

New measurements of cumulative photofission yields of ²³⁹Pu, ²³⁵U and ²³⁸U with a 17.5 MeV Bremsstrahlung photon beam and progress toward actinide differentiation

M. Delarue, E. Simon, B Pérot, P.-G. Allinei, N. Estre, D. Eck, E. Payan, I. Espagnon, J. Collot

▶ To cite this version:

M. Delarue, E. Simon, B Pérot, P.-G. Allinei, N. Estre, et al.. New measurements of cumulative photofission yields of ²³⁹Pu, ²³⁵U and ²³⁸U with a 17.5 MeV Bremsstrahlung photon beam and progress toward actinide differentiation. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1040, pp.167259. 10.1016/j.nima.2022.167259. hal-03747989

HAL Id: hal-03747989 https://hal.science/hal-03747989

Submitted on 9 Aug 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

New measurements of cumulative photofission yields of ²³⁹Pu, ²³⁵U and ²³⁸U with a 17.5 MeV Bremsstrahlung photon beam and progress toward actinide differentiation

M. Delarue, E. Simon, B. Pérot, P.-G. Allinei, N. Estre, D. Eck, E. Payan, I. Espagnon, J. Collot

PII:	S0168-9002(22)00600-3
DOI:	https://doi.org/10.1016/j.nima.2022.167259
Reference:	NIMA 167259
To appear in:	Nuclear Inst. and Methods in Physics Research, A

Received date : 2 February 2022 Revised date : 31 May 2022 Accepted date : 29 June 2022

Please cite this article as: M. Delarue, E. Simon, B. Pérot et al., New measurements of cumulative photofission yields of ²³⁹Pu, ²³⁵U and ²³⁸U with a 17.5 MeV Bremsstrahlung photon beam and progress toward actinide differentiation, *Nuclear Inst. and Methods in Physics Research, A* (2022), doi: https://doi.org/10.1016/j.nima.2022.167259.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier B.V.

1	New measurements of cumulative
2	photofission yields of ²³⁹ Pu, ²³⁵ U and ²³⁸ U
3	with a 17.5 MeV Bremsstrahlung photon
4	beam and progress toward actinide
5	differentiation
6	
7 8	M. Delarue ¹ , E. Simon ^{1*} , B. Pérot ¹ , PG. Allinei ¹ , N. Estre ¹ , D. Eck ¹ , E. Payan ¹ , I. Espagnon ² , J. Collot ³
9 10	¹ CEA, DES, IRESNE, DTN, SMTA, Nuclear Measurement Laboratory, F-13108 St Paul-lez- Durance, France
11	² Université Paris-Saclay, CEA LIST, F-91120 Palaiseau, France
12	³ Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
13	*Corresponding author: eric.simon@cea.fr

14 Keywords

Photofission, plutonium, uranium, delayed gamma rays, linear accelerator, photofissionproduct yields, MCNP

17 Abstract

In the frame of a long-term research program on the characterization of large radioactive waste packages by photofission, the Nuclear Measurement Laboratory of CEA IRESNE has measured cumulative yields of ²³⁹Pu, ²³⁵U and ²³⁸U photofission products by using a Bremsstrahlung photon beam produced by a 17.5 MeV linear electron accelerator. A characterization of the energy of the Bremsstrahlung photon beam has been carried out by photon activation analysis with different samples of gold, nickel, uranium, zinc and

24 zirconium. The contribution of neutron fission in the different samples has also been estimated by MCNP simulations in order to assess as precisely as possible the photofission 25 yields. Finally, 26 cumulative photofission product yields are reported for ²³⁹Pu, 28 for 26 ²³⁸U and 26 for ²³⁵U, with half-lives ranging from 14 min to more than 3 days, some of 27 them being not recorded so far in the literature. Among these reported photofission product 28 yields, 18 have been measured for all 3 actinides, which can thus be used for their 29 discrimination. A differentiation criterion based on delayed gamma-ray ratios has been 30 established to determine the most efficient photofission product couples to estimate the 31 enrichment of a ${}^{235}U/{}^{238}U$ mixture or the fissile fraction $({}^{235}U+{}^{239}Pu)/actinide$ mass in a 32 mixture of uranium and plutonium. 33

