the section
r, R Radii of the cross section (m)

e(R), e(R) Eccentricity at the stem radius R, integrated eccentricity up to r = R
(x′, y′, z′) Local reference system associated with the section, centred on the pith

σ Stress (MPa)
σ0 Induced maturation stress (Mpa)
S Cross section area (m2)

N, M Loads (N): normal force parallel to z′ and bending moment around y′

E Module of elasticity in L direction (GPa): MOE
µ Induced maturation strain

ϵ, a, b Deformations: strain at the center, changes in curvature around x,y
Ki Structural stiffness of the cross-section
Fi External coefficients (maturation and load)
θ Circumferential position in section (rad)

σ0(θ) Maturation strain in the new ring at circumferential position θ
α Mean maturation stress in the new ring
β Differential stress in the new ring

rx′y′ Radius of the cross section at the instant of appearance of the point (x′, y′)
λN , λM , νM , νN Load power law: allometric coefficient

λb, νb Change of curvature power law: allometric coefficient
σNW , σT W , σCW Maturation stress in the normal wood, tension wood and compression wood

−−−→
Nn ,

−−−→
Mn Loads of growth unit n: normal force and bending moment around y

Nz, Mx, My, Mz Loads of growth unit n: projection of
−−−→
Nn on −→

z and bending moment
−−−→
Mn around −→

x,
−→
y ,

−→
z

mn Mass of the growth unit n (kg)
g Acceleration of gravity: g = 9.8 m.s−2

Gn Centre of gravity of the growth unit n
Ed, Eg Green, air-dry MOE

ρ Density
µNW , µT W , µCW Maturation strain in the normal wood, tension wood and compression wood

µstrain 1/106

Dn, Dn+1 First and second diameter the growth unit n
D Deflection of a growth unit
Ln Length of the growth unit n

25

26

Introduction27

From a mechanical point of view, wood in tree fulfils three major functions: construction of the architecture,28

postural maintenance and resistance to external elements [Thibaut (2019)]. These three functions are29

provided by the way wood cells differentiate and accumulate. Each axis of a tree can be considered as an30

inclined beam, consisting of a succession of conical growth units [Barthélémy and Caraglio (2007)]. It31

is built in two steps: primary growth resulting in new growth units that increase the length of the axis;32

secondary growth resulting in thickening of already existing units by addition of annual rings. These two33

interactive and additional processes lead to a specific pattern of mechanical stress, called ’growth stress’,34

superposition of support stress and maturation stress [Archer (1976); Fournier et al. (1991a)]. The support35

stress results from the continuous increase of the weight supported by the axis over the years. It vanishes36
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near stem periphery where the recently formed wood contributes to the support of recently produced37

biomass only, and reaches maximal levels in the core of the stem. Maturation stress is set up at the end of38

the cell-wall maturation process, when molecular components such as lignin polymerise, generating growth39

forces by small dilatation or contraction restrained by the rigidity of the previously formed wood cells40

[Alméras and Clair (2016)]. An evaluation of the maturation stress can be obtained by measuring the41

strain associated to stress release at stem periphery, where no support stress is present [Nicholson (1971);42

Yoshida and Okuyama: (2002); Yang et al. (2005)]. The circumferential heterogeneity of this peripheral43

stress is needed to regulate stem curvature. In most cases, a tensile maturation stress is produced in the44

newly formed ’normal wood’ (NW). But observations on inclined trunks [Alméras et al. (2005); Coutand45

et al. (2007); Thibaut and Gril (2021)], seedlings [Hung et al. (2016)] and branches [Fisher and Stevenson46

(1981); Huang et al. (2010); Tsai et al. (2012); Hung et al. (2017)] have evidenced a clear difference47

between hardwoods and softwoods trees. Hardwoods are able to produce ’tension wood’ (TW) inducing a48

much higher tensile stress on one side, while for softwood a compressive stress is induced in ’compression49

wood’ (CW). The first pulls, the second pushes. In the most usual case of an inclined stem restoring50

vertical orientation, TW is formed on the upper side and CW on the lower; but other situations can be51

encountered depending on the biomechanical requirements of the tree [Wang et al. (2009)]. In addition to52

their participation in the postural control of tree stems, these two types of so-called ’reaction wood’ (RW)53

are characterised by a different anatomy (not discussed here) and specific physical and mechanical properties.54

55

Growth stress modelling plays an important role in the understanding of the phenomena involved in56

the orientation process of a stem. The history of biomechanical models begins with Kübler (1959) who57

proposed an analytical formulation of growth stress for a perfect cylinder made of a homogeneous and58

transversally isotropic wood. Later, Archer and Byrnes (1974) took into account an asymmetry of the59

maturation stresses, and Fournier et al. (1991a,b) proposed a semi-incremental version of these models,60

allowing to take into account a potential gradient of mechanical parameters (stiffness, maturation). By61

associating their previous model to the loading induced by the tree weight, Fournier et al. (1994) made62

the connection between growth stress and stem orientation. To understand the parameters involved in63

orientation of the stems, this model has been taken up and developed by several authors. Yamamoto64

et al. (2002) added a primary shoot and went back to curvature calculations. Alméras and Fournier (2009)65

introduced the notion of gravitropic performance (capacity of the tree to correct the bending moment66

induced by its weight) and gave criteria of long-term stability. Huang et al. (2005) and Alméras et al.67

