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Analysis of the impact of variable speed limits on
environmental sustainability and traffic performance

in urban networks
Bassel Othman, Giovanni De Nunzio, Domenico Di Domenico, and Carlos Canudas-de-Wit

Abstract—This work focuses on evaluating the potential of vari-
able speed limits (VSLs) in a synthetic urban network to improve
both environmental sustainability and traffic performance. The
traffic system is modeled using the microscopic traffic simulator
SUMO, and a physical fuel consumption and NOx emission model
is used to assess the vehicles’ energy efficiency. Speed limits are
controlled through a nonlinear model predictive control (NMPC)
approach, in which the traffic evolution and fuel consumption are
respectively predicted with a macroscopic traffic model, namely
the cell transmission model (CTM), and a pre-calibrated artificial
neural network (ANN). The results reveal that in transient phases
between different levels of congestion, the proposed eco-VSL
controller is faster to decongest the network, resulting in an
improvement of the environmental sustainability and the traffic
performance both in the controlled network, and at its boundary
roads.

Index Terms—Variable Speed Limits, Energy efficiency, Pol-
lutant emissions, Traffic modeling, Model Predictive Control,
Artificial Neural Networks

I. INTRODUCTION

The current acceleration of environmental degradations is
partly due to the transportation sector. In cities, pollutant
emissions are of particular concern as they have been asso-
ciated with an increased rate of death from cardiovascular
and respiratory causes [1], [2]. Authorities seek innovative
approaches to address these environmental and health issues.
One lever is traffic eco-management, i.e. the dynamic control
of vehicles and/or urban infrastructures to reduce air pollution
[3]. The benefits of traffic management approaches on the envi-
ronmental sustainability can be greatly increased thanks to the
technological resources offered by connected and automated
vehicles (CAVs). They widen the scope of possibilities in
terms of rerouting, green priority, speed advice at intersections,
cooperative control, vehicle platooning, etc. [4], [5].

Vehicles’ control consists mainly in strategies of eco-
driving, i.e. computing a vehicle speed trajectory that mini-
mizes emissions and energy consumption along a given route,
and eco-routing, i.e. planning a minimum energy and emis-
sions route [6]–[8]. The control of infrastructures corresponds
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essentially to ramp metering [9], [10], traffic light signals
(TLS) control [11]–[13], and variable speed limits (VSLs). The
effect of lower constant speed limits on energy efficiency has
been investigated in the literature [14], [15]. VSLs go further
and dynamically adapt speed limits to traffic conditions in
order to resolve traffic breakdown, and improve safety, traffic
throughput, and environmental sustainability. They are based
on reinforcement learning [16], receding horizon optimization
[17], etc. VSLs have been largely investigated in highways
[18], [19], and some of these works focus on the ecological
aspect of the problem [20]–[22]. However, these approaches
are much less common in urban networks [17], [23], [24],
especially when considering energy efficiency optimization
[25]–[27].

It is essential to keep in mind that the potential of VSLs
has been questioned in the literature because of bottlenecks,
weaving sections, on/off ramps, lane drops, drivers prone to
traffic violation, etc. [28], especially since the the impact of
VSLs on traffic has not been sufficiently analyzed with real
data [29].

This study presents an eco-VSL controller aimed at im-
proving the environmental sustainability as well as the fluidity
of road traffic in an urban environment. A synthetic urban
network with signalized intersections and regulated turning
movements is used. We assume that vehicles have real time
access to the speed limits through adaptive traffic signs or
Infrastructure-to-Vehicle (I2V) communication. Also, each ve-
hicle is considered to be scrupulously respectful of speed
limits.

In this work, traffic is modeled using the microscopic
simulator SUMO, and a nonlinear model predictive control
(NMPC) framework is implemented to regulate speed limits
in the network. The eco-VSL controller predicts the evolution
of traffic in the microscopic simulator with a macroscopic
traffic model, namely the cell transmission model (CTM),
adapted to the urban environment. Similarly, a macroscopic
energy model based on an artificial neural network (ANN)
is calibrated in order to predict fuel consumption levels.
Finally, a microscopic physical energy model is introduced to
evaluate the traffic energy efficiency and NOx emissions level.
Different scenarios are analyzed to evaluate the behavior of
the controller under various traffic situations. Its performance
is evaluated by comparing the resulting traffic situation with
baseline 30 km/h and 50 km/h speed limits simulations.

The contributions of this paper are summarized as follows:
• This study proposes a VSL control strategy in an urban
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road network with a direct consideration of the effects of
control outside the controlled area.

• Relevant microscopic and macroscopic traffic models
have been adapted to the needs of the study and calibrated
using real-world driving data.

• An ANN adapted to the proposed strategy has been
calibrated to approximate the results of the microscopic
energy model.

• To the best of our knowledge, the potential of large-scale
VSLs in an urban environment with explicit ecological
considerations has not been investigated in the literature.