1. Introduction

The safety related to the management of radioactive waste (transportation, interim storages 35 36 and final repositories) is ensured with an accurate non-destructive characterization of their actinide content in relation with the corresponding specifications. Among active non-37 38 destructive methods that have been studied to address this characterization in the case of large and dense packages, such as concrete drums [1]-[5], Active Photon Interrogation 39 based on the photofission phenomenon, is the only one that can bring a sufficient signal 40 41 from the nuclear materials inside the package. Specifically, the detection of delayed gamma radiation emitted by fission products induced by high-energy photons has the potential to 42 assess the actinide mass present in a package, and possibly to distinguish fissile nuclei (that 43 can undergo thermal neutron fission, e.g. ²³⁵U and ²³⁹Pu) and fertile nuclei (that can absorb 44 a neutron, leading to the formation of a fissile nuclei, e.g. ²³⁸U). To that extent, photofission 45 yields of the actinides of interest must be known precisely. Even though nuclear data 46 related to photofission yields of ²³⁸U exist, they sometimes present significant 47 discrepancies, even in recent studies [6]-[12]. Photofission yield data are even scarcer for 48 fissile isotopes such as ²³⁵U [7][12] and ²³⁹Pu [11]-[14], hence the need to perform new 49 measurements. 50

The potential of analyzing the delayed gamma ray signal following fission to obtain an actinide identification information has already been demonstrated in the past. Hollas *et al.*

53 [15] and Beddingfield *et al.* [16] have reported the use of delayed gamma-ray ratios for actinide differentiation, respectively for photofission and thermal neutron fission. Further 54 experimental work conducted by Gmar et al. [17] pointed out variations of the delayed 55 gamma-ray emissions for uranium samples of different enrichments. Also, Carrel et al. [1] 56 brought information about the delayed gamma emission following photofission in mixed 57 samples of ²³⁵U and ²³⁸U. Besides, the uranium isotopes differentiation in an 870 L waste 58 drum by using delayed gamma-ray ratios has already been investigated experimentally with 59 a mockup package [1] and by using Monte-Carlo simulations in the work of Simon et al. 60 [5]. Furthermore, photofission products emitting several gamma rays can be used as 61 attenuation indicators to estimate the depth at which nuclear materials are localized inside 62 the package [18]. 63

In the frame of a long-term research program conducted by the Nuclear Measurement 64 Laboratory of CEA IRESNE Institute in France, this work follows the study recently 65 reported in [19], which provided cumulative photofission yields of ²³⁵U and ²³⁸U with a 66 15.8 MeV Bremsstrahlung beam produced by a linear electron accelerator (LINAC) in 67 68 CINPHONIE casemate of CHICADE nuclear facility [20]. We present here new cumulative photofission yields for ²³⁹Pu, and again for ²³⁵U and ²³⁸U, which are measured 69 with the same setup but with an endpoint electron energy of 17.5 MeV. To this aim, the 70 71 characterization of the photon beam is first carried out by photon activation analysis with 72 different samples of Au, Ni, U, Zn and Zr. Then we estimate the neutron fission rates in 73 the different samples with MCNP, in view to subtract it from the total fission rate and thus obtain the photofission yields. We also identify photofission products of interest for the 74 differentiation between fissile and fertile actinides. 75

76

2. Experimental setup

Experiments were performed by using a Bremsstrahlung photon beam produced by a
Saturne LINAC located in the CINPHONIE irradiation cell at CEA Cadarache. In pulse
mode, the LINAC accelerates electrons up to 21 MeV. The electrons strike a 5 mm thick
tungsten target and a part of their kinetic energy is converted into Bremsstrahlung radiation.
The pulse frequency and width are 200 Hz and 4.1 µs, respectively, and the peak current is
100 mA at the target entrance. A 20 cm thick lead collimator allows focusing the beam on

the actinide samples, surrounded by a 20 cm thick shield made of borated polyethylene (BPE) and polyethylene to limit the photoneutron flux reaching the samples, and thus to minimize neutron fissions. A cadmium (Cd) layer of 2 mm was added on the front face to complete the thermal neutron absorption occurring in BPE. A picture of the LINAC configuration and the corresponding simulated model with a materials description are respectively given in Figure 1 and Figure 2. During the experiments, the photon dose rate at 1 m from the tungsten target measured by an ionization chamber was 33 Gy/min.