(2005) also made the model more realistic by introducing the pith eccentricity and by introducing spatial68

heterogeneity of stiffness, which allowed them to quantify the effectiveness of eccentricity, maturation,69

stiffness gradient and inital radius in the curvature correction process. They both showed that the main70

factor in the gravitropic correction process is the distribution of the maturation stresses. Still in line71

with Fournier’s 1994 model, Alméras et al. (2018) recently developed analytical models of longitudinal72

growth stresses, taking into account different configurations, like eccentricity or maturation gradient, and73

evolution laws, like evolution of stiffness per additional layer. Finally, based on the same philosophy as74

that established by Kübler, tree-scale and finite-element models have emerged [Fourcaud et al. (2003);75

Ancelin et al. (2004)].76

77

Most of these models have been applied to trunks. Some theoretical predictions have been made on inclined78

trunks [Alméras and Fournier (2009)] and only one analytical work has been done so far on branches79

[Huang et al. (2010)]. Branches are particular axes subject to large inclinations, and some assumptions80

such as uniformity of eccentricity find their limits. The only model proposing an integration of the stress81

on the whole section, proposed by Fourcaud et al. (2003), did not take into account the eccentricity at all.82

Huang et al. (2005) and Alméras et al. (2005) have quantified the roles of maturation and eccentricity in83

the recovery process, but have not evaluated their ability to ensure an imposed growth scenario.84

In this framework, we propose a semi-incremental biomechanical model of growth stress at the cross section85
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level that takes into account the eccentricity and maturation gradients during the building of branches.86

Using the digital models of a hardwood and a softwood, the impact of each of these two straightening87

strategies on the stress state will be evaluated.88

Material and methods89

Numerical model90

General hypotheses91

The problem will is set in the framework of beam theory. From a geometrical point of view, branches92

generally show profiles that are well suited to this type of analytical framework: slender shape, no important93

diameter variations. The shape effects due to twigs and other local biological phenomena (cavity, nodes,94

etc.) are neglected. The same set of hypotheses as in Alméras et al. (2018) is adopted. In this study,95

we focus on the behaviour in the longitudinal direction (parallel to the main axis). Horizontal bending96

and torsion loads are not considered. Only the vertical bending moment (that caused by the weight) is97

considered. These initial hypotheses on the loading modes will be discussed later.98

Geometrical settings99

The object of study is the cross-section of a branch, placed within a plane locally orthogonal to the pith.100

The local reference frame of the section is (x⃗, y⃗, z⃗), with z⃗ the longitudinal direction of the axis, and x⃗101

placed in a vertical plane and facing upwards (Figure 1). The shape of the cross-section is assumed to102

be circular at any stage of development, described by the successive deposition of wood rings. The term103

of ’ring’ refers here to the volume occupied by wood cells produced by the cambium during a certain104

duration of time, not necessarily annual: it must be taken in a numerical sense. These rings possibly105

present an eccentricity resulting from asymmetry of secondary growth. Since the model only takes into106

account vertical bending, the eccentricity is set along the x axis, as expressed by the following equation:107

O(t) =
∫ R(t)

0
e(r)dr = eR(t) (1)

with O(t) the position of the geometrical centre and R(t) the radius of the section at time t, e(r) the108

eccentricity when the stem radius was r and e the integrated eccentricity up to r = R. The eccentricity109

varies in the interval [−1, 1]. A zero eccentricity corresponds to a centred section, while −1 or 1 corresponds110

to maximum eccentricity resulting from secondary growth only on the lower or the upper side of the111

section, respectively. In the following, the position x′ in the pith reference frame will be needed. By calling112

x the vertical position in the geometrical reference frame, we deduce from equation 1:113

x = x′ − eR (2)

Computation of the mechanical behaviour114

We will develop a radial incremental method. For each radial increment, the longitudinal stress is computed115

so as to satisfy the static equilibrium of the cross section:116


∫

S
δσdS +

∫
δS

σ0dS = δN∫
S

δσxdS +
∫

δS
σ0xdS = −δM

(3a)

(3b)

where S is the cross-section and δS its increment, δσ the increment of stress σ in the already formed wood,117

in response to the maturation stress σ0 generated in the new wood layer, δN and δM the increment of118
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external force N and bending moment M , respectively, applied on the cross-section. For illustration, the119

geometric situation for K rings and an increment of stem radius δR is proposed in Figure 1.120

Figure 1: Geometrical representation of a section with K numerical rings and a radial increment δR
between rings k − 1 and k.

121

The stress σ is linked to the strain ϵ by a pre-stressed Hooke law:122

σ = E (ϵ − µ) = Eϵ + σ0 (4)

with E the longitudinal Young’s modulus, µ the maturation strain and σ0 the maturation stress. In the123

context of the beam theory, the planar sections remain planar sections (Euler-Bernouilli assumption), so124

that the strain field is described by the deformation a at the centre of the pith and the curvature b relative125

to the y-axis:126

δϵ = δa + xδb (5)
where δϵ, δa, δb are the increments of ϵ, a, b, respectively. The stress increment δσ, in the already formed127

wood where no maturation occurs anymore, can then be deduced:128

δσ = Eδϵ = E(δa + xδb) (6)

From these considerations, the system (3) becomes (details of the calculation are given in Appendix A):{
K0δa + K1δb = δF0

K1δa + K2δb = δF1

(7a)
(7b)

with129

K0 = EπR2, K1 = EπeR3, K2 = EπR4
(

e2 + 1
4

)
(8)