The body of this paper is organized as follows. Section II
presents the traffic models used in the microscopic simulator
and for the macroscopic traffic prediction. The fuel consump-
tion and NOx emission models are introduced in Section III.
The online VSL control strategy is described in Section IV,
and its performance is analyzed in Section V. Finally, Sec-
tion VI contains concluding remarks and a discussion on future
perspectives.

II. TRAFFIC MODELS

This section presents the microscopic traffic model consid-
ered in the system, as well as the macroscopic one used for
prediction purposes.

A. Microscopic traffic model

The plant dynamics is governed by the microscopic car-
following intelligent driver model (IDM) introduced in [30],
which is one of the most reliable microscopic traffic models
[31]. All simulations are performed in the open source traffic
simulator SUMO [32]. The drivers’ decision to accelerate or
to brake depends on their own speed and on the position and
speed of the leading vehicle immediately ahead. We assume
that all vehicles are identical, and their length is denoted lveh.
The model notations are illustrated in Fig. 1.

following vehicle (f ) leading vehicle (l)
xf (k) xl(k)

vf (k) vl(k)

sl→f (k) lvehlveh

Fig. 1: Representation of the car-following model paramaters.

At time step k, the IDM calculates the acceleration af (k)
of a following vehicle f in position xf (k) traveling at speed
vf (k) behind a leading vehicle l in xl(k) traveling at vl(k),
using the following ordinary differential equation

af (k) = a

[
1−

(
vf (k)

v0

)δ
−
(
s∗l→f (k)

sl→f (k)

)2
]

(1)

where δt, δ, and v0 are respectively the time step duration, the
acceleration exponent, and the desired speed. The variables
sl→f (k) and s∗l→f (k) denote respectively the current and
desired distance between vehicles l and f , defined as

sveh(k) = xveh
p−1(k)− xveh

p (k)− lveh (2)

s∗l→f (k) = s0 + max

{
0, hvf (k) +

vf (k)∆vl→f (k)

2
√
ab

}
(3)

where ∆vl→f (k) is the speed difference between vehicles
f and l. Parameters s0, h, a, and b denote respectively
the minimum gap at complete standstill, the time headway,
the maximum acceleration, and the comfortable deceleration.
Their calibration is detailed in [33] and the values obtained
are given in Table I.

Symbol Description Value Unit

a Maximum acceleration 2.4 m/s2

b Comfortable deceleration 2.8 m/s2
s0 Minimum distance between vehicles 2 m
v0 Desired speed (control variable) u m/s
δ Acceleration exponent 4 –
h Time headway 1 s

TABLE I: IDM calibrated parameters.

B. Macroscopic traffic model

Due to their reduced computational burden, macroscopic
traffic models are useful for predicting traffic evolution. How-
ever, they do not capture all traffic disruptions, such as stop-
and-go waves or traffic breakdowns that result from drivers’
behavior [25]. Among them, higher-order models are the most
precise under certain traffic conditions, such as jam waves
[34], and they estimate the average traffic speed more pre-
cisely. However, they are more complex, and first-order models
are generally sufficient in urban environments as nonlinear
flow dynamics are of less importance because of intersections
and TLS [35]. As a result, first-order models have been widely
used for traffic control applications in urban areas [3].

In this work, the CTM [36] is used as it is one of the most
prevalent first-order traffic models. Also, cells of the same
length simplify the energy consumption estimation. The CTM
is extended to urban networks by considering TLS, and the
First In, First Out (FIFO) policy at intersections.

1) Network characterization: In order to run the CTM in
an urban network, it is essential to accurately characterize the
network connections, the drivers’ behavior at intersections, and
the operation of TLS.

We consider an urban road network composed of one-way
roads, each road being divided into several cells of same length
δx. The set of all cells that constitute the network is denotedR.
To characterize the connections between cells, each cell i ∈ R
is associated with two sets Pi and Ni containing respectively
the upstream and the downstream cells connected to i. We
introduce the function |.| that returns the number of elements
in a set. The cells i entering the network verify |Pi| = 0, and
the ones exiting the network verify |Ni| = 0.

Based on all the network connections {Pi, Ni | i ∈ R}, we
define C as the set of intersections. An intersection connects
cells that verify Pi ≥ 2 or Ni ≥ 2. To each intersection
c ∈ C is associated the set of its upstream cells Pc and its
downstream cells Nc.

The drivers’ behavior at intersections is modeled by split
ratios β ∈ [0, 1]. For an intersection c ∈ C, the split ratios
represent the fraction of vehicles coming from the upstream
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cells i ∈ Pc that want to go in each of the downstream cells
i ∈ Nc. We assume that they are known and constant over
time. They are subject to

∀c ∈ C,
∑
i∈Nc

βi = 1 (4)

In this study, we consider that all intersections are regulated
by TLS. Hence, each intersection c ∈ C has |Pc| cells regulated
by a TLS. In the whole network, the number of cells regulated
by a TLS is

∑
c∈C
|Pc|. The behavior of each TLS is defined on

the whole simulation duration T by a function of time αi(k)
that returns 1 (green) or 0 (red), i.e.