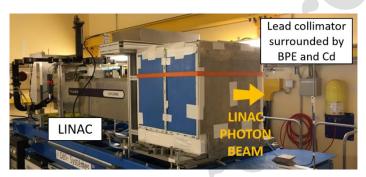
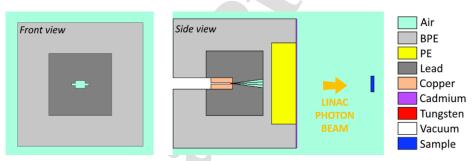



Figure 1: Saturne LINAC with collimator and neutron shielding.

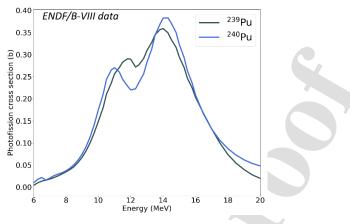
92 93

Figure 2: MCNP model of the irradiation configuration (LINAC, lead collimator, neutron shielding and sample).

The photon flux at the output of the collimator aperture being not known precisely, 94 nor the endpoint-energy of the Bremsstrahlung spectrum expected around 16 MeV, a 95 96 characterization of the photon beam produced by the LINAC is performed using photon activation of reference materials, following the method described in our previous work 97 [19]. The main steps and results of the beam characterization are described in section 3. 98 The pellets irradiated to this aim and positioned in the axis of the LINAC photon beam are 99 100 described in Table 1. The other pellets in Figure 3 are made of indium (left) and magnesium (right). They were originally designed to be used as neutron activation spectrometers [21] 101 and were irradiated to estimate the photoneutron production in the CINPHONIE irradiation 102 103 cell (not reported in this paper but used qualitatively in section 4).

Element	Mass (g)	Diameter (mm)	Thickness (mm)	Position on Figure 3
Au	0.045	5	0.05	1
Zn	2.70	19	1.33	2
Ni	10.03	22	3	3

 Table 1: Characteristics of the metal pellets irradiated farther photon beam characterization.
 106


Figure 3: Position of the pellets on their support in view of their common irradiation.

107 Three actinide samples were irradiated: a sample of Depleted Uranium (DU) which is
108 the same as we used in our previous work [19], a sample of Highly Enriched Uranium
109 (HEU) and a sample of plutonium (Pu). The different samples are described in Table 2.
110 Table 2: Description of the actinide samples.

	Uranium	Plu	itonium	
Sample	DU	HEU	Sample	Pu
Mass	> 100 g and < 1 kg	> 1 g and < 100 g	Mass	~1 g
²³⁵ U content Composition	0.3 % Metallic uranium	> 90 % Metallic uranium core held between Zircaloy sheets	Isotopic composition	²³⁹ Pu: 83 % ²⁴⁰ Pu: 12 %
Dimension	1 cm thickness	< 1 mm thickness	Chemical form	PuO ₂ powder mixed with resin
Density	18.96 g.cm ⁻³	Fissile core: 18.96 g.cm ⁻³ Zircaloy: 6.56 g.cm ⁻³	Density	1.98 g.cm ⁻³

111

Since the DU sample is 1 cm thick and composed of metallic uranium of density 112 18.96 g.cm⁻³, significant self-attenuation effects occur both for the interrogating photon 113 flux and the delayed gamma rays emitted by photofission products. Therefore, correction 114 factors are applied in order to calculate the photofission product yields (see section 4.2). 115 The plutonium sample is composed of 83 % of ²³⁹Pu and 12 % of ²⁴⁰Pu. In this work, we 116 will consider that the sample is made of 95 % of ²³⁹Pu since the photofission cross sections 117 for these two isotopes are similar, as seen in Figure 4. It can also be noted that the calculated 118 photofission rates are the same with the real isotopic composition of the plutonium sample 119 and with 100 % of ²³⁹Pu. Based on the work of Bernard et al. [22] with the GEF code, we 120 can also assume that the cumulative photofission yields of ²³⁹Pu and ²⁴⁰Pu are very close, 121 enabling us to consider our plutonium sample as a ²³⁹Pu sample without introducing a 122 123 significant bias in our analyses.