δF0 = −
∫

δS
σ0dS + δN, δF1 = −

∫
δS

σ0xdS − δM

The calculation of the coefficients δF0 and δF1 depends on the formulation of the maturation stress. The130

maturation stress is assumed to vary circumferentially as follows:131

σ0(θ) = α + β cos θ (9)
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where the mean stress α and differential stress β are defined differently in softwood and hardwood species:
Hardwood: α = σT W + σNW

2 ; β = σT W − σNW

2
Softwood: α = σCW + σNW

2 ; β = σNW − σCW

2

(10a)

(10b)

with σT W (resp. σCW ) the maturation stress in the tension wood (resp. compression wood), and σNW the
stress in the opposite wood (normal wood). One gets :

δF0 = −πR (2α + eβ) δR + δN

δF1 = −πR2
(
3αe + e2β + β

)
δR − δM

(11a)

(11b)

From equations (8), (11a) and (11b), the components of the system (7) are known. By inversion, δα and132

δb can be obtained:133


δa = 4

ER

[(
3ee − 2e2 − 1

2

)
α −

(
e − e

4

)
β

]
δR − 4

EπR3

[
eδM +

(
e + 1

4

)
RδN

]
δb = 4

ER2

[
− (3e − 2e) α −

(
e2 − ee + 1

)
β)
]

δR − 4
EπR4 (δM + eRδN)

(12a)

(12b)

Once δa and δb are known, the stress increment δσ at any position given by (x′, y′) can be obtained from134

(6). The stress distribution at this position can be obtained as the sum of the initial maturation stress and135

all the stress increments undergone by the material point since its creation.136

σ(x′, y′, R) = σ0(x′, y′) +
K∑

k=kx′y′

δσk (13)

where δRk = rk − rk−1 for a succession of ring radii r0 = 0 < r0 < ... < rk < ... < rK = R, δσk is the137

corresponding increment, and kx′y′ designates the ring containing the point.138

Analytical formulations139

When each incremental term in expression (12b) is divided by dR and dR tends to zero, the ratio tends to140

the derivative against R, leading to (see details in Appendix B):141


da

dR
= 4

ER

[(
3ee − 2e2 − 1

2

)
α −

(
e − e

4

)
β − 1

πR2

(
e

dM

dR
+
(

e + 1
4

)
R

dN

dR

)]
db

dR
= 4

ER2

[
− (3e − 2e) α −

(
e2 − ee + 1

)
β) − 1

πR2

(dM

dR
+ eRδ

dN

dR

)] (14a)

(14b)

If the division by δR is applied to the stress σ, a function of the stem radius R and the position x′, the142

partial derivative ∂σ/∂R is obtained, so that equation (13) becomes:143

σ(x′, y′, R) = σ0(x′, y′) +
∫ R

rx′y′

∂σ

∂R
(x′, R′)dR′ (15)

by calling rx′y′ the radius of the section at the instant of appearance of the point with coordinates (x′, y′).144
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The expressions of axial force N(R) and bending moment M(R) are needed to compute the evolution of
the stress distribution in the cross section. For this purpose, we assume that they vary as a power function
of the radius. This results in the following allometric laws:{

N = λN RνN

M = λM RνM

(16a)
(16b)

with λN,M and νN,M allometric coefficients. The λ−coefficients are directly proportional to the weight145

supported by the cross section, either that of the branch itself or that of axes of higher orders. The146

ν−coefficients express the kinetics of the secondary growth: a small ν refers to an early secondary growth,147

a higher one to a later diameter increase.148

149

The calculation of σ requires also the knowledge of the curvature rate db

dr
. In most of the cases we will

assume the stationarity of the branch orientation. This results in db

dr
= 0 and the fact that the branch

balances its weight increment at every deposition of a new wood layer. However, we can consider two cases
for which the branch does not build up in a stationary way: passive bending (under its own weight), and
up-righting (the action of maturation is stronger than the additional weight). In both cases, the change in
curvature has been calculated by Alméras and Fournier (2009) and Alméras et al. (2018) as follows:

Up-righting: db

dr
= −4 β

Er2

Passive bending: db

dr
= 4λM νM

Eπ
rνM −5

(17a)

(17b)

For the calculation, we will then take a general law:150

db

dr
= λbr

νb (18)

Combining (14),(15),(16) and (18), the total stress can then be computedd as (detail in Appendix C):151

σi(x′, y′, R) = σi
0(x′, y′) + S1 ln

(
R

rx′y′

)
+ S2

S3

(
RS2 − rS2

x′y′

)
+ S4

S5

(
RS5 − rS5

x′y′

)
+ S6

S7

(
RS7 − rS7

x′y′

)
x′ (19)

where S1 = −2α + βe is driven by the maturation process, S2 = λN νN
π and S3 = νN − 2 by branch loading152

(geometric evolution of the branch), S4 = −Eeλb and S5 = νb + 2 by the orientation of the branch when153

eccentricity occurs, S6 = Eλb and S7 = νb + 1 by the orientation of the branch.154

For each radius r, the remaining unknowns are the mean stress α, the differential stress β and the155

eccentricity e. Equation (14b) can be rewritten as:156

(3e − 2e) α +
(
e2 − ee + 1

)
β = −1

πr2

(
dM

dR
+ eR

dN

dR

)
− E

R2

4
db

dR
(20)

Thus by fixing two parameters, the third is directly determined. The maturation parameters α and β being157

determined by the maturation stress in normal wood σNW and reaction wood σT W or σCW according to158

