

Experimental Petrology Applied to Natural Diamond Growth

Robert W Luth, Yuri N Palyanov, Hélène Bureau

▶ To cite this version:

Robert W Luth, Yuri N Palyanov, Hélène Bureau. Experimental Petrology Applied to Natural Diamond Growth. Reviews in Mineralogy and Geochemistry, 2022, 88, pp.755 - 808. 10.2138/rmg.2022.88.14. hal-03748017

HAL Id: hal-03748017 https://hal.science/hal-03748017

Submitted on 9 Aug 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Experimental Petrology Applied to Natural Diamond Growth

Robert W. Luth

Department of Earth and Atmospheric Sciences University of Alberta 1-26 Earth Sciences Building Edmonton, Alberta T6G 2E3 Canada

robert.luth@ualberta.ca

Yuri N. Palyanov

V.S. Sobolev Institute of Geology and Minerology Siberian Branch of the Russian Academy of Sciences 3, Koptyug ave., Novosibirsk 630090

Russia

and Novosibirsk State University 2, Pirogov str., Novosibirsk 630090 Russia

palyanov@igm.nsc.ru

Hélène Bureau

Institut de Minéralogie de Physique de la Matière et de Cosmochimie Sorbonne Université, UMR CNRS 7590, Muséum National d'Histoire Naturelle Campus Jussieu boite 115 4, place Jussieu, 75005 Paris France helene.bureau@upmc.fr

INTRODUCTION

How can experiments help?

Perhaps the first point to address in this chapter is what role, or roles, experimental petrology can play in understanding the formation of natural diamond. As can be seen from the other chapters in this volume, there is a rich diversity of diamonds—even confining ourselves to terrestrial examples, there are diamonds that form in impacts, those that are found in ophiolites and in UHP metamorphic rocks, as well as those that are found in mantle-derived volcanics such as kimberlites and lamproites. Some of these—such as those found in ophiolites (e.g., Farré-de-Pablo et al. 2018 and references therein; Litasov et al. 2019a,b)—may form under *P*, *T* conditions at which diamond is metastable rather than stable, although such occurrences are controversial (Farré-de-Pablo et al. 2019; Massonne 2019; Yang et al. 2019). Others, such as mantle-derived monocrystalline, fibrous, and coated diamonds, presumably form at *P*, *T* conditions at which diamond is the stable polymorph of carbon. This diversity presents a rich *P*, *T* composition space for experimentalists to explore to provide some insights into diamond formation.

Experiments allow researchers to explore first-order questions such as

- Can diamond form from this particular composition of fluid or melt?
- Can diamond form from a specific redox reaction, such as carbonate reacting with a reduced fluid?

Experiments can also address questions such as how the diamond-forming melts or fluids originally form, and how they evolve as they interact with different lithologies in the Earth.

The vast majority of natural diamonds form in the Earth's lithospheric mantle (See Nimis 2022, this volume; Stachel et al. 2022a, this volume), and so unsurprisingly most of the experimental work to date has focused on this pressure range. There has been some work at much higher pressure and temperature conditions extending to those of the deep Earth, however, and we shall touch on those as well in this review.

CONCEPTUAL BACKGROUND

Stability of diamond

In the one-component carbon system, diamond is the high-pressure polymorph stable at pressures above the graphite—diamond transition (Kennedy and Kennedy 1976; Day 2012). Adding more components makes the situation more complex: in C–O, diamond would be stable in a region of P, T, fO_2 space bounded by the reactions

$$C (graphite) = C (diamond)$$
(1)

and

$$C (diamond) + O_2 = CO_2 (fluid)$$
 (2)

If the fluid phase contains H as well, then the relevant system is C–O–H (Fig. 1), in which the diamond saturation curve separates a two-phase field of diamond + fluid from a field of C-undersaturated fluid. It should be noted that the fO_2 of the fluid increases from left to right along the diamond saturation curve, and for context the value of fO_2 for the iron-wüstite buffer (IW), and the locations of fluids with values of $\log(fO_2)$ three and four units below the calculated (metastable) location of the fayalite-magnetite-quartz buffer (FMQ) are shown.

The situation in the Earth's mantle is more complex, given that CO_2 becomes unstable in the presence of olivine (Newton and Sharp 1975) because of the carbonation reaction

$$Mg_2Si_2O_6$$
 (enstatite) + 2MgCO₃ (magnesite) = 2Mg_2SiO₄ (forsterite) + 2CO₂. (3)

A consequence of the stability of this reaction is the well-known EMOD reaction

$$Mg_{2}Si_{2}O_{6} \text{ (enstatite)} + 2MgCO_{3} \text{ (magnesite)} = (4)$$

$$2Mg_{2}SiO_{4} \text{ (forsterite)} + 2C \text{ (diamond)} + O_{2}$$

(Eggler and Baker 1982), which further constrains the stability of diamond. Schematically, Figure 2 shows the fields of stability for carbonate, diamond, and fluid in $T-\log(fO_2)$ space at constant pressure within the diamond *P*, *T* stability field. Under conditions where a carbonate melt rather than crystalline magnesite is stable, an analogous reaction to (3) where MgCO₃ is a component in the melt would apply, as discussed by Stagno and Frost (2010).

Under more reducing conditions such as those proposed to occur with increasing depth in the Earth's mantle (see overview by Stagno 2019), carbon can dissolve in the alloy or form carbides such as cohenite, (Fe, Ni)₃C, or Fe₇C₃. Another complication is the presence of sulfur—with a bulk silicate Earth estimated concentration on the same order as that for carbon

Temperature (°C)

Figure 1. The system C–O–H at 5 GPa, 1140 °C. The red line denotes the composition of fluid in equilibrium with diamond as a function of composition. Numbers along the line are values of log fO_2 relative to that of the FMQ reference buffer. Also for reference are shown the locations of the fluids in equilibrium with the iron–wüstite reference buffer (IW) and the EMOD reaction (see text). Calculated with GFluid (Zhang and Duan 2010).

Figure 2. Schematic log fO_2 —temperature section at constant pressure, showing the relationship between reactions (2), (3), and (4) in the text. The fields are labeled with the stable carbon-bearing form that would coexist with forsterite and enstatite. See text for discussion.

(~250 ppmw, McDonough and Sun 1995). Although there is ongoing debate about the relative importance of alloys, carbides, and sulfide melts as hosts of carbon in the Earth's mantle, the key point for the experimentalist is that all three of these are at least potential sources of carbon that could precipitate diamond upon oxidation—a process tractable to experimental study.

Source of carbon

Considerations of the large-scale carbon cycle (e.g., Lee et al. 2019) reveal two basic categories of carbon in the Earth's mantle: primordial carbon surviving from early Earth accretion and differentiation, and carbon re-introduced into the Earth's interior via subduction. The present carbon content for the primitive mantle is ~90–130 ppm, although as outlined in the recent review by Dasgupta and Grewal (2019) estimates range from ~100 to >500 ppm. Subsequent to accretion and large-scale initial differentiation leading to core formation, it is not clear how carbon is hosted in the mantle, but it seems reasonable that this carbon would be present in its thermodynamically stable form(s) at the *P*, *T* and oxidation state of the ambient mantle. This presupposes that ferric–ferrous equilibria will serve as a sink or source for oxygen, which is reasonable at these carbon concentrations.

Subduction transports carbon down into the mantle, but the amount of carbon that survives sub-arc processing to be subducted into the mantle remains an active area of research (e.g., Kelemen and Manning 2015; Galvez and Pubellier 2019; Lee et al. 2019). Carbon would be present in both subducted sediment and altered oceanic crust (AOC) as carbonate, both biogenic and abiogenic, as well as some fraction as organic matter. The relative contribution of sediment and AOC likely depends on the specific thermal regime of a subducting slab, but a recent study by Li et al. (2019) implicates the latter as the dominant carrier of carbon as both abiogenic and biogenic carbonate into the mantle. Whether all this carbonate is reduced to graphite during subduction (Galvez et al. 2013) or survives as carbonate until partial melting ensues is unclear, so the experimentalist is faced with addressing both possibilities as carbon sources for diamond formation.

Fluids, melts, and supercritical fluids proposed to form diamond

Diamond can be formed directly from graphite in the absence of a solvent or catalyst, but this transformation requires pressures above ~10 GPa and temperatures in excess of 1800 °C (e.g., Irifune et al. 2004 and references therein). Diamond growth at lower pressures and temperatures requires some sort of solvent or growth media, and thus the first question is what that medium might be. From the examination of natural diamonds, it is well accepted that diamonds grow through metasomatic processes in C–O–H–N–S–Cl bearing mobile fluids, melts or supercritical fluids, and occurs over times and depths.

As outlined in other chapters in this volume, study of the inclusions in natural diamonds led to the identification of syngenetic inclusions, those that form as the diamond was growing (Harris 1968). The mineral inclusions enabled researchers to distinguish between diamonds that were growing in peridotitic and eclogitic lithologies, for example. Other inclusions were thought to sample the growth medium from which the diamond is precipitating. Fibrous diamonds in particular were fruitful to study in this context because they contain the so-called "HDF" (high-density fluid) inclusions. Among fibrous diamonds, the coated ones, with a monocrystalline pure core surrounded by a fibrous rim, inspired the idea that both kind of diamonds may share the same parent fluids and that a single diamond may grow in a few or several events. Chrenko et al. (1967) reported the first indication for the presence of carbonates and water in inclusions in diamond, but Navon et al. (1988) were the first to propose that coated diamonds sample mantle melts or volatile-rich fluids (enriched in H_2O , CO_3^{2-} , K_2O , Cl, depleted in MgO and including several other elements) from which they grow. Numerous publications have followed (see Weiss et al. 2022, this volume), including some significant studies such as: the finding of solid carbon dioxide inclusions in fibrous diamonds (Schrauder and Navon 1993), the discovery of brine inclusions in cloudy diamonds (Izraeli et al. 2001), the chemical and isotopic connection of fluid compositions trapped in coated diamond's inclusions from various cratons showing that fluids derived from mantle source would not be affected by local heterogeneities (Klein-BenDavid et al. 2004), the idea of miscibility/ immiscibility processes linking mantle fluids of different compositions or "endmembers" during diamond growth (Klein-BenDavid et al. 2007), and many others.

In brief, the bulk compositions of these HDFs can be described in terms of four endmembers: (i) silicic HDFs that are rich in Si, Al, K, and water with some carbonate; (ii) saline HDFs that are rich in Cl, K, Na, water, and carbonate; (iii) and (iv) hydrous carbonatitic HDFs that are Mg-rich and Mg-poor, respectively.

Along with the relationship between these endmembers and their origin, a long-standing question has been whether the more common monocrystalline diamonds form from the same type of fluids. Strong evidence for this idea has been established from a variety of studies. For example: the common sinusoidal REE patterns between garnet inclusions trapped in the monocrystalline area of coated diamonds and HDFs trapped in the fibrous rims (Weiss et al. 2009); the similarity of hydrosilicic HDFs that precipitated the rims of coated diamonds with the fluids that precipitated most monocrystalline diamonds (Rege et al. 2010); the first finding of HDF micro-inclusions in a monocrystalline diamond, similar in major and trace elements compositions to those of fibrous diamonds (Weiss et al. 2014), suggesting that these HDF are involved during the growth of many monocrystalline diamonds. As a last example, Nimis et al. (2016) discovered thin "fluid" hydrous silicic films around solid mineral inclusions in gem-quality monocrystalline diamonds from peridotitic and eclogitic suites that were interpreted as potential vestiges of the original fluid present during diamond growth.

Are fibrous, coated, and monocrystalline diamonds growing by the same process? In our view, the debate was definitively closed in the affirmative—at least for lithospheric diamonds,

by the study of Jablon and Navon (2016), who found micro-inclusions of HDFs trapped in the twinning planes of twin gem diamonds (macles) together with silicate minerals. They concluded that the mechanism of diamond formation is similar for most diamonds. It is worth noting that this process also includes the growth of micro diamonds in ultra-high-pressure metamorphic rocks (e.g., Stöckhert et al. 2001; Dobrzhinetskaya et al. 2007; Frezzotti et al. 2014).

Most of the studies based on fluid inclusions document the important role played by water during diamond growth, a role possibly not only limited to subduction zones where water is likely recycled from slabs, but also in the cratonic mantle. Although most of the HDFs observed in lithospheric diamonds are oxidized, some diamonds such as mixed-habit ones containing octahedral and cuboid sectors also host inclusions with reduced fluids such as CH₄ (Smit et al. 2016). Diamond growth in fluids evolving in redox state is also able to reconcile the apparent contradictory messages delivered from diamond stable isotope studies, because depending on the carbon source, CO₂ (Boyd et al. 1994) or CH₄ (Thomassot et al. 2007), the core to rim evolution of the diamond's δ^{13} C signature will be reversed. Furthermore, both eclogitic and peridotitic diamonds can be derived from the same isotopically homogeneous carbon source with metasomatic growth (Cartigny 2005).

These HDFs may not be limited to the lithosphere; some evidences of volatile-bearing inclusions are found in sublithospheric diamonds, such as ice VII inclusions (Tschauner et al. 2018); CH_4 and H_2 associated with inclusions of solidified iron–nickel–carbon–sulfur melts in large gem diamonds (Smith et al. 2016); or unknown fluids in association with inclusions of iron carbides (Kaminsky and Wirth 2011). These metallic melts may take part in diamond growth in the lower mantle and transition zone, but possibly also in the lithosphere, in both cases in very reduced environments.

In this review, we will try to guide the reader into the voluminous literature on experimental studies of diamond formation. To provide some structure to this, we will look at different growth media in turn, moving from "simple" to more complex systems. In each section, we will tabulate studies chronologically, and the reader will recognize how the experimental studies have evolved as studies of natural diamonds have continued to provide insights and constraints to help ground the experiments.

C-O-H FLUIDS

Overview

There have been extensive studies over the last 30 years of diamond nucleation and growth from initially graphite-saturated C–O–H fluids. Diamond grows from a variety of these fluids, from CH₄- to CO₂-rich (Table 1). The studies tabulated here are those in which graphite was present in the starting material (or generated upon breakdown of the organic fluid source); studies examining the ability of fluids to participate in oxidation-reduction reactions, such as those in which carbonate is reduced to diamond, are discussed in a subsequent section.

In general, these studies demonstrate that diamond growth is higher in H₂O-rich systems, lowest in CH₄-rich systems, reflecting a dependence on the activity of H₂O in the fluid (which is clearly fO_2 dependent). Diamond growth is characterised by temperature-dependent induction times, certainly for nucleation of new diamond crystals, and in some cases even for growth on pre-existing seed diamonds. More recent studies such as Matjuschkin et al. (2020) have demonstrated the ability of these fluids to grow diamonds at lower temperatures (e.g., that are more realistic for lithospheric mantle geotherms). In this study, extensive efforts were devoted to improving experimental design to minimize changes in fluid composition over the course of the experiments.

		Table 1	l. Studies of dia	amond nucle	ation and gr	owth in C–(D–H fluids.
Study	System	P (GPa)	T (°C)	Duration	Seeds	Capsule/ buffering	Results
Akaishi et al. (1990b)	H ₂ O from Mg(OH) ₂ or Ca(OH) ₂	T.T	2150	20 min	Z	Mo capsule	SN. CM: {111}
Yamaoka et al. (1992)	H_2O	7.7	1800–2200	2 h	Y	Ta capsule	GS at 2000°, 2200°. CM: {111}
Onodera et al. (1992)	Hydrocarbons from camphene, adamantane (both $C_{10}H_{16}$), and fluorene ($C_{13}H_{10}$)	6-2	710-1325	30 min	Z	Ta or Mo capsule	SN from camphene reported as low as 820° , 8 GPa or 710°, 6 GPa (in different parts of text). SN from adamantane at 8 GPa and 1325° but not at lower <i>T</i> . No SN from fluorene (7–9 GPa, 800–975°). These temperatures may be underestimated based on the location of their thermocouple relative to the sample (their Fig. 1)
Latourrette and Holloway (1994)	CO_2	∞	950–1150	1–17 h	Z	Pt	SN reported in all expts. Starting material was Fe ₃ O ₄ + Gr, NiCO ₃ + Gr, or Ni + PdO + Gr
Hong et al. (1999)	H_2O	L.T	1600-2200	0.5-4 h	In some	Graphite- lined Mo	SN at 2000°, 2200°, GS at 1700°, 1800°. CM: {111}
Yamaoka et al. (2000)	H ₂ O	5.5, 7.7	1200-1500	24 h	In some	Pt	At 5.5 GPa, No SN in unseeded expts; GS at >1300°. At 7.7 GPa, in unseeded experiments SN at ≥1400°, not below. 100% conversion at 1500°. In seeded experiments, GS at >1300°. CM: {111}
Sun et al. (2000)	CO_2 from Ag_2CO_3 or $Ag_2O + Gr$	<i>T.T</i>	1500-2000	0.5–27 h	Z	Graphite	Complete conversion at $\ge 1800^{\circ}$ at ≥ 0.5 h. Some SN at 1700°/5 h but not 1700°/2 h. Some SN at 1600°/12 h and 1500°/27 h. CM: {111}
Akaishi and Ya- maoka (2000)	CO ₂ -H ₂ O from OAD	L.L	1400-2000	0.5-360 h	Z	Graphite- lined Mo	SN at 2000°/0.5 h; SN at 1800°/2 h but not at 0.5 h; SN at 1700°/5 h but not at 2 h; SN at 1600°/24 h but not at 9 h; SN at 1500°/88 h but not at 48 h; SN at 1400°/360 h. CM: {111}
Shaji Kumar et al. (2000)	CO ₂ -H ₂ O from OA	<i>T.T</i>	1300–1500	24–240 h	Z	Pt	SN at 1500°, 10% at 24 h, 50% at 36 h, ~complete at 42 h; SN at 1400°, ~10% at 96 h; SN at 1300°, <10% at 240 h. CM: {111}
Akaishi et al. (2000)	CO ₂ -H ₂ O from OAD	T.T	1600	6–17 h	Z	Pt	SN starting at 8 h, complete at 17 h. CM: {111}

Study	System	P (GPa)	T (°C)	Duration	Seeds	Capsule/ buffering	Results
Pal'yanov et al. (2000)	CO_2 from AgOx, H ₂ O, CO_2 -H ₂ O from OAD, CH_4 - H ₂ from Anth"	5.7	1300	84 h	Y	Pt or Au	H ₂ O: SN in Pt; CO ₂ : SN in Pt; CO ₂ -H ₂ O: SN in Au and Pt; CH ₄ -H ₂ : negligible (< 1 μm) GS in Au. No fluid: No SN, No GS. CM: {111}
Akaishi et al. (2001)	CH ₄ –H ₂ O from StA and OAD	7.7	1500	1–48 h	Z	Pt	No SN at 24 h, small amount of SN at 48 h. CM: {111}
Shaji Kumar et al. (2001)	CO ₂ -H ₂ O from OA	7.7	1500	24 h	Z	Pt	Examined effect of mixing OA and graphite and differing OA: graphite ratios. CM: {111}
Sokol et al. (2001a)	CO_2 from AgOx, H ₂ O, CO_2 -H ₂ O from OAD, CH ₄ -H ₂ from Anth	5.7	1200-1420	42-136 h	¥	Pt or Au	CO ₂ : SN at 1300°/84 h, 1420°/42 h. H ₂ O: SN at 1300°/84 h, 1420°/42 h, GS at 1200°/135 h. CO ₂ -H ₂ O: SN at 1200°/136 h, 1300°/84 h, 1420°/42 h. CH ₄ -H ₂ : No SN at 1200°/136 h, 1300°/84 h, 1420°/42 h. Possible GS at 1200°, negligible (< 1 μ m) GS at 1300°, 1420°. CM: {111}
Sun et al. (2001)	H_2O	5.5, 7.7	1300–2200	0.25–24 h	Z	Ta, Mo, or Pt	H ₂ O: SN at 5.5, 1400°/24 h and 7.7, 1500°/24 h in Pt; SN at higher <i>T</i> in Mo, Ta—capsule leakage issue.
	CO ₂ from AgOx	<i>T.T</i>	1500-2000	0.5–27 h	Z	Graphite- lined Mo	CO ₃ : SN in all expts. CO ₂ -H ₂ O OA): SN in Mo at 2000°/0.5, 1800°/2, 1600°/20. No SN at 1800/°0.5, 1600°/12. SN in Pt down to 1300°/240.
	CO ₂ -H ₂ O from OA, CO ₂ -H ₂ O from MA	<i>T.</i> 7	1300–2000	0.5–240 h		Graphite- lined Mo, Pt	CO ₂ -H ₂ O (MA): SN at 1500°/48, not 1400°/86. CM: {111}
Okada et al. (2002a,b)	H ₂ O from Mg(OH) ₂	7.7	1835	see Results		Mo	In situ study; SN upon heating to 1835°. CM: {111}
Yamaoka et al. (2002c)	CO ₂ from C+PtO ₂	7.7	1500	8-24 h	Z	Pt	SN at 24h, not 8 h. CM: {111}
Yamaoka et al. (2002b)	H ₂ O from glucose	Т.Т	1500	1–33 h 10 min–40 h	ХZ	Pt	SN starting at 10 h, 100% at 33 h GS at ≥1 hr. CM: {111}
Dobrzhinetskaya et al. (2004)	H ₂ O from Mg(OH) ₂	7.5–8	1200–1500	see results	z	Pt	1200°: graphite only to 24 h, SN after 122 h; 1500°: SN at 5 h, 100% at 138 h
	CO ₂ -H ₂ O from OAD	8.5	1500				SN at 32 h (~20–25%) and ~100% at 120 h. CM: skeletal diamonds

Study	System	P (GPa)	T (°C)	Duration	Seeds	Capsule/ buffering	Results
Okada et al. (2004)	H ₂ O from Mg(OH) ₂	6.6–8.9	1400–1835	See Results		Mo	In-situ study of reaction kinetics; SN at $T>1400^{\circ}$. CM: {111}
Palyanov et al. (2007a)	H_2O	7.5	1500–1600	15 h	Υ	Pt	SN at both 1500° and 1600°. CM: {111}
Sokol et al. (2009)	Various reduced fluids from H ₂ O- to CH ₄ -rich	6.3	1400–1600	15-48 h		Pt capsule w/ Mo- MoO ₂ or Fe-FeO buffer	Focus on analysis of quench fluid phase; diamond SN in unbuffered H ₂ O expt at 1400°/42 h, GS in unbuffered H ₂ O-CH ₄ expts at 1400°/42 h. GS only in 1 buffered expt (H ₂ O-rich, 1600°/24 h). CM: {111}
Palyanov et al. (2010a)	CO ₂ from AgOx	7.5	1300–1600	2–80 h		Pt capsule, Fe ₃ O ₄ – Fe ₂ O ₃ buffer	SN at 1600°/2 h, 1600°/15 h; GS from lowest <i>T</i> expts (1400°/40 h at 6.3 GPa, 1300°/80 h at 7.5 GPa). CM: {111}
Zhang et al. (2011)	H ₂ O from glu- cose. H ₂ O-CO ₂ from OAD	9-11	1000–1400 K	15-50 min	DAC		Diamond-anvil cell expts. Growth reported in both expts w/ glucose, none in OAD expt
Matjuschkin et al. (2020)	CH4-H2 from StA	5-7	1100–1300	4–23 hr	Z	Au and olivine caps, Mo-MoO ₂ buffer	Expts contain olivine and orthopyroxene. SN at 5 GPa, 1250°/15 h, 6 GPa 1100–1300°, 7 GPa 1200–1300°
<i>Notes:</i> All studies cor StA – stearic acid (C ₁₈ seeds. CM – diamond	ttained graphite in the (H ₃₆ O ₂). Anth – anthra crystal morphology (w	starting co cene (C ₁₄ H ₁₀ /here given	mposition. Gr – ₁ ₀). MA – malonic in article). Tempe	graphite. OAD – acid (C ₃ H ₄ O ₄). g ratures in <i>Results</i>	oxalic acid lucose – C_6 l column in °	dihydrate. OA H ₁₂ O ₆ . SN – sp C.	– anhydrous oxalic acid ($H_2C_2O_4$). AgOx – silver oxalate ($A_{22}C_2O_4$). ontaneous nucleation and growth of diamond. GS – diamond growth on

 Downloaded from http://pubs.geoscienceworld.org/msi/rimg/article-pdf/88/1/755/2645131/rmg.2022.88.14.pdf

 Downloaded from http://pubs.geoscienceworld.org/msa/rimg/article-pdf/88/1/755/2645131/rmg.2022.88.14.pdf

 Downloaded from http://pubs.geoscienceworld.org/msa/rimg/article-pdf/88/1/755/2645131/rmg.2022.88.14.pdf

 Downloaded from http://pubs.geoscienceworld.org/msa/rimg/article-pdf/88/1/755/2645131/rmg.2022.88.14.pdf

 on 05 July 2022

Experimental issues

In experiments at diamond-stable conditions, C–O–H volatiles are added to the capsule as either a fluid by micro-syringe, or as solid materials that break down to fluids at the conditions of the experiment. C–O bearing materials such as oxalic acid dihydrate ($H_2C_2O_4 \cdot 2H_2O$) and silver oxalate ($Ag_2C_2O_4$) have a long history of use in experimental petrology (e.g., Holloway et al. 1968; Boettcher et al. 1973). These materials, as well as others such as anthracene ($C_{14}H_{10}$) and glucose ($C_6H_{12}O_6$), have been used to generate C–O–H fluids for diamondsynthesis experiments. A key assumption is that the solid starting material break downs to the expected fluid composition at experimental conditions; progress is being made on both *in situ* studies of these fluids (McCubbin et al. 2014) and careful characterisation of fluids following quenching of the experiment (e.g., Tiraboschi et al. 2016; Sokol et al. 2017). Other issues arise for specific compounds; for example, the elemental silver liberated by decomposition of silver oxalate can alloy with the sample capsule, which can lead to melting, capsule rupture, and loss of fluid (e.g., Brey et al. 1991).

Because of the potential for hydrogen diffusion across the capsule wall during the experiment, evolution of the composition of the fluid phase during the experiment is an issue relevant to these experiments (see discussions in Sokol et al. 2004, for example; Palyanov et al. 2010a). This long-standing experimental issue has led to various approaches to buffer the fluid composition (see overviews by Rubie 1999; Stagno 2019), and Table 1 notes studies in which buffering of the fluid phase by an external hydrogen buffer was employed.