∀c ∈ C,∀i ∈ Pc, αi : [0..T ]→ {0, 1} (5)

The functions αi are fully determined in advance, they must
ensure the right of way by verifying at each time step

∀c ∈ C,
∑
i∈Pc

αi(k) = 1 (6)

Note that αi are defined as binary functions to reflect
the phenomenon of stop-and-go at intersections. This is of
particular interest as it has a significant impact on emissions
and energy consumption, due to higher accelerations.

2) Cell transmission model: Based on this network charac-
terization, road traffic is modeled at the network level using
the CTM. We define dynamic vectors ρk = [ρi(k)]i∈R and
uk = [ui(k)]i∈R containing respectively the vehicle densities
(state) and the speed limits (control) of all cells. The flows
of vehicles through the network can be determined from the
demands Di and supplies Si, defined as

Di(k) = min{ui(k)ρi(k) + di(k), ϕM(ui(k))} (7a)

Si(k) = min{ϕM(ui(k)),max{0, w(ρM − ρi(k))}} (7b)

where ϕM and ρM denote respectively the maximum flow,
that depends on the speed limit ui, and the maximum density.
Each cell i is associated with an endogenous traffic demand
term di(k), which is a modification of the standard CTM that
aims to model the generation of vehicles within the network
(vehicles leaving homes, parking lots, etc.).

Moreover, the cells entering and exiting the network are
respectively vehicle sources and sinks. Hence, the following
parameters are introduced at the network boundaries:
• din(k) is the demand on all network entering cells (ex-

ogenous traffic demand) at time k, i.e. the vehicles from
outside the network that aim at entering it;

• sout(k) is the network downstream supply, i.e. the vehi-
cles that can leave the network exiting cells at time k.

3) Calibration of the fundamental diagram: The funda-
mental diagram needs to be calibrated to approximate the
behavior of the road users modeled in SUMO. This hypothesis
is only valid at steady state. In order to reach such conditions,
simulations are run on a ring road, at different density levels.
The results are given in Fig. 2, and the associated calibration is
presented in Table II. As in [36], the trapezoidal fundamental
diagram is considered because it is easy to calibrate, and it is
able to capture the bell shape described by the scatter points.

(a) u = 50 km/h.
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(b) u = 20 km/h.
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Fig. 2: Fundamental diagrams from ring road simulations, with
50 km/h and 20 km/h speed limits.

It is essential to note that even after the fundamental diagram
calibration, the relationship between vehicle density ρ and
traffic flow ϕ remains an approximation insofar as it is true
only at steady state.

Symbol Description Value Unit

u Speed limit (control variable) u m/s
w Backward wave speed 7 m/s
ρM Maximum vehicle density 0.143 veh/m

ϕM(u) Capacity 0.8×uwρ
M

u+w
veh/s

TABLE II: Macroscopic CTM calibrated parameters.

Based on these results, the impact of two different speed
limits on the shape of the fundamental diagram is illustrated
in Fig. 3.

4) System dynamics: The vehicle flow exiting cell i at time
k, denoted ϕout

i (k), depends on the number of downstream
cells connected to i. It is calculated as indicated in Table III.

Similarly, the vehicle flow entering cell i at time k, denoted
ϕin
i (k), depends on the number of upstream cells connected

to i. It is calculated as indicated in Table IV.
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ϕ

ρ

u 1
w

ρM

ϕM(u1)

u 2

ϕM(u2)

Fig. 3: Fundamental diagrams associated with speed limits u1

and u2, where u1 > u2.

|Ni| ϕout
i (k)

0 min
{
Di(k), ϕM(ui(k)), sout(k)

}
1 min

{
Di(k), ϕM(ui(k)), SNi

(k)
}

≥ 2 αi(k) min

{
Di(k), ϕM(ui(k)),

{
Sj(k)

βj

}
j∈Ni

}
TABLE III: Outflows of cells in a network.

Finally, the dynamics of the system is defined as follows

ρi(k + 1) = ρi(k) +
δt
δx

(ϕin
i (k)− ϕout

i (k)) (8)

Based on the fundamental diagram hypothesis and consid-
ering that ϕ = ρv, the average traffic speed vi(k) in cell i at
time k can be expressed as

vi(k) = min

{
ui(k),

ϕM(ui(k))

ρi(k)
, w

ρM − ρi(k)

ρi(k)

}
(9)

It is essential to keep in mind that this approach determines
the average speed for a given density at steady state only.
The reason is that the density does not fully characterize the
microscopic behavior of vehicles.

III. ENERGY CONSUMPTION AND POLLUTANT EMISSION
MODELS

This section presents the microscopic fuel consumption and
NOx emission model, as well as the macroscopic one based
on an ANN for prediction purposes.