(10), these parameters will be managed.159

We will consider two possible configurations for the simulations in next section:160
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1. First, we apply a constant eccentricity (so that e = e) and we fix the stress level in the normal wood.
In that case, the maturation stress of the reaction wood is given by equations (10):

σT W = −2
πr2(1 + e)

(
dM

dr
+ er

dN

dr

)
+ σNW

(1 − e

1 + e

)
+ λb

(
Er2

2(1 + e)

)
rνb

σCW = 2
πr2(1 − e)

(
dM

dr
+ eR

dN

dr

)
+ σNW

(1 + e

1 − e

)
− λb

(
Er2

2(1 − e)

)
rνb

(21a)

(21b)

2. Second, we fix the maturation parameters and we observe how the branch straighten, or not, just by161

varying the eccentricity of the secondary growth. In this configuration, equation 14b becomes a two162

degree equation in e that can be solved numerically.163

In these two configurations, using data on the support allometries λN , λM , νM , νN we can calculate the164

stress in the reaction wood and/or the eccentricity with different (λb, νb), then deduce the growth stress165

profile in the section (eq. 19). In the next part, we will see how the allometric coefficients can be obtained166

from realistic growth data.167

Realistic growth data168

Tree material169

Numerical experiments were carried out using two reference models: one softwood Pinus Pinaster and170

one hardwood Prunus avium (Fig 2). Both their architectures follow Rauh’s model, meaning that the171

branching is rythmic, the axes monopodial and the branches orthotropic [Hallé et al. (1978)]. The digital172

trees were computed with AMAPSim software [Barczi et al. (2007)]. Architectural parameters were173

obtained by observations and field studies: Coudurier et al. (1993) and Heuret et al. (2006) for Pinus174

pinaster, Caraglio (1996) and Barthélémy et al. (2009) for Prunus avium.175

(a) (b)

Figure 2: AMAPSim representation of aerial architecture of 50 year old birch (a) and pine (b) tree.
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Loading scenarii: allometric laws176

The tree is composed of axes organised hierarchically according to their order: 1 for the tree seed, 2 for177

the trunk, 3 for the main branches, 4 for those attached to them, and so on. Each axis is described178

as a succession of growth units (GU), which are sections of cones, identified by a number (in order of179

appearance), and defined by a parent number, an order, a start and end diameter, the coordinates of180

the centres of both initial and final sections as well as their length (Fig 3). Note that the description181

provided by AmapSim does not include the internal structure of the growth units, such as eccentricity. To182

avoid unnecessary complications, the coordinate of the centres will be taken as those of the pith. From the183

model data, moments and normal force in each growth unit at any time of the tree’s existence can be184

computed. Each unit is subjected, in addition to a part of its own weight, to that of its offsprings - this185

term referring to any growth unit that would fall if the studied one was cut. The normal force
−−−→
Nn and186

bending moment
−−−→
Mn supported by the growth unit n can be written:187

−−−→
Nn = 1

2mn
−→
g +

∑
k≻n

k offspring

mk
−→
g (22)

188
−−−→
Mn =

−−−−−−→
GnG′

n ∧
(1

2mn
−→
g

)
+

∑
k≻n

k children

−−−−−−→
GnGk ∧ (mk

−→
g ) (23)

with Gn the centre of gravity of the current growth unit, G′
n that of is second half, on the downstream189

side of Gn, Gk that of an offpring of number k > n, mi the mass of growth unit i and −→
g the gravity vector.190

Once
−−−→
Nn and

−−−→
Mn are calculated, in the absolute coordinates used for the description of the whole tree,191

they are projected in the local coordinate system (x⃗′, y⃗′, z⃗), with z⃗ of the chosen cross section. In the192

following, in accordance with the development of the previous section, Nz will refer to the projection of
−→
N193

on z⃗ and My to that of
−−→
M on y⃗′.194

Power law regressions were performed to recover the allometric coefficients λM , λN , νN , νM . A summary195

of the analysis process is proposed in Figure 3.196

Branches need to have a long loading history to exhibit interesting stress profiles. Thus, only branches197

of order 3 (attached to the trunk) and older than 15 (resp. 17) years were selected in Pinus pinaster198

(resp. Prunus avium). Finally, 64 axes for pine and 65 for cherry wood were identified. The distribution of199

all allometric coefficients, for the growth unit closest to the trunk, are presented in Figure 4. In Pinus,200

there is a large variation in ν−coefficient, with νM varying by almost a factor 2 in the studied sample,201

indicating very variable secondary growth kinetics. In Prunus, the range of variation of the allometric202

power coefficients is smaller, which depicts a higher homogeneity of secondary growth kinetics. For both203

species, a great diversity in λ− coefficients is observed, which depicts a significant variability in the loading204

history. This is particularly interesting as the branches show geometric determinants that do not vary205

over large ranges. For example, the radii of the axes considered in Pinus vary by only 1.5 cm between206

the smallest and largest axis, while the length varies by 20% between the shortest and longest axes. This207

reflects the complexity of predicting the loading of a branch from the determinants of the main axis, and208

shows the importance of branching. In both cases, these variations in the λ−coefficients result in a factor209

of 4 in the bending load between the lightly loaded and the heavily loaded branches.210

The average values of each allometric and final geometry, indicated in table 1, will be used for the211

simulations.212

Material data and stem orientation213

The stress values in the normal wood were fixed according to the average maturation strains advised by214

Thibaut and Gril (2021). Similarly, the green wood MOE were given by the correlation between dry and215
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(a)

(b)

(c)

Figure 3: Prunus avium. Allometric law. From the geometry of the modeled branche a) and b), the
bending moment is calculated. Graph c), The relationship between the branch diameter and the bending
moment is plotted. The computation of the fitted curve provides the allometric law.