Possible future directions

Continued focus on experiments with well-constrained redox conditions to maximize experimental run durations and to maintain constant fluid compositions will undoubtably improve our understanding of the dependence of diamond growth rate on fluid composition. Given the solubility of silicates in C–O–H fluids at high *P* and *T*, continued study of diamond growth in fluids saturated with peridotitic or eclogitic mineral assemblages would seem to be the most fruitful in terms of direct relevance to diamond growth in the Earth's mantle. Finally, studies of diamond growth in C–O–H fluids will benefit from continued efforts to improve thermodynamic models of fluids at high *P*, *T*. As an example, the solubility of carbon in CO₂ fluid at 6.3 GPa and 1250–1400 °C measured by Palyanov et al. (2010a) is ~1 order of magnitude larger than that predicted by the GFluid thermodynamic model (Zhang and Duan 2010). Furthermore, fluid models such as GFluid are restricted to fluid constituents in the C–O–H system. Extending these models to quantitatively model the effects of the solubility of silicates and oxides is sorely needed—and will require an enormous amount of experimental data to calibrate.

CARBONATES

Overview

Like C–O–H fluids, carbonate melts have attracted significant attention of experimentalists as potential growth media for diamond over the past three decades. A rich variety of alkali- and alkaline earth carbonates have been explored in these studies (Table 2), including those most likely to be relevant to diamond growth in the Earth's mantle, such as those in the Na₂CO₃–K₂CO₃–CaCO₃–MgCO₃–FeCO₃ system. All studies in Table 2 have graphite present in the starting material (or likely formed by breakdown of oxalate or other solid sources in the initial stages of the experiment) and use carbonate melts as media for graphite transformation into diamond. Experiments that explore diamond nucleation and growth as a result of redox reactions involving carbonates are described in another section.

Study	System	Р	$T(\mathbf{C})$	Duration	Seeds	Capsule/	Results
		(GPa)				buffering	
Akaishi et al. (1990a)	Li ₂ CO ₃ -Gr, Na ₂ CO ₃ -Gr, SrCO ₃ - Gr, CaCO ₃ -Gr, MgCO ₃ -Gr	7.7	2150	20 min	z	Mo	All had SN at 2150°. Expts with CaCO ₃ -Gr: No SN at 1800°, ~50% conversion at 2000°. CM: rounded shape
Akaishi et al. (1996)	MgCO ₃ -Gr	<i>T.T</i>	1800–2450	5, 30 min	Y	Та	Sintering of diamond powder at $> 2000^{\circ}$
Taniguchi et al. (1996)	MgCO ₃ -Gr, K ₂ Mg(CO ₃) ₂ -Gr	9-10	1300–1700	20 min	Z	Gr	MgCO ₃ -Gr: SN at 9.5 and 10 GPa at ≥1600°; none observed at 9 GPa 1400–1750°. K,Mg(CO ₃)Gr: SN above 1650° at 9–10 GPa. CM: {1111>{100}
Litvin et al. (1997)	$K_2 Mg(CO_3)_2 - Gr$	8-11	1700	5-10 min	z	MgO-BN	SN at 9–11 GPa, 1700°, 10 min. 8–9 GPa, 1700°, 5 min recrystallized Gr only. CM: {1111, {100}
Srikanth et al. (1997)	MnCO ₃ -Gr	6.5-7.7	1700–2100	20 min	z	Mo	No SN at 6.5 GPa 1700° or 1800°, or at 7.7 GPa below 2000°. SN at 7.7 GPa, 2000° and 2100°, CM: {111}>{100}
Litvin et al. (1998a,b,c)	Na ₂ Mg(CO ₃) ₂ -K ₂ Mg(CO ₃) ₂ - NaKMg(CO ₃) ₂ -Gr	8-10	1700–1800	ċ	Y	Gr	SN and GS. CM: {111}, {100}
Sokol et al. (1998)	Na ₂ CO ₃ -Gr	6.8	1700	10 min, 16 h	Y	Gr	SN. CM: {111}
Pal'yanov et al. (1998a)	Li ₂ CO ₃ -Gr, Na ₂ CO ₃ -Gr, K ₂ CO ₃ -Gr, Cs ₂ CO ₃ -Gr, CaCO ₃ -Gr, MgCO ₃ -Gr, SrCO ₃ -Gr, CaMg(CO ₃) ₂ -Gr	L	1700–1750	18.5 h			Ranked carbonates in terms of diamond growth efficacy as Li ₅ CO ₃ >Na ₅ CO ₃ >K ₅ CO ₃ > Cs ₅ CO ₃ and CaMg(CO ₃) ₂ >CaCO ₃ > MgCO ₃ SrCO ₃ . CM: Na ₂ CO ₃ [111]>[100]; K ₂ CO ₃ [111], [111]>[100]; Li ₂ CO ₃ [111]>[100], [<i>hhk</i>]; Cs ₂ CO ₃ [111]; alkaline-earth carbonates [111], { <i>hhk</i>];
Borzdov et al. (1999)	K ₂ CO ₃ –Gr	L	1700–1750	2–11.5 h	Y	Pt	SN at 2 h. 100% diamond at 11.5 h.CM: {111}, {111} >> {100}
Litvin et al. (1999a)	K_2Ca(CO_3)2-Gr, Na2Ca(CO_3)2-Gr	8.5, 9.5	1680–1800	40–65 min	¥	Gr	K ₂ Ca(CO ₃) ₂ -Gr: 100% diamond at 9.5 GPa, 1750°, 40 min. Na ₂ Ca(CO ₃) ₂ -Gr: GS at 8.5 GPa, 1750° and 9.5 GPa, 1800°. CM: {111}
Litvin et al. (1999b)	Na ₂ Mg(CO ₃) ₂ -Gr, NaKMg(CO ₃) ₂ -Gr	8-10	1700–1800	~30 min?	Y	Gr or MgO	GS reported. Figure shows SN down to ~1550° at 8.5 and 9 GPa. CM: {111}
Litvin and Zharikov (1999)	$\label{eq:K2Fe} \begin{array}{l} K_2Fe(CO_3)_2\text{-}Gr,\\ Mixed K-Na-Ca-Mg-Fe \ carbonate + \ Gr \end{array}$	6-2	1650–1800	20-60 min	¥	Gr	K ₂ Fe(CO ₃) ₂ -G: SN at 9 GPa, 1800°. Mixed carbonate: GS reported at 7–9 GPa, 1650–1800°. CM: {111}
Pal'yanov et al. (1999b)	Li ₂ CO ₃ -Gr, Na ₃ CO ₃ -Gr, K ₂ CO ₃ -Gr, CS ₂ CO ₃ -Gr	2	1700–1750	10 min–18.5 h	X	Pt	SN in all systems at 2 h; not at 20 min for Na ₂ CO ₃ and K_2CO_3 or at 30 min for Cs ₂ CO ₃ . Catalytic activity trend seen: Li ₂ CO ₃ \approx Na ₂ CO ₃ \times K ₂ CO ₃ $<$ ScO ₃ \times K ₂ CO ₃ $<$ (111) $>$ {100}; { <i>hkk</i> }; Na ₂ CO ₃ {111} > {100}; K ₂ CO ₃ {111} $>$ {100}; K ₂ CO ₃ {111} $>$ {100}; CM: Li ₂ CO ₃ {111} $>$

Table 2. Studies of diamond nucleation and growth in carbonate systems.

Study	System	P (GPa)	T (C)	Duration	Seeds	Capsule/ buffering	Results
Pal'yanov et al. (1999a)	Na ₂ CO ₃ -Gr, Na ₂ CO ₃ -CO ₂ -H ₂ O (OAD)-Gr, K ₂ CO ₃ -Gr, K ₂ CO ₃ -CO ₂ -H ₂ O (OAD)-Gr	5.7	1150–1420	20–120 h	¥	Pt	Na ₂ CO ₃ -Gr: No SN but GS at 1360°/40 h; SN at 30 h at 1420°, GS but no SN at 20 h. K ₂ CO ₃ -Gr: No GS at 1250°/40 h, GS but no SN at 1300–1420°. Na ₂ CO ₃ -CO ₂ -H ₂ O (OAD)–Gr: SN at 1150/120 h, GS but no SN at 1250/40 h; SN at 1360/40 h and 1420°/20 h. K ₂ CO ₃ -CO ₂ -H ₂ O (OAD)–Gr: SN at 1150°/120 h, GS but no SN at 1250°/40 h and 1420°/20 h. CDS ³ (1111, {100}; K ₅ CO ₃ and Na ₅ CO ₃ -H ₅ O {111}
Sato et al. (1999)	CaCO ₃ –Gr, MgCO ₃ –Gr, Ca _{0,4} Mg _{0.6} CO ₃ –Gr	7.7	1600–2000	1–12.5 h	Z	Mo with Gr liner, two in Pt	$CaCO_3$ -Gr: SN at 1800°/6 h, not at 1 h; SN 1 h at 2000° but not 1900°. MgCO_3-Gr: SN at 2000°/1 h, not at 1900°/1 h or 1800°/6 h. $Ca_{0.4}Mg_{0.6}CO_3$ -Gr: No SN at 1600°/12.5 h or 1600°/1 h; SN at 1700° at 11 h, not at 9 or 6 h; SN at 1800° at 6 h, not at 1 h; SN at 1900°/1 h and 2000°/1 h. CM: {111}
Sumiya and Satoh (1999)	CaCO ₃ -Gr, MgCO ₃ -Gr, CoCO ₃ -Gr	7.7	2000–2100	15 min	Z	Mo	SN at 2000°, complete at 2100° in CaCO ₃ and MgCO ₃ , SN at 1850° in CoCO ₃ . CM: {111}
Sokol et al. (2000)	Li ₂ CO ₃ -Gr, Na ₂ CO ₃ -Gr, K ₂ CO ₃ - Gr, Cs ₅ CO ₃ -Gr, CaCO ₃ -Gr, CaMg(CO ₃) ₂ -Gr	٢	1700–1750	4-19 h	Y	Pt	SN reported for all expts; focus of study was analysis of quenched fluid phase.
Liu et al. (2001)	MnCO ₃	6-12	>2000	ċ	DAC		Laser–heated DAC; reported formation of diamond by breakdown of carbonate at $P \sim 12~{\rm GPa}$
Sokol et al. (2001b)	CaMg(CO ₃) ₂ -Gr, CaMg(CO ₃) ₂ -H ₂ O-Gr, CaMg(CO ₃) ₂ -CO ₂ +H ₂ O (OAD)- Gr, CaMg(CO ₃) ₂ -Na ₃ C ₂ O ₄ -Gr	5.7, 7	1300–1700	2-42 h	Y	전	CaMg(CO ₃) ₂ -Gr: SN at 7 GPa, 1700° at \geq 4 h; G at 2 h. No SN at 5.7 GPa, 1420°42 h. CaMg(CO ₃) ₂ -H ₂ O-Gr: SN at 5.7 GPa, 1420°42 h. CaMg(CO ₃) ₂ -CO ₂ -H ₂ O-Gr: SN at 5.7 GPa, 1420°42 h. CaMg(CO ₃) ₂ -CO ₂ -H ₂ O-Gr: SN at 5.7 GPa, 001 y at 1300°42 h. CaMg(CO ₃) ₂ -Na ₂ C ₂ O4-Gr: GS only at 5.7 GPa, 001 y at 5.7 GPa, 1300°42 h.
Pal'yanov et al. (2002a)	$\begin{array}{l} Na_{2}CO_{7}-Gt, K_{3}CO_{3}-Gt, \\ Na_{2}CO_{7}-H_{2}O-Gt, \\ K_{2}CO_{3}-H_{2}O-Gt, \\ Na_{2}CO_{3}-CO_{7}-Gt, \\ K_{2}CO_{3}-CO_{7}-Gt, \\ Na_{2}CO_{3}-H_{2}O+CO_{2}(OAD)-Gt, \\ Na_{2}CO_{3}-H_{2}O+CO_{2}(OAD)-Gt, \\ \end{array}$	5.7	1150–1420	5-136 h	×	Mostly Pt, 1 in Gr, 2 in Au	Study focused on how the induction period changes with <i>P</i> , <i>T</i> , and presence of fluids. Found reactivity much higher in fluid–bearing expts. Na ₂ CO ₃ -Gr: At 7 GPa and 1700°, SN at 2 h, not 0.3 h; at 5.7 GPa 1420°, SN at 30 h, not 20 h; No SN at lower <i>T</i> (1250–1360°) at 40 h. K ₂ CO ₃ -G: SN at 7 GPa, 1700/2 h. No SN at 5.7 (1250–1360°) at 40 h. K ₂ CO ₃ -G: SN at 7 GPa, 1700/2 h. No SN at 5.7 (1250–1360°) with B ₁ 20°4/40 h. H20°4/40 h. H20°4/40 h. H20°4/40 h. With H ₂ O-CO ₂ , had SN at 1150°/120 h, and with faceroasing time with increasing <i>T</i> to 20 h at 1420° (for Na ₂ CO ₃). CM: Na ₂ CO (1111); K ₂ CO ₃ -CO ₂ -H ₂ O (1111); K ₂ CO ₃ -CO ₂ -H ₂ O (1111)
Shatsky et al. (2002)	K ₂ CO ₃ -Gr	6.3	1650	40 h	Y	Gr	SN (~25–29% transformation). CM: {111}

Study	System	P (GPa)	$T(\mathbf{C})$	Duration	Seeds	Capsule/ buffering	Results
Litvin and Spivak (2003)	Mixed K-Na-Ca-Mg-Fe carbon- ate + Gr, Natural limestone + Gr	7.5–8.5	1500–2000	<1h	Z	Gr	SN at >7.5 GPa, > 1500° in 45–50 min expts reported for both start- ing materials. CM: {111}
Sokol and Pal'yanov (2004)	Review of fluid, carbonate+fluid results	5.7–7.7	1150-2000				Review of previous work; discusses induction period preceding spontaneous SN of diamond, which increases with decreasing <i>T</i> . Report increasing intensity of diamond formation in the order: $K_2CO_3(Na_2CO_3)-H_2O-CO_2-C > CO_2-C \approx H_2O-C \approx CaMg(CO_3)-H_3O-C \approx CH_a-H_3-C \approx$
Spivak and Litvin (2004)	Mixed K-Na-Ca-Mg-Fe carbon- ate + Gr	5.5-8.5	~1200–2250	ć	ć	ć	Updated and expanded on Litvin and Zharikov (1999). Few expt'l details. Photos of diamonds formed at 7.8 GPa 1990°, 8 GPa 1500°. Figure has diamond growth down to ~1200° at ~6 GPa. CM: {111}
Palyanov et al. (2007a)	K ₂ CO ₃ + Gr, H ₂ O-Gr, K ₂ CO ₃ + H ₂ O + Gr	7.5	1400–1600	15 h	Y	Pt	K ₂ CO ₃ -Gr: SN at 21500°, none at 1400°. H ₂ O-Gr: SN at 1500° and 1600° K ₂ CO ₃ + H ₂ O + Gr: SN at 1500° and 1600°, increasing amt of diamond formation as H ₂ O content increases. CM: K ₂ CO ₃ {111}, {100}; K ₂ CO ₃ + H ₂ O {111}
Spivak et al. (2008)	Mixed K-Na-Ca-Mg-Fe carbon- ate + Gr	7–8.1	1500-1600	1–24 min	Z	Gr	SN reported in 3 expts (7 GPa 1500°/8 min, 7 GPa 1600°/1 min, 8.1 GPa 1530°/24 min). CM: {111}
Tomlinson et al. (2011)	$MgCO_3 + Gr$	10-20	1900–2100	15 min	Z	Re	Diamond formation reported at 1900° at 10 GPa and 2000° at 15 and 20 GPa. CM: {1111} + {100}
Spivak et al. (2012)	CaCO ₃	11-43	1600-3900K	5 min	Z	DAC (Re gasket + Ne) and MAP	Laser-heated DAC. Diamond formation from breakdown of CaCO ₃ melt at \sim 3500 K, ~16 and ~43 GPa. CM: {111}
Solopova et al. (2013)	Mixed K–Na–Ca–Mg carbonate + Gr	7–8.5	1500–1800	5-60 min	Z	ć	SN at 7.5 GPa 1600° to 8.5 GPa 1800°. CM: {111}
Palyanov et al. (2016)	Na ₂ CO ₃ -Gr, Na ₂ C ₂ O4	6.3, 7.5	1250–1700	10–66 h	Some expts	Pt	Na ₂ C ₂ O ₄ w/o graphite added: Breaks down via $2Na_2C_2O_4 = 2Na_2C_0$, + C + CO ₂ . Formed diamond at 6.3 GPa, $\geq 1300^{\circ}$, 7.5 GPa, $\geq 1350^{\circ}$ from Na ₂ CO ₃ -CO ₂ melt. Control expts with Na ₂ CO ₃ -C grew diamond at 6.3 GPa, 1400–1570°. CM: Na ₂ CO ₃ + CO ₂ {1111}, {100} with convex faces and fibrous structure
Khokhryakov et al. (2016)	Na ₂ C ₂ O4-CaCN ₂	6.3	1500	2, 30 h	Y	Pt	Some GS at 2 h, no SN. SN at 30 h. Observed nitrogen conc up to 1100 ppm, depending on growth sector. CM: Hexaoctahedron with {100}, fibrous structure
Notes: DAC - growth on see	diamond-anvil cell. MAP- multi-ar ds. CM - diamond crystal morpholo	ivil press. (gy (where	Gr – Graphite. O/ given in article).	AD – oxalic ac Temperatures	id dihyd in <i>Resul</i> i	rate. SN – sp ts column in	ntaneous nucleation and growth of diamond. GS – diamond $^{\circ}$ C.

Review of Table 2 reveals that the early experiments were conducted at temperatures well above those reasonable for diamond growth in the mantle for two reasons: (1) diamond nucleation and growth require temperatures significantly overstepping of the graphite–diamond transition and (2) diamond growth requires the carbonate to be partially molten in order to serve as a viable growth medium. The solidus temperatures of alkaline-earth carbonates are in excess of ~1400–1600 °C at ≥6 GPa for successful growth of diamond. Alkali carbonates, with their lower melting temperatures, allow melt-present experiments at lower temperatures, which facilitates crystallization of diamond at lower temperatures. The addition of volatiles such as water and CO_2 to the systems further encourages diamond crystallization to proceed at lower temperatures.

Experimental issues

Carbonate melts are characterised by low viscosity at least to pressures of ~6 GPa (c.f. Jones et al. 2013 and references therein) although their viscosity may increase at higher pressures (Wilding et al. 2019). In the experiments, possible escape of the liquid through a graphite or MgO capsules must be considered—most of the experiments use Pt or Au in part for this reason.

Oxygen (hydrogen) fugacity control is also a consideration; hydrogen diffusion through the capsule wall can drive carbon precipitation via $2H_2 + CO_2$ (melt) = C + $2H_2O$, which also introduces H_2O in the system (e.g., see discussion in Palyanov et al. 2016). However, it is worth emphasizing that use of an external oxygen buffer in a double-capsule configuration with hydrogen diffusion across the capsule wall equalizes the chemical potential of hydrogen, not the fO_2 (e.g., Whitney 1972), and these buffers are best used as hydrogen sinks unless there is a fluid coexisting with the carbonate melt in the experimental charge.

Alkali carbonates, particularly K_2CO_3 , are notoriously hygroscopic and special care must be taken in experiments with these carbonates. Figure 7 of Shatskiy et al. (2015a) illustrates the effect of adsorbed H₂O on phase relationships: the lowest-*T* eutectic in the K_2CO_3 -CaCO₃(-H₂O) drops from ~1200 °C to ~1000 °C at 6 GPa when the samples were dried at 100 °C rather than 300 °C. Some of the differences in the results of the studies involving alkali carbonates may result from this issue. Parenthetically, the temperature effect Shatskiy et al. (2015a) observed also implies high solubility of H₂O in carbonate melts at high pressures—a field relatively unexplored except at much lower pressures (0.025–0.225 GPa; Keppler 2003).

Possible future directions

Further studies of diamond growth in carbonate melts could focus on exploring more of the composition space relevant to natural melts. These studies will benefit from insights provided by recent experimental studies of phase relationships in carbonate systems at mantle pressures (see review by Shatskiy et al. 2015b, for example). The study of systems such as K_2CO_3 -CaCO₃-MgCO₃ (Arefiev et al. 2019) and Na₂CO₃-CaCO₃-MgCO₃ (Podborodnikov et al. 2019) hold particular promise in this regard.

Given that it has been firmly established that diamond can indeed grow in carbonate melts, another fruitful line of research is to take advantage of these melts to grow diamond to continue to address issues such as nitrogen incorporation into diamond (e.g., Khokhryakov et al. 2016) and isotopic fractionation between diamond and coexisting melts or fluids (Reutsky et al. 2015a,c, 2018; Bureau et al. 2018) (see later sections).

On another front, there remains another unresolved question: How does carbon dissolve in carbonate melts? Can it dissolve as a neutral carbon species, or does it dissolve as carbonate? A key challenge in resolving this question is the fact that almost all carbonate liquids do not quench to glass, with the intriguing exceptions of some K–Mg carbonates and some more complex melts in the BaSO₄–La(OH)₃–Ca(OH)₂–CaF₂–CaCO₃ system (see *Carbonate glasses* in Jones et al. 2013 and references therein). This issue naturally complicates both measurements of solubility and solution mechanisms. The available data on C solubility in

Luth et al.

carbonate melts show low solubility: <0.3 wt.% at 6.8 GPa and 1700 °C in Na₂CO₃ melt (Sokol et al. 1998). On the other hand, CO₂ appears to dissolve readily in carbonate melts: Palyanov et al. (2016) observed a solidus depression of ~100 °C at 6.3 and 7.5 GPa in the system Na₂CO₃-CO₂-C compared to Na₂CO₃, and argued that the 16.4 wt.% of CO₂ produced upon decomposition of sodium oxalate (Na₂C₂O₄) dissolved completely in the melt at these conditions. This solubility is higher than the 11.5 wt.% and 6.5 wt.% CO₂ dissolved in CaCO₃ and MgCO₃ melts, respectively, at liquidus conditions at 2.7 GPa (Huang and Wyllie 1976). To our knowledge, there are no spectroscopic data on solution mechanisms of either C or CO₂ in carbonate melts at diamond-stable *P*, *T*. This topic would of course be an ideal *in situ* study, such as those done at lower pressures (~700 MPa e.g., Mysen 2018), when technology has evolved sufficiently to make measurements at these conditions possible.

SILICATE MELTS

Overview

The existing experimental data indicate that volatile-free silicate melts cannot provide either diamond nucleation or growth on seeds in the range of P, T-parameters that are of interest for natural diamond formation. Silicate and oxide systems become diamond-forming only when H_2O is added (Table 3). Clearly, part of this effect is a result of water lowering the solidus and liquidus temperatures to stabilize the melt to lower temperatures more representative of conditions of natural diamond formation. In most systems, however, we lack basic information about the solubility of H_2O in the melt as a function of P and T—or indeed the basic phase equilibria-needed to differentiate the effects of melt fraction and melt composition on diamond growth. Nevertheless, the studies in Table 3 show that the nucleation and growth of diamond on seeds was established at temperatures of 1500-1600 °C in water-bearing silicate melts and silicate-bearing aqueous fluids. An increase in the H₂O content in such systems results in a significant increase in the degree of graphite into diamond transformation and is accompanied by a reduction in the induction period preceding diamond nucleation and an increase in carbon mass transfer. As a result, the most favorable conditions for nucleation and growth of diamond occur in the water-rich fluid phase, containing small amounts of silicate or oxide solute. A decrease in temperature leads to a decrease in the diamond-forming ability of silicate-aqueous media, which is usually attributed to more sluggish kinetics at lower temperature. The minimum nucleation temperature for diamond was 1500 °C at 6.3 and 7.5 GPa. The minimum temperature for diamond growth on seeds is 1400 °C at 6.3 GPa (Table 3).

Experimental issues

The overwhelming majority of experiments in the silicate-water systems were carried out in Pt ampoules without special buffering. The presence of graphite and water among the initial reagents due to H_2 diffusion through the walls of Pt ampoules, in the absence of buffering, can lead to the formation of an uncontrolled amount of CO₂ in a predominantly aqueous fluid.

Future directions

One of the unsolved problems is the determination of the solubility of carbon depending on temperature and on the content of H_2O . Experimental studies in this direction will make it possible to evaluate the real scale of diamond formation in the processes of evolution of the system composition and with a decrease in the *P*, *T*-parameters.

As seen in Table 3, most experiments in the silicate–water systems were carried out without the participation of alkalis. The addition of alkaline components can change the pH of the medium and bring the model system closer to the eclogitic fluid and, possibly, allow to reduce the minimum P, T-parameters.