A. Microscopic fuel consumption and NOx emission model

To calculate the energy consumption and pollutant emis-
sions of vehicles from their trajectories, several microscopic
models based on data-driven approaches such as look-up tables

|Pi| ϕin
i (k)

0 min
{
din(k), ϕM(ui(k)), Si(k)

}
1 ϕout

Pi
(k)

≥ 2 βi
∑
j∈Pi

ϕout
j (k)

TABLE IV: Inflows of cells in a network.

[37], regression models [38], and ANN [39] can be found
in the literature. Another approach consists in developing a
physical microscopic model based on the vehicle’s parameters.
Such models can be deterministic [40] or stochastic [41]. Their
main advantage is their adaptability to any vehicle under any
operating conditions.

In this work, a microscopic physical model is proposed
to calculate the energy consumption and NOx emissions of
internal combustion engine vehicles one by one, based on their
longitudinal dynamics. The list of necessary parameters and
variables is given in Table V. They correspond to a Euro 4
diesel passenger car, which represented around 27.8% of the
French statistical vehicle fleet in 2017 [42].

Symbol Description Value Unit

Crr Rolling resistance coefficient 0.007 –
CX Drag coefficient 0.27 –
Fa Aerodynamic drag – N
Fr Rolling resistance force – N
Fw Wheel force – N
M Vehicle mass 1340 kg
Mi Vehicle inertial mass – kg
R Wheel radius 0.32 m
RBGR Burned gas rate – %
S Vehicle cross-section 1.95 m2

Te Engine torque – N.m
Tw Wheel torque – N.m
af Acceleration of vehicle f – m.s−2

g Gravitational acceleration 9.81 m.s−2

mfuel In-cylinder fuel mass per
stroke and displaced volume – g.L−1.str−1

vf Speed of vehicle f – m.s−1

yfuel Fuel consumption rate – L.s−1

yNOx NOx emission rate – kg.s−1

γ Gear ratio – –
ηgb Gear box efficiency 0.95 –
ρair Air density 1.22 kg.m−3

ρfuel Fuel density 0.845 kg.L−1

ωe Engine speed – rad.s−1

ωmax Maximum engine speed 4250×2π
60

rad.s−1

ωmin Minimum engine speed 800×2π
60

rad.s−1

TABLE V: Microscopic fuel consumption and NOx emission
model parameters and variables.

Even in the presence of lateral maneuvers such as lane
changes, considering the longitudinal motion alone is sufficient
because the energy associated with transient maneuvers can
usually be neglected [40]. Under this hypothesis, Newton’s
second law of motion for a vehicle f at time step k is written

(M +Mi(γ(k)))af (k) = Fw(k)− Fa(k)− Fr(k) (10)

where the resistive forces Fa and Fr represent respectively
the aerodynamic drag and the rolling resistance force, and Fw

denotes the wheel force. They are illustrated in Fig. 4. The
vehicle inertial mass Mi is defined as a function of the gear
ratio γ(k), which is updated according to a gear law based on
the value of the engine speed. The vehicle acceleration af is
calculated as the discrete derivative of its speed vf .

The resistive forces can be calculated as follows

Fa(k) =
1

2
ρairSCXvf (k)2 (11a)

Fr(k) = CrrMg (11b)
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−→
Fw

−→
Fr

−→
Fa

Fig. 4: Forces applied to a moving vehicle.

The wheel force Fw is calculated from Eq. 10–11. It can
be positive (driver accelerating) or negative (driver braking).
The wheel torque is expressed as follows

Tw(k) = Fw(k)R (12)

The engine torque Te and the engine speed ωe can be
directly calculated using the following relationships

Te(k) =
Tw(k)

γ(k)ηgb
(13a)

ωe(k) = min

{
max

{
vf (k)γ(k)

R
,ωmin

}
, ωmax

}
(13b)

Based on the engine torque and speed, the fuel consumption
rate yfuel, expressed in liters per second, can be given by fuel
consumption maps.

The NOx emission rate yNOx, expressed in kilograms per
second, is calculated from yfuel, the burned gas rate RBGR,
and the in-cylinder fuel mass per stroke and displaced volume
mfuel [43]. It reads

log

(
yNOx

yfuelρfuel

)
= a1 + a2RBGR + a3mfuel (14)

where a1 – a3 are regression coefficients. Finally, the total
fuel consumption and NOx emissions in the whole network
between time steps 0 and T can be calculated as follows

E0→T =

T∑
k=0

∑
p

δty
fuel
p (k) (15a)

NOx0→T =

T∑
k=0

∑
p

δty
NOx
p (k) (15b)

B. Macroscopic fuel consumption model

To control the traffic system in an energy efficient way, it is
essential to calibrate a macroscopic energy model that predicts
the fuel consumption from the CTM variables. This point is
challenging as such data do not contain all the information on
individual vehicles’ behavior. Hence, the macroscopic energy
model associates the same fuel consumption rate to all the
vehicles of the same cell at a given time.