(a)

(b)

Figure 4: Statistical distribution of allometric coefficients for modelled branches: (a) Pinus branches over
15 years old; (b) Prunus branches over 17 years old. λM,N refers to the weight, νM,N to the kinetic of
secondary growth.

green MOE identified by Thibaut and Gril (2021): Eg = 0.89 ∗ Ed. Dry MOE were provided by the tropix216

database of CIRAD [Gérard et al. (2011)]. The density of green wood was approximated by the density of217

water ρ = 1000 kg.m−3. These inputs are summarised in Table 1.218

In the following section, the case of stationary growth (νb = 0) will be considered principally and analysed219

thoroughly. Situations of changing curvature will be then considered briefly.220
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Species λM (N.m−νM ) λN (N.m−νN ) νM νN r (cm) µNW (µstrain) Ed (GPa) Eg (GPa)
Pinus pinae -6.4e6 5e4 3.2 2.5 5 410 8.8 7.9

Prunus avium -2.6e7 9.5e3 3.6 2.7 8 712 10.2 9.1
222

Table 1: Mean input characteristics of the branches

Results and discussion223

Prunus avium: heavily loaded hardwood224

Several postural control scenarii have been computed. First, the ability of the branch to maintain its225

orientation through RW formation only (Fig 5.a-c) or secondary growth eccentricity only (Fig 5.d-f) is226

evaluated. Then, combinations of these strategies is proposed (Fig 6): for each combination, one parameter227

(growth eccentricity or maturation) is assumed to be uniform throughout the growth of the branch, while228

the other is assumed to be the driver of orientation control.229

(a) (b) (c)

(d) (e) (f)

Figure 5: Prunus avium: Horizontal orientation maintained by the two different drivers: a-c) maturation
stress and d-f) eccentricity. Different types of representation are proposed: a) (resp. d)) 2D visualisation
of the growth stress (resp. eccentricity) in the whole section. b) and e) Growth stress profile on the line
y=0. c) and f) Parametric representation of the tropic driver: maturation stress and eccentricity.

230

Both strategies alone (Fig.5) lead to realistic orders of magnitude (except near the pith, which is an intrinsic231

limit of our model; this specific point is discussed in section Limits of the model). Across the chosen232

combinations, no single strategy seems to be more efficient than the other. For example, eccentricity alone233

(5.a-c and 6.b, solid line) may be sufficient to maintain the branch orientation while keeping a sufficient234

mechanical safety margin (max(e) = 0.6). In comparison, with zero eccentricity (Fig.6.a, dashed line),235

TW alone leads to a tensile strain µRW ≈ 2140µstrain (σT W ≈ 19.5 MPa), also far from limits observed in236

literature [Huang et al. (2005); Thibaut and Gril (2021)]. Moreover, eccentricity and deformation in TW237

acts as an optimisation of branch control and resistance to breakage: promoting epitrophic eccentricity238

(more radial growth on the upper side) allows less tension in TW: the more space eccentricity leaves to239
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TW, the lower the stress in it. Interestingly, the worst case (hypotrophic eccentricity, more radial growth240

on the lower side, solid line in Fig 6.a) leads to orders of magnitude that are on the border of limits,241

but observable: µRW ≈ 4970µstrain (σT W ≈ 45.4 MPa). Note that although for softwoods, there is a242

consensus on the eccentricity orientation (hypotrophic) for tropism responses [Timell (1986)], hardwood243

species can show eccentricities in both directions [Kucera and Philipson (1977); Wang et al. (2009); Tsai244

et al. (2012)]. The hypotrophic eccentricity (Fig 6.a) is obviously not motivated by an optimisation of245

postural control, suggesting the existence of trade-offs with other vital functions.246

Even if the observation is the same (epitrophic eccentricity lead to less intense TW), graphs 6.b (dashed247

and dotted lines) show profiles that have higher safety margins than those in Figure 6.a. When combined,248

it seems more efficient to vary the eccentricity and keep a constant difference of maturation stress than249

to keep a uniform eccentricity and to vary the maturation stress. To date, there is no study that has250

attempted to investigate the variations in space and time of the eccentricity in the branches. This is a251

very interesting perspective to understand the interaction between eccentricity, maturation and postural252

control of inclined axes.253

(a)

(b)

Figure 6: Illustration of different straightening strategies: (a) constant eccentricity, the maturation is the
main driver of postural control; (b)constant difference of maturation stress, the eccentricity is the main
driver of postural control.