	Tal	ble 3. Stud	ies of diamon	d nucleatio	n and g	rowth in silic	ate melts.
Study	System	P (GPa)	$T(^{\circ}C)$	Duration	Seeds	Capsule/ buffering	Results
Borzdov et al. (1999)	KAlSi ₂ O ₈ –Gr	7.0	1700–1750	2-18 h	Y	Gr	No SN
Sokol et al. (1999)	CaMgSi ₂ O ₆ -OAD (20 wt.%)-Gr, NaAlSi ₂ O ₆ -OAD (20 wt.%)-Gr	7.0	1700–1750	4 h	Υ	Pt	SN in silicate-H ₂ O-CO ₂ -C systems. CM: {111}
Pal'yanov et al. (2005a)	SiO ₂ -H ₂ O (4-74 wt.%)-Gr, Mg ₂ SiO ₄ -H ₂ O (4-74 wt.%)-Gr	7.5	1600	40 h	¥	Pt	SN of diamond. With an increase in the H ₂ O content, the degree of graphite into diamond transformation significantly increases. CM: {111}
Dobrzhinetskaya and Green (2007)	$Gr-SiO_2 \pm muscovite \pm albite-$ H ₂ O (6–15 wt.%)	7.0-8.5	1500	1–43 h	λ/N	Pt/Ni–NiO	No diamonds found
	Gr−SiO ₂ −H ₂ SiO ₃ (10 wt.%) ± Al ₂ O ₃	7.0-8.5	1500	2–62 h	λ/N	Pt/Fe-FeO	SN of diamond occurred in all experiments with a duration more than 2 hours, mainly in assemblage with SiC and coesite
Sokol and Pal'yanov (2008)	$\begin{split} SiO_2-H_2O-Gr & w/ H_2O/(H_2O + SiO_2) = 1 - 0.05, \\ Mg_2SiO_4-Gr & w/H_2O/(H_2O + Mg_2SiO_4) = 1 - 0.08 \\ \end{split}$	7.5	1600	15, 40 h	¥	拉	SN of diamond occurred in the entire composition range. The degree of graphite to diamond transformation is a func- tion of the H_2O content, which controls both the kinetics of diamond nucleation and the intensity of carbon mass transfer. Decreasing H_2O content decreases degree of transformation. CM: {111}
Palyanov and Sokol (2009)	Mg ₂ SiO ₄ -H ₂ O (13-86 wt.%)-Gr	7.5	1500-1600	15 h	Y	Pt	SN of diamond occurred in all expts. A decrease in tempera- ture results in a decrease in the intensity of diamond forming processes and the formation of metastable graphite. CM: {111}
Sokol et al. (2010)	Mg ₂ SiO ₄ (72 wt.%)–H ₂ O (8 wt.%)–Gr (20 wt.%)	6.3	1200–1600	16-40 h	Y	Pt	No SN of diamond at 1200°/40h. Only GS at 1400°/40h. SN of diamond at 1600°/16h, 40h. CM: {1111}
Fagan and Luth (2011)	SiO ₂ ·0.36H ₂ O+1.5 Mg(OH) ₂ (16.7 wt.%H ₂ O)	5.5-7.0	1300–1600	4–24 h	Y	Pt	No SN at 1300°/24h ($P = 6$ and 7 GPa) and at 1500°/4h ($P = 6$ GPa). GS at 1500–1600°/4h ($P = 7$ GPa). CM: {111}
<i>Notes</i> : Gr – Graphil given in article). Ter	te. OAD – oxalic acid dihydrate. SN – meratures in <i>Results</i> column in °C.	- spontaneou	us nucleation a	nd growth o	f diamor	ıd. GS – diam	ond growth on seeds. CM - diamond crystal morphology (where

BRINES

Early studies showed that diamond can grow in anhydrous alkali halides (Wang and Kanda 1998; Litvin 2003), but such studies are unlikely to be directly relevant to diamond growth in the Earth because of the absence of H₂O. Brines, or hydrous solutions of alkali halides, on the other hand, do form one of the "endmembers" of HDF inclusions in natural diamonds. Remarkably few studies address diamond growth in such systems. The two studies in Table 4 demonstrate that both KCl + H₂O and NaCl + H₂O fluids can nucleate and grow diamonds at 7.5 GPa and high temperatures (1500–1600 °C). The more extensive work in the former system documents a composition-dependence on the degree of transformation of graphite to diamond (see Table 4). Subsequent work in brine-containing systems has shifted to systems coexisting with silicates or carbonates (see subsequent sections).

CARBONATE-CHLORIDE SYSTEMS

There has been limited study of chloride-carbonate systems (Table 5). From these results, it is clear that diamond nucleation and growth can proceed in either anhydrous or hydrous carbonate-chloride melts. An unresolved issue is the minimum temperature at which this occurs: Tomlinson et al. (2004) observed growth as low as 1050 °C at 7 GPa, whereas Palyanov et al. (2007a) did not see diamond growth at 1400 °C at 7.5 GPa. Given the limited data, it is impossible to say whether the presence of H_2O in the system allows diamond nucleation and/ or growth at lower temperatures.

MODEL CARBONATE-SILICATE SYSTEMS

Overview

These studies explore the efficacy of carbonate–silicate melts as a medium for diamond nucleation and growth. In effect, these studies can be considered extensions of carbonate-melt studies that explore the effect of dissolution of silicate constituents into the melt. At the same time, these studies mark a significant step towards simulating systems representative of those potentially present in the Earth's mantle. Examination of Table 6 shows that these melts are effective growth media for diamond, particularly at higher temperatures, which in part reflects the temperatures required for melt to be present, but also the temperature-dependence of diamond nucleation and growth as seen in the previous systems.

Future directions

Unresolved questions in these systems include whether the effect of adding carbonate is strictly a result of stabilising a melt to lower temperatures, a compositional effect of the presence of carbonate, or a result of decreasing viscosity of the melt with increasing carbonate content. Systematic studies to tease out these possibilities may be warranted if such systems are viewed to be useful models for natural diamond growth.

)			
Study	System	P (GPa)	T (°C)	Duration	Seeds	Capsule	Results
Palyanov et al. (2007a)	KCl + H ₂ O + Gr	7.5	1500, 1600	15 h	¥	Ę	1500°: No SN at 19 wt.% H_2O , SN from 35–91 wt.% H_2O with increasing % diam, slight decrease in total % diam in 100% H_2O . 1600°: SN from 17–100 wt.% H_2O , maximum transformation at 66–69 wt.% H_2O . CM: {111}
Khokhryakov et al. (2009	9) NaCl + H_2O + Gr	7.5	1600	40 h	Y	Pt	Growth and entrapment of graphite inclusions. CM: {111}
Notes: Gr – graphite. SN - Study Tomlinson et al. (2004) Palyanov et al. (2007a)	- spontaneous nucleation ε Table 5. St System KCl + K ₂ CO ₃ + Gr KCl + K ₂ CO ₃ + Gr	and growth of udies of dian $\frac{P(GPa)}{7-7.7}$	diamond. GS – mond nucleat 1050-1420 1400-1600	- diamond grow ion and grow 5-60 min 15 h	vth on seed th in carb Y Y	s. CM – dian onate–chlo Capsule Pt Pt	nond crystal morphology. Temperatures in <i>Results</i> column in °C aride (±H ₂ O) systems. Results GS at 1050°/60 min, 1260°/60 min, 1420°/<5 min. CM: {111 } No SN at 1400°, SN at 1500° (more in K ₂ CO ₃ -rich) and 100% diam at 1600° w/KCI varying from 25–80 wt.%.
Palyanov et al. (2007a)	$KCI + K_2CO_3 + H_2O + C$	jr 7.5	1500	15 h	Y	Pt	SN in three compositions with variable KCI:K ₂ CO ₃ :H ₂ O. CM: {111}

Notes: Gr - graphite. SN - spontaneous nucleation and growth of diamond. GS - diamond growth on seeds. CM - diamond crystal morphology. Temperatures in Results column in °C.

Table 4. Diamond growth in brines.

	Table 6.	Studies of c	liamond nucl	eation and g	growth ir	n model ca	rbonate-silicate systems.
Study	System	P (GPa)	$T (^{\circ}C)$	Duration	Seeds	Capsule	Results
Borzdov et al. (1999)	66.6 wt.% K ₂ CO ₃ + 33.4 wt.% SiO ₂ + Gr, 80 wt.% K ₂ CO ₃ + 11.4 wt.% MgO + 8.6 wt. % SiO ₂ + Gr, 80 wt.% K ₂ CO ₃ + 5.96 wt.% MgO + 5.08 wt.% Al ₂ O ₃ + 8.96 wt. %SiO ₂ + Gr	L	1700–1750	1–17.5 h	¥	Pt	$K_{2}CO_{3}-SiO_{2} + Gr: SN in 1 h$ $K_{2}CO_{3}-MgO-SiO_{2} + Gr: SN in 17.5 h$ $K_{2}CO_{3}-MgO-Al_{2}O_{3}-SiO_{2} + Gr: SN in 17 h.$ Contrasts w/ no SN or GS in 2–18 h expts with KAlSi ₃ O ₈ + Gr. Carbonate – or carbonate ± silicate ± oxide melts fluxed diamond growth. CM: {111}, {111} > {100}
Shatsky et al. (2002)	$\begin{array}{l} K_2CO_3 + SiO_2 (5-75 \ wl.\% \\ SiO_2) + Gr, K_2CO_3 + Mg_2SiO_4 \\ (Fo) (5-95 \ wl.\% \ Fo) + Gr \end{array}$	6.3	1650	40 h	¥	G	$K_{2}CO_{3} + SiO_{2} + Gr: SN up to 25 wt.\% SiO_{3}; GS only at higher SiO_{2}; K_{2}CO_{3} + Fo + Gr: SN up to 50 wt.\% Fo; GS only in 50–90 wt.\% Fo; no GS at 95 wt.\% Fo. In both series, maximum intensity of diamond growth at ~10 wt.% silicate. All expts contained K-bearing carbonate-silicate melt. CM: {111}, {100}$
Litvin et al. (2008a)	NaAlSi $_{3}O_{8} + K_{2}CO_{3}$ (50–90 wt.% Ab) + Gr, M $_{2}SiO_{4} + K_{2}CO_{3}$ (60–80 wt.% Fo) + Gr, SiO $_{2} + K_{2}CO_{3}$ (30–50 wt.% SiO $_{2} + Gr$	7.6–8.5	1620–1800	4-40 min	¥	Ę.	GS in all expts in presence of carbonate–silicate melt. SN reported in expts except for $Mg_2SiO_4-K_2CO_3$ at <40 wt.% carbonate and $SiO_2-K_2CO_3$ at < 60 wt.% carbonate. CM: {111}
Spivak et al. (2008)	NaAlSi ₃ O ₈ + K ₂ CO ₃ (60–80 wt.% Ab) + Gr	8.5	1730, 1800	6 min 30 min	Z	G	SN reported in presence of melt in both experiments. CM: {111}
Bataleva et al. (2012)	(Ca,Mg)CO ₃ –SiO ₂ –Al ₂ O ₃ – (Mg,Fe)(Cr,Fe,Ti)O ₃ (16.1 wt.% CO ₂)	6.3	1350–1650	20 h	Y	Pt, Pt + Gr	GS at 1550° and 1650° in Pt capsules (not at 1350° or 1450°), at 1350° and 1450° in Pt-Gr capsules. Melt present in all expts, amount increased from <10 wt.% at 1350–1450° to >20 wt.% at 1550° and 1650°. Observed dissolution of diamond seeds in expts w/ Pt capsules but not in Pt-Gr capsules (fO_2 dependent). CM: growth {111}, regeneration of {100} \rightarrow 111}
Notes: Gr - graphi	te. SN - spontaneous nucleation an	id growth of c	liamond. GS -	diamond gro	wth on se	eds. CM - 6	liamond crystal morphology. Temperatures in Results column in °C.

Notes: Gr – graphite. SN – spontaneous nucleation and growth of diamond. GS – diamond growth on seeds. CM – diamond crystal morphology. Temperatures in Results column in '

MULTICOMPONENT CARBONATE–SILICATE MEDIA AND "DIAMOND-BEARING" ROCKS

Overview

The main regularities in diamond crystallization, as revealed in simple model systems (above), are also valid for multicomponent media and are as follows:

- Silicate melts do not facilitate nucleation and diamond growth; it is the addition of water makes the silicate + H₂O systems diamond-forming. The silicate component acts as a diamond formation inhibitor (e.g., Sokol and Pal'yanov 2008), with all other parameters being constant.
- In carbonate-silicate environments, the silicate component also inhibits diamond formation.
- The most effective diamond-forming media are alkaline carbonate melts as well as H_2O and CO_2 -bearing fluids; nucleation and growth of diamond in these media are realized at the lowest *P*, *T*, probably reflecting their stability as melts or fluids at these conditions.
- The induction period preceding the nucleation and growth of diamond depends on *P*, *T* and the composition of the crystallization medium.
- With an increase in *P* and *T*, the diamond-forming ability of all media increases. A decrease in *P* and *T* in all media leads to crystallization of metastable graphite.
- An increase in pressure from 5.7 to 12 GPa and above allows the reduction of the minimum diamond nucleation temperature in all systems, including multicomponent carbonate–silicate media.
- All other parameters being equal, the nucleation of a diamond requires higher temperatures than the growth of a diamond on seeds.
- Crystallization of diamond or graphite in a carbonated eclogite at 9–23 GPa was suggested to result from oxidation of Fe²⁺ to Fe³⁺ in coexisting garnet (Kiseeva et al. 2013).

Experimental issues

Experiments in multicomponent carbonate–silicate systems and using the "diamondbearing" rocks were carried out mainly in Pt ampoules (Table 7). The effect of the ampoule material (for example, Pt and Au) on the diamond nucleation process in non-metallic solvents has been studied insufficiently. For example, in long-term experiments (tens of hours), the dissolution of Au and its crystallization on diamond in the C–O–H fluid were shown (Sokol et al. 2001a). The effect of Pt on diamond nucleation was established in long-term experiments in the kimberlite–graphite system (Palyanov et al. 2015); however, the real scale of the effect of Pt is not clear. It can be most significant at high P and T, especially when using small diameter Pt ampoules.

Future directions

New experimental studies need to be performed in these fields:

 Despite a large number of experiments carried out in a wide range of *P*, *T*-parameters and in various media, there is still no clarity and experimental confirmation of how diamond is formed in eclogites and peridotites in the pressure range of 4–7 GPa and 900–1400 °C, characteristic of formation of most natural diamonds (Stachel and Harris 2008).

 There is still insufficient experimental data to assess the effect of various components of the C–O–H–N–S system fluid on the crystallization of diamond in multicomponent media. The data on the defect-impurity composition of diamonds synthesized in various model media are still scarce, which does not allow us to fully assess the overall picture of the effect of the composition of diamond-forming media on the real structure of diamond.

SULFIDE MELTS

The studies in this section (Table 8) document that diamond can nucleate and grow in ironsulfide melts, but typically at temperatures higher than those appropriate for corresponding pressures in the mantle. From these studies, sulfide melts appear to be less effective at mediating diamond growth than either H_2O -rich fluids or carbonate melts.

CARBONATE REDUCTION

To this point, all of the studies had graphite in the starting materials, and the primary focus was on whether a particular melt or fluid would mediate the transformation of graphite to diamond at conditions approaching those appropriate for the Earth. In contrast, the studies in this section all contain carbonate as a carbon source and use different reducing agents to produce diamond by reduction (Table 9). The early studies demonstrated the viability of this mechanism, using metal, metal carbides, or metal hydrides as reducing agents. Subsequent studies looked at the possible role of C–H fluids, sulfides and oxides. Overall, reduction of carbonate has been shown to be a viable mechanism for formation of diamond; the key question in terms of applicability to the Earth is what the appropriate reducing agent might be in different environments, particularly in the lithospheric mantle at depths shallower than those at which iron metal or carbide are stabilized.

DIAMOND-ANVIL CELL EXPERIMENTS

Overview

Whereas they are not designed for that purpose for most of the cases, laser heated diamond anvil cells (LHDAC) experiments may give significant information about the formation of superdeep diamonds, and demonstrate progress towards multiphase mantle petrology at conditions of the lowermost mantle.

Most of these studies (Table 10) are looking at high *T*- and *P*-dependent breakdown of carbonates like $CaCO_3 = CaO + C + O_2$ in the context of subduction recycling, or to characterize the formation of new mineralogical species of carbonates in the deep Earth. For example, Dorfman et al. (2018) show that $CaCO_3$ is preserved at pressure and temperature conditions reaching those of the deep lower mantle, supporting its relative stability in carbonate-rich lithologies under reducing lower mantle conditions. Boulard et al. (2011) provide evidence for the presence of both diamonds and an oxidized C-bearing phase, suggesting that oxidized and reduced forms of carbon might coexist in the deep mantle.

Litvin et al. (2014) took the benefit of these HPHT tools to study the diamond-forming lower mantle systems, by investigating melting phase relations of simple carbonates of Ca, Mg, Na and multicomponent Mg–Fe–Na–carbonate up to 60 GPa and 3500–4000 K (LHDAC and multi-anvil presses). They grew diamonds that showed that 'Super-deep' diamonds can crystallize in the system carbonate-magnesiowüstite-Mg-perovskite-carbon.

	Table /. Studies 01 C	Halhond nuc	icauon anu gr		ompone	siil cafuuliau	
Study	System	P (GPa)	T(C)	Duration	Seeds	Capsule/ buffering	Results
Arima et al. (1993)	Kimberlite-Gr	T.T.T	1800–2200	20–900 min	Y/N	Gr (Mo, Ta)	SN
Palyanov et al. (2001b)	Natural pyroxene-carbonate (~22 wt.% SiO ₂)-Gr	5.7	1420 1700	41 h 3 h	Y	Pt	SN of diamond in both expts w/ this composition. Contrasts with garnet-pyroxene rock at 5.7, 1420° that did not produce diamond. Analysis of gas phase after expt showed $H_2O \gg CO_2$
Litvin et al. (2001)	Natural calcio-carbonatites (~12-~22 wt.% SiO ₂) + Gr	L	1450–1550	10-40 m	Y	Gr	SN reported for all four compositions. Melt present in all expts
Litvin et al. (2003)	Natural garnet-cpx-carb rock	5.5-7.5	1420–1720	1–31 min	Y (in some)	Gr	Reported GS at T as low as 1420° (6.5 GPa) in presence of melt. SN in expts from 1420–1720°; dissolution of seeds in other expts from 1450° at 6.1 GPa to 1660° at 5.5 GPa
Dobrzhinets- kaya et al. (2004)	Carbonate-talc-Gr	7.5-8.5	1200–1500	1–138 h	Z	Pt	SN at 1500° and 8.1 GPa/34 h
Bobrov et al. (2004)	Natural carbonate-silicate rock	4-7	1200–1700	20–125 min	Y	$\mathrm{Pt}_{60}\mathrm{Rh}_{40}$	Reported diamond formation from carbonatitic melt
Litvin et al. (2005a)	Natural carbonatite	7-8.5	1500–2000	40 min	Z	Gr	Liquidus reported to be at $\sim 1700-1730^\circ$. Diamondite formed at $7-8.5$ GPa, 1800° in carbonate–silicate melt
Litvin et al. (2008b)	Eclogite + dolomite, eclogite + K ₂ CO ₃ , eclogite + K–Na–Mg– Ca–Fe carbonate	8.5	1570-1800	4-42 min	Y	Gr	GS in all expts. SN reported in carbonate–silicate melt at low % (~30–40 wt.%) eclogite
Litvin and Bobrov (2008)	Peridotite + K-Na-Mg-Ca-Fe carbonate	8.5	1750–1780	12–15 min	Y	G	SN in carbonate–silicate melt up to ~ 30 wt.% peridotite in starting material
Litvin et al. (2008a)	Eclogite + dolomite, eclogite + K ₂ CO ₃ , eclogite + K–Na–Mg– Ca–Fe carbonate	7-8.5	1000-1800	2-45 min	Y	Gr	GS except one expt at 1000° (rest ≥1500°). Reported barrier to nucleation of diamond in the melts that varied depending on the carbonate composition
Spivak et al. (2008)	cpx-gt + K ₂ CO ₃ + Gr, Eclogite + dolomite	7.3–8.5	1650–1800	6-40 min	Z	Gr	SN reported in presence of melt in all 5 expts (7.3 GPa 1650°/40 min, 8.5 GPa 1720–1800°)
Bobrov and Litvin (2009, 2011)	Peridotite + carbonate, eclogite + carbonate. Carbonates: K ₂ CO ₃ , CaMg(CO ₃) ₂ , K–Na–Mg–Ca–Fe carbonate	7–8.5	1750–1820	10–15 min	¥	Gr	GS in all expts at 8.5 GPa, 1750–1820°. Reported barrier to nucleation of diamond in the melts that varied depending on the carbonate and silicate composition of the melt

media and diamond-forming rocks eilinate multicomponent carbonate arowth in Table 7 Studies of diamond nucleation and

Study	System	P (GPa)	T (C)	Duration	Seeds	Capsule/ buffering	Results
Bureau et al. (2012)	MELD-SiO ₂ -Al ₂ O ₃ -TiO ₂ - (Ca,Mg,Na ₂ ,K ₃)CO ₃ -H ₂ O-Gr ± D	7–9	1200–1700	10 min– 144 h	In most	Pt	MELD = average inclusion composition from Navon et al. (1988). Observed SN in unseeded expts at $1500^{\circ}/-5$ h but not $1450^{\circ}/10$ min at 7 GPa. In seeded expts, observed GS at 7 GPa as low as 1200° (144 h expt), SN in most other expts at higher <i>P</i> and <i>T</i>
Spivak and Litvin (2012)	Calcio-carbonatite w/~28 wt.% SiO ₂ + Gr	8.5	1320–1750	30 min	Y	Gr	Sample previously studied by Litvin et al. (2001) at 7 GPa. Varied C content in SM. Melt present in expts at >1325°. Diamond reported in expts at 20 and 40 wt.% C, not in 0 or 10 wt.% C expts. Diamond reported in subsolidus expt at 1320°, 40 wt.% C
Kiseeva et al. (2013)	Natural eclogites	9–21	1100-1800	12–80 h	Z	Au ₇₅ Pd ₂₅ capsules	Report diamond SN as accessory minerals in experiments on one of their eclogite compositions at $9-23$ GPa; attributed to reduction of carbonate concomitant with Fe ²⁺ oxidation in coexisting garnet
Litasov et al. (2014)	$\begin{array}{l} \mbox{Peridotite} + Fe~(3~wt\%) + \\ C_{18}H_{36}O_2 \mbox{Eclogite} + Fe~(3~wt\%) \\ + C_{18}H_{36}O_2 \end{array}$	3–16	1200–1600	1–24 h	Z	AuPd or Pt/Mo/ MoO ₂ or Fe/FeO	SN at $T \ge 1400^{\circ}$ and 12 GPa/12 h. SN at $T \ge 1200^{\circ}$ and 16 GPa/24 h
Litvin et al. (2014)	CaCO ₃ Na ₃ CO ₃ MgCO ₃ FeCO ₃ Gr, MgCO ₃ -Gr,CaCO ₃ -Gr, Na ₂ CO ₃ -Gr and Mg-Fe-Na-car- bonate-magnesiowitite-Mg- perovskite-Gr	10–60	1100-4000 K	About 5 min	Z	DAC (in Ne) and MAP	SN of nano diamonds
Palyanov et al. (2015)	Kimberlite-Gr	6.3 7.5	1300–1570 1450–1570	40 h 40 h	Y Y	Pt Pt	GS of diamond at $T \ge 1520^\circ$. SN at $T \ge 1520^\circ$ (Pt). No SN in volume GS at $T \ge 1450^\circ$. SN at $T \ge 1570^\circ$ (in volume)
Brey et al. (2015)	Na–gloss + Gr with 6 wt.% CO ₂ and 7 wt.% H ₂ O	7.5 9.5	900–1300 1000,1300	18–73 h 26–72 h	ż	Pt with Re	No SN of diamond No SN at 1000°/72 h. SN at 1300°/26 h
		12	1200, 1400, 1600	2–48 h			No SN at 1200°/48 h. SN at 1400°/27 h and 1600°/2 h
	K-gloss + Gr	7.5	800-1300	24–100 h		Pt with Re	No SN at 800–1300°/48 h. SN at 1300°/25 h
		8.5–9.5	900-1300	25–101 h			No SN at 900–1200°. SN at 1300°/25 h
		10.5	900-1300	4–98 h			No SN at 900°, 1200°/4–15 h. SN at 1200°/27 h, 1300°/25 h
		12	800 - 1400	24–100 h			No SN at 800°/100 h. SN at 1200°/24 h at 1400°/27.5 h

Study	vstem	P(CPa)	T (C)	Duration	See	le Cancule/	Results
ouuy c	ystem.	1 (01 g)		nul auton		buffering	Vestus
Bureau et al. N (2016) E	AORB + Pelagic sediments + I ₂ O + NaCl + Gr	6-7	1300–1400	6-10 h	Y	Pt	No SN, GS only at 1350° and 7 GPa
Girnis et al. F (2018) s ₁	I_2O- and CO_2- bearing model ediment + garnet harzburgite Gr (+ T gradient)	7.5-10.5	1300–1500	6–119 h	Z	Pt(Re)	SN above 1300° at 7.5 GPa and 1200° at 10.5 GPa
μsμ	1 ₅ O- and CO ₂ -bearing model ediment + garnet harzburgite +)m + Gr (No T gradient)	7.5	1100–1400	2–210 h	Y	Pt(Re)	SN observed above 1200° at 7.5 GPa
Palyanov et N al. (2021b) n A	$Ag_3Si_4O_{10}(OH)_2$ (Talc) + mag- esite or dolomite or dolomite + $u_2O_3 + SiO_2$	6.3–7.5	1300–1600	6-40 h	Z	Pt, Pt loo (cathode)	$p\ SN$ (in the cathode zone) from carbon of carbonates under electric field of 0.4–1 v
Notes: Gr – grapi column in °C.	hite. DAC – Diamond-anvil cell. I	<u>MAP – Multi</u> Table	-anvil press. Sl	<u>N – spontaneo</u> diamond nuc	us nuclea	ation and grow and growth	th of diamond. GS – diamond growth on seeds. Temperatures in <i>Results</i> in sulfide melts.
Study	System	P (GPa)	T (C)	Duration	Seeds	Capsule/ I buffering	tesults
Litvin et al. (2002)	$\begin{array}{l} CuFeS_{2^-}(Fe,Ni)_9S_8+Gr,\\ CuFeS_{2^-}Fe_{1_{-t}}S+Gr,\\ CuS+Gr, Ag_2S+Gr\end{array}$	7-7.5	1450–1500	40–80 min	Y	G	N reported in all compositions
Pal'yanov et al. (2003)	$(Fe,Ni)_9S_8 + Gr$	6.3, 7, 7.5	1450–1800	8.5–65 h	Y	U U U	N at ≥ 1600° at 7.5 GPa, GS at 1450° at 6.3 GPa, ≥ 1550° at 7 GPa. :M: {111}
Litvin and Butvina (2004)	$CuFeS_{2}-(Fe,Ni)_9S_8 + Gr,$ $CuFeS_{2}-Fe_{1-x}S + Gr, Ag_2S + Gr$	7–8	1650–1800	10–180 min	X	Gr	N reported in all sulfide + Gr expts; nclear which SM mix used in each expt
Palyanov et al. (2006)	(Fe,Ni) ₉ S ₈ + Gr, FeS + Gr	6.3–7.5	1450-2200	2-40 h	X	5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Fe,Ni) ₉ S ₈ + Gr: SN at ≥1900° at 7 GPa, ≥1600° at 7.5 GPa; S3 at 1450° at 6.3 GPa, ≥1550° at 7 and 7.5 GPa. eS + Gr: No SN at 6.3 GPa, 1500°, 7 GPa 1550–1800°. N at ≥1600° at 7.5 GPa; S5 mall expts (6.3 GPa, 1500°; 7 GPa 1550–1800°; 7.5 GPa 550–2200°)
Litvin et al. (2005b)	$\mathrm{Fe}_{\mathrm{l}_{-x}\mathrm{S}}\mathrm{+Gr}$	7.5–8.9	1800–2100	5-60 min	z	Т	N reported at these conditions; photo of diam formed at 8.2 GPa, 910°/30 min
Shushkanov and Litvin (2006)	a $\operatorname{Fe}_{1-x}S + \operatorname{Gr}$	6.7	1660	4 min	Z	G	N of polycrystalline diamond