124 125

133

Figure 4: Photofission cross sections of ²³⁹Pu and ²⁴⁰Pu [23].

For each actinide sample, a 2 h irradiation with the LINAC is followed by an automatic transfer from the irradiation to the counting position, lasting less than a minute and noted "cooling time" in further activation analysis equations. The samples used to characterize the Bremsstrahlung photon beam were irradiated all together, on the support shown in Figure 3, and transferred to a low-background spectrometer located in another experimental room. Table 3 summarizes the distance and time parameters related to each sample.

Sample	Denomination	Target-sample distance (cm)	Sample-detector distance (cm)	Irradiation time	Cooling time*	Counting time
Depleted Uranium	DU	102.0	70.0	2 h	19 min	42 h
Highly Enriched Uranium	HEU	102.7	70.7	2 h	42 s	24 h
Plutonium	Pu 1	45.4	13.0	2 h	50 min	24 h
	Pu 2	113.8	24.0	2 h	10 min	21 h
Activation samples (Au, Ni, Zn)	Pellets	88.0	9.5	1 h	390 s	145 h

Table 3: Experimental distances and timings.

134 *See text for the reason of the different cooling times


Figure 5 shows the layout for every detection configuration. Different screens were added depending on the irradiated samples. For the DU and HEU measurements, only a polyethylene screen was inserted in front of the detector to protect the crystal from fast photoneutron damage during irradiation (it also allows reducing the count rate). A thin cadmium sheet was added in front of the detector to cut the passive emission component of the plutonium sample (59.5 keV due to ²⁴¹Am). For the "Pu 1" measurement, a lead

shield and a polyethylene screen were used to diminish neutron activation of the detector

during irradiation and to reduce the dead-time related to the activation of the surroundings

during the measurement (the plutonium sample is inserted between the detector and these

- shields by a mechanical device). Concerning the metal pellets measurement for the photon
- beam characterization, the 5 mm Plexiglas screen corresponds to the sample holder.

146

Figure 5: Experimental configuration layout for detection.

The gamma rays of fission and activation products are measured with a 50 % relative
efficiency n-type coaxial high-purity germanium detector (HPGe, ORTEC GMX50-83-1PL) equipped with a transistor-reset preamplifier and coupled to a LYNX Digital Signal
Analyzer (CANBERRA) driven by Genie2000 software (MIRION Technologies). The rise
time and flat top parameters are respectively set at 2 μs and 0.5 μs following an
optimization. The energy resolution is 2.0 keV (FWHM) at the 1332.5 keV gamma line of

⁶⁰Co. Although an n-type HPGe crystal is used to limit neutron damage, the detector is 153 shielded by lead and polyethylene, as shown in Figure 6. The analysis of actinide delayed 154 gamma spectra is performed with the MAGIX software developed by CEA LIST, in 155 collaboration with CEA IRESNE Nuclear Measurement Laboratory, to analyze complex 156 gamma- and X-ray spectra measured with HPGe detectors. This automatic software, based 157 on CEA LIST know-how in complex spectrum processing [24][25], performs a complete 158 analysis including energy calibration, identification of radionuclides, peak deconvolution, 159 determination of a relative detection efficiency as a function of energy, activity calculation 160 for each radionuclide if the absolute efficiency is provided by the end-user, and otherwise 161 activity ratios using the relative efficiency. One of its main features is to include iterative 162 steps to identify the radionuclides likely to be associated with each peak of the spectrum, 163 based on the gamma- and X-rays given in JEFF-3.3 database [26] and on a list of possible 164 165 radionuclides provided by the user.