As detailed in [33], we propose to calibrate an ANN, using
SUMO simulation data generated with the road network given
in Fig. 7. The training data are measured at a sampling
frequency of 1 Hz, generating about 3.5 million data points.

The ANN predicts the average fuel consumption rate per
vehicle in cell i at time k, expressed in liters per second per
vehicle and denoted ŷfuel

i (k). It is composed of three hidden
layers (of 24, 16, and 8 nodes). All nodes of each layer use

the rectifier activation function that returns the positive part of
its argument. The ANN has the following inputs.

ŷfuel
i (k) = f(ρi(k), ρi(k − 1), vi(k), vi(k − 1), ui(k), αi(k))

(16)
In case cell i is not regulated by a TLS, we consider
∀k, αi(k) = 1. The densities and speeds at previous time steps
are included in the model inputs as they add information on
the dynamics of the system. This partially compensates for the
fact that the macroscopic CTM variables do not contain any
information on vehicles accelerations.

As a result, for predicted densities ρ̂τ+1→τ+∆p in the whole
network over a prediction time horizon ∆p (between time
steps τ + 1 and τ + ∆p), the associated predicted total fuel
consumption, expressed in liters, is

Êτ+1→τ+∆p =

τ+∆p∑
k=τ+1

∑
i∈R

δxδtρ̂i(k)ŷfuel
i (k) (17)

IV. ECO-VSL CONTROLLER

In this section, we present the eco-VSL controller aiming at
improving traffic energy efficiency. The approach is based on
a closed-loop NMPC control framework summarized in Fig. 5.

In the literature, NMPC strategies constitute a commonly
used methodology to control traffic systems [17]. Yet, [44]
highlights some shortcomings due to models inaccuracy, the
unpredictable gaming activity associated with route choices,
and the chaotic behavior of road networks under heavy con-
gestion. To alleviate these issues, this work is positioned down-
stream of the traffic assignment problem: the origin-destination
matrices and routes are fully determined in advance. They are
randomly generated by the traffic simulator to be compliant
with the split ratios, which are not controlled. In practice, the
controller operates as follows:

1) At each control time step τ , i.e. multiple of the control
time horizon ∆c, the current state of the system ρτ is
measured and provided to the NMPC controller.

2) The traffic predictor estimates the evolution of the sys-
tem state ρ̂τ+1→τ+∆p on a prediction time horizon ∆p,
i.e. between τ + 1 and τ + ∆p

3) The ANN-based macroscopic fuel consumption model
is used to predict the energy consumption Êτ+1→τ+∆p

on the same horizon ∆p.
4) An optimizer based on the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm repeats steps 2 and 3 to
find system inputs, i.e. a trajectory of speed limits
uτ+1→τ+∆p , that minimizes an objective function J
along horizon ∆p. Once the optimum is found, its first
iteration (between τ + 1 and τ + ∆c) is applied.

5) Finally, the performance of the controller is evaluated
by calculating the energy consumption E0→T and NOx
emission levels NOx0→T a posteriori of the simulation
from the vehicles’ individual speed profiles, using the
microscopic physical model.

The BFGS algorithm is an iterative method able to solve
unconstrained nonlinear optimization problems. It is based on
an approximation of the inverse of the second derivative of
the objective function, rather than explicitly constructing the
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speed profiles

ρτ

E0→T ,
NOx0→T

Fig. 5: Block diagram of the global approach for ecological variable speed limits.

Hessian matrix. In practice, this approximation is obtained
from gradient evaluations via a secant method. As a result,
the computational complexity of the algorithm is only O(n2).
This quasi-Newton method has global convergence properties
on uniformly convex problems [45], which is not the case in
this work. The limited-memory version L-BFGS-B [46] is used
here. It is particularly suited to high-dimensional problems and
handles bound constraint minimization, which is necessary to
remain within the allowable speed limits.

To improve the performance of the solver, L-BFGS-B is
used in a two-phase method that combines a global stepping
algorithm with local minimization. In total, we consider in
this work 6 runs of the local minimizer to improve the global
solution and to reduce the risk of local optimum. As a result,
the controller takes an average of 8 min 30 s to run at each
control time step, which makes it compatible with off-line
approaches only.

For implementation reasons, the prediction time horizon ∆p

should be a multiple of the control time horizon ∆c. The
corresponding proportionality coefficient κ is defined as

∃κ ∈ N∗, ∆p = κ∆c (18)

The operation of the NMPC controller is illustrated in Fig. 6.
To simplify its implementation, it is parameterized as follows:
• Between two successive control time steps τ and τ +∆c,

the control (speed limits) remain constant. It is continuous
and bounded by 20 km/h and 50 km/h.