Study	System	P (GPa)	T (C)	Duration	Seeds	Capsule/ buffering	Results
Shushkanova and Litvin (2008a,b)	$\mathrm{Fe}_{\mathrm{I-x}}\mathrm{S}+\mathrm{Gr}$	6-7.1	1409–1695	ć	¥	G	Determined P , T range of SN and GS in sulfide melt
Spivak et al. (2008)	FeS	6.7	1660	4 min	Z	Gr	SN observed
Chepurov et al. (2009a)	Fe-Co-S + Gr	5.5	1300	5-48 h	Y	ż	Varied Fe:Co:S ratios; SN reported in most expts. Used Ti in sample as nitrogen sink
Zhimulev et al. (2012)	Fe-Co-S + Gr, Fe-Ni-S + Gr	5.5	1300	5–51 h	Y	MgO	Observed SN in metal-rich, S-poor melts: up to 14 wt.% S in Fe-Co-S; up to 9.9 wt.% S in Fe-Ni-S
Zhimulev et al. (2013)	Fe-S + Gr	5.5	1350	21–25 h	Y	MgO	Observed SN in 4/5 expts with ~5 wt.% S
Zhimulev et al. (2016a)	Fe-S + Gr	5.3-5.5	1300–1370	1–25 h	Y	MgO	SN in 4 wt.% S at 5.5 GPa, ≥ 1350° but no SN at 5.3 GPa, 1300° in 4 wt.% S. GS observed at 5.3 GPa, 1300° at 0.8–3.2 wt.% S.
Palyanov et al. (2020a)	Fe ₉ Ni ₁ +Gr + FeS ₂ , S from 0 to 20 wt %	9	1400	20 h	¥	MgO	With an increase in the S content from 0 to 20 wt%, it was established a decrease in the degree of transformation Gr to Diam from 100 to 0, the formation of metastable graphite, a decrease in the solubility of carbon from 6.6 to 0.8 wt% and a decrease in the nitrogen content in diamonds from 50–100 ppm. CM: {111}, specific antisketal crystals
<i>Notes</i> : Pn – pe article). Tempe	antlandite; Gr – graphite. SN – sp aratures in <i>Results</i> column in °C.	ontaneous n	ucleation and g	rowth of diar	nond. GS	5 – diamond g	rowth on seeds. CM - diamond crystal morphology (where given in

	Ta	ble 9. Stu	udies of diame	ond nucleat	tion and	l growth by r	eduction of carbonate.
Study	System	(GPa)	T (C)	Duration	Seeds	Capsule/ buffering	Results
Arima et al. (2002)	CaMg(CO ₃) ₂ –Si, CaMg(CO ₃) ₂ –SiC	7.7	1500–1800	1–24 h	In some	Pt	CaMg(CO ₃) ₂ : No SN at 1800°. CaMg(CO ₃) ₂ –Si: SN at 1600°/4h, 1800°/1 h. GS at 1800° except in expt w/ lowest Si content. CaMg(CO ₃) ₂ –SiC: SN at 1500°/24 h, 1600°/8 h but not at 4 h, 1800°/1 h. GS at 1800°/1 h, 1600°/4.2 h but not at 2 h. CM: {111}, specific triangular pyramids on {111} faces of seed crystals
Pal'yanov et al. (2002b)	MgCO ₃ + SiO ₂ . MgCO ₃ + Na ₂ CO ₃ + SiO ₂ . No Gr. High /H ₂ from TiH _{1,9} in sample assembly.	6-7	1350–1800	10-43 h	Y (in most)	Pt, high JH2 from TiH _{1.9} in sample assembly.	MgCO ₃ +SiO ₂ : GS at 1400°, SN at 1450° at 6 GPa; At 7 GPa, no SN or GS at 1500°, 1600°; SN at 1750, 1800°. MgCO ₃ +Na ₂ CO ₃ +SiO ₂ : SN at 1400°, 1500° at 6 GPa and 1800° at 7 GPa. MgCO ₃ present in all expts. Proposed diamond-forming reactions: MgCO ₃ + SiO ₂ = MgSiO ₃ + CO ₂ and MgCO ₃ + MgSiO ₃ = MgSiO ₄ + CO ₃ , then CO ₂ + 2H ₂ = C + 2H ₂ O. CM: {111} and fibrous patterns on the {100} face of seed crystals
Yamaoka et al. (2002a)	$CaCO_3$ + stearic acid ($C_{18}H_{36}O_2$)	7.7	1500	0.5–48 h	Z	Pt	Two capsule configurations. Single capsule w/ CaCO ₃ + StA pro- duced Gr in short runs, diamond at 224 h. In double capsule expts (CaCO ₃ in IC, StA in OC), found Gr in IC in 2 h expt, Gr + Diam in 12 h expt, Diam in 24 and 48 h expts. CM: {111}
Pal'yanov et al. (2005b)	MgCO ₃ + SiO ₃ , CaMg(CO ₃) ₂ + SiO ₂ , MgCO ₃ + Al ₂ O ₃ + SiO ₂	5.2-7	1200–1800	1091 h	¥	Pt, most expts had high fH_2 from TiH _{1,9} in sample assembly	More diamond growth in MgCO ₃ –SiO ₂ –Al ₂ O ₃ than in MgCO ₃ –SiO ₂ . Diamond growth from either subsolidus fluid or carbonate–silicate melt, depending on conditions. Analysis of quench fluid phase documented high $X(H_2O)$ in TiH _{1,9} – present expts. CM: {111}
Siebert et al. (2005)	FeCO ₃ + Si, FeCO ₃ + FeSi	10–25	1700–1800	1–7 min	Z	Gr or MgO	FeCO ₃ + Si: SN at 10–25 GPa at 1700°, 25 GPa at 1800°. FeCO ₃ + FeSi: SN in sole expt at 20 GPa, 1800°. CM: {111}
Gunn and Luth (2006)	MgCO ₃ + (Mg,Fe)SiO ₃ + Fe-S-O mix	6-7.5	1300	68 h	Z	MgO	Gr produced in 6, 24, 48 h expts. No diamond observed
Palyanov et al. (2007b)	MgCO ₃ -SiO ₂ -Al ₂ O ₃ -FeS	6.3	1250-1800	8-44 h	Υ	MgO+Pt, MgO+BN, MgO+ Gr	Gr produced in all expts. SN in expts at 1650°, 1700°. GS in all expts except at 1800°/8 h. CM: {111} and fibrous patterns on the {100} face of seed crystals
Chepurov et al. (2011)	$CaCO_3 + Ca(OH)_2 + Fe$	4	1350	5 h	Y	Pt	Gr reported in expt
Martin and Hammouda (2011)	$CaMg(CO_3)_2 + SiO_2$	4.25-6	800-1300	~2–94 h	Z	AuPd or Mo-lined Pt	AuPd expts: Gr produced at 800° at 4.25, 5.5, 6 GPa and at 1000° at 6 GPa. Mo–Pt expts: Gr produced at 950–1150° at 4.25 GPa, 1150° and 1300° at 5.5, and 900°, 1050°, 1150°, 1250° at 6 GPa

Study	System	P (GPa)	T (C)	Duration	Seeds	Capsule/ buffering	Results
Bataleva et al. (2012)	(Ca,Mg)CO ₃ -SiO ₂ -Al ₂ O ₃ - (Mg,Fe)(Cr,Fe,Ti)O ₃	6.3	1350-1650	20 h	¥	Pt, Pt + Gr	GS at 1550° and 1650° in Pt capsules (not at 1350° or 1450°), at 1350° and 1450° in Pt-Gr capsules. Observed dissolution of diamond seeds in expts w/ Pt capsules, not in those with Pt-Gr capsules. Diamond formation in Pt-capsules, recrystallization of Gr from capsule. CM: Growth form {111}, regeneration of {100} \rightarrow {111}
Palyanov et al. (2013b)	Fe-(Mg,Ca)CO ₃	6.5, 7.5	1000-1650	8-60 h	Y	Pt	Graphite produced in all expts. Diam SN at 1350–1600° at 6.5 GPa, at ≥1300° at 7.5 GPa, GS at 1200–1400° at 7.5 GPa. CM: {111} in metal melt and in carbonate–oxide melt
Bataleva et al. (2016b)	Fe-(Mg,Ca)CO ₃ -S	6.3	900-1400	18–20 h	Z	Gr, talc	Graphite produced in all expts (900–1400°). Carbonate seen only at 900°.
Bataleva et al. (2016d)	(Mg,Ca)CO ₃ -Al ₂ O ₃ -SiO ₂ -FeO	6.3	1150-1650	20 h	¥	Pt	Diamond growth at 1150° and 1250°, diamond dissolution at 1350–1650°. Gr reported at 1150–1450°. CM: Growth form {111}, regeneration of {100} → {111}
Bataleva et al. (2019)	Fe-(Mg,Ca)CO ₃ -S	6.3	1500, 1600	18 h	Y	Gr	Gr present in both expts; Diam SN in both. CM: {111}
Zdrokov et al. (2019)	olivine-ankerite-S, olivine-ankerite-FeS ₂	6.3	1050–1550	20-60 h	Y	Gr	Formation of graphite (1350–1550° in S system; 1450–1550° in FeS ₂ system) and diamond (1550°) by interaction of coexisting Fe–Ni–S and carbonate melts. CM: Growth form {111}, regeneration of {100} \rightarrow {111}
Notes: SN – s	pontaneous nucleation and growth of Table 10. Stu	f diamond udies of	; GS – diamond diamond forn	l growth on ation at ve	seeds. C ry high	M – diamond pressures–c	crystal morphology. Temperatures in <i>Results</i> column in °C. iamond anvil cell experiments.
Study	System	P (GPa)	T	Durat	ion S	eeds Capsu buffer	le/ Results
Liu et al. (2001)	MnCO ₃	6-12	>2000 °C	6		DAC	Laser–heated DAC; reported formation of diamond by break-down of carbonate at $P \sim 12$ GPa
Tschauner et al. (2001)	CO ₂	3080	1500–3000	K ?	-	DAC DAC	Laser-heated DAC; reported formation of diamond by breakdown of CO ₂ . Raman peaks attributed to new diamond observed between 36 and 72 GPa
Seto et al. (2008)	MORB + CaCO ₃ , SiO ₂ + MgCO ₃ , MgCO ₃	31-80	1700–3300	K 1–2	h I	DAC DAC	Laser-heated DAC expts. Reported diamond formation at >3000 K at 33–80 GPa in MORB + CaCO ₃ , at 3300 K at 31, 44 GPa and at 2500 K at 73 GPa in SiO ₂ + MgCO ₃

Study	System	P (GPa)	Т	Duration	Seeds	Capsule/	Results
Bayarjargal et al. (2010)	CaCO ₃ in NaCl pressure medium	9–21	1000-4000 K	ć	DAC	DAC	Formed graphite by decomposition of CaCO ₃ . Annealing of sample produced diamond
Boulard et al. (2011)	$\begin{array}{l} MgCO_{3}, (Fe_{0.75}Mg_{0.25})CO_{3}, \\ MgO + CO_{2} \ (Mg_{0.6}Fe_{0.4})O + CO_{2} \end{array}$	80-105	2400–2805 K RT	ċ	DAC	DAC	Reported diamond formation (nanodiamonds)
Litasov et al. (2011)	CO2	40–70	1800–2000 K		DAC	DAC	Diamond formation from CO_2 at 40–70 GPa
Zhang et al. (2011)	H ₂ O from glucose, H ₂ O-CO ₂ from OAD	9-11	1000–1400 K	15-50 min	DAC	DAC	Growth reported in both expts w/ glucose, none in OAD expt
Boulard et al. (2012)	$\begin{array}{l} FeO + CO_2 \\ FeO (OH) + CO_2 \\ Fe_2O_3 + CO_2 (Mg_{0.6}Fe_{0.4})O + CO_2 \end{array}$	40-105	1460–3650 K	About 2 h	DAC	DAC	Reported diamond formation (nanodiamonds) in all exp. except with Fe_2O_3
Spivak et al. (2012)	CaCO ₃	11–43	1600–3900 K	5 min	Z	DAC (Re gasket + Ne) and MAP	Laser-heated DAC. Diamond formation from breakdown of CaCO ₃ melt at ~3500 K, ~16 and ~43 GPa
Litvin et al. (2014)	CaCO ₃ Na ₂ CO ₃ MgCO ₃ FeCO ₃ Gr, MgCO ₃ -Gr, CaCO ₇ -Gr, Na ₂ CO ₃ -Gr and Mg-Fe-Na-carbonate-magnesio- wistite-Mg-perovskite-Gr	10-60	1100-4000 K	About 5 min	Z	DAC (in Ne) and MAP	SN of nano diamonds
Solopova et al. (2015)	MgCO ₃	12–84	1600–3300 K	1 min	DAC	DAC (and MAP at 23 GPa)	Reported MgO + diamond in MAP at 23 GPa, 2700 K, inferred diamond formation in DAC at > 2700 K by presence of MgO
Thomson et al. (2016)	Peridotite + Fe + carbonate	20	1590 °C	124 min	DAC	DAC	Reduction of carbonate melt by Fe metal to diamond reported
Maeda et al. (2017)	MgCO ₃ + SiO ₂ + Pt (in NaCl or SiO ₂ pressure media)	~30–152	300–3100 K	10–120 min	Z	DAC	Laser-heated diamond anvil cell. Diamond nucleation at 70 GPa
Litvin et al. (2017)	MgO-FeO-SiO ₂ + Mg-Fe-Na-K carbonate + Gr	26	ć	ċ	DAC	DAC	Reported diamond formation at 26 GPa coexisting with oxide + silicates
Dorfman et al. (2018)	$CaMg(CO_3)_2 + Fe$	51-113	1800–2500 K	10–20 min	DAC	DAC	Reported diamond formation in all 4 expts (51, 66, 77, 113 GPa)
Drewitt et al. (2019)	FeO-MgO-SiO ₂ -CO ₂ and CaO- MgO-SiO ₂ -CO ₂ systems	48-89	1580–2160 K	24-61 min	DAC	DAC	Report formation of diamond in higher–T expts (1745–2160 K at 54–88 GPa in FMSC, 1905–2160 K at 40–84 GPa in CMSC) by decarbonation of carbonate
Martirosyan et al. (2019)	Natural MgCO ₃ -Fe	70–150	800–2600 K	10–20 min	DAC	DAC	Reported diamond formation in part of the experiments

Notes: DAC - Diamond anvil cell. MAP - Multi-anvil press. SN - Spontaneous nucleation and growth of diamond.

Recently, Martirosyan et al. (2019) performed LHDAC experiments in the MgCO₃–Fe system combined with *in situ* synchrotron X-ray diffraction and *ex situ* transmission electron microscopy. Based on the results they suggest that the interaction of carbonates with Fe⁰ or Fe⁰-bearing rocks can produce Fe-carbide and diamond, which can accumulate in the D" region (the lowermost portion of the mantle that sits just above the molten iron-rich outer core).

Future Directions

Because of the pressure limitation of large volume presses, DAC experiments may be precious tools to understand the growth of superdeep diamonds in the lower mantle. Another potentially interesting approach is the use of dynamic compression experiments (i.e., laser-compressed materials), to generate diamonds at ultrahigh pressures and temperatures in order to study impact diamonds or the formation of diamonds in planetary interiors conditions (Kraus et al. 2017).

CARBIDES: SOURCES OF CARBON AND REDUCING AGENTS

There has been significant interest in exploring the possibility for iron carbides to act as both carbon sources and reducing agents since the general acceptance of the idea that depthdriven reduction in the Earth's mantle stabilizes Fe–Ni metal and carbide in C-bearing mantle regimes. Studies have examined interaction of carbides, particularly cohenite (Fe₃C), with oxides, silicates, carbonates, and sulfides, as can be seen in Table 11 below. Cohenite has proved to be an effective source of carbon upon reaction, usually forming metastable graphite. Growth of diamond is not typically observed in the absence of a melt. In many of the studies in Table 11, it is notable that the presence of melt in itself is insufficient, and diamond growth is inhibited until a sufficiently high temperature is achieved. In carbonate-bearing experiments, elemental carbon is produced by both breakdown of cohenite as well as reduction of CO_2 produced by decarbonation reactions involving the carbonate.

INCLUSIONS IN DIAMOND: EXPERIMENTAL CONSTRAINTS

Inclusions trapped during growth of synthetic diamonds at high pressure and temperature have been observed since the first syntheses in metallic melt solvents. In one of the early reports from the G.E. group, Bovenkerk (1961) stated "It has not been possible so far to grow diamond without trace inclusions." For industrial purposes, of course, inclusions are something to avoid or minimize (e.g., discussion in Sumiya et al. 2002). On the other hand, given that inclusions in natural diamonds provide valuable clues to the nature of the growth medium, it is of interest to deliberately try to grow diamonds with inclusions to see, for example, if the inclusions provide an accurate picture of the fluid or melt from which the diamond is growing. Early studies of synthetic diamond documented metal inclusions inferred to be from the growth medium (Lonsdale et al. 1959), and, intriguingly, coesite (Milledge 1961). The possibility of formation of single fluid inclusions during diamond crystallization in metal-carbon system was shown by Osorgin et al. (1987). Later work documented the presence of a rich diversity of inclusions (taenite, wüstite, spinel, silicate, diamond, and fluid) in synthetic diamond grown in the Fe-Ni-C system (e.g., Pal'yanov et al. 1997). In this study, the oxide and silicate inclusions resulted from diffusion of elements from the container materials and from impurities in the initial reagents. These examples suggested that detailed study of inclusions in diamond growing in other systems would be fruitful in exploring how representative these inclusions are of the growth medium.

As shown in Table 12, many studies report the presence of inclusions in passing, such as graphite (e.g., Pal'yanov et al. 1999b) and quenched melt, either reduced or oxidized—sometimes in the same experiment (Palyanov et al. 2013b), but there have been also some studies designed specifically to synthesize inclusion-bearing diamonds (e.g., Khokhryakov et

al. 2009; Bureau et al. 2012, 2016; Bataleva et al. 2016c). The first of these documented the rich variety of ways in which graphite inclusions in diamond can be formed; importantly it showed that graphite inclusions could form during growth of the diamond crystal from a carbonate melt—in the stability field of diamond. The others showed a good fidelity between the materials trapped as inclusions and those present in the environment in which the diamonds were growing. These studies provide a foundation for further studies on inclusion formation and trapping in a variety of media. For example, Bataleva et al. (2016c) suggested that slower growth rates would decrease the relative proportion of fluid or melt inclusions in the growing diamond, as had been previously documented for inclusions in magmatic minerals (Roedder 1984). Applying these methodologies to other growth media—such as the saline-rich endmember seen in natural fibrous diamonds—would be of considerable interest, as another example.

NITROGEN AND BORON STUDIES

Overview

Natural diamonds are known to contain impurities, the most common being nitrogen. The concentrations of nitrogen depend on the paragenesis and vary from below 10 ppm to > 3500 ppm (see Stachel et al. 2022b, this volume). Boron and hydrogen are also naturally present in the diamond lattice (Green et al. 2022, this volume).

Synthesis of commercial HPHT diamonds in, for example Fe–Co melts under standard synthesis conditions, contain ~100–300 ppm N in {111} growth sectors, and usually about half that in {100} growth sectors when grown under "standard conditions" (i.e., 1300–1400 °C, 5.5 GPa, Burns et al. 1999); lower growth temperatures can reverse this difference, and increase N contents up ~1000 ppm because of the decreased solubility of N in the melt at lower temperatures. In these syntheses, nitrogen is introduced as a contaminant in the starting materials, and its concentration in the diamond can be reduced by addition of so-called nitrogen "getters" such as Al, Ti, or Zr, which form nitrides at the experimental conditions.

In general, non-metallic solvents—carbonate, carbonate–silicate, sulfide, and sulfur tend to crystallize diamond with higher (500–1500 ppm) N contents. Use of N-bearing compounds such as BN, NaN₃, Ba(N₃)₂, CaCN₂, Fe₃N, P₃N₅, or C₃H₆N₆ can produce diamond with > 3000 ppm N (Table 13).

With the methodology for growing diamond with specific amounts of N, the next frontier is to use modern ion probe methods to examine N concentrations and isotopic compositions across diamond crystals, as pioneered by Reutsky et al. (2008b, 2017), for example. An attempt to find the interconnection between morphology and defect-impurity composition of diamond with its formation conditions was performed by Palyanov et al. (2021a).

Boron is another significant impurity found in diamonds, which gives them a blue color. Defined as Type IIb diamonds, they are very rare <0.1% of the worldwide extracted diamonds and naturally contain almost no N and up to 10 ppm B (Gaillou et al. 2012). Blue diamonds are synthesized for industry because B gives diamonds semi-conductive properties, given that significant amounts of boron (> 1000 at.ppm) can be incorporated in synthetic CVD diamonds (Polyakov et al. 2001). Synthetic boron-doped diamonds are also used as heaters either in large volume presses or in diamond anvil cells for HPHT experimentation (Shatskiy et al. 2009).

Study	Svstem	р	T (C)	Duration	Seeds	Cansule/	Results
6		(GPa)				buffering	
Palyanov et al. (2013b)	(Mg,Ca)CO ₃ –Fe ₃ C	7.5	1000-1400	60 h	Y	Pt	Graphite formed in all expts. GS at >1200°, SN at 1400°. Carb + oxide melt present in all diamond-forming expts. CM: {111} in earbonate-oxide melt
Bataleva et al. (2015b)	Fe ₃ C–S	6.3	900-1600	18–20 h	Y	Gr (mostly), Talc, MgO	Graphite formed in all expts. At <i>T</i> < 1200°, reaction 2Fe ₅ C + 3S ₂ → 6FeS + 2C. At ≥1200°, formed melt + C. GS at 1400–1600°. Expts in tatc and MgO capsules
							confirmed C production by breakdown of Fe ₃ C. CM: Growth form {111}. regeneration of {100} \rightarrow {111} on seed crystals
Bataleva et al. (2015a)	(Mg,Ca)CO ₃ - Al ₂ O ₃ - SiO ₂ -Fe	6.3, 7.5	1150-1650	8–20 h	Z	Pt	Formed Fe ₃ C and graphite in all expts. Subsolidus at 6.3 GPa 1150–1450°. At 7.5 GPa formed carb-silicate melt + graphite at 1450°–1650°. No diamond SN reported, but no
Bataleva et al. (2016a)	$\mathrm{Fe}_3\mathrm{C}+\mathrm{Fe}_{0.7}\mathrm{Ni}_{0.3}\mathrm{S}$	6.3	1100-1500	20 h	Υ	Ū.	diamond seeds in expts. See paper for full phase assemblages Graphite formed in all experiments. Coh + 2 liquids at 1100–1200°. One liquid + Gr at 1300–1500° with GS of diamond.
Bataleva et al.	Fe ₃ C-Fe ₂ O ₃ ,	6.3	900-1600	18–20 h	Υ	Gr (mostly),	CM: Growth form {111}, regeneration of {100} \rightarrow {111} on seed crystals Graphite formed in all expts in both systems, including those in talc or MgO capsules.
(2016e)	Fe ₃ C-Fe ₂ O ₃ -MgO-SiO ₂					Talc, MgO	Both systems subsolidus at 900–1300°. GS in presence of Fe–C liquid at 1400–1600° in Fe ₃ C–Fe ₂ O ₃ . GS in presence of a Fe–C liquid at 1400° and two liquids (Fe–C and
							silicate-oxide) at 1500° and 1600° in Fe ₃ C-Fe ₂ O ₃ -MgO-SiO ₂ . CM: Growth form {111}, regeneration of {100} → {111} on seed crystals
Bataleva et al. (2017)	Fe ₃ C–S, Fe ₃ C–FeS ₂ , Fe ₃ C–S–MgO–SiO ₂	6.3	900-1600	18–40 h	Y	Gr (mostly), Talc, MgO	All systems: Graphite formed in all experiments, including those in tale and MgO capsules (Fe ₃ C–S, Fe ₃ C–S–MgO–SiO ₂ systems). GS at \geq 1300° in all three systems in
							presence of liquid(s), but no GS at 1200° despite presence of liquid(s). CM: Growth form {111}. regeneration of {100} → {111} on seed crystals
Bataleva et al. (2018a)	Fe ₃ C-SiO ₂ -Al ₂ O ₃ -(Mg,Ca) CO ₃	6.3, 7.5	1100-1650	8-40 h	Y	Pt	Graphite formed in all expts. No Coh or carb at 6.3 GPa 11000–1500°, and diamond GS only at 1500° at 6.3 GPa where melt was seen in inclusions in game. At 7.5 GPa.
							GS seen in all expts (1250–1650°). Liquid present at 21450°. C formed from both carbide and decarbonation–produced CO., CM: {111} and {100}
Bataleva et al.	${\rm Fe_3C-SiO_2-(Mg,Ca)CO_3}$	6.3	1100-1500	20–40 h	Y	Gr	Graphite formed in all expts. Diamond GS only at 1500°, not at 1100°–1400°. Fe-C
(20102)							Then present at 21.300 \cdot C for the 10011 boundation with decarbonation -produced CO ₂ . CM: {111} and {100}
Bataleva et al. (2018c)	Fe ₃ C–SiO ₂ –(Mg,Ca)CO ₃ , Fe ₂ C–SiO ₂ –Al ₂ O ₂ –(Mg Ca)	6.3	1300–1500	20 h	Y	Gr	Graphite formed in all expts. Diamond GS reported at 1400° (both systems) and at 1500° in the Al-Ohearing system Fe-C melt in all expts at least as inclusions in
(2010-)	CO ₃						silicates. CM: {111} and {100}
Bataleva et al. (2018d)	Fe ₃ C–SiO ₂ –MgO	6.3	1100-1500	20–40 h	Υ	Gr	Graphite formed in all expts; Fe–C melt present at ≥1300°. Diamond GS at 1500°. CM: {111} and {100}
Bataleva et al. (2019)	Fe ₃ C- (Mg,Ca)CO ₃ -S	6.3	900-1400	18–20 h	Y	Gr (mostly), Talc, MgO	Graphite formed in all expts; two immiscible liquids at ≥1100°. Diamond GS at ≥1400° (including in MgO capsule), SN at ≥1400° in Gr capsules.
Notes: SN – sp	oontaneous nucleation and gro	wth of dia	tmond. GS – d	iamond gro	wth on	seeds. CM – d	CM. [111] III JOUII IIIEUS jamond crystal morphology. Temperatures in <i>Results</i> column in °C.