In order to monitor and correct for the varying dead time during the counting period 166 (due to the rapidly decreasing total count rate), the delayed photofission gamma spectra of 167 the actinide samples were acquired sequentially every 60 s with a spectrum reset. The dead 168 169 time compensation is a live-time correction, which was assessed to be reliable for dead times below 50 % with the two-source method (88 Y + 137 Cs as the reference, and 152 Eu as 170 the perturbing source responsible of an increasing count rate), prior to LINAC acquisitions. 171 172 The initial dead times after irradiation were 80 % and 39 %, respectively, for DU and HEU uranium samples. Therefore, the DU sample spectrum was analyzed only after a 19 min 173 cooling time, hence the impossibility to measure short half-life photofission products. As 174 the first measurement of the plutonium sample (Pu 1, cf. Table 3) had an initial dead time 175 of 94 % (dead time fell below 50 % only after 50 min), another irradiation further from the 176 177 LINAC tungsten target was performed (Pu 2, cf. Table 3), leading to an initial dead time of 61 % that fell below 50 % after 10 min of cooling. 178

The non-actinide activated metallic samples used for the beam characterization were transferred inside a low-background spectrometer with a 9 % relative efficiency HPGe detector (CANBERRA BEGe 2020) in a lead shield, with inner walls covered by a copper layer to cut lead X-rays. The detector is connected to a digital spectrometer (CANBERRA DSP9660) and the resolution is 1.75 keV (FWHM) at the 1332.5 keV gamma line of ⁶⁰Co.

The gamma spectrum from the activation pellets was recorded during 6 days after irradiation. Regular resets of the spectrum acquisition were also undertaken to properly correct for dead time. These gamma spectra were analyzed with Genie2000 software (MIRION Technologies).

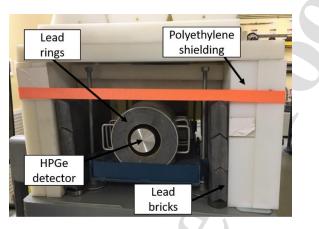
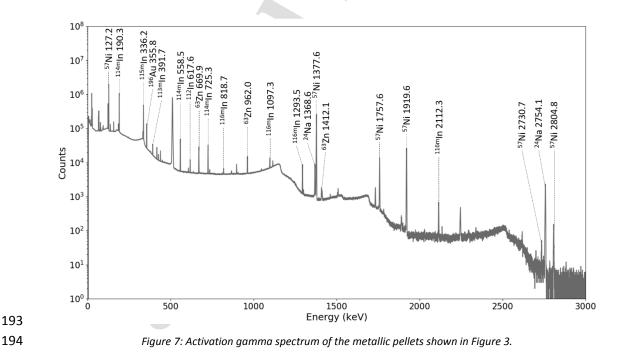



Figure 6: Shielded germanium detector.

3. LINAC photon beam characterization

191 The photon and neutron activation spectrum of the thin metallic pellets irradiated to 192 characterize the photon beam of the LINAC is given in Figure 7.

195	The detected gamma rays due to (γ,n) activation reactions of gold, zinc and nickel isotopes
196	are reported in Table 4, as well as those of 238 U activation in the DU sample and 90 Zr
197	activation in the HEU sample (Zircaloy frame, see Table 2). Half-lives and gamma-ray
198	energies are taken from JEFF-3.3 nuclear database [26]. The net areas of the gamma-ray
199	peaks are from the spectra analysis with Genie2000 software. The net area statistical
200	uncertainty is $\sigma(N_{counts}) = \sqrt{N_{counts} + 2B}$, where <i>B</i> is the Compton background under
201	the total absorption peak.

202

Table 4: Activation gamma rays due to the (y,n) reaction analyzed to characterize the LINAC photon beam.