• All the cells of a given road have the same speed limit.
• To reduce the degree of freedom of the system, the

trajectory of speed limits are parameterized by grouping
the roads in a few clusters. Each cluster is then controlled
by a single control variable, i.e. all the roads of the same
cluster are subject to the same speed limit at any time
of the simulation. A counterpart of this approach is that
the solution obtained may be suboptimal. However, it is
usually necessary when going large scale because consid-
ering nMPC clusters of roads results in an optimization
problem with κ × nMPC variables only at each control
time step. In practice, κ and nMPC can both be adapted
to have convenient computation times. The choice of

the value of κ should be a compromise between the
computational burden and the robustness of the controller.
The choice of nMPC mainly depends on the structure of
the network.

Time
k

State

k + ∆c k + 2∆c k + ∆pk + 1

Past Future

• • •
•
•
• • • • • • • •

• •

Time
k

Control

k + ∆c k + 2∆c k + ∆pk + 1

uk

uk + ∆c

uk + 2∆c

δt

∆c

∆p

Fig. 6: Representation of the NMPC framework, for κ = 3.

The choice of the objective function is crucial in traffic eco-
management control strategies. Several formulations can be
implemented [3]. Usually, the weighted sum of an ecological
metric, and a traffic efficiency metric is considered. The
purpose of this multi-objective optimization, based on metrics
that can be antagonistic, is to avoid trivial solutions (for ex-
ample, reduce the speed limits of the entering roads to reduce
the number of vehicles in the network, which will naturally
reduce the fuel consumption), and find a compromise between
energy efficiency and traffic performance. In this study, we
propose to define the objective function as the ratio between
the predicted total fuel consumption Êτ+1→τ+∆p and the
predicted total travel distance ˆTTD

τ+1→τ+∆p between τ + 1
and τ + ∆p. Minimizing this ratio is relevant for optimizing
the traffic energy efficiency as it corresponds to the average
fuel consumption of a vehicle per unit distance. Usually, it is
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expressed in liters per 100 kilometers traveled. The predicted
total travel distance ˆTTD

τ+1→τ+∆p is expressed in meters
and can be calculated as follows

ˆTTD
τ+1→τ+∆p

=

τ+∆p∑
k=τ+1

∑
i∈R

δxδtρ̂i(k)v̂i(k) (19)

The resulting objective function J is given below. Note that
the use of the total travel distance in the objective might seem
counter-intuitive at first glance as route choices are defined
before the simulation, and are not affected by the controller.
However, its value on the prediction horizon, which is a given
and limited time interval, is affected by the traffic conditions.

J =
Êτ+1→τ+∆p

ˆTTD
τ+1→τ+∆p

=

τ+∆p∑
k=τ+1

∑
i∈R

ρ̂i(k)ŷfuel
i (k)

τ+∆p∑
k=τ+1

∑
i∈R

ρ̂i(k)v̂i(k)

(20)

V. SIMULATIONS AND RESULTS

This section evaluates the performance of the eco-VSL con-
troller. The results are analyzed both in terms of environmental
sustainability and traffic performance.

A. Case study

We propose to consider the road network represented in
Fig. 7. It is composed of an urban (38 roads of 300 meters
represented by solid lines) and a peri-urban (7 roads of 2400
meters represented by dashed lines) area. In this study, the
VSL strategy is implemented in the urban area only. The peri-
urban area, whose roads can be seen as highway links leading
to the urban area, have a constant speed limit of 70 km/h. The
consideration of the peri-urban area in this study is crucial
in order to get a complete picture and evaluate the impact
of the controller on environmental sustainability and traffic
performance at the boundary roads, if queues are appearing
for example.

In the CTM, all the roads have the same spatial discretiza-
tion with cells of 60 m, i.e. 5 cells in the urban roads and
40 cells in the peri-urban roads. At each intersection, both
downstream roads have a split ratio of 0.5 and all TLS have
cycles of 88 s (44 s green and 44 s red). Also, all TLS are
synchronized in the sense that the offsets are zero for all
intersections. In the context of this study, the consideration of
lane changes is not really significant in the analysis of pollutant
emissions and fuel consumption. We therefore propose to limit
this problem to the longitudinal dynamics of vehicles only by
considering one-lane roads.

In order to evaluate the controller performance and analyze
its operating range, three time-varying traffic demand scenarios
are proposed in Fig. 8. They are parameterized as follows:
• As represented in Fig. 7, exogenous (black dots) and

endogenous (red dots) vehicle sources are considered.
The reason is that it is difficult to significantly increase
the level of congestion in this kind of network simply
by varying the generation rate at the border exogenous
sources. This is mainly due to the presence of TLS at each

Peri-urban area

Urban area

2400m 300m

din

sout

di(k)

Exogenous sources
Endogenous sources
Sinks
Urban roads in cluster 1
Urban roads in cluster 2

Fig. 7: Road network composed of urban (solid lines) and peri-
urban (dashed lines) areas. Urban roads of the same color are
in the same cluster and hence have the same speed limit.

intersection, and to the fact that all roads have the same
capacity. Scenario (a) is conducive to the study of transi-
tion phases between different traffic states, Scenario (b)
corresponds to a network unlikely to decongest because
of a constant endogenous traffic demand, and Scenario (c)
depicts a free-flow situation.