Table 11. Studies of diamond nucleation and growth in carbide-bearing systems.

			Table 12. St	udies of inclusi	on torn	nation.	
Study	System	P (GPa)	T(C)	Duration	Seeds	Capsule/ buffering	Results
Lonsdale et al. (1959)	G.E. synthetic diamonds						XRD identification of Ni inclusions in synthetic diamonds; observation of other inclusions but were not able to identify
Milledge (1961)	G.E. synthetic						XRD identification of coesite inclusions in synthetic diamonds from GE
Osorgin et al. (1987)	Ni-Mn-C	5-6	1300–1400	2–8 h	No	talc	Fluid and metal-fluid inclusions (CO, H_2 , N_2)
Pal'yanov et al. (1994, 1997)	Ni-Mn-C, Fe-Ni-C	5-6	1300–1600	1–150 h	Y		Inclusions of taenite, wüstite, spinel, garnet, diamond, and hydrocarbon fluid
Tomilenko et al. (1998)	Ni-Mn-C and Ni-Fe-C	5-6	1350–1550				Hydrocarbon fluid inclusions
Pal'yanov et al. (1999b)	Li ₂ CO ₃ -Gr, Na ₂ CO ₃ -Gr, K ₂ CO ₃ -Gr, Cs ₂ CO ₃ -Gr	٢	1700–1750	10 min-18.5 h	Y	Pt	Graphite inclusions observed
Bums et al. (1999)							Summary of DeBeers syntheses. Discusses inclusion formation as function of solvent/catalyst composition, growth rates, synthesis <i>P</i> , <i>T</i> . Notes use of Ti as N "getter" produces abundant TiC inclusions
Kanda (2000)	Metal solvent (Ni, Co, Fe)–catalyst (Cu, Mg) + Gr + NaCl	S	1500-1800	1–3 mg/h	Y		Inclusions of metallic solvents trapped in large diamonds, possibly also oxides and halides
Pal'yanov et al. (2002a)	Na ₂ CO ₃ -Gr, K ₂ CO ₃ -Gr, Na ₂ CO ₃ -H ₂ O-Gr, K ₂ CO ₃ -H ₂ O-Gr, Na ₂ CO ₃ -CO ₂ -Gr, K ₂ CO ₃ -CO ₂ -Gr, Na ₂ CO ₃ -H ₂ O+CO ₂ (OAD)-Gr, K ₂ CO ₃ -H ₂ O+CO ₂ (OAD)-Gr,	5.7	1150–1420	5-136 h	¥	Mostly Pt, 1 in Gr, 2 in Au	Observed "minute black inclusions" in all expts where diamond grew on seed crystals and "transparent inclusions of carbonate melt" in some expts
Sumiya et al. (2002)							Review paper, discusses synthesis conditions to minimize trapping of metal inclusions
Yin et al. (2002)	Fe–Ni + Gr	5.5	1300	12 min	ċ	?	TEM study of nanometer inclusions identified graphite, (FeNi)_{23}C_6 and $\gamma\text{-FeNi}$
Chepurov et al. (2007)	$Ni_{0,7}Fe_{0,3}+Gr+Ti+B_2O_3$	5.5-6	1350–1450	80–120 h	z		Diamond nucleation and growth with inclusions of metallic solvent
Khokhryakov et al. (2009)	NaCl + $H_2O + Gr$, KCl + $H_2O + Gr$, KCl + $K_2CO_3 + H_2O + Gr$, $K_2CO_3 + H_2O + Gr$, SiO ₂ + $H_2O + Gr$, Mg ₂ SiO ₄ + $H_2O + Gr$, (Ca,Mg)CO ₃ + SiO ₂ + $H_2O + CO_2 + Gr$, kimberlite + $H_2O + CO_2 + Gr$	7.5	1500-1600	15-40 h			 Examine formation of graphite inclusions. Found they formed by three mechanisms: 1) protogenetic (pre-existing graphite incorporated into growing diamond) in NaCl + C and Na₂CO₃ + C systems. 2) Syngenetic, forming during joint crystallization of diamond + graphite. Seen only in H₂O-bearing systems. 3) Post-grown inclusions resulting from graphitization

Study	System	P (GPa)	T (C)	Duration	Seeds	Capsule/ buffering	Results
Palyanov et al. (2009)	S + Gr	6.3–7.5	1550-2000				Observed red and black inclusions, suggested to form from trapping of CS ₂ melt during growth
Palyanov et al. (2010b)	$Ni_{0.7}Fe_{0.3} + Gr + Fe_3N$ and $CaCN_2$	5.5	1400	65 h	z	MgO	Diamond growth with metallic inclusions
Tomlinson et al. (2011)	$Fe_{0.9}Ni_{0.1} + Gr$	15 20	2000 2100	15 min 15 min	z	Re–Gr	Noted common occurrence of metal inclusions
Bureau et al. (2012)	MELD (SiO ₂ -Al ₃ O ₃ -TiO ₂ - (Ca,Mg,Na ₂ ,K ₂) CO ₃) + H ₂ O + Gr	6-7	1250–1700	10 min-144 h	In most	Pt	Observed inclusions containing phengite or glass, sometimes with empty void in inclusion, and discrete empty inclusions. Voids and empty inclusions interpreted to have been fluid-filled before breach of inclusion wall during sample prep
Palyanov et al. (2012)	$Ni_{0,7}Fe_{0.3} + Mg(OH)_2 + SiO_2 + Gr$	9	1370	15 h	Y	Pt	Nucleation and growth on seeds, Observed inclusions of metallic solvent
Palyanov et al. (2013a)	$Ni_{0.7}Fe_{0.3} + Gr + Mg(OH)_2 + SiO_2$	9	1300–1370	15 h	z	Pt?	Diamond nucleation and growth inclusions of metal-carbon melt and metal-free fluids of hydrocarbon composition
Palyanov et al. (2013b)	Fe–(Mg, Ca)CO ₃	6.5, 7.5	1000-1400	8–60 h	Y	Pt	Diamonds in reduced part of sample contained inclusions of quenched Fe-C melt, those that grew in the carbonate melt contained carbonate inclusions
Zhimulev et al. (2013)	Fe–S + Gr	5.5	1350	21–25 h	Y	MgO	Metal-sulfide inclusions in diamonds led to fracture of the crystals
Palyanov et al. (2015)	Gp I kimberlite (Udachnaya–East), synthetic Gp. II kimberlite	6.3, 7.5	1300–1570	40 h	Υ	Pt w/Gr liner	Alkaline carbonate-silicate melt and silicate (olivine and pyroxene) inclusions observed in polycrystalline diamond aggregates
Bataleva et al. (2016c)	SiO ₂ -(Ca,Mg)CO ₃ -(Fe,Ni)S	6.3	1650–1750	2–24 h	Y	Ċ	Study designed to trap inclusions during diamond growth. Inclusions of gr, carb-silicate liquid and sulfide liquid, opx, diamond, and CO ₂ - rich fluid. Inclusions characterised by Raman spectroscopy. Abundant inclusions of melt and fluid attributed to high growth rate of diamond
Bureau et al. (2016)	MELD + H_2O + NaCl + Gr, MELD + FeCO ₃ + $H_2O \pm$ NaCl + Gr	٢	1300–1400	6–30 h	Y	Pt or AuPd	Observed both monocrystalline, pure fluid, and multi-phase inclusions of same mineralogy as found in matrix: diam, carbonate, phengite, coesite, rutile in MELD expts, olivine + carbonate in MELD + FeCO ₃ expts
Khokhryakov et al. (2016)	Na ₂ C ₂ O ₄ -CaCN ₂	6.3	1500	2, 30 h	Y	Pt	Carbonate inclusions inferred from IR spectra
Palyanov et al. (2016)	$Na_2C_2O_4 \pm Gr$	6.3, 7.5	1250-1700	10–66 h	Y	Pt	Inclusions of Na-carbonate melt identified by Raman. Peaks for CO_2 interpreted as having exsolved from melt on cooling
Smith and Wang (2016)	HPHT diamonds						Found CH ₄ and H_2 coexisting with metallic inclusions in commercially grown HPHT diamonds
Bataleva et al. (2019)	Fe–(Mg,Ca)CO ₃ –S	6.3	1500, 1600	18 h	Y	Gr	Reported inclusions of magnesiowüstite, graphite, sulfide, and carbonate
Note: MELD	average inclusion composition from Mayor	at al (1085	(2				

Notes: MELD – average inclusion composition from Navon et al. (1988).

			Table 13. S	tudies of nit	trogen a	und boron inc	corporation into diamond.
Study	System	P (GPa)	T (C)	Duration	Seeds	Capsule/ buffering	Results
Kanda and Yamaoka (1993)	Co + Gr	9	~1500	12–18 h	6	6	Grew diamond w/ ~200 ppm N, found heterogeneous distribution of A and C centres
Sumiya and Satoh (1996)							Review paper of diamond growth in metallic melts. Discusses nitrogen getters to reduce N to <0.1 ppm and techniques for minimizing B
Fisher and Lawson (1998)	Ni + Gr, Ni–Fe + Gr, Co–Fe + Gr						N concentrations from ~170-455 ppm. Examined effect of Ni concentration on N aggregation in synthetic diamonds, mostly in {111} growth sectors
Burns et al. (1999)	Co-Ti, Fe-Al, Fe-Co, Fe-Al-B						Review of DeBeers research; N contents (ppm) reported as <0.01–2 for Co–Ti, 0.4–1 for Fe–Al, 100–1000 for Fe–Co, below detection for Fe–Al–B solvent/catalysts. Note that addition of B in addition to N getter to solvent/ catalyst allowed growth of blue Type IIb diamonds; higher concentrations in {111} than in {100}. Colour depends on B/N
Borzdov et al. (2002)	$Fe_3N + Gr$	L	1550–1850	20 h	Y	Gr	GS at ≥ 1600°, SN at ≥ 1700°. 100% conversion at 1850°, decreasing to <1% at 1700°. N up to ~3300 ppm
Pal'yanov et al. (1998b)	Ni–Fe + Gr	5.5-6.5	1500–1600	100–150 h	Υ	ż	~130-200 ppm N
Kanda et al. (1999)	$Na_2SO_4 + Gr$	7.7	2000	30 min	Z	Gr, surrounded by NaCl- ZrO ₂ or BN	Grew diamond with 1200–1900 ppm N with BN container, ~200 ppm N with NaCl-ZrO ₂
Kanda (2000)							Review paper; discusses B and N in HPHT synthetic diamonds grown in metallic systems
Pal'yanov et al. (2001a)	S + Gr	L	1750–1850	3-7 h	Υ	Gr	Up to 700 ppm N
Pal'yanov et al. (2002b)	MgCO ₃ + SiO ₂ , MgCO ₃ + Na ₂ CO ₃ + SiO ₂ . No Gr. High <i>f</i> H ₂ from TiH _{1,9} in sample assembly	6-7	1350–1800	10–43 h	Y (in most)	Pt, high /H ₂ from TiH _{1.9} in sample assembly	300–800 ppm N in diamonds from 1750–1800° expts at 7 GPa, both starting materials
Liang et al. (2005)	$Fe-Ni + NaN_3 + Gr$	5-5.8	1230–1480	15 min	Z	ceramic	N conc varied from 500 to ~2000–2500 ppm with increasing NaN ₃ from 0–0.5 wt.%
Liang et al. (2006)	Fe–Ni + NaN $_3$ + Gr	5-5.8	1230–1480	15 min	Z	ceramic	N conc varied from 350–500 to 1700–2000 ppm w/ increasing NaN3 from 0–0.5 wt.%

Study	System	P (GPa)	T (C)	Duration	Seeds	Capsule/ buffering	Results
Palyanov et al. (2006)	$(Fe,Ni)_9S_8 + Gr$	٢	1900	16, 40 h	Y	Ū.	~1000 ppm N
Chepurov et al. (2007)	Fe-Ni-C, Fe-Co-C + Ti + B ₂ O ₃	5.5-6	1350–1450	80–120 h	Z	Pt?	Growth of Type IIb boron-bearing monocrystalline diamonds. Almost no N
Palyanov et al. (2007b)	MgCO ₃ -SiO ₂ -Al ₂ O ₃ -FeS	6.3	1650, 1700	23.5 h 8 h	Υ	MgO+ Gr	Measured diamonds formed in two expts, both with ~1500 ppm N
Zhang et al. (2007)	$Gr + Fe_{0.9}Ni_{0.1}$ + boron	5.4–5.6	1550-1700 K		Z		Growth of large monocrystals of Type IIb diamonds
Reutsky et al. (2008b)	Fe–Ni + Gr	5.5	1450	90 h			SIMS study. Observed zoning in N across diamond. Also measured N isotopes
Spivak et al. (2008)							Reported up to 850 ppm N in diamonds from carbonate-bearing expts
Yu et al. (2008)	$Fe-Ni + Ba(N_3)_2 + Gr$	5-5.7	1230–1430	13 min	ż	ć	Report N conc varied from 200–400 to 1600–2400 ppm as $Ba(N_3)_2$ increased from 0 to 0.5 wt.%
Zhang et al. (2008)	Fe-Co-Ni + NaN ₃ + Gr	5.4	1200	2–20 h	z	pyrophyllite	Reported up to 1520 ppm N
Chepurov et al. (2009b)	Fe-Co + Gr, Fe-Co-TiO ₂ +Gr, Fe-Co-Ti + Gr	5.5	1400	46–69 h	Y	ć	N contents: 133 ppm in Fe-Co, 121 ppm in Fe-Co-TiO ₂ , 9 ppm in Fe-Co-Ti
Palyanov et al. (2009)	S + Gr	6.3–7.5	1550-2000	3-40 h	Υ	Gr	≤ 10–1500 ppm N found
Shatskiy et al. (2009)	B + graphite mixture	20	1600			MAP	Growth of B-doped diamond to use them as heaters at HT (>3000°)
Palyanov et al. (2010b)	Fe–Ni + Gr, Fe ₃ N and CaCN ₂ N sources	5.5	1400	65 h	Y	MgO	127–1077 ppm N with varying amounts of Fe_3N ; 124–850 ppm N with varying $CaCN_2$
Huang et al. (2010a)	$Ni-Mn-Co + NaN_3 + Gr$	~5.5	1240–1300	ż	Υ	pyrophyllite	N conc ~200 to ~1250 ppm w/ increasing NaN3 from 0 to 0.8 wt.%
Huang et al. (2010b)	Fe–Ni–Co + NaN ₃ + Gr	~5.5	~1230–1280	11 h	Υ	ceramic material	Report range of N conc from 700–750 ppm to 1671–1742 ppm N w/ increasing NaN ₃ from 0.3 to 0.6 wt.%
Liu et al. (2011)	Carbonyl iron powder + Gr	5.2-6.8	1200–1800	10–20 min	ċ	ż	Report 1100–1500 ppm N in diamond grown in carbonyl iron + Gr system
Palyanov et al. (2012)	$Ni_7Fe_3 + Mg(OH)_2 + SiO_2 + Gr$	9	1370	15 h	Υ	MgO	Observed decrease in N from 220–230 ppm to 40–50 ppm with increasing $\rm H_2O$ in melt
Zhang et al. (2012)	Fe–Ni + P_3N_5 + Gr	5-6.3	1250–1550	15 min	Z	ż	Report N conc varied from 200–400 ppm to 1300–1600 ppm as P_3N_5 increased from 0 to 0.4 wt.%

Study	System	P (GPa)	T(C)	Duration	Seeds	Capsule/ buffering	Results
Palyanov et al. (2013b)	Fe-(Mg,Ca)CO ₃	6.5, 7.5	1000-1400	8-60 h	Y	Pt	Diamonds grown in metal-carbon melt contained 100–200 ppm N, diamonds formed in carbonate melt had 1000–1500 ppm N
Liu et al. (2016)	Fe-Ni + Gr, Fe-Ni-Co + Gr. P_3N_5 or $C_3H_6N_6$ as N source	5-6.3	1300–1650	15 min–30 h	Y	MgO	N conc up to ~2300 ppm in FeNi-C + P ₃ N ₅ , up to ~3400 pm in FeNiCo–C + $C_{3}H_{6}N_{6}$
Khokhryakov et al. (2016)	$Na_2C_2O_4 + CaCN_2$	6.3	1500	2, 30 h	Y	Pt	No nucleation in 2 h expt, SN in 30 h expt. Found variable N content (100–1100 ppm) depending on growth direction
Palyanov et al. (2016)	$Na_2C_2O_4$	6.3, 7.5	1300–1700	10–66 h	Y	Pt	50–150 ppm N in Na ₂ C ₂ O ₄ expts compared to 100–200 ppm N in Na ₂ CO ₃ + Gr expts
Reutsky et al. (2017)	$Na_2C_2O_4$	9	1400			Pt	SIMS study of carbonate-grown diamonds observed difference in conc of N between $\{111\}$ and $\{100\}$ of ${\sim}20{\times}$
Chen et al. (2018)	Fe–Ni + Al + NaN ₃ + Gr	5.8	1380–1400	ذ	¥	ZrO ₂ -MgO	Found N decreased with Al content: 80 ppm w/o Al, 28 ppm w/10% Al, <1 ppm N w/ 20% Al. Found N linearly increases from 372–1573 ppm w/ increasing NaN ₃ from 0.1–0.5%
Sokol et al. (2019)	$Fe_3N + FeS$	7.8	1600–1800	30–60 min	ż	BN + Gr	Report 2100–2600 ppm N and 130–150 ppm B in diamond in equilibrium w/ BN
Palyanov et al. (2020b)	$Ni_7Fe_3 + Fe_2O_3 + Gr$	9	1400	40 h	Y	MgO	Found N increases from 200–250 ppm w/ no O additive to $1100{-}1200\rm ppm$ w/ $10~\rm wt.\%$ O
Notes: GS - dia	mond growth on seeds. SN - sp	ontaneous	nucleation and	d growth of dia	umond.	MAP – Multi-	anvil press. Temperatures in Results column in °C.

Future directions

The growth of diamonds with or without impurities is of great importance for understanding the mechanisms at depth in the Earth. For example, experiments performed by Palyanov et al. (2013b) show that simultaneous diamond growth in metal-rich and in carbonate-rich parts of the same capsule would form diamonds containing only 100–200 ppm N when in contact with metallic Fe, whereas those formed in the carbonate melt zone contain 1000–1500 ppm N. This difference is explained by the siderophilic affinity of N to metallic liquids at high P, T conditions. The occurrence of Type II diamonds may be explained by growth in the presence of metallic melts (Smith and Kopylova 2013). Further experimental studies are necessary to confirm such a hypothesis.

CARBON ISOTOPE STUDIES

In general, the bulk carbon isotope composition of HPHT diamonds solely depends upon the initial carbon isotope composition of the diamond-forming system. All the diamonds from HPHT experiments have δ^{13} C in a range from -20 to -30% PDB, which is inherited from the initial graphite sources used for synthesis (Hoering 1961; Laptev et al. 1978; Ivanovskaya et al. 1981; Taniguchi et al. 1996; Reutsky et al. 2008a, 2015a) (Table 14). In the film-growth (FG) experiments, no significant isotope inhomogeneity is reported for produced diamond material (Hoering 1961; Laptev et al. 1978; Ivanovskaya et al. 1981). When the temperature gradient growth (TGG) method is used, carbon isotope fractionation, which accompanied the diamond crystallization from carbon solution in metal melt, produces a certain isotope profile in the direction of crystal growth (Reutsky et al. 2008a,b). In Fe-Co+Gr, Fe-Ni+Gr and Fe+Gr systems, the carbon isotope fractionation coefficients at 5.5 GPa and 1400-1500 °C are the same and vary from about 2.0 to 4.5% (Reutsky et al. 2008b). Therefore, within the distance of 1.5 mm from the seed these diamond crystals show gradual decrease of δ^{13} C on a scale of 2–4%, followed by slight fluctuation around carbon isotope composition of initial graphite (Reutsky et al. 2008a). In the metal–carbon systems the δ^{13} C of diamond always equal or higher than δ^{13} C of the initial graphite. The carbon isotope fractionation coefficients associated with diamond growth are strongly depends on the linear growth rate and may vary from 0 to 4.5% (Reutsky et al. 2012).

Carbon isotope fractionation was also studied in the NaCO₃+CO₂+C model system with a single carbon source also studied (Reutsky et al. 2015a). The carbon isotope fractionation in those experiments show opposite direction, compared to metal–carbon systems, and the diamond here is always depleted in heavy (¹³C) isotope in comparison with carbonate–CO₂ fluid, exactly as expected from calculations of isotope equilibrium (e.g., Richet et al. 1977). At 7.5 GPa temperature-dependence of carbon isotope fractionation coefficient was determined as the function: $\Delta_{Carbonate fluid-Diamond} = 7.38 \times 10^6 \times T^{-2}$ and established to be dependent on carbonate:CO₂ ratio in the fluid (Reutsky et al. 2015a). The scale of this depletion is comparable to that documented for metal-carbon systems and reaches 4‰. Later work on diamond experimental crystallization from carbonate–silicate–water fluid reveal a similar estimate of fluid/diamond carbon isotope fractionation at 7 GPa and 1400 °C (Bureau et al. 2018).

Detailed investigation of different crystallographic sectors of HPHT diamonds reveal surface-controlled carbon isotope distribution within diamond crystals showing higher isotope fractionation on faces {100} in comparison with face {111} (Reutsky et al. 2017). This is supported by ab-initio calculations and provide explanation of systematic isotope lightening of growth sectors {100} relative to {111}.

Useful information on diamond growth can be obtained from investigation of paired carbon and nitrogen isotope fractionation during diamond growth in certain crystallographic directions using high spatial resolution technique such as secondary ion mass spectrometry.

		Table	14. Studies	s of carbon i	sotope f	ractionation	at HPHT diamond crystallization.
Study	System	P (GPa)	T (C)	Duration	Seeds	IRMS technique	Results
Hoering (1961)	Metal melt + Gr	7	1700		z	Bulk combustion	Presumably FG. No difference of carbon isotope composition between starting grie and bulk diamond is observed
Laptev et al.	Fe + Gr	4,5	1100-1200		Z	Bulk	Same result
(1978)		n.				combustion	
Ivanovskaya et al. (1981)	Fe-Mn + Gr	10 6.5	1500 1800			Bulk combustion	Same result
Boyd et al. (1988)	Metal melt + Gr	ċ	ż		IJ	Bulk combustion	Slight but analytically significant 0.6% heterogeneity across the crystal
Taniguchi et al. (1996)	K ₂ Mg(CO ₃) ₂ +Gr	9-10				Bulk combustion	Bulk diamond inherits δ ¹³ C of initial graphite. No influence of carbonate carbon was recognized
Arima et al. (2002)	CaMg(CO ₃) ₂ + Si	Т.Т	1800	60 m	z	Bulk combustion	Broad correspondence of the resulting diamond composition to initial carbonate δ^1 Used for carbon source verification
Reutsky et al. (2008a)	Fe-Ni + Gr, Fe-Co + Gr	5.5	1450	17.5 h	z	Bulk combustion	TGG. 3.2% difference between very last portion of diamond and residual carbon in quenched metal melt was documented
Reutsky et al. (2008b)	Fe-Ni + Gr	5.5	1450	4 06	U	SIMS	Detailed carbon isotope profiles along growth sectors of different crystal faces doc mented for the first time. Partition coefficients for carbon isotopes were obtained fo {100} and {111} sectors of growth. Influence of diamond growth rate for particula crystal faces was recognized
Satish-Kumar et al. (2011)	Fe + Gr	5.0	1200–2100	0.5–15 h	z	Bulk combustion	C isotope fractionation between diamond and carbon solution in metal melt is deter mined
Reutsky et al. (2012)	Fe-Ni + Gr	5.5	1450	17.5–160 h	Z	Bulk combustion	Influence of linear growth rate to the carbon isotope partition coefficient in the met carbon system at HPHT was documented. Correspondence of observed relation to Burton–Prim–Slichter model was established
Palyanov et al. (2013b)	${{ m Mg_{0.9}Ca_{0.1}CO_{3}} \over + {{ m Fe}^{0}}$	6.5	1350-1550	8–60 h	z	Bulk combustion	Up to 6.5% carbon isotope fractionation at diamond-producing redox interaction o carbonate and metal iron
Reutsky et al. (2015b)	Fe-Ni + Gr	6.3	1600-1400	5 h	z	Bulk combustion	Distribution of carbon isotopes between metal melt, crystalline ${\rm Fe}_3C$ and diamond the peritectic point was established
Reutsky et al. (2015a)	Na ₂ C ₂ O ₄	6.3, 7.5	1300–1500 1400–1700	10-40 h	Z	Bulk combustion	C isotope effect for carbonate–CO ₂ interaction in a sodium carbonate fluid at exper- mental P, T is close to 3%. The carbon isotope fractionation at diamond crystallizat from a carbonate fluid at 7.5 GPa decreases with increasing T based on the function $\Delta_{\text{Curbonate fluid-Diamond}} = 7.38 \times 10^6 \times T^2$
Reutsky et al. (2017)	$Na_2C_2O_4$	9	1400		IJ	SIMS	Surface induced C isotope fractionation during diamond crystallization was establic from observed difference between {111} and {100} supported by ab-initio calculat
Reutsky et al. (2018)	(Mg,Ca)CO ₃ + Fe	6.5	1550	10 h	Z	SIMS	A set of diamond crystals ranges in δ^{13} C from -0.5 to -17.1% was collected from single experiment of carbonate-metal iron interaction with the single carbon source (initial carbonate δ^{13} C = $+0.2\%$), establishing huge kinetic carbon isotope fraction ation at redox interaction at P,T conditions of diamond stability

DIAMOND DISSOLUTION EXPERIMENTS

Overview

Natural diamonds exhibit various surface textures, acquired during their history and corresponding to growth and dissolution events. For a long time, the dissolution textures were attributed to the effect of the kimberlite melts while diamonds were brought up to the surface (Robinson 1979), and eventually to later secondary processes mostly due to transport and erosion.

Experimental studies evidenced that resorption features are also acquired from mantle-stable corrosive fluids when diamonds are residing at depth (Table 15). In the studies of Chepurov et al. (1985) and Khokhryakov and Pal'yanov (1990), it was experimentally demonstrated for the first time that dissolution of flat-faced diamonds in water-bearing melts results in the formation of rounded crystals, with morphology identical to natural dodecahedroids and octahedroids. The reader is invited to read the detailed review of Fedortchouk (2019), which combines the observation of the morphology of natural diamonds with the description of dissolution and etching experiments, and demonstrates the usefulness of the experimental approach. It is shown that the shape and size of the etch pits on diamond surface depends on the temperature and H_2O/CO_2 ratio in the fluid, whereas pressure affects the efficiency of diamond crystal shape transformation from octahedral into rounded resorbed forms. Thanks to experiments, the identification of resorption produced in the mantle source from that in the kimberlite magma is possible.