Pinus pinaster: lightly loaded softwood254

Similarly, for Pinus pinaster, we compare the ability of maturation process alone (Fig 7.a-c) and growth255

eccentricity alone (Fig 7.d-f) to maintain a constant orientation, then study the combination of these256

processes (Figure 8). Note that the average bending moment due to weight is much higher for birch257

tree, by a factor roughly 10, than for pine (see λM and λN in Table 1). This may explain why the258
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(a) (b) (c)

(d) (e) (f)

Figure 7: Pinus pinaster : Horizontal orientation maintained by the two different drivers: a-c) maturation
stress and d-f) eccentricity. Different types of representation are proposed: a) (resp. d)) 2D visualisation
of the growth stress (resp. eccentricity) in the whole section. b) and e) Growth stress profile on the line
y=0. c) and f) Parametric representation of the tropic driver: maturation stress and eccentricity.

straightening drivers are much less triggered in the case of this pine. Moreover, in the current model259

the Young’s modulus is supposed to be uniform in the whole cross section. While this hypothesis does260

not have much impact on the stress profiles for hardwoods, where both TW and NW produce tensile261

stress and the difference of Young’s moduli is moderate, it modifies the results for softwoods much more.262

Indeed, although CW of softwoods is typically denser than NW, due to the higher inclination of cellulose263

microfibrils, its Young’s modulus is often much lower. This explains for a part the commonly observed264

association of CW production with eccentric growth. This is an important limitation of the proposed265

formulation and will have to be kept in mind when discussing the results.266

The analysis of each strategy alone (maturation: Fig 7.a-c and Fig.8.a dashed line; eccentricity: Fig 7.d-f267

and Fig.8.b solid line) suggests that maturation is more efficient than eccentricity. To ensure the same268

growth scenario, the eccentricity alone rises to about 0.8, which is not far from a limit value, whereas269

maturation alone leads to low maturation strains in CW (<500 µstrain, corresponding to 4 MPa). Besides,270

this eccentricity is not in the direction of what is commonly observed. This point remains logical, because271

without CW, the epitrophic eccentricity leads to shifting the bending centre upward to limit the bending272

moment load. Finding an eccentricity opposite to the usual one observed is therefore quite plausible. In273

fact, the eccentricity in the early stages of development generates a coordination problem, especially for274

softwoods. For hardwoods, the simultaneous building of TW and eccentricity is not an issue, whereas275

building a hypotrophic growth pattern without CW is not efficient for softwoods.276

In case of combined effects, although eccentricity alone ensures stationarity, it does not succeed anymore277

when combined to a uniform maturation (red dotted line in Fig. 8.b). For the chosen parameters, this278

means that if the maturation strain was higher than -180 µstrain (σCW ≈ 1.4 MPa, black dotted line in279

Fig. 8.b) the branch could not ensure its orientation using the eccentricity process only. As said before,280

the early stages of development in softwood seems to generate coordination problem. Finally, varying the281

eccentricity while keeping the maturation stress constant seems to be an irrelevant biomechanical strategy282

for the branch. Beyond this result, one can also wonder if this case was realistic: to what extent are there283
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(a)

(b)

Figure 8: Illustration of different straightening strategies: (a) constant eccentricity, the maturation is the
main driver of postural control; (b): constant maturation gradient, the eccentricity is the main driver of
postural control.

constant maturation constraints throughout the growth of the branches? But if these situations do really284

exist, then eccentricity clearly does not have a crucial role in maintaining postural control.285

For the other combined effects, the eccentricity does not bring much change in the value of the maturation286

stress (Fig. 8.a). However, it does not contribute to postural straightening as we initially expected. Indeed,287

CW associated with hypotrophic growth shows higher maturation strains than that of epitrophic growth.288

This situation occurs when NW has a higher absolute stress than CW. This can be the case for lightly289

loaded branches. The hypotrophic eccentricity increases CW effect, but decreases NW effect by the same290

amount. If the NW stress is greater in absolute value than in CW, then the branch, in relation to the291

straightening requirement, loses more bending moment on the NW side than it gains on the CW side.292

In this case, any gradient of hypotrophic eccentricity means geometrical loss of NW action and must be293

compensated by an increase in CW stress. Note that "standard" CW has a higher absolute maturation294

stress than NW [Thibaut and Gril (2021)]. This situation is illustrated in figure 9. To have a sufficiently295

large load, the allometric laws of the heaviest branch of the pine has been used and the final radius296

has been set at 8 cm (the same as the average value in the cherry tree). This lead to higher levels of297

compression. In this case, the hypotrophy of the eccentricity was well associated with a decrease in CW298

intensity. A very interesting question is "why do real branches build CW in cases similar to those we299

simulated?" A seductive explanation could be the optimisation of the residual strength of wood: CW is300

known to have better compressive strength conferred by its high lignin content and cell wall structure. To301

answer this question correctly, it would be necessary to build a fracture model and to include it to our302

stress computation model. For example, adding an damage-elastoplastic law would allow to study the303

14



effects of stress relaxation and to understand how some profiles that are not optimal for straightening can304

possibly be optimal for resisting breakage.305

Figure 9: Stress distribution in a the heaviest branch of (Pinus pinaster). Different constant eccentricities
were imposed (-0.5 for the dotted line, 0 for the dashed and 0.5 for the solid one).

Moreover, although the eccentricity process does not play a major role on the evolution of the maturation306

stress (Fig.8.a.ii), it considerably modifies the shape of the resulting stress profiles (Fig.8.a.i). Indeed, these307

profiles can become ’crenellated’ (Fig.8.a.i, dashed curve for zero eccentricity, dotted curve for e = 0.5) or308

include tension at the pith (solid curve). These two particular patterns are represented in the whole section309

in Fig. 10. It seems that before producing tension at the pith, an optimal configuration can be reached for310

one specific eccentricity: all the material below the pith ’pushes’ the branch and all the material below the311

pith ’pulls’ it. Ideally, this may be what each branch should tend to do. These results about the branches312

mechanical strategies should be compared with experimental measurements.313

(a) ’Crenellated’ pattern (b) Pattern with traction near the pith

Figure 10: Spatial distribution of stress in two particular cases in Pinus pinaster. a): Case of a uniform
epitrophic eccentricity : e = −0.5 b). Case of a uniform hypotrophic eccentricity e = 0.5. Other input
parameters are the same as in Fig 8.