• The simulation duration is T = 1 h. The control time
horizon ∆c is set at 1 min and the prediction time horizon
∆p is set at 5 min, i.e. κ = 5. Note that ∆c is set longer
than the simulation time step δt = 1 s in order to make
the controller more realistic.

• In order to reduce the computational burden, two clusters
of roads are defined and identified in Fig. 7. Each cluster
is controlled with the same variable. Due to the simple
network architecture, the first one is composed of the
roads at the interface between the urban and the peri-
urban area. The other one is composed of the inner urban
roads. The peri-urban area is not controlled but the effect
of the control of the urban area on the peri-urban area is
investigated in detail.

The number and size of clusters defined above are critical
points. In the scenarios under study, the proposed clusters are
particularly suitable because of the network architecture. The
definition of the clusters is more complex in more realistic
road networks because they must integrate the dynamics of
congestion. A compromise needs to be found between the
controller performance on the one hand and its computational
burden, higher risk to reach local minima, and too much
variability in the speed limit from one street to another on
the other hand.
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Fig. 8: Traffic demand scenarios at exogenous and endogenous vehicle sources.

B. Results of eco-VSL approach

For each traffic demand scenario, the energy efficiency,
NOx emission levels, and traffic performance of the closed-
loop eco-VSL approach are compared with two baseline
simulations that have constant speed limits:
• Open-loop 30 km/h: speed limits of 30 km/h in urban and

70 km/h in peri-urban area.
• Open-loop 50 km/h: speed limits of 50 km/h in urban and

70 km/h in peri-urban area.
The optimal dynamic speed limits found by the eco-VSL

controller in each scenario are given in Fig. 9. The figures also
provide the evolution of the number of vehicles in the urban
area. Scenario (a) reveals that in situations of peak demand,
the controller is able to decongest the network faster than
the baseline scenarios, thus limiting the number of vehicles
simultaneously present in the controlled area.

For each scenario, the metrics measured with eco-VSL and
in the open-loop 30 km/h and 50 km/h simulations are gathered
in Table VI. Both ecological (average fuel consumption and
NOx emissions) and traffic performance (TTD and number
of arrived vehicles) metrics are analyzed. They are always
measured both in the urban and the peri-urban areas. In the
urban area, the number of arrived vehicles corresponds to those
that went in one of the sinks, and in the peri-urban area, it
corresponds to those that have entered the urban area.

The results of scenario (a) indicate that the controller is
able to reduce the average fuel consumption in the urban area,
which corresponds to the objective function, from 7.7 L/100km
to 6.5 L/100km, i.e. by approximately 16%. On a macroscopic
scale, the total fuel consumption (in both areas) during 1 h
is 1167 L in the open-loop 30 km/h approach and 998 L in
the closed-loop control approach. This gap corresponds to a
total reduction of 451 kilograms of CO2. Thanks to a faster
decongestion of the urban area, the lengths of queues in the
peri-urban roads are reduced. This results in a reduction of
the average fuel consumption on these roads also (respectively
29% and 5% reduction with the 30 km/h and 50 km/h baseline
scenarios).

Similarly, the faster decongestion performed by the con-
troller results in a reduction of NOx emissions in both areas.

In comparison with the open-loop 30 km/h approach, the
controller reduced the average NOx emissions by 14% in the
urban area and by 27% in the peri-urban area. In comparison
with the open-loop 50 km/h approach, the controller reduced
the average NOx emissions by 16% in the urban area and by
7% in the peri-urban area.

In addition to the average fuel consumption and NOx emis-
sions reduction, the controller also improves traffic fluidity.
In comparison with the open-loop 30 km/h approach, the
controller increases the TTD by 16% in the urban area and
by 4% in the peri-urban area. In comparison with the open-
loop 50 km/h approach, the controller increases the TTD by
4% in the urban area and by 1% in the peri-urban area. This
indicates that, despite a lower number of vehicles present in
the urban area at each moment of the simulation (cf. Fig. 9a),
eco-VSL improves the global flow of vehicles.

The improvement of traffic fluidity is also highlighted by
the number of arrived vehicles. In total, 940 and 259 more
vehicles have completed their journeys, i.e. have reached a
sink, in the closed-loop control scenario, in comparison with
the open-loop 30 km/h and 50 km/h approaches respectively.

It is interesting to note that inside the urban area, the
controller keeps a speed limit close to 50 km/h. This can
be interpreted as a way to accelerate the decongestion of
the network, as 50 km/h speed limits constitute a good
compromise between average fuel consumption and TTD.