Resorption processes possibly occur in between multiple growth events, such as observed in fibrous diamonds (Klein-BenDavid et al. 2007), recently it was proposed that such corrosive mantle fluids would likely be of "melt" nature (Fedortchouk et al. 2019). Surprisingly, it is also observed that both dissolution and growth may occur in very similar fluids/melts, such as in the system carbonate–silicate enriched in H_2O-CO_2 (Khokhryakov and Pal'yanov 2007a). Growth and dissolution events may alternate during diamond formation, possibly depending on carbon saturation, water versus CO_2 proportions, or redox conditions.

Future directions

More experiments are necessary to decrypt the complexity of diamond's histories and to understand the sequence of growth and dissolution events that may occur to diamonds from their birth in the mantle to the exposure to the near surface.

CONCLUSIONS

As can be seen from the preceding sections, there has been an impressive body of experimental work related to diamond formation over the past decades. The widespread adoption of experimental apparatus such as the belt, the multi-anvil, and the laser-heated diamond-anvil systems have allowed researchers to access the necessary P, T space to address a variety of questions with respect to diamonds. It should be noted that the experimental data reviewed here are not always in unambiguous agreement with each other. This is largely resulting from the use in different scientific groups of different equipment and methods for preparing and conducting experiments.

Building on the work done in industrial laboratories growing diamonds in a variety of metal melts, the ability of a rich variety of fluids and melts, including those possibly stable in the Earth's mantle, to mediate crystallization of diamond has been firmly established. Actually, growing diamonds in these melts or fluids allows researchers to address questions such as isotopic fractionation during diamond growth and the incorporation of impurities into a growing diamond, which will provide valuable constraints to understanding the formation of diamonds in nature.

						1	
Study	System	P (GPa)	T (C)	Duration	Seeds	Capsule/ buffering	Results
Evans and Sauter (1961)	Air and gas mixtures (O ₂ , N or Ar, H ₂ O)		800-1400	5 min–16 h	Y	Tubes	Diamond etching and graphitization
Evans and Phaal (1962)	02	RP	650-1350	ć	Y	Silica and alumina	Diamond oxidation (dissolution) and etching
Davies and Evans (1972)	Air	RP and 4.8	1850–2000 and 1950–2200	Up to 200 min	Y	Pt	Diamond graphitization
Harris and Vance (1974)	Natural kimberlites	RP and 0.1	900–1600	30 min–24 h	Y	G, Pt and AgPd	Vacuum graphitization and etching by degassing volatiles from natural kimberlite powder
Kanda et al. (1977)	0₂H	5	1100-1500	5-30 min	Y	Pt	Etching of natural diamond octahedron
Yamaoka et al. (1980)	Fe-O, Mn-O+ SiO ₂	1.5-4	800-1400	5 min–5 h	¥	Pt. Mn and Fe oxide-based oxygen buffers	Shape of etching pits from redox conditions
Chepurov et al. (1985)	Alkaline basalt melt \pm H ₂ O	2.5	1300–1500	0.5-4 h	Y	Pt	Influence of H_2O on the shape of diamond dissolution
Cull and Meyer (1986)	c0-c0 ₂	RP	900-1000	12–48 h	Y	Pt. fO2 QFM-NNO	Diamond oxidation
Khokhryakov and Palyanov (1990)	Alkaline basalt melt + H_2O $\pm CO_2$, lamproite melt	2.5-5.5	1100-1450	5-180 min	Y	Pt	Different resorption morphologies
Arima (1998)	Kimberlite melts	2.5	1300-1500	10–240 min	Y	Pt	Diamond resorption
Khokhryakov and Pal'yanov (2000)	CaCO ₃	7.0	1700–1750	5 h	¥	Pt	Diamond dissolution
Sonin et al. (2000)	Air	RP	700-1200	5-120 min	Y	Pt crucible HM, NNO, CCO buffers	Diamond oxidation and etching at temperature and for various oxygen fugacities
Khokhryakov et al. (2001)	Na ₂ CO ₃ , CaCO ₃ , MgCO ₃ , CaMgSi ₂ O ₆ + H ₂ O	5.7	1400	10 min-40 h	Y	Pt	Diamond dissolution, evolution of crystal morphology

Table 15. Studies of diamond resorption.

Study	System	P (GPa)	T (C)	Duration	Seeds	Capsule/ buffering	Results
Sonin et al. (2001)	Alkaline basalt melt	e	1300	30–90 min	Y	Pt	Diamond etching
Khokhryakov et al. (2002)	Na ₂ CO ₃ +Fe ₂ O ₃ , Ag ₂ CO ₃ , H ₂ O, Ti, MgO + Ti	5.7	1400	1-20 h	Υ	Pt, various <i>f</i> O ₂ HM buffer	Diamond dissolution, effect of redox
Sonin et al. (2003)	Silicate melt-C-O-H-S	б	1300	15-30 min	Y	Pt (MAP)	Etching
Zhimulev et al. (2004)	Mantle xenoliths (dunite, eclogite, lherzolith) + C–O–H fluid	5.5-6	1450–1500	1 h	Υ	Pt (MAP)	Diamond etching
Kozai and Arima (2005)	Kimberlite, lamproite melts+ CaMg(CO ₃) ₂	1	1300–1420	20-600 min	Υ	Pt,IW, MW, HM buffers	Dissolution
Khokhryakov and Palyanov (2006)	KNO ₃ and NaNO ₃ melts	RP	006-009	5-60 min	Υ	alundum crucible	Dislocation etching
Sonin et al. (2006)	Basaltic melt	RP	1130	30–60 min	Y	HM NNO buffers	Etching at various oxygen fugacities
Fedortchouk et al. (2007)	Kimberlite melt, Carbonate melt, Alkaline basalt+brucite and CaCO ₃ and SiO ₂	1	1150-1500	6 min	Y	Pt	Graphitization or resorption, depending on the fluid phase: H_2O and CO_2 (no reaction with the melt)
Khokhryakov and Pal'yanov (2007a)	CaMg(CO ₃) ₂ , CaCO ₃ , CaMgSi ₂ O ₆ , kimberlite + H ₂ O	5.7	1400	0.17–37 h	Y	Pt	Diamond dissolution, evolution of crystal morphology
Khokhryakov and Palyanov (2007b)	NaNO ₃ and KNO ₃ melts	RP	750-800	5-60 min	Υ	alundum crucible	Etching to detect planar defects
Arima and Kozai (2008)	Natural and synthetic kimberlite and MgCO ₃	1–2.5	1300–1500	3-600 min	Υ	Pt + H ₂ O IW buffer	Dissolution
Sonin et al. (2008)	NaCl and NaF melts	RP	1300–1350	30–120 min	Y	Pt	Etching
Sonin et al. (2009)	Alkali basalt + NaCl, NaF	6	1350	30 min	Y	Pt	Etching
Fedortchouk and Canil (2009)	Gas mixtures: CO-CO ₂	RP	1000-1100	10 min-17 h	Υ	Pt	Variable fO_2 from -9.5 to -16.1 Diamond oxidation, morphology depending on the fluid

Study	System	P (GPa)	T (C)	Duration	Seeds	Capsule/ buffering	Results
Khokhryakov and Pal'yanov (2010)	Na_2CO_3 , $CaCO_3$, $CaMg(CO_3) \pm H_2O \pm CO_2$	5.7-7.5	1400–1750	1–37 h	¥	Γ	Influence of fluid composition on the form of diamond dissolution
Sonin et al. (2010)	NaCl, Ca(OH) ₂	б	1350	30–120 min	Y	Pt	Diamond etching
Khokhryakov et al. (2014)	KNO ₃	RP	700	5-60 min	Y	alundum crucible	Effect of N impurity on etching
Khokhryakov and Palyanov (2015b)	KNO ₃	RP	700	15-60 min	Y	alundum crucible	Effect of N impurity on etching
Fedortchouk (2015)	$H_2O-rich$ CO ₂ -rich	1	1150-1350	2240–2880 min	Y	Pt	Diamond resorption
Khokhryakov and Palyanov (2015a)	H ₂ O-carbonate melts (CaCO ₃)	5.7	1300	30-45 h	Y	Pt	Dissolution of block diamond crystals
Sokol et al. (2015)	Kimberlite and carbonatite melts \pm H ₂ O	6.3	1400	0.5-10 h	Y	Pt \pm Re foil, Re-ReO ₂ and HM buffers	Dissolution and resorption of diamond as indicators for redox of resorp- tion
Zhang et al. (2015)	$H_2O \pm MgO \pm SiO_2$	1–3	1150–1400	60-4320 min	Y	Pt	Shape and size of the etching pits depends on temperature and fluid composition
Zhimulev et al. (2016b)	Fe _{0.7} S _{0.3} melt	4	1400	1 h	Y	ZrO ₂ , CaO, and MgO	Diamond resorption
Sonin et al. (2018b)	$\mathrm{Fe}_{0.7}\mathrm{S}_{0.3}$ melt	4	1400	1 h	Υ	ZrO ₂ , CaO, and MgO	Diamond resorption
Sonin et al. (2018a)	Fe melt + S in various amounts	3.5	1400	1 h	Υ	MgO	Diamond dissolution
Chepurov et al. (2018)	Fe–S melt + kimberlite	4	1400	1 h	Y	MgO	Resorption in metal-sulfide-silicate melt
Khokhryakov et al. (2018)	Mg-Si-C	7–7.5 RP	1800, 700	30 min 5 min	Υ	alundum crucible	Growth and selective dislocation etching
Khokhryakov and Palyanov (2018)	Carbonate melts H ₂ O-carbonate-silicate melts Sulfide melts	5.7-7.5	1100-2000	0.5–5 h	Y	Pt and G	Dissolution and graphitization as indicators of the sectorial structure of crystals

Study	System	P (GPa)	T (C)	Duration	Seeds	Capsule/ buffering	Results
Fedortchouk et al. (2019)	MgO-H ₂ O(-CO ₂) MgO-SiO ₂ -H ₂ O(-CO ₂) CaO-MgO-SiO ₂ -CO ₂ (-H ₂ O) CaO-MgO-CO ₂ (-H ₂ O)	9	1200-1500	0.5-6 h	¥	Ъ	Different resorption morphologies Only metasomatism by melts is destructive
Gryaznov et al. (2019)	Fe-Ni-S melts	3.5	1400		Υ	MgO	Dissolution features due to metallic melts in the mantle
Khokhryakov et al. (2020)	Kimberlite melt + H ₂ O	6.3	1400	10 h	Y	Pt + Re foil, Re-ReO ₂ and HM buffers	Etching and dissolution, used as indicators for redox of resorption

Notes: RP - room pressure. MAP - Multi-anvil press. min - minutes. h - hours. G - graphite.

Where to from here?

Despite all our collective efforts, some fundamental questions remain. For example, what triggers diamond formation? What is the carbon source, what is the nature of the diamond's parents: fluids, melts, supercritical fluids? Is it depending on tectonic setting, or only on depth? How can we use the incorporation of impurities in diamonds to identify their growth mechanisms?

The experimental studies modeling slab-mantle reactions, whereby carbonate-bearing lithologies—representing subducted slab material—interact with reduced, metal-bearing mantle collectively are an excellent example of addressing a process question. But is this how all diamonds form? Classic models of diamond formation by, for example, oxidized fluids or melts interacting with reduced (but metal-free) mantle, or vice-versa, remain elusive to test experimentally. Other models, such as diamond formation by decompression or cooling of fluids (Stachel and Luth 2015), by partial melting in the presence of a hydrous, carbon-bearing fluid (Luth 2017; Smit et al. 2019), by pH changes in a fluid interacting with different mantle lithologies (Sverjensky and Huang 2015), under the influence of an electric field (Palyanov et al. 2021b), or by mixing of different fluids or melts (e.g., Huang and Sverjensky 2020) await experimental testing as well. There are still many experiments to perform to understand the growth of super deep diamonds in the transition zone and lower mantle. Another challenge for the future is the use of diamond growth to understand the mechanism of inclusions trapping: protogenetic versus syngenetic, or synchronous (Nestola et al. 2017) and thereby to provide information to properly decipher the complex messages delivered by inclusions about the deep Earth mineralogy and chemistry.

To conclude, there is still work to do! We need the experimental approach, in constant interactions with the study of natural diamonds and with models, to map the cartography of diamond growth at any depth into the Earth.

ACKNOWLEDGMENTS

The authors gratefully acknowledge support for their research from their respective funding agencies: NSERC Discovery Grants (RWL), Russian Science Foundation under grant no. 19-17-00075 and state assignment of IGM SB RAS (YNP), and the program Emergences 2019 Sorbonne-Université, CNRS, contract 193256 Hydrodiams (HB). Thorough and constructive reviews by Yana Fedortchouk and an anonymous reviewer significantly improved the manuscript. Finally, the patience of the editors was much appreciated.

REFERENCES

- Akaishi M, Yamaoka S (2000) Crystallization of diamond from C–O–H fluids under high-pressure and hightemperature conditions. J Cryst Growth 209:999–1003
- Akaishi M, Kanda H, Yamaoka S (1990a) Synthesis of diamond from graphite–carbonate system under very high temperature and pressure. J Cryst Growth 104:578–581
- Akaishi M, Kanda H, Yamaoka S (1990b) High pressure synthesis of diamond in the systems of graphite-sulfate and graphite-hydroxide. Jpn J Appl Phys 2 29:L1172–L1174
- Akaishi M, Yamaoka S, Ueda F, Ohashi T (1996) Synthesis of polycrystalline diamond compact with magnesium carbonate and its physical properties. Diamond Relat Mater 5:2–7
- Akaishi M, Shaji Kumar MD, Kanda H, Yamaoka S (2000) Formation process of diamond from supercritical H₂O– CO₂ fluid under high pressure and high temperature conditions. Diamond Relat Mater 9:1945–1950
- Akaishi M, Shaji Kumar MD, Kanda H, Yamaoka S (2001) Reactions between carbon and a reduced C–O–H fluid under diamond-stable HP-HT condition. Diamond Relat Mater 10:2125–2130
- Arefiev AV, Shatskiy A, Podborodnikov IV, Litasov KD (2019) The K₂CO₃–CaCO₃–MgCO₃ system at 6 GPa: Implications for diamond forming carbonatitic melts. Minerals 9:558
- Arima M (1998) Experimental study of growth and resorption of diamond in kimberlitic melts at high pressures and temperatures. Int Kimberlite Confer: Extended Abstr 7:32–34

- Arima M, Kozai Y (2008) Diamond dissolution rates in kimberlitic melts at 1300–1500 °C in the graphite stability field. Eur J Mineral 20:357–364
- Arima M, Kozai Y, Akaishi M (2002) Diamond nucleation and growth by reduction of carbonate melts under highpressure and high-temperature conditions. Geology 30:691–694
- Arima M, Nakayama K, Akaishi M, Yamaoka S, Kanda H (1993) Crystallization of diamond from a silicate melt of kimberlite composition in high-pressure and high-temperature experiments. Geology 21:968–970
- Bataleva YV, Palyanov YN, Sokol AG, Borzdov YM, Palyanova GA (2012) Conditions for the origin of oxidized carbonate-silicate melts: Implications for mantle metasomatism and diamond formation. Lithos 128–131:113–125
- Bataleva YV, Palyanov YN, Sokol AG, Borzdov YM, Bayukov OA (2015a) The role of rocks saturated with metallic iron in the formation of ferric carbonate–silicate melts: Experimental modeling under *PT*-conditions of lithospheric mantle. Russ Geol Geophys 56:143–154
- Bataleva YV, Palyanov YN, Borzdov YM, Bayukov OA, Sobolev NV (2015b) Interaction of iron carbide and sulfur under P–T conditions of the lithospheric mantle. Dokl Earth Sci 463:707–711
- Bataleva YV, Palyanov YN, Borzdov YM, Sobolev NV (2016a) Graphite and diamond formation via the interaction of iron carbide and Fe,Ni–sulfide under mantle *P–T* parameters. Dokl Earth Sci 471:1144–1148
- Bataleva YV, Palyanov YN, Borzdov YM, Bayukov OA, Sobolev NV (2016b) The formation of graphite upon the interaction of subducted carbonates and sulfur with metal-bearing rocks of the lithospheric mantle. Dokl Earth Sci 466:88–91
- Bataleva YV, Palyanov YN, Borzdov YM, Kupriyanov IN, Sokol AG (2016c) Synthesis of diamonds with mineral, fluid and melt inclusions. Lithos 265:292–303
- Bataleva YV, Palyanov YN, Sokol AG, Borzdov YM, Bayukov OA (2016d) Wüstite stability in the presence of a CO₂ –fluid and a carbonate–silicate melt: Implications for the graphite/diamond formation and generation of Fe-rich mantle metasomatic agents. Lithos 244:20–29
- Bataleva YV, Palyanov YN, Borzdov YM, Bayukov OA, Sobolev NV (2016e) Conditions for diamond and graphite formation from iron carbide at the P–T parameters of lithospheric mantle. Russian Geol Geophys 57:176–189
- Bataleva YV, Palyanov YN, Borzdov YM, Bayukov OA, Zdrokov EV (2017) Iron carbide as a source of carbon for graphite and diamond formation under lithospheric mantle *P*–*T* parameters. Lithos 286–287:151–161
- Bataleva Y, Palyanov Y, Borzdov Y, Novoselov I, Bayukov O (2018a) Graphite and diamond formation in the carbide– oxide–carbonate interactions (Experimental modeling under mantle P, T-conditions). Minerals 8:522
- Bataleva YV, Palyanov YN, Borzdov YM, Bayukov OA, Sobolev NV (2018b) Experimental modeling of C⁰-forming processes involving cohenite and CO₂-fluid in a silicate mantle. Dokl Earth Sci 483:1427–1430
- Bataleva YV, Palyanov YN, Borzdov YM, Novoselov ID, Bayukov OA, Sobolev NV (2018c) Conditions of formation of iron–carbon melt inclusions in garnet and orthopyroxene under *P–T* conditions of lithospheric mantle. Petrology 26:565–574
- Bataleva YV, Palyanov YN, Borzdov YM, Zdrokov EV, Novoselov ID, Sobolev NV (2018d) Formation of the Fe,Mgsilicates, Fe⁰, and graphite (diamond) assemblage as a result of cohenite oxidation under lithospheric mantle conditions. Dokl Earth Sci 479:335–338
- Bataleva YV, Palyanov YN, Borzdov YM, Novoselov ID, Bayukov OA (2019) An effect of reduced S-rich fluids on diamond formation under mantle-slab interaction. Lithos 336–337:27–39
- Bayarjargal L, Shumilova TG, Friedrich A, Winkler B (2010) Diamond formation from CaCO₃ at high pressure and temperature. Eur J Mineral 22:29–34
- Bobrov AV, Litvin YA (2009) Peridotite-eclogite-carbonatite systems at 7.0–8.5 GPa: Concentration barrier of diamond nucleation and syngenesis of its silicate and carbonate inclusions. Russian Geol Geophys 50:1221–1233
- Bobrov AV, Litvin YA (2011) Mineral equilibria of diamond-forming carbonate-silicate systems. Geochem Int 49:1267–1363
- Bobrov AV, Litvin YA, Divaev FK (2004) Phase relations and diamond synthesis in the carbonate–silicate rocks of the Chagatai Complex, Western Uzbekistan: Results of experiments at P=4–7 GPa and T=1200–1700 °C. Geochem Int 42:39–48
- Boettcher AL, Mysen BO, Allen JC (1973) Techniques for the control of water fugacity and oxygen fugacity for experimentation in solid-media high-pressure apparatus. J Geophys Res 78:5898–5901
- Borzdov YM, Sokol AG, Pal'yanov YN, Kalinin AA, Sobolev NV (1999) Studies of diamond crystallization in alkaline silicate, carbonate and carbonate–silicate melts. Doklady Akademii Nauk 366:530–533
- Borzdov Y, Pal'yanov Y, Kupriyanov I, Gusev V, Khokhryakov A, Sokol A, Efremov A (2002) HPHT synthesis of diamond with high nitrogen content from an Fe₃N–C system. Diamond Relat Mater 11:1863–1870
- Boulard E, Gloter A, Corgne A, Antonangeli D, Auzende AL, Perrillat JP, Guyot F, Fiquet G (2011) New host for carbon in the deep Earth. PNAS 108:5184–5187
- Boulard E, Menguy N, Auzende AL, Benzerara K, Bureau H, Antonangeli D, Corgne A, Morard G, Siebert J, Perrillat JP, Guyot F (2012) Experimental investigation of the stability of Fe-rich carbonates in the lower mantle. J Geophys Res: Solid Earth 117
- Bovenkerk HP (1961) Some observations on the morphology and crystal characteristics of synthetic diamonds. Am Mineral 46:952–963
- Boyd SR, Pillinger CT, Milledge HJ, Mendelssohn MJ, Seal M (1988) Fractionation of nitrogen isotopes in a synthetic diamond of mixed crystal habit. Nature 331:604–607

Boyd SR, Pineau F, Javoy M (1994) Modeling the growth of natural diamonds. Chem Geol 116:29-42

- Brey GP, Kogarko LN, Ryabchikov ID (1991) Carbon dioxide in kimberlitic melts. Neues Jahrb Mineral Monatsh 4:159–168 Brey GP, Girnis AV, Bulatov VK, Höfer HE, Gerdes A, Woodland AB (2015) Reduced sediment melting at 7.5–
- 12 GPa: phase relations, geochemical signals and diamond nucleation. Contrib Mineral Petrol 170:1-25
- Bureau H, Langenhorst F, Auzende AL, Frost DJ, Esteve I, Siebert J (2012) The growth of fibrous, cloudy and polycrystalline diamonds. Geochim Cosmochim Acta 77:202–214
- Bureau H, Frost DJ, Bolfan-Casanova N, Leroy C, Esteve I, Cordier P (2016) Diamond growth in mantle fluids. Lithos 265:4–15
- Bureau H, Remusat L, Esteve M, Pinti DL, Cartigny P (2018) The growth of lithospheric diamonds. Sci Adv 4: eaat1602
- Burns RC, Hansen JO, Spits RA, Sibanda M, Welbourn CM, Welch DL (1999) Growth of high purity large synthetic diamond crystals. Diamond Relat Mater 8:1433–1437
- Cartigny P (2005) Stable isotopes and the origin of diamond. Elements 1:79-84
- Chen L, Miao X, Ma H, Guo L, Wang Z, Yang Z, Fang C, Jia X (2018) Synthesis and characterization of diamonds with different nitrogen concentrations under high pressure and high temperature conditions. CrystEngComm 20:7164–7169
- Chepurov AI, Khokhriakov AF, Sonin VM, Palianov IN, Sobolev NV (1985) The shapes of diamond crystal dissolution in silicate melts under high-pressure. Doklady Akademii Nauk 285:212–216
- Chepurov AI, Zhimulev EI, Fedorov, II, Sonin VM (2007) Inclusions of metal solvent and color of boron-bearing monocrystals of synthetic diamond. Geol Ore Deposits 49:648–651
- Chepurov AI, Zhimulev EI, Sonin VM, Chepurov AA, Pokhilenko NP (2009a) Crystallization of diamond in metalsulfide melts. Dokl Earth Sci 428:1139–1141
- Chepurov AI, Zhimulev EI, Eliseev AP, Sonin VM, Fedorov, II (2009b) The genesis of low-N diamonds. Geochem Int 47:522–525
- Chepurov AI, Sonin VM, Zhimulev EI, Chepurov AA, Tomilenko AA (2011) On the formation of element carbon during decomposition of CaCO₃ at high P–T parameters under reducing conditions. Dokl Earth Sci 441:1738–1741
- Chepurov AI, Sonin VM, Zhimulev EI, Chepurov AA, Pomazansky BS, Zemnukhov AL (2018) Dissolution of diamond crystals in a heterogeneous (metal–sulfide–silicate) medium at 4 GPa and 1400 degrees C. J Mineral Petrol Sci 113:59–67
- Chrenko RM, McDonald RS, Darrow KA (1967) Infra-red spectrum of diamond coat. Nature 213:474-476
- Cull FA, Meyer HOA (1986) Oxidation of diamond at high temperature and 1 atm total pressure with controlled oxygen fugacity. Int Kimberlite Confer: Extended Abstracts 4:377–379
- Dasgupta R, Grewal DS (2019) Origin and early differentiation of carbon and associated life-essential volatile elements on Earth. In: Deep Carbon: Past to Present. Orcutt BN, Daniel I, Dasgupta R, (eds). Cambridge University Press, Cambridge, p 4–39
- Davies G, Evans T (1972) Graphitization of diamond at zero pressure and at a high pressure. Proc R Soc London Ser A 328:413–427
- Day HW (2012) A revised diamond-graphite transition curve. Am Mineral 97:52-62
- Dobrzhinetskaya LF, Green HW (2007) Diamond synthesis from graphite in the presence of water and SiO₂: Implications for diamond formation in quartzites from Kazakhstan. International Geology Review 49:389–400
- Dobrzhinetskaya LF, Renfro AP, Green HW (2004) Synthesis of skeletal diamonds: Implications for microdiamond formation in orogenic belts. Geology 32:869–872
- Dobrzhinetskaya LF, Wirth R, Green HW (2007) A look inside of diamond-forming media in deep subduction zones. PNAS 104:9128–9132
- Dorfman SM, Badro J, Nabiei F, Prakapenka VB, Cantoni M, Gillet P (2018) Carbonate stability in the reduced lower mantle. Earth Planet Sci Lett 489:84–91
- Drewitt JWE, Walter MJ, Zhang H, McMahon SC, Edwards D, Heinen BJ, Lord OT, Anzellini S, Kleppe AK (2019) The fate of carbonate in oceanic crust subducted into earth's lower mantle. Earth Planet Sci Lett 511:213–222
- Eggler DH, Baker DR (1982) Reduced volatiles in the system C–O–H: Implications to mantle melting, fluid formation, and diamond genesis. *In*: High-pressure research in geophysics. Vol 12. Akimoto S, Manghnani MH, (eds). Center for Academic Publications, Tokyo, p 237–250
- Evans T, Phaal C (1962) The kinetics of the diamond–oxygen reaction. *In*: Proceedings of the Fifth Conference on Carbon. Pergamon, p 147–153
- Evans T, Sauter DH (1961) Etching of diamond surfaces with gases. Philos Mag 6:429-440
- Fagan AJ, Luth RW (2011) Growth of diamond in hydrous silicate melts. Contrib Mineral Petrol 161:229-236
- Farré-de-Pablo J, Proenza JA, González-Jiménez JM, Garcia-Casco A, Colás V, Roqué-Rossell J, Camprubí A, Sánchez-Navas A (2018) A shallow origin for diamonds in ophiolitic chromitites. Geology 47:75–78
- Farré-de-Pablo J, Proenza JA, González-Jiménez JM, Garcia-Casco A, Colás V, Roqué-Rosell J, Camprubi A, Sánchez-Navas A (2019) A shallow origin for diamonds in ophiolitic chromitites Reply. Geology 47:E477-E478
- Fedortchouk Y (2015) Diamond resorption features as a new method for examining conditions of kimberlite emplacement. Contrib Mineral Petrol 170:1–19
- Fedortchouk Y (2019) A new approach to understanding diamond surface features based on a review of experimental and natural diamond studies. Earth Sci Rev 193:45–65