Influence of the orientation of the branch: the stationary hypothesis314

In order to evaluate the relevance of the stationarity hypothesis, different growth scenarios are considered.315

For each branch, the case of active straightening or passive bending is modelled. Passive bending is driven316

by increasing weight. Up-righting is driven by the maturation gradient, which is set at 400 µstrain (σ ≈ 3.2317

MPa)for pine and 700 µstrain (σ ≈ 6.2 MPa) for birch tree (the gradient is of the order of magnitude318
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of NW stress). The results are shown in Figure 11. In birch, no major change of the stress pattern is319

observed. In contrast, the pattern changes greatly for pine. For a passive-bending branch, a ’V’ profile320

and the absence of CW are observed . For straightening, the previously-mentioned profile with tension321

at the pith is observed. In both cases, the orders of magnitude are compatible with a mechanical safety322

margin for the branches. Apart from modified tropisms (change of light environment, weight change by323

loss of part of the branch, etc.), the maintaining of the orientation is quite common for real branches. The324

simulations suggest, however, that if for any reason they need to modify their orientation, they can do it325

without taking too much mechanical risk. The hypothesis of branch direction stationarity is totally in326

accordance with the long term mechanical requirements needed during the building of branches.327

(a) Prunus (b) Pinus

Figure 11: Distribution of growth stresses for different orientation scenarios.

About the hypothesis of the preponderance of the vertical bending moment over the horizontal328

bending and torsion moments329

One of the initial hypothesis of our model was that the vertical bending moment (My in our formalism)330

prevails over the torsional moment Mz and horizontal bending moment Mx. This allowed to consider only331

one direction of eccentricity and to avoid all the non-linear terms generated by the torsional components.332

We evaluated the maximum values of the three moments for all modeled branches of each species for333

comparison purpose. The results are presented in figure 12. They enlighten that for every comparison,334

the vertical moment shows much higher values than the torsional and horizontal bending moments and335

validates our initial hypothesis.336

(a) Pinus (b) Prunus

Figure 12: Comparison of maximum moments for modeled branches. Mx: horizontal moment; My:
vertical moment; Mz: torsional moment.
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Limits of the model337

The evaluation of the stress during the first stages of stem development is an issue of the model. In almost338

every stress profiles, at the pith a tension or compression peak is obtained, generally exceeding wood339

strength, which is not compatible with branch sustainability. This point could be corrected in two ways.340

First, the role of the bark could be taken into account. Its mechanical role for small axes has already341

been studied and its importance in postural straightening was clearly highlighted [Clair et al. (2019);342

Ghislain et al. (2019)]. Our model could include the mechanical action of bark in the early stages of343

branch development. This improvement would require additional data about the mechanical behaviour of344

the bark but would bring more realistic stress predictions and limit the artefacts at the pith. A second345

exciting perspective would be to take into account the elastoplastic behaviour of wood. By imposing a346

realistic plastic strain limit, the peak at the pith would then disappear; and the increments would be347

spread over the middle part of the section, thus modifying the odd pattern observed in figure 10.348

A another limit is the hypothesis about wood stiffness. It is particularly unfavourable for softwoods,349

because it reinforces some geometric phenomena (see the one in Fig.8.a.i). In this context, it would be350

very interesting to evaluate the potential link between eccentricity and modulus variations. If the latter is351

established, the eccentricity that we would impose with the model would serve to compensate or amplify352

the effect of the tension wood. However, it remains unclear whether or not this would explain the limited353

action available to the branch in the case of a constant maturation stress.354

Conclusion and perspectives355

A semi-analytical growth stress model has been developed a in the context of branch development. At each356

radius increment, the stress balance is computed in order to fit with a given curvature. A first novelty of357

this model is that it takes into account the role of the eccentricity variation in time. A second contribution358

is that it computes the stress distribution in the whole cross-section. It has been applied to test the359

effectiveness of two well-known biomechanical strategies of woody plants to control the orientation of their360

stem: secondary growth eccentricity and reaction wood formation. The case of softwood and hardwood361

branches were computed using digital data provided by AMAPSim software. For hardwood, growth stress362

simulations show that both strategies are efficient to maintain a given orientation, although eccentricity is363

more so than the generation of maturation gradients. On the contrary, in the case of softwood, reaction364

wood formation appears to be more efficient than eccentric growth. Obviously, in all cases, the combination365

of both processes yields very high stress levels that are able to keep the branch straight or modify its366

orientation. Few strategies, such as forming reaction wood uniformly over time while allowing eccentric367

growth, are not optimal to maintain the orientation. However, since growth eccentricity does not play a368

major role in straightening capabilities, it does not influence much the shape of the stress profiles. Few odd369

and critical profiles "in crenelated" or "with traction" near the pith have been identified. Their analysis370

provides very exciting perspectives for further experimental works in order to get real data. Finally, for371

lightly loaded softwood branches, the eccentric growth plays a minor role in straightening. The model is372

limited in terms of predicting capacity because of the lack of experimental data.373