Note that the controller could be more realistic by limiting
the possible speed limits to multiple of 5 km/h, for exam-
ple. A simulation has been made by rounding the controller
outputs in this way. The resulting average fuel consumption
is 6.8 L/100km, i.e. a reduction of 12% (instead of 16%
with continuous speed limits values) in comparison with the
baseline scenarios.

Scenarios (b) and (c) can be seen as borderline cases. In
fact, scenario (b) is unlikely to decongest, even with the eco-
VSL, because of the continuous endogenous demand. Scenario
(c) results in a free-flow situation because of the absence
of endogenous traffic demand. As a result, it appears that a
50 km/h speed limit is optimal in both situations because it
is the best compromise between energy efficiency and traffic
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Scenario Simulation Fuel Consumption (L/100km) NOx emissions (mg/km) Total travel distance (km) Arrived vehicles (veh)

Urban Peri-urban Urban Peri-urban Urban Peri-urban Urban Peri-urban

30 km/h 7.7 5.5 3329 2516 6907 11514 5306 4446

(a) 50 km/h 7.7 4.2 3388 1978 7741 11889 5987 4957

eco-VSL 6.5 3.9 2862 1848 8026 12001 6246 5077

30 km/h 17.9 10.0 7841 4464 3882 4291 4675 1031

(b) 50 km/h 15.0 8.6 6657 3883 4938 4479 5619 1185

eco-VSL 14.8 8.4 6598 3812 4830 4515 5594 1206

30 km/h 5.4 3.3 2289 1576 7193 12085 5162 5195

(c) 50 km/h 4.9 3.2 2148 1552 7308 12043 5290 5195

eco-VSL 5.0 3.3 2214 1569 7297 12054 5290 5195

TABLE VI: Comparison of the ecological and the traffic performance metrics measured when the online ecological VSL
approach is performed, with baseline scenarios that have constant speed limits of 30 km/h and 50 km/h.

performance in these steady states. In this sense, Fig. 9 shows
that the control tends towards this value in both scenario,
resulting in very similar results regarding the energy efficiency
and the traffic performance. For example, differences of less
than 2% with the baseline 50 km/h speed limits simulation are
observed for the average fuel consumption.

In brief, the developed closed-loop control strategy is par-
ticularly efficient in situations of transition between different
congestion levels. In fact, it appears that the controller is able
to decongest the network much faster than in the open-loop
simulations. This results in an improvement of both the eco-
logical and the traffic performance metrics. Most importantly,
these metrics are not only improved inside the controlled
network, but also at its boundaries, i.e. in the uncontrolled peri-
urban area. However, it appears that with the very basic road
network considered, the controller is not able to significantly
improve the metrics in fully congested or completely free-
flow situations. These borderline scenarios can be qualified as
non-controllable. In these cases, the best results seem to be
obtained with constant 50 km/h speed limits.

VI. DISCUSSION AND CONCLUSIONS

In this work, the impact of ecological VSLs on environmen-
tal sustainability and traffic performance in a synthetic urban
network is analyzed.

This study introduces microscopic traffic, energy consump-
tion, and NOx emission models. In order to implement a
closed-loop eco-VSL strategy, a macroscopic traffic model
and a macroscopic fuel consumption model, which is based
on an ANN, are calibrated in order to predict and minimize
the average fuel consumption per vehicle and per distance
traveled.

The results indicate that the proposed eco-VSL controller
has a great potential to maintain the system at desired density
levels, and ensures smoother transitions between different
levels of congestion. This results in a significant reduction
in fuel consumption and emissions, as well as a smoother and
more efficient road traffic. The closed-loop control strategy
is able to improve the environmental sustainability and traffic
performance in the controlled urban area and at the network

boundaries, i.e. in the uncontrolled peri-urban area. The anal-
ysis of additional scenarios shows that the eco-VSL controller
is mostly effective during transient phases, such as demand
peaks that lead to congestion.

In this work, a synthetic artificial network is simulated
in SUMO traffic simulator, with the IDM. The proposed
approach can be easily adapted to more realistic and asym-
metric networks that lead to more complex traffic dynamics.
In fact, several roads of different length, capacity, and traffic
demand are supposed to increase the potential of this closed-
loop control approach. In practice, this would be associated
with the identification of road clusters to determine areas of
interest and an appropriate tuning of the parameters of the
controller (more clusters with less roads in each cluster to
improve the performance, etc.) and the macroscopic traffic
model (different fundamental diagrams associated with roads
of different number of lanes, etc.).

One main challenge of implementing this kind of control
schemes in a real-world setting lies in the communication of
speed limits at all times to all vehicles. This suggests the use
of connectivity for an optimal control. This approach is also
subject to the respect of speed limits by road users.

Finally, the fact that the proposed controller seems mostly
effective in transient phases between different congestion
situations motivates the exploration of control strategies that
combine eco-VSL with vehicle-based approaches. These in-
clude for example eco-driving, eco-routing, and cooperation
strategies.
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