- Fedortchouk Y, Canil D (2009) Diamond oxidation at atmospheric pressure: development of surface features and the effect of oxygen fugacity. Eur J Mineral 21:623–635
- Fedortchouk Y, Canil D, Semenets E (2007) Mechanisms of diamond oxidation and their bearing on the fluid composition in kimberlite magmas. Am Mineral 92:1200–1212
- Fedortchouk Y, Liebske C, McCammon C (2019) Diamond destruction and growth during mantle metasomatism: An experimental study of diamond resorption features. Earth Planet Sci Lett 506:493–506
- Fisher D, Lawson SC (1998) The effect of nickel and cobalt on the aggregation of nitrogen in diamond. Diamond Relat Mater 7:299–304
- Frezzotti M-L, Huizenga J-M, Compagnoni R, Selverstone J (2014) Diamond formation by carbon saturation in C–O–H fluids during cold subduction of oceanic lithosphere. Geochim Cosmochim Acta 143:68–86
- Gaillou E, Post JE, Rost D, Butler JE (2012) Boron in natural type IIb blue diamonds: Chemical and spectroscopic measurements. Am Mineral 97:1–18
- Galvez ME, Beyssac O, Martinez I, Benzerara K, Chaduteau C, Malvoisin B, Malavieille J (2013) Graphite formation by carbonate reduction during subduction. Nat Geosci 6:473–477
- Galvez ME, Pubellier M (2019) How do subduction zones regulate the carbon cycle? *In*: Deep Carbon: Past to Present. Orcutt BN, Daniel I, Dasgupta R, (eds). Cambridge University Press, Cambridge, p 276–312
- Girnis AV, Brey GP, Bulatov VK, Höfer HE, Woodland AB (2018) Graphite to diamond transformation during sediment–peridotite interaction at 7.5 and 10.5 GPa. Lithos 310–311:302–313
- Green BL, Collins AT, Breeding CM (2022) Diamond spectroscopy, defect centers, color, and treatments. Rev Mineral Geochem 88:637–688
- Gryaznov IA, Zhimulev EI, Sonin VM, Lindenblot ES, Chepurov AA, Sobolev NV (2019) Morphological features of diamond crystals resulting from dissolution in a Fe–Ni–S melt under high pressure. Dokl Earth Sci 489:1449–1452
- Gunn SC, Luth RW (2006) Carbonate reduction by Fe-S-O melts at high pressure and high temperature. Am Mineral 91:1110–1116
- Harris JW (1968) Recognition of diamond inclusions. 1. Syngenetic mineral inclusions. Ind Diam Rev 28:402-410
- Harris JW, Vance ER (1974) Studies of reaction between diamond and heated kimberlite. Contrib Mineral Petrol 47:237–244
- Hoering TC (1961) The carbon isotope effect in the synthesis of diamond. Year Book–Carnegie Institution of Washington 60:204
- Holloway JR, Burnham CW, Millhollen GL (1968) Generation of H₂O–CO₂ mixtures for use in hydrothermal experimentation. J Geophys Res 73:6598–6600
- Hong SM, Akaishi M, Yamaoka S (1999) Nucleation of diamond in the system of carbon and water under very hight pressure and temperature. J Cryst Growth 200:326–328
- Huang F, Sverjensky DA (2020) Mixing of carbonatitic into saline fluid during panda diamond formation. Geochim Cosmochim Acta 284:1–20
- Huang WL, Wyllie PJ (1976) Melting relationships in the systems CaO–CO₂ and MgO-CO₂ to 33 kilobars. Geochim Cosmochim Acta 40:129–132
- Huang GF, Jia XP, Li SS, Zhang YF, Li Y, Zhao M, Ma HA (2010a) Synthesis of large diamond crystals containing high-nitrogen concentration at high pressure and high temperature using Ni-based solvent by temperature gradient method. Chin Phys B 19
- Huang GF, Jia XP, Li SS, Hu MH, Li Y, Zhao M, Yan BM, Ma HA (2010b) Effects of additive NaN₃ on the HPHT synthesis of large single crystal diamond grown by TGM. Sci China Phys Mech Astronom 53:1831–1835
- Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H, Funakoshi K (2004) Formation of pure polycrystalline diamond by direct conversion of graphite at high pressure and high temperature. Phys Earth Planet Inter 143–44:593–600
- Ivanovskaya IN, Shterenberg LY, Makhov SF, Musina AR, Filonenko VP (1981) On carbon isotope fractionation in solid-phase synthesis of diamond. Geokhimiya 9:1415–1417
- Izraeli ES, Harris JW, Navon O (2001) Brine inclusions in diamonds: a new upper mantle fluid. Earth Planet Sci Lett 187:323–332
- Jablon BM, Navon O (2016) Most diamonds were created equal. Earth Planet Sci Lett 443:41-47
- Jones AP, Genge M, Carmody L (2013) Carbonate melts and carbonatites. In: Carbon in Earth. Vol 75. Hazen RM, Jones AP, Baross JA, (eds). p 289–322
- Kaminsky FV, Wirth R (2011) Iron carbide inclusions in lower-mantle diamond from Juina, Brazil. Can Mineral 49:555–572 Kanda H (2000) Large diamonds grown at high pressure conditions. Braz J Phys 30:482–489
- Kanda H, Yamaoka S (1993) Inhomogeneous distribution of nitrogen impurities in {111} growth sectors of highpressure synthetic diamond. Diamond Relat Mater 2:1420–1423
- Kanda H, Yamaoka S, Setaka N, Komatsu H (1977) Etching of diamond octahedrons by high-pressure water. J Cryst Growth 38:1–7
- Kanda H, Akaishi M, Yamaoka S (1999) Synthesis of diamond with the highest nitrogen concentration. Diamond Relat Mater 8:1441–1443
- Kelemen PB, Manning CE (2015) Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. PNAS 112:E3997–E4006

- Kennedy CS, Kennedy GC (1976) The equilibrium boundary between graphite and diamond. J Geophys Res 81:2467–2470
- Keppler H (2003) Water solubility in carbonatite melts. Am Mineral 88:1822-1824
- Khokhryakov AF, Pal'yanov YN (1990) Morphology of diamond crystals dissolved in hydrous silicate melts. Mineralogischeskiy Zhurnal 12:14–23
- Khokhryakov AF, Pal'yanov YN (2000) The dissolution forms of diamond crystals in CaCO₃ melt at 7 GPa. Russian Geol Geophys 41:682–687
- Khokhryakov AF, Palyanov YN (2006) Revealing of dislocations in diamond crystals by the selective etching method. J Cryst Growth 293:469–474
- Khokhryakov AF, Pal'yanov YN (2007a) The evolution of diamond morphology in the process of dissolution: Experimental data. Am Mineral 92:909–917
- Khokhryakov AF, Palyanov YN (2007b) Revealing of planar defects and partial dislocations in large synthetic diamond crystals by the selective etching. J Cryst Growth 306:458–464
- Khokhryakov AF, Pal'yanov YN (2010) Influence of the fluid composition on diamond dissolution forms in carbonate melts. Am Mineral 95:1508–1514
- Khokhryakov AF, Palyanov YN (2015a) Effect of crystal defects on diamond morphology during dissolution in the mantle. Am Mineral 100:1528–1532
- Khokhryakov AF, Palyanov YN (2015b) Effect of nitrogen impurity on etching of synthetic diamond crystals. J Cryst Growth 430:71–74
- Khokhryakov AF, Palyanov YN (2018) Manifestation of diamond sectoriality during dissolution and graphitization. J Cryst Growth 502:1–6
- Khokhryakov AF, Pal'yanov YN, Sobolev NV (2001) Evolution of crystal morphology of natural diamond in dissolution processes: Experimental data. Dokl Earth Sci 381:884–888
- Khokhryakov AF, Pal'yanov YN, Sobolev NV (2002) Crystal morphology as an indicator of redox conditions of natural diamond dissolution at the mantle PT parameters. Dokl Earth Sci 385:534–537
- Khokhryakov AF, Nechaev DV, Sokol AG, Palyanov YN (2009) Formation of various types of graphite inclusions in diamond: Experimental data. Lithos 112:683–689
- Khokhryakov AF, Palyanov YN, Kupriyanov IN, Borzdov YM, Sokol AG (2014) Effect of nitrogen impurity on the dislocation structure of large HPHT synthetic diamond crystals. J Cryst Growth 386:162–167
- Khokhryakov AF, Palyanov YN, Kupriyanov IN, Nechaev DV (2016) Diamond crystallization in a CO₂-rich alkaline carbonate melt with a nitrogen additive. J Cryst Growth 449:119–128
- Khokhryakov AF, Palyanov YN, Borzdov YM, Kozhukhov AS, Sheglov DV (2018) Dislocation etching of diamond crystals grown in Mg-C system with the addition of silicon. Diamond Relat Mater 88:67–73
- Khokhryakov AF, Nechaev DV, Sokol AG (2020) Microrelief of rounded diamond crystals as an indicator of the redox conditions of their resorption in a kimberlite melt. Crystals 10
- Kiseeva ES, Litasov KD, Yaxley GM, Ohtani E, Kamenetsky VS (2013) Melting and phase relations of carbonated eclogite at 9–21 GPa and the petrogenesis of alkali-rich melts in the deep mantle. J Petrol 54:1555–1583
- Klein-BenDavid O, Izraeli ES, Hauri E, Navon O (2004) Mantle fluid evolution–A tale of one diamond. Lithos 77:243–253
- Klein-BenDavid O, Izraeli ES, Hauri E, Navon O (2007) Fluid inclusions in diamonds from the Diavik mine, Canada and the evolution of diamond-forming fluids. Geochim Cosmochim Acta 71:723–744
- Kozai Y, Arima M (2005) Experimental study on diamond dissolution in kimberlitic and lamproitic melts at 1300– 1420° C and 1 GPa with controlled oxygen partial pressure. Am Mineral 90:1759–1766
- Kraus D, Vorberger J, Pak A, Hartley NJ, Fletcher LB, Frydrych S, Galtier E, Gamboa EJ, Gericke DO, Glenzer SH, Granados E (2017) Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions. Nat Astron 1:606–611
- Laptev VA, Ivanovskaya IN, Galimov EM (1978) A study of carbon isotope fractionation in the process of diamond synthesis. VII All-union symposium on stable isotopes in geochemistry:95
- Latourrette T, Holloway JR (1994) Oxygen fugacity of the diamond plus C–O fluid assemblage and CO₂ fugacity at 8-GPa. Earth Planet Sci Lett 128:439–451
- Lee C-TA, Jiang H, Dasgupta R, Torres M (2019) A framework for understanding whole-Earth carbon cycling. In: Deep carbon: Past to present. Orcutt BN, Daniel I, Dasgupta R, (eds). Cambridge University Press, Cambridge, p 313–357
- Li K, Li L, Pearson DG, Stachel T (2019) Diamond isotope compositions indicate altered igneous oceanic crust dominates deep carbon recycling. Earth Planet Sci Lett 516:190–201
- Liang ZZ, Jia X, Ma HA, Zang CY, Zhu PW, Guan QF, Kanda H (2005) Synthesis of HPHT diamond containing high concentrations of nitrogen impurities using NaN₃ as dopant in metal–carbon system. Diamond Relat Mater 14:1932–1935
- Liang ZZ, Kanda H, Jia X, Ma HA, Zhu PW, Guan QF, Zang CY (2006) Synthesis of diamond with high nitrogen concentration from powder catalyst-C-additive NaN3 by HPHT. Carbon 44:913–917
- Litasov KD, Goncharov AF, Hemley RJ (2011) Crossover from melting to dissociation of CO₂ under pressure: Implications for the lower mantle. Earth Planet Sci Lett 309:318–323

- Litasov KD, Shatskiy A, Ohtani E (2014) Melting and subsolidus phase relations in peridotite and eclogite systems with reduced COH fluid at 3–16 GPa. Earth Planet Sci Lett 391:87–99
- Litasov KD, Kagi H, Bekker TB, Hirata T, Makino Y (2019a) Cuboctahedral type Ib diamonds in ophiolitic chromitites and peridotites: the evidence for anthropogenic contamination. High Press Res 39:480–488

Litasov KD, Kagi H, Voropaev SA, Hirata T, Ohfuji H, Ishibashi H, Makino Y, Bekker TB, Sevastyanov VS, Afanasiev VP, Pokhilenko NP (2019b) Comparison of enigmatic diamonds from the Tolbachik arc volcano (Kamchatka) and Tibetan ophiolites: Assessing the role of contamination by synthetic materials. Gondwana Res 75:16–27

Litvin YA (2003) Alkaline-chloride components in processes of diamond growth in the mantle and high-pressure experimental conditions. Dokl Earth Sci 389:388–391

- Litvin YA, Butvina VG (2004) Diamond-forming media in the system eclogite-carbonatite-sulfide-carbon: Experiments at 6.0–8.5 GPa. Petrology 12:377–387
- Litvin YA, Bobrov A (2008) Experimental study of diamond crystallization in carbonate-peridotite melts at 8.5 GPa. Dokl Earth Sci 422:1167–1171
- Litvin YA, Spivak AV (2003) Rapid growth of diamondite at the contact between graphite and carbonate melt: Experiments at 7.5–8.5 GPa. Dokl Earth Sci 391A:888–891
- Litvin YA, Zharikov VA (1999) Primary fluid-carbonatitic inclusions in diamond: Experimental modeling in the system K₂O–Na₂O–CaO–MgO–FeO–CO₂ as a diamond formation medium in experiment at 7–9 GPa. Dokl Earth Sci 367A:801–805

Litvin YA, Chudinovskikh LT, Zharikov VA (1997) Crystallization of diamond and graphite from alkaline-carbonate melts at 7–11 GPa. Doklady Akademii Nauk 355:669–672

- Litvin YA, Chudinovskikh LT, Zharikov VA (1998a) Seed growth of diamond in the system Na₂Mg(CO₃)₂-K₂Mg(CO₃)₂-C at 8–10 GPa. Doklady Akademii Nauk 359:818–820
- Litvin YA, Chudinovskikh LT, Zharikov VA (1998b) Crystallization of diamond in the system Na₂Mg(CO₃)₂-K₂Mg(CO₃)₂-C at 8–10 GPa. Doklady Akademii Nauk 359:668–670
- Litvin YA, Chudinovskikh LT, Saparin GV, Obyden SK, Chukichev MV, Vavilov VS (1998c) Peculiarities of diamonds formed in alkaline carbonate-carbon melts at pressures of 8–10 GPa: Scanning electron microscopy and cathodoluminescence data. Scanning 20:380–388
- Litvin YA, Aldushin KA, Zharikov VA (1999a) Synthesis of diamond at 8.5–9.5 GPa in the system K₂Ca(CO₃)₂-Na₂Ca(CO₃)₂-C modeling compositions of fluid-carbonatitic inclusions in kimberlitic diamonds. Dokl Earth Sci 367A:813–816
- Litvin YA, Chudinovskikh LT, Saparin GV, Obyden SK, Chukichev MV, Vavilov VS (1999b) Diamonds of new alkaline carbonate-graphite HP syntheses: SEM morphology, CCL-SEM and CL spectroscopy studies. Diamond Relat Mater 8:267–272
- Litvin YA, Spivak AV, Matveev YA (2003) Experimental study of diamond formation in the molten carbonate–silicate rocks of the Kokchetav metamorphic complex at 5.5–7.5 GPa. Geochem Int 41:1090–1098
- Litvin YA, Jones AP, Beard AD, Divaev FK, Zharikov VA (2001) Crystallization of diamond and syngenetic minerals in melts of diamondiferous carbonatites of the Chagatai Massif, Uzbekistan: Experiment at 7.0 GPa. Dokl Earth Sci 381:1066–1069
- Litvin YA, Butvina VG, Bobrov AV, Zharikov VA (2002) The first synthesis of diamond in sulfide-carbon systems: The role of sulfides in diamond genesis. Dokl Earth Sci 382:40–43
- Litvin YA, Kurat G, Dobosi G (2005a) Experimental study of diamondite formation in carbonate–silicate melts; a model approach to natural processes. Russ Geol Geophys 46:1285–1299
- Litvin YA, Shushkanova AV, Zharikov VA (2005b) Immiscibility of sulfide-silicate melts in the mantle: Role in the syngenesis of diamond and inclusions (based on experiments at 7.0 GPa). Dokl Earth Sci 403:719–722
- Litvin YA, Litvin VY, Kadik AA (2008a) Experimental characterization of diamond crystallization in melts of mantle silicate-carbonate-carbon systems at 7.0–8.5 GPa. Geochem Int 46:531–553
- Litvin YA, Litvin V, Kadik A (2008b) Study of diamond and graphite crystallization from eclogite-carbonatite melts at 8.5 GPa: The role of silicates in diamond genesis. Dokl Earth Sci 419:486–491
- Litvin Y, Spivak A, Solopova N, Dubrovinsky L (2014) On origin of lower-mantle diamonds and their primary inclusions. Phys Earth Planet Inter 228:176–185
- Litvin YA, Spivak AV, Simonova DA, Dubrovinsky LS (2017) On origin and evolution of diamond-forming lowermantle systems: physicochemical studies in experiments at 24 and 26 GPa. J Phys Conf Ser 950:042045
- Liu LG, Lin CC, Yang YJ (2001) Formation of diamond by decarbonation of MnCO3. Solid State Commun 118:195-198
- Liu X, Jia X, Zhang Z, Li Y, Hu M, Zhou Z, Ma H-a (2011) Crystal growth and characterization of diamond from carbonyl iron catalyst under high pressure and high temperature conditions. Cryst Growth Des 11:3844–3849
- Liu X, Jia X, Fang C, Ma H-A (2016) Diamond crystallization and growth in N–H enriched environment under HPHT conditions. CrystEngComm 18:8506–8515
- Lonsdale K, Milledge HJ, Nave E (1959) X-ray studies of synthetic diamonds. Mineral Mag 32:185-201
- Luth R (2017) Diamond formation during partial melting in the Earth's mantle. GSA Annual Meeting in Seattle, Washington, USA-2017. Geol Soc Am 49:Abstr #20–26

- Maeda F, Ohtani E, Kamada S, Sakamaki T, Hirao N, Ohishi Y (2017) Diamond formation in the deep lower mantle: a high-pressure reaction of MgCO₃ and SiO₂. Sci Rep 7:40602
- Martin AM, Hammouda T (2011) Role of iron and reducing conditions on the stability of dolomite + coesite between 4.25 and 6 GPa—a potential mechanism for diamond formation during subduction. Eur J Mineral 23:5–16
- Martirosyan NS, Litasov KD, Lobanov SS, Goncharov AF, Shatskiy A, Ohfuji H, Prakapenka V (2019) The Mg– carbonate–Fe interaction: Implication for the fate of subducted carbonates and formation of diamond in the lower mantle. Geosci Front 10:1449–1458
- Massonne H-J (2019) A shallow origin for diamonds in ophiolitic chromitites: Comment. Geology 47:e476-e476
- Matjuschkin V, Woodland AB, Frost DJ, Yaxley GM (2020) Reduced methane-bearing fluids as a source for diamond. Sci Rep 10:6961
- McCubbin FM, Sverjensky DA, Steele A, Mysen BO (2014) In-situ characterization of oxalic acid breakdown at elevated P and T: Implications for organic C–O–H fluid sources in petrologic experiments. Am Mineral 99:2258–2271
- McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223-253
- Milledge HJ (1961) Coesite as an inclusion in G.E.C. synthetic diamonds. Nature 190:1181-1181
- Mysen B (2018) Mass transfer in the Earth's interior: fluid-melt interaction in aluminosilicate-C-O-H-N systems at high pressure and temperature under oxidizing conditions. Prog Earth Planet Science 5:6
- Navon O, Hutcheon ID, Rossman GR, Wasserburg GJ (1988) Mantle-derived fluids in diamond micro-inclusions. Nature 335:784–789
- Nestola F, Jung H, Taylor LA (2017) Mineral inclusions in diamonds may be synchronous but not syngenetic. Nat Commun 8:14168
- Newton RC, Sharp WE (1975) Stabilty of forsterite + CO₂ and its bearing on the role of CO₂ in the mantle Earth Planet Sci Lett 26:239–244
- Nimis P (2022) Pressure and temperature data for diamonds. Rev Mineral Geochem 88:533-566
- Nimis P, Alvaro M, Nestola F, Angel RJ, Marquardt K, Rustioni G, Harris JW, Marone F (2016) First evidence of hydrous silicic fluid films around solid inclusions in gem-quality diamonds. Lithos 260:384–389
- Okada T, Utsumi W, Shimomura O (2002a) In situ x-ray observations of the diamond formation process in the C– H₂O–MgO system. J Phys Condens Matter 14:11331–11335
- Okada T, Utsumi W, Kaneko H, Yamakata M, Shimomura O (2002b) In situ X-ray observations of the decomposition of brucite and the graphite–diamond conversion in aqueous fluid at high pressure and temperature. Physi Chem Minerals 29:439–445
- Okada T, Utsumi W, Kaneko H, Turkevich V, Hamaya N, Shimomura O (2004) Kinetics of the graphite-diamond transformation in aqueous fluid determined by in-situ X-ray diffractions at high pressures and temperatures. Phys Chem Minerals 31:261–268
- Onodera A, Suito K, Morigami Y (1992) High-pressure synthesis of diamond from organic compounds. Proceedings of the Japan Academy Series B-Physical and Biological Sciences 68:167–171
- Osorgin NI, Palianov IN, Sobolev NV, Khokhriakova IP, Chepurov AI, Shugurova NA (1987) Inclusions of liquefied gases in diamond crystals. Doklady Akademii Nauk Sssr 293:1214–1217
- Palyanov YN, Sokol AG (2009) The effect of composition of mantle fluids/melts on diamond formation processes. Lithos 112:690–700
- Pal'yanov YN, Khokhryakov AF, Borzdov YM, Doroshev AM, Tomilenko AA, Sobolev NV (1994) Inclusions in synthetic diamonds. Doklady Akademii Nauk 338:78–80
- Pal'yanov YN, Khokhryakov AF, Borzdov YM, Sokol AG, Gusev VA, Rylov GM, Sobolev NV (1997) Growth conditions and real structure of synthetic diamond crystals. Russian Geol Geophys 38:920–945
- Pal'yanov YN, Sokol AG, Borzdov YM, Sobolev NV (1998a) Experimental study of diamond crystallization in carbonate–carbon systems in connection with the problem of diamond genesis in magmatic and metamorphic rocks. Geologiya I Geofizika 39:1780–1792
- Pal'yanov YN, Borzdov YM, Sokol AG, Khokhriakov AF, Gusev VA, Rylov GM, Sobolev NV (1998b) High-pressure synthesis of high-quality diamond single crystals. Diamond Relat Mater 7:916–918
- Pal'yanov YN, Sokol AG, Borzdov YM, Khokhryakov AF, Sobolev NV (1999a) Diamond formation from mantle carbonate fluids. Nature 400:417–418
- Pal'yanov YN, Sokol AG, Borzdov YM, Khokhryakov AF, Shatsky AF, Sobolev NV (1999b) The diamond growth from Li₂CO₃, Na₂CO₃, K₂CO₃ and Cs₂CO₃ solvent-catalysts at P = 7 GPa and T = 1700-1750 °C. Diamond Relat Mater 8:1118–1124
- Pal'yanov YN, Sokol AG, Khokhryakov AF, Pal'yanova GA, Borzdov YM, Sobolev NV (2000) Diamond and graphite crystallization in COH fluid at PT parameters of the natural diamond formation. Dokl Earth Sci 375:1395–1398
- Pal'yanov Y, Borzdov Y, Kupriyanov I, Gusev V, Khokhryakov A, Sokol A (2001a) High-pressure synthesis and characterization of diamond from a sulfur-carbon system. Diamond Relat Mater 10:2145–2152
- Palyanov YN, Shatsky VS, Sokol AG, Tomilenko AA, Sobolev NV (2001b) Crystallization of metamorphic diamond: An experimental modeling. Dokl Earth Sci 381:935–938