Now that a complete model is available, it becomes crucial to start experimental investigations in order374

to compare the outputs with real in situ observations. Especially, we need to evaluate the relevance of375

the different scenarii (constant gradient, constant eccentricity). The question of the relevance of the376

stationarity of the branch’s trajectory hypothesis has been also established. In particular, we have shown377

that the branch could deviate from a stationary trajectory without limiting its mechanical strength too378

much.379

A key point for understanding branch sizing is the question of biomass costs. Building additional wood380

on one side or forming reaction wood are carbon sinks with possible trade-offs. One perspective of work381

would be to affect a cost to the production of reaction wood as well as to eccentric growth. The resulting382
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computations could then help to understand the choice of some strategies over others and would lead to383

coupling the biomechanical point of view to other biological considerations.384
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Appendix A497

The calculation of integrals of the system 3 needs some preliminary elements. The situation of two498

consecutive rings is represented in figure 13. Each position x in the geometrical reference frame is expressed499

with respect to the position x′ in the pith reference frame according to the equation:500

x = r cos θ = x′ − eR (24)

with r the radius at time t and R the radius at the final time.

Figure 13: Representation of two consecutive rings and the elements needed to calculate δR(θ)
501

Then, the integrals of the system 3 are computed as follows:502

∫
s

δσds =
∫

s
E [δa + (x + e.R)δb] rδrdθ

= EπR2 (δa + e.Rδb)∫
s

x′δσds =
∫

s
[δa + (x + e.R)δb] [x + e.R] rδrdθ

= EπR3
[
eδa + R

(
e2 + 1

4

)
δb

]

The tangential distribution of the radius increment δR(θ) are required in order to compute the terms of
maturation. The Figure 13, enlighten that

−−−−→
OM +

−−−−−→
MO′ =

−−−−→
OO′ :{

[R + δR(θ)] cos θ − (R + δR) cos (θ + δθ) = eRδR

[R + δR(θ)] sin θ − (R + δR) sin (θ + δθ) = 0
(25a)
(25b)

By setting δθ → 0, it comes:503

{
cos (θ + δθ) = cos θ − sin θδθ

sin (θ + δθ) = sin θ + cos θδθ

(26a)
(26b)
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Substituting 26 into 25, and using the combination 25a.cos θ + 25b.sin θ, δR(θ) can finally be written as:504

δR(θ) = δR [1 + eR cos θ] (27)

Then: ∫
δs

σi
0ds =

∫
δs

σi
0(θ)RδR(θ)dθ

=
∫

δs
[α + β cos θ] [1 + e cos θ] RδR(θ)dθ

= π (2α + eβ) RδR∫
δs

x′σi
0ds =

∫
δs

σi
0(θ)(x + e.R)RδR(θ)dθ

= R2δRπ
(
3αe + βe2 + β

)

Appendix B505

The matrix system 7 becomes: 
δa = δF0K2 − δF1K1

K0K2 − K2
1

δb = δF0K1 − δF1K0
K2

1 − K0K2

(28a)

(28b)

Then, numerators and denominators are calculated separately:506

K0K2 − K2
1 = E2π2R6

(
e2 + 1

4

)
− E2π2R6e2 =

(
EπR3)2

4

δF0K2 − δF1K1 = Eπ2R5
[
− (2α + eβ)

(
e2 + 1

4

)
+ e

(
3αe + βe2 + β

)]
δR + EπR3

[
RδN

(
e2 + 1

4

)
− eδM

]
= Eπ2R5

[
α

(
3ee − 2e2 − 1

2

)
+ β

(
e − e

4

)]
δR + EπR3

[
RδN

(
e2 + 1

4

)
− eδM

]

δF0K1 − δF1K0 = Eπ2R4
[
−e (2α + eβ) +

(
3αe + e2β + β

)]
δR + EπR2 [eRδN − δM ]

= Eπ2R4
[
α (3e − 2e) + β

(
1 + e2 − ee

)]
δR + EπR2 [eRδN − δM ]

Putting the calculations together, system 28 becomes:
δa = 4

ER

[
α

(
3ee − 2e2 − 1

2

)
+ β

(
e − e

4

)]
δR + 4

EπR3

[
RδN

(
e2 + 1

4

)
− eδM

]
δb = 4

ER2

[
α (3e − 2e) + β

(
1 + e2 − ee

)]
δR + 4

EπR4 [eRδN − δM ]
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Appendix C507

The following calculus is based on Figure 3.b). To get the vertical bending moment My of unit n (eq 23),508

one need the calculation of each volume Vn and center of gravity Gn. Lets fix D(z) the deflection of the509

cone. It comes:510

Vn =
∫ Ln

0

πD(z)2

4 dz (30)

where D(z) = Dn +
(

Dn+1−Dn

Ln

)
z. One gives511

OnGn = 1
Vn

∫ Ln

0

πD(z)2

4 zdz (31)

Setting γ = Dn+1−Dn

Dn
and ξ = Ln

z , the equation 30 and 31 then become:

Vn = πD2
nLn

4

∫ 1

0
(1 + γξ)2 dξ = πD2

nLn

4 .

(
1 + γ + γ2

3

)

OnGn = 1
Vn

πD2
nL2

n

4 .

(
1
2 + 2γ

3 + γ2

4

)
So, finally, OnGn can be written:512

OnGn = Ln

2

(
1 + 4

3γ + 1
2γ2

1 + γ + 1
3γ2

)
(32)
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