- Pal'yanov YN, Sokol AG, Borzdov YM, Khokhryakov AF (2002a) Fluid-bearing alkaline carbonate melts as the medium for the formation of diamonds in the Earth's mantle: an experimental study. Lithos 60:145–159
- Pal'yanov YN, Sokol AG, Borzdov YM, Khokhryakov AF, Sobolev NV (2002b) Diamond formation through carbonate–silicate interaction. Am Mineral 87:1009–1013
- Pal'yanov YN, Borzdov YM, Ovchinnikov IY (2003) Experimental study of the interaction between pentlandite melt and carbon at mantle *PT* parameters: Condition of diamond and graphite crystallization. Dokl Earth Sci 392:1026–1029
- Pal'yanov YN, Sokol AG, Sobolev NV (2005a) Experimental modeling of mantle diamond-forming processes. Russian Geol Geophys 46:1271–1284
- Pal'yanov YN, Sokol AG, Tomilenko AA, Sobolev NV (2005b) Conditions of diamond formation through carbonate– silicate interaction. Eur J Mineral 17:207–214
- Palyanov YN, Borzdov YM, Khokhryakov AF, Kupriyanov IN, Sobolev NV (2006) Sulfide melts-graphite interaction at HPHT conditions: Implications for diamond genesis. Earth Planet Sci Lett 250:269–280
- Palyanov YN, Shatsky VS, Sobolev NV, Sokol AG (2007a) The role of mantle ultrapotassic fluids in diamond formation. PNAS 104:9122–9127
- Palyanov YN, Borzdov YM, Bataleva YV, Sokol AG, Palyanova GA, Kupriyanov IN (2007b) Reducing role of sulfides and diamond formation in the Earth's mantle. Earth Planet Sci Lett 260:242–256
- Palyanov YN, Kupriyanov IN, Borzdov YM, Sokol AG, Khokhryakov AF (2009) Diamond crystallization from a sulfur–carbon system at HPHT conditions. Cryst Growth Des 9:2922–2926
- Palyanov YN, Sokol AG, Khokhryakov AF, Sobolev NV (2010a) Experimental study of interaction in the CO₂-C system at mantle PT parameters. Dokl Earth Sci 435:1492–1495
- Palyanov YN, Borzdov YM, Khokhryakov AF, Kupriyanov IN, Sokol AG (2010b) Effect of nitrogen impurity on diamond crystal growth processes. Cryst Growth Des 10:3169–3175
- Palyanov YN, Borzdov YM, Kupriyanov IN, Khokhryakov AF (2012) Effect of H₂O on diamond crystal growth in metal-carbon systems. Cryst Growth Des 12:5571–5578
- Palyanov YN, Khokhryakov AF, Borzdov YM, Kupriyanov IN (2013a) Diamond growth and morphology under the influence of impurity adsorption. Cryst Growth Des 13:5411–5419
- Palyanov YN, Bataleva YV, Sokol AG, Borzdov YM, Kupriyanov IN, Reutsky VN, Sobolev NV (2013b) Mantle– slab interaction and redox mechanism of diamond formation. PNAS 110:20408–20413
- Palyanov YN, Sokol AG, Khokhryakov AF, Kruk AN (2015) Conditions of diamond crystallization in kimberlite melt: experimental data. Russian Geol Geophys 56:196–210
- Palyanov YN, Kupriyanov IN, Sokol AG, Borzdov YM, Khokhryakov AF (2016) Effect of CO₂ on crystallization and properties of diamond from ultra-alkaline carbonate melt. Lithos 265:339–350
- Palyanov YN, Borzdov YM, Khokhryakov AF, Bataleva YV, Kupriyanov IN (2020a) Effect of sulfur on diamond growth and morphology in metal-carbon systems. Crystengcomm 22:5497–5508
- Palyanov YN, Borzdov YM, Kupriyanov IN, Bataleva YV, Nechaev DV (2020b) Effect of oxygen on diamond crystallization in metal–carbon systems. ACS Omega
- Palyanov YN, Khokhryakov AF, Kupriyanov IN (2021a) Crystallomorphological and crystallochemical indicators of diamond formation conditions. Crystal Rep 66:142–155
- Palyanov YN, Borzdov YM, Sokol AG, Bataleva YV, Kupriyanov IN, Reutsky VN, Wiedenbeck M, Sobolev NV (2021b) Diamond formation in an electric field under deep Earth conditions. Sci Adv 7:eabb4644
- Podborodnikov IV, Shatskiy A, Arefiev AV, Bekhtenova A, Litasov KD (2019) New data on the system Na₂CO₃– CaCO₃–MgCO₃ at 6 GPa with implications to the composition and stability of carbonatite melts at the base of continental lithosphere. Chem Geol 515:50–60
- Polyakov VI, Rukovishnikov AI, Rossukanyi NM, Ralchenko VG (2001) Electrical properties of thick boron and nitrogen contained CVD diamond films. Diamond Relat Mater 10:593–600
- Rege S, Griffin WL, Pearson NJ, Araujo D, Zedgenizov D, O'Reilly SY (2010) Trace-element patterns of fibrous and monocrystalline diamonds: Insights into mantle fluids. Lithos 118:313–337
- Reutsky VN, Borzdov YM, Palyanov YN (2008a) Carbon isotope fractionation associated with HPHT crystallization of diamond. Diamond Relat Mater 17:1986–1989
- Reutsky VN, Harte B, Eimf, Borzdov YM, Palyanov YN (2008b) Monitoring diamond crystal growth, a combined experimental and SIMS study. Eur J Mineral 20:365–374
- Reutsky VN, Borzdov YM, Palyanov YN (2012) Effect of diamond growth rate on carbon isotope fractionation in Fe–Ni–C system. Diamond Relat Mater 21:7–10
- Reutsky V, Borzdov Y, Palyanov Y, Sokol A, Izokh O (2015a) Carbon isotope fractionation during experimental crystallisation of diamond from carbonate fluid at mantle conditions. Contrib Mineral Petrol 170
- Reutsky VN, Borzdov YM, Palyanov YN (2015b) Carbon isotope fractionation during high pressure and high temperature crystallization of Fe-C melt. Chem Geol 406:18–24
- Reutsky VN, Palyanov YN, Borzdov YM, Sokol AG (2015c) Isotope fractionation of carbon during diamond crystallization in model systems. Russian Geol Geophys 56:239–244

- Reutsky VN, Kowalski PM, Palyanov YN, Wiedenbeck M, Eimf (2017) Experimental and theoretical evidence for surface-induced carbon and nitrogen fractionation during diamond crystallization at high temperatures and high pressures. Crystals 7:190
- Reutsky VN, Palyanov YN, Wiedenbeck M (2018) Carbon isotope composition of diamond crystals grown via redox mechanism. Geochem Int 56:1398–1404
- Richet P, Bottinga Y, Javoy M (1977) A review of hydrogen, carbon, nitrogen, oxygen, sulphur, and chlorine stable isotope fractionation among gaseous molecules. Annu Rev Earth Planet Sci 5:65–110
- Robinson DN (1979) Surface textures and other features of diamonds. PhD University of Cape Town, Cape Town
- Roedder E (ed) (1984) Fluid Inclusions. Reviews in Mineralogy, Vol. 12, Mineralogical Society of America, Chantilly, Virginia
- Rubie DC (1999) Characterising the sample environment in multianvil high-pressure experiments. Phase Transitions 68:431–451
- Satish-Kumar M, So H, Yoshino T, Kato M, Hiroi Y (2011) Experimental determination of carbon isotope fractionation between iron carbide melt and carbon: ¹²C-enriched carbon in the Earth's core? Earth Planet Sci Lett 310:340–348
- Sato K, Akaishi M, Yamaoka S (1999) Spontaneous nucleation of diamond in the system MgCO₃-CaCO₃-C at 7.7 GPa. Diamond Relat Mater 8:1900–1905
- Schrauder M, Navon O (1993) Solid carbon dioxide in a natural diamond. Nature 365:42-44
- Seto Y, Hamane D, Nagai T, Fujino K (2008) Fate of carbonates within oceanic plates subducted to the lower mantle, and a possible mechanism of diamond formation. Physi Chem Minerals 35:223–229
- Shaji Kumar MD, Akaishi M, Yamaoka S (2000) Formation of diamond from supercritical H₂O–CO₂ fluid at high pressure and high temperature. J Cryst Growth 213:203–206
- Shaji Kumar MD, Akaishi M, Yamaoka S (2001) Effect of fluid concentration on the formation of diamond in the CO₂-H₂O-graphite system under HP-HT conditions. J Cryst Growth 222:9–13
- Shatskiy A, Borzdov YM, Litasov KD, Sharygin IS, Palyanov YN, Ohtani E (2015a) Phase relationships in the system K₂CO₃-CaCO₃ at 6 GPa and 900–1450 °C. Am Mineral 100:223–232
- Shatskiy A, Yamazaki D, Morard G, Cooray T, Matsuzaki T, Higo Y, Funakoshi K, Sumiya H, Ito E, Katsura T (2009) Boron-doped diamond heater and its application to large-volume, high-pressure, and high-temperature experiments. Rev Sci Instrum 80:023907
- Shatskiy AF, Litasov KD, Palyanov YN (2015b) Phase relations in carbonate systems at pressures and temperatures of lithospheric mantle: review of experimental data. Russian Geol Geophys 56:113–142
- Shatsky AF, Borzdov YM, Sokol AG, Pal'yanov YN (2002) Phase formation and diamond crystallization in carbonbearing ultrapotassic carbonate–silicate systems. Geologiya I Geofizika 43:940–950
- Shushkanova AV, Litvin YA (2006) Formation of diamond polycrystals in pyrrhotite-carbonic melt: Experiments at 6.7 GPa. Dokl Earth Sci 409:916–920
- Shushkanova AV, Litvin YA (2008a) Diamond nucleation and growth in sulfide-carbon melts: An experimental study at 6.0–7.1 GPa. Eur J Mineral 20:349–355
- Shushkanova AV, Litvin YA (2008b) Diamond formation in sulfide pyrrhotite-carbon melts: Experiments at 6.0–7.1 GPa and application to natural conditions. Geochem Int 46:37–47
- Siebert J, Guyot F, Malavergne V (2005) Diamond formation in metal–carbonate interactions. Earth Planet Sci Lett 229:205–216
- Smit KV, Stachel T, Luth RW, Stern RA (2019) Evaluating mechanisms for eclogitic diamond growth: An example from Zimmi Neoproterozoic diamonds (West African craton). Chem Geol 520:21–32
- Smit KV, Shirey SB, Stern RA, Steele A, Wang W (2016) Diamond growth from C–H–N–O recycled fluids in the lithosphere: Evidence from CH₄ micro-inclusions and δ¹³C–δ¹⁵N–N content in Marange mixed-habit diamonds. Lithos 265:68–81
- Smith EM, Kopylova MG (2013) Implications of metallic iron for diamonds and nitrogen in the sublithospheric mantle. Can J Earth Sci 51:510–516
- Smith EM, Wang W (2016) Fluid CH₄ and H₂ trapped around metallic inclusions in HPHT synthetic diamond. Diamond Relat Mater 68:10–12
- Smith EM, Shirey SB, Nestola F, Bullock ES, Wang J, Richardson SH, Wang W (2016) Large gem diamonds from metallic liquid in Earth's deep mantle. Science 354:1403–1405
- Sokol AG, Pal'yanov YN (2004) Diamond crystallization in fluid and carbonate-fluid systems under mantle P-T conditions: 2. An analytical review of experimental data. Geochem Int 42:1018–1032
- Sokol AG, Pal'yanov YN (2008) Diamond formation in the system MgO–SiO₂–H₂O–C at 7.5 GPa and 1,600°C. Contrib Mineral Petrol 155:33–43
- Sokol AG, Pal'yanov YN, Borzdov YM, Khokhryakov AF, Sobolev NV (1998) Crystallization of diamond from Na₂CO₃ melt. Dokl Earth Sci 361:388–391
- Sokol AG, Borzdov YM, Khokhriakov AF, Pal'yanov YN, Sobolev NV (1999) Diamond crystallization in silicatefluid systems at P = 7.0 GPa and T = 1700–1750 °C. Doklady Akademii Nauk 368:99–102
- Sokol AG, Tomilenko AA, Pal'yanov YN, Borzdov YM, Pal'yanova GA, Khokhryakov AF (2000) Fluid regime of diamond crystallisation in carbonate-carbon systems. Eur J Mineral 12:367–375

- Sokol AG, Pal'yanov YN, Pal'yanova GA, Khokhryakov AF, Borzdov YM (2001a) Diamond and graphite crystallization from C–O–H fluids under high pressure and high temperature conditions. Diamond Relat Mater 10:2131–2136
- Sokol AG, Borzdov YM, Pal'yanov YN, Khokhryakov AF, Sobolev NV (2001b) An experimental demonstration of diamond formation in the dolomite-carbon and dolomite-fluid-carbon systems. Eur J Mineral 13:893–900
- Sokol AG, Pal'yanov YN, Pal'yanova GA, Tomilenko AA (2004) Diamond crystallization in fluid and carbonate-fluid systems under mantle P-T conditions: 1. Fluid composition. Geochem Int 42:830–838
- Sokol AG, Palyanova GA, Palyanov YN, Tomilenko AA, Melenevsky VN (2009) Fluid regime and diamond formation in the reduced mantle: Experimental constraints. Geochim Cosmochim Acta 73:5820–5834
- Sokol AG, Palyanov YN, Litasov KD (2010) Effect of oxygen fugacity on the H₂O storage capacity of forsterite in the carbon-saturated systems. Geochim Cosmochim Acta 74:4793–4806
- Sokol AG, Khokhryakov AF, Palyanov YN (2015) Composition of primary kimberlite magma: constraints from melting and diamond dissolution experiments. Contrib Mineral Petrol 170:1–18
- Sokol AG, Palyanov YN, Tomilenko AA, Bul'bak TA, Palyanova GA (2017) Carbon and nitrogen speciation in nitrogen-rich C–O–H–N fluids at 5.5–7.8 GPa. Earth Planet Sci Lett 460:234–243
- Sokol AG, Khokhryakov AF, Borzdov YM, Kupriyanov IN, Palyanov YN (2019) Solubility of carbon and nitrogen in a sulfur-bearing iron melt: Constraints for siderophile behavior at upper mantle conditions. Am Mineral 104:1857–1865
- Solopova NA, Spivak AV, Litvin YA, Shiryaev AA, Tsel'movich VA, Nekrasov AN (2013) Kinetic peculiarities of diamond crystallization in K–Na–Mg–Ca–carbonate–carbon melt–solution. Phys Solid State 55:373–376
- Solopova NA, Dubrovinsky L, Spivak AV, Litvin YA, Dubrovinskaia N (2015) Melting and decomposition of MgCO₃ at pressures up to 84 GPa. Physi Chem Minerals 42:73–81
- Sonin VM, Fedorov, II, Pokhilenko LN, Pokhilenko NP (2000) Diamond oxidation rate as related to oxygen fugacity. Geol Ore Deposits 42:496–502
- Sonin VM, Zhimulev EI, Fedorov, II, Tomilenko AA, Chepurov AI (2001) Etching of diamond crystals in a dry silicate melt at high P-T parameters. Geochem Int 39:268–274
- Sonin VM, Zhimulev EI, Chepurov AI, Afanas'ev VP, Tomilenko AA (2003) Etching of diamond crystals in the system silicate melt–C–O–H–S fluid under a high pressure. Geochem Int 41:688–693
- Sonin VM, Zhimulev EI, Fedorov, II, Chepurov AI (2006) Effect of oxygen fugacity on the etching rate of diamond crystals in silicate melt. Geol Ore Deposits 48:499–501
- Sonin VM, Zhimulev EI, Chepurov AI, Fedorov II (2008) Diamond stability in NaCl and NaF melts at high pressure. Dokl Earth Sci 420:641–643
- Sonin VM, Zhimulev EI, Chepurov AI, Pokhilenko NP (2009) Diamond stability in silicate–halogenide melts at high pressure. Dokl Earth Sci 425:441–443
- Sonin VM, Zhimulev EI, Chepurov AI, Afanas'ev VP, Pokhilenko NP (2010) High-pressure etching of diamond in chloride melt in the presence of aqueous fluid. Dokl Earth Sci 434:1359–1361
- Sonin VM, Zhimulev EI, Chepurov AA, Chepurov AI, Pokhilenko NP (2018a) Influence of the sulfur concentration in a Fe–S melt on diamond preservation under P–T conditions of the Earth's mantle. Dokl Earth Sci 481:922–924
- Sonin VM, Zhimulev EI, Pomazanskiy BS, Zemnuhov AL, Chepurov AA, Afanasiev VP, Chepurov AI (2018b) Morphological features of diamond crystals dissolved in Fe_{0.7}S_{0.3} melt at 4 GPa and 1400°C. Geol Ore Deposits 60:82–92
- Spivak AV, Litvin YA (2004) Diamond syntheses in multicomponent carbonate-carbon melts of natural chemistry: Elementary processes and properties. Diamond Relat Mater 13:482–487
- Spivak AV, Litvin YA (2012) Paragenetic relations of diamond with silicate and carbonate minerals in the carbonatitediamond system: Experiments at 8.5 GPa. Geochem Int 50:217–226
- Spivak AV, Litvin YA, Shushkanova AV, Litvin VY, Shiryaev AA (2008) Diamond formation in carbonate–silicatesulfide-carbon melts: Raman- and IR-microspectroscopy. Eur J Mineral 20:341–347
- Spivak AV, Litvin YA, Ovsyannikov SV, Dubrovinskaia NA, Dubrovinsky LS (2012) Stability and breakdown of Ca¹³CO₃ melt associated with formation of ¹³C-diamond in static high pressure experiments up to 43 GPa and 3900 K. J Solid State Chem 191:102–106
- Srikanth V, Akaishi M, Yamaoka S, Yamada H, Taniguchi T (1997) Diamond synthesis from graphite in the presence of MnCO₃. Journal of the American Ceramic Society 80:786–790
- Stachel T, Harris JW (2008) The origin of cratonic diamonds–Constraints from mineral inclusions. Ore Geol Rev 34:5–32
- Stachel T, Luth RW (2015) Diamond formation --- Where, when and how? Lithos 220-223:200-220
- Stachel T, Aulbach S, Harris JW (2022a) Mineral inclusions in lithospheric diamonds. Rev Mineral Geochem 88:307–392
 Stachel T, Cartigny P, Chacko T, Pearson DG (2022) Carbon and nitrogen in mantle-derived diamonds. Rev Mineral Geochem 88:809–876
- Stagno V (2019) Carbon, carbides, carbonates and carbonatitic melts in the Earth's interior. J Geol Soc 176:375-387
- Stagno V, Frost DJ (2010) Carbon speciation in the asthenosphere: Experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages. Earth Planet Sci Lett 300:72–84
- Stöckhert B, Duyster J, Trepmann C, Massonne H-J (2001) Microdiamond daughter crystals precipitated from supercritical COH + silicate fluids included in garnet, Erzgebirge, Germany. Geology 29:391–394

- Sumiya H, Satoh S (1996) High-pressure synthesis of high-purity diamond crystal. Diamond Relat Mater 5:1359–1365
 Sumiya H, Satoh S (1999) Synthesis of polycrystalline diamond with new non-metallic catalyst under high pressure and high temperature. Inter J Refractory Metals Hard Mater17:345–350
- Sumiya H, Toda N, Satoh S (2002) Growth rate of high-quality large diamond crystals. J Cryst Growth 237:1281–1285 Sun LL, Akaishi M, Yamaoka S (2000) Formation of diamond in the system of Ag₂CO₃ and graphite at high pressure
- and high temperatures. J Cryst Growth 213:411–414 Sun LL, Wu Q, Wang WK (2001) Bulk diamond formation from graphite in the presence of C–O–H fluid under high pressure. High Press Res 21:159–173
- Sverjensky DA, Huang F (2015) Diamond formation due to a pH drop during fluid-rock interactions. Nat Commun 6:8702

Taniguchi T, Dobson D, Jones AP, Rabe R, Milledge HJ (1996) Synthesis of cubic diamond in the graphite-magnesium carbonate and graphite-K₂Mg(CO₃)₂ systems at high pressure of 9–10 GPa region. J Mater Res 11:2622–2632

- Thomassot E, Cartigny P, Harris JW, Viljoen KS (2007) Methane-related diamond crystallization in the Earth's mantle: Stable isotope evidences from a single diamond-bearing xenolith. Earth Planet Sci Lett 257:362–371
- Thomson AR, Walter MJ, Kohn SC, Brooker RA (2016) Slab melting as a barrier to deep carbon subduction. Nature 529:76–79
- Tiraboschi C, Tumiati S, Recchia S, Miozzi F, Poli S (2016) Quantitative analysis of COH fluids synthesized at HP-HT conditions: an optimized methodology to measure volatiles in experimental capsules. Geofluids 16:841–855
- Tomilenko AA, Chepurov AI, Pal'yanov YN, Shebanin AP, Sobolev NV (1998) Hydrocarbon inclusions in synthetic diamonds. Eur J Mineral 10:1135–1141
- Tomlinson E, Jones A, Milledge J (2004) High-pressure experimental growth of diamond using C–K₂CO₃–KCl as an analogue for Cl-bearing carbonate fluid. Lithos 77:287–294
- Tomlinson EL, Howell D, Jones AP, Frost DJ (2011) Characteristics of HPHT diamond grown at sub-lithosphere conditions (10–20 GPa). Diamond Relat Mater 20:11–17
- Tschauner O, Mao HK, Hemley RJ (2001) New transformations of CO₂ at high pressures and temperatures. Physical Review Letters 87:075701
- Tschauner O, Huang S, Greenberg E, Prakapenka VB, Ma C, Rossman GR, Shen AH, Zhang D, Newville M, Lanzirotti A, Tait K (2018) Ice-VII inclusions in diamonds: Evidence for aqueous fluid in Earth's deep mantle. Science 359:1136
- Wang Y, Kanda H (1998) Growth of HPHT diamonds in alkali halides: possible effects of oxygen contamination. Diamond Relat Mater 7:57–63
- Weiss Y, Cazs J, Navon O (2022) Fluid inclusions in fibrous diamonds. Rev Mineral Geochem 88:475-532
- Weiss Y, Kessel R, Griffin WL, Kiflawi I, Klein-BenDavid O, Bell DR, Harris JW, Navon O (2009) A new model for the evolution of diamond-forming fluids: Evidence from microinclusion-bearing diamonds from Kankan, Guinea. Lithos 112:660–674
- Weiss Y, Kiflawi I, Davies N, Navon O (2014) High-density fluids and the growth of monocrystalline diamonds. Geochim Cosmochim Acta 141:145–159
- Whitney JA (1972) The effect of reduced H₂O fugacity on the buffering of oxygen fugacity in hydrothermal experiments. Am Mineral 57:1902–1908
- Wilding M, Bingham PA, Wilson M, Kono Y, Drewitt JWE, Brooker RA, Parise JB (2019) CO₃₊₁ network formation in ultra-high pressure carbonate liquids. Sci Rep 9:15416
- Yamaoka S, Kanda H, Setaka N (1980) Etching of diamond octahedrons at high-temperatures and pressure with controlled oxygen partial-pressure. J Mater Sci 15:332–336
- Yamaoka S, Akaishi M, Kanda H, Osawa T (1992) Crystal growth of diamond in the system of carbon and water under very high pressure and temperature. J Cryst Growth 125:375–377
- Yamaoka S, Shaji Kumar MD, Akaishi M, Kanda H (2000) Reaction between carbon and water under diamond-stable high pressure and high temperature conditions. Diamond Relat Mater 9:1480–1486
- Yamaoka S, Shaji Kumar MD, Kanda H, Akaishi M (2002a) Formation of diamond from CaCO₃ in a reduced C–O–H fluid at HP–HT. Diamond Relat Mater 11:1496–1504
- Yamaoka S, Shaji Kumar MD, Kanda H, Akaishi M (2002b) Thermal decomposition of glucose and diamond formation under diamond-stable high pressure-high temperature conditions. Diamond Relat Mater 11:118–124
- Yamaoka S, Shaji Kumar MD, Kanda H, Akaishi M (2002c) Crystallization of diamond from CO₂ fluid at high pressure and high temperature. J Cryst Growth 234:5–8
- Yang JS, Lian DY, Robinson PT, Qiu T, Xiong FH, Wu WW (2019) A shallow origin for diamonds in ophiolitic chromitites. Geology 47:E475-E475
- Yin LW, Li MS, Gong ZG, Xu B, Song YJ, Hao ZY (2002) Analysis of nanometer inclusions in high pressure synthesized diamond single crystals. Chem Phys Lett 355:490–496
- Yu RZ, Ma HA, Liang ZZ, Liu WQ, Zheng YJ, Jia X (2008) HPHT synthesis of diamond with high concentration nitrogen using powder catalyst with additive Ba(N₃)₂. Diamond Relat Mater 17:180–184
- Zdrokov E, Novoselov I, Bataleva Y, Borzdov Y, Palyanov Y (2019) Experimental modeling of silicate and carbonate sulfidation under lithospheric mantle P,T-parameters. Minerals 9

- Zhang C, Duan Z (2010) GFluid: An Excel spreadsheet for investigating C–O–H fluid composition under high temperatures and pressures. Computers and Geosciences 36:569–572
- Zhang J, Prakapenka V, Kubo A, Kavner A, Green HW, Dobrzhinetskaya LF (2011) Diamond formation from amorphous carbon and graphite in the presence of COH fluids: An *in situ* high-pressure and -temperature laser-heated diamond anvil cell experimental study. *In*: Ultrahigh-pressure metamorphism: 25 years after the discovery of coesite and diamond. Dobrzhinetskaya LF, Faryad SW, Wallis S, Cuthbert S (eds). Elsevier, London, p 113–124
- Zhang JQ, Ma HA, Jiang YP, Liang ZZ, Tian Y, Jia X (2007) Effects of the additive boron on diamond crystals synthesized in the system of Fe-based alloy and carbon at HPHT. Diamond Relat Mater 16:283–287
- Zhang YF, Zang CY, Ma HG, Zhongzhu LZ, Lin Z, Li SS, Jia XP (2008) HPHT synthesis of large single crystal diamond doped with high nitrogen concentration. Diamond Relat Mater 17:209–211
- Zhang Z, Fedortchouk Y, Hanley JJ (2015) Evolution of diamond resorption in a silicic aqueous fluid at 1–3 GPa: Application to kimberlite emplacement and mantle metasomatism. Lithos 227:179–193
- Zhang ZF, Jia XP, Liu XB, Hu MH, Li Y, Yan BM, Ma HA (2012) Synthesis and characterization of a single diamond crystal with a high nitrogen concentration. Chin Phys B 21
- Zhimulev EI, Shein MA, Pokhilenko NP (2013) Diamond crystallization in the Fe-S-C system. Dokl Earth Sci 451:729-731
- Zhimulev EI, Sonin VM, Mironov AM, Chepurov AI (2016a) Effect of sulfur concentration on diamond crystallization in the Fe–C–S system at 5.3–5.5 GPa and 1300–1370 °C. Geochem Int 54:415–422
- Zhimulev EI, Sonin VM, Afanasiev VP, Chepurov AI, Pokhilenko NP (2016b) Fe–S melt as a likely solvent of diamond under mantle conditions. Dokl Earth Sci 471:1277–1279
- Zhimulev EI, Sonin VM, Fedorov, II, Tomilenko AA, Pokhilenko LN, Chepurov AI (2004) Diamond stability with respect to oxidation in experiments with minerals from mantle xenoliths at high *P*–*T* parameters. Geochem Int 42:520–525
- Zhimulev EI, Chepurov AI, Sinyakova EF, Sonin VM, Chepurov AA, Pokhilenko NP (2012) Diamond crystallization in the Fe–Co–S–C and Fe–Ni–S–C systems and the role of sulfide–metal melts in the genesis of diamond. Geochem Int 50:205–216