Activated	Activation	Half-life	γ-ray line	Net area
isotope	product	Han-me	analyzed (keV)	N _{counts}
¹⁹⁷ Au	¹⁹⁶ Au	6.17 days	355.8	549721 ± 741
⁵⁸ Ni	⁵⁷ Ni	35.9 h	1377.6	2411040 ± 1553
²³⁸ U	²³⁷ U	6.75 days	208.0	1310540 ± 1145
⁶⁴ Zn	⁶³ Zn	38.3 min	669.9	157242 ± 397
	^{89m} Zr	250.8 s	587.8	37223 <u>+</u> 193
⁹⁰ Zr	⁸⁹ Zr	3.26 days		/
	$^{89\mathrm{m}}\mathrm{Y}^{*}$	15.7 s	909.0	22248 ± 472

203

* From the ⁸⁹Zr and ^{89m}Zr decays

Since the characteristics of the interrogating photon beam were not known precisely, 204 205 photon activation of these materials is used to estimate the endpoint-energy of the bremsstrahlung beam and the photon flux, as described in our previous work [19]. The 206 method is based on the differences in the photonuclear cross-sections [27], since each 207 208 material has a different energy threshold and cross-section for the (γ, n) reaction. Therefore, we are looking for the incident photon flux characteristics that best matches the observed 209 activation of five materials. To this aim, we assume a semi-Gaussian shape of the electron 210 energy distribution, see further Figure 8, of which we are looking for the optimal endpoint-211 212 energy and width at half-maximum.

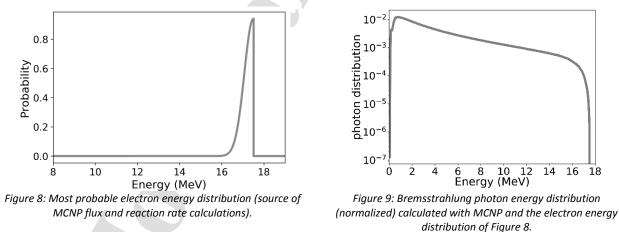
The endpoint-energy was varied from 15 MeV to 18.5 MeV with 0.5 MeV steps, and the width at half-maximum from 0 MeV (mono-energy distribution) to 2 MeV with 0.5 MeV steps. For each of the 40 pairs of parameters, MCNP [28] simulations were performed by impinging electrons of the considered energy distribution on the LINAC tungsten target to produce the Bremsstrahlung photon beam. Then, the number of (γ ,n) reactions in each activated sample was numerically evaluated, corresponding to the convolution of the 219 resulting photon flux on the different materials with their reaction cross-sections. Finally, an experimental photon flux is calculated for each activated isotope (¹⁹⁷Au, ⁵⁸Ni, ²³⁸U, ⁶⁴Zn 220 and 90 Zr) by using the net area of the peaks listed in Table 4. As a result, five photon fluxes 221 are obtained for each couple of beam parameters. The most probable electron energy 222 distribution is then identified as the one minimizing the squared differences between these 223 five flux values. In our case, the electron energy distribution with an endpoint-energy of 224 17.5 MeV and a 0.5 MeV width at half-maximum provides the most consistent photon 225 fluxes for all the materials, as reported in Table 5. 226

227 228

Table 5: Experimental photon fluxes calculated for the five materials with the most probable electron energy distribution.

Activated isotope	$\Phi_{88cm,exp}$ (photons. cm^{-2} . s^{-1})
¹⁹⁷ Au	$(6.82 \pm 0.87) \times 10^{10}$
⁵⁸ Ni	$(7.31 \pm 0.89) \times 10^{10}$
²³⁸ U	$(6.07 \pm 0.75) \times 10^{10}$
⁶⁴ Zn	$(6.57 \pm 0.84) \times 10^{10}$
⁹⁰ Zr	$(5.97 \pm 0.75) \times 10^{10}$
Mean photon flux $\bar{\phi} = (6.5)$	$.55 \pm 0.94) \times 10^{10} \ photons. \ cm^{-2}. \ s^{-1}$

The uncertainty on the experimental photon flux for each material is calculated as a quadratic combination of the main following sources of uncertainty:


- 231 a relative uncertainty estimated to 10 % on the (γ,n) cross-section of the activated 232 isotopes, according to the EXFOR cross-section library [29]. As an example, the 233 1^{97} Au $(\gamma,n)^{196}$ Au reaction cross-section uncertainty is about 10 % in the work of 234 Plaisir *et al.* [30];
- a relative uncertainty of 7 % on the detection efficiency to take into account both
 the detector intrinsic efficiency (less than 5 % thanks to a fine detector model,
 optimized using reference measurements of standard sources) and the modeling of
 the experimental set-up (uncertainties on samples and on equipment dimensions,
 set at 5 % based on our experience of such simulations). Intrinsic and geometric
 efficiency uncertainties are combined in quadratic sum, leading to a 7 % relative
 uncertainty on detection efficiency;

- the statistical uncertainty related to MCNP simulation results, which is lower than
 2 % for all activation calculations;
- the uncertainties on the radioactive decay constants of the activation products and
 their gamma-ray intensities, provided by JEFF-3.3 database [26], which are lower
 than 4 %;
- the uncertainty on the net area of the gamma rays reported in Table 4, which is at most 2.1 %. It is provided by the Genie2000 software and takes into account the uncertainty related to the counting statistics as well as that related to the fitting procedure.
- The uncertainty associated to the mean photon flux is here estimated, conservatively, as the quadratic combination of the mean uncertainty of the five calculated photon fluxes (around 12 %) and the standard deviation of the photon fluxes obtained with the five materials:

255
$$\frac{\sigma_{disribution}}{\overline{\phi}} = \frac{1}{\overline{\phi}} \sqrt{\frac{\left(\phi_{Au} - \overline{\phi}\right)^2 + \left(\phi_{Ni} - \overline{\phi}\right)^2 + \left(\phi_{U} - \overline{\phi}\right)^2 + \left(\phi_{Zn} - \overline{\phi}\right)^2 + \left(\phi_{Zn} - \overline{\phi}\right)^2}{5}} = 7 \%;$$

256

The electron distribution corresponding to the most likely, 17.5 MeV endpoint energy and 0.5 MeV width at half maximum, is shown in Figure 8, and the corresponding Bremsstrahlung photon distribution calculated with MCNP is given in Figure 9.

The mean experimental photon flux of $(6.55 \pm 0.94) \times 10^{10}$ photons. cm^{-2} . s^{-1} , at the center of the beam and 88 cm away from the tungsten target, will be used to normalize MCNP simulation results that are given per electron impinging on the tungsten target.

4. Comparison of simulated photofission and neutron fission rates

264 The photofission rate in the samples is defined by (1) for a mixture of n actinides.

$$\tau_p = \frac{N_A}{\mathcal{M}} \left(\sum_{i=1}^n m_i \int_{E_{threshold}}^{E_{max}} \varphi(E) \sigma_{i(\gamma, f)}(E) dE \right)$$
(1)

265 Where:

266	- τ_p is the photofission rate in s ⁻¹ ;
267	- N _A is the Avogadro constant, equals to $6.02 \times 10^{23} mol^{-1}$;
268	- \mathcal{M} is the molar mass of the actinide mixture, expressed in g.mol ⁻¹ ;
269	- m_i is the mass of actinide <i>i</i> in the sample, in g;
270	- $E_{threshold}$ and E_{max} are respectively the threshold energy of the photofission
271	reactions, around 6 MeV, and the Bremsstrahlung endpoint-energy, 17.5 MeV in
272	our case;
273	- $\varphi(E)$ is the Bremsstrahlung photon flux at the energy E in the sample, in
274	photons.cm ⁻² .s ⁻¹ ;
275	- $\sigma_{i(\gamma,f)}(E)$ is the photofission reaction cross-sections at the energy E for actinide <i>i</i> ,
276	in cm ² .
277	The uncertainty on the photofission rate calculated with MCNP is the quadratic
278	combination of the following uncertainties:
279	- a 14.3 % relative uncertainty on the Bremsstrahlung photon flux, determined in
280	section 3, $(6.55 \pm 0.94) \times 10^{10}$ photons. cm^{-2} . s^{-1} (see Table 5);
281	- a 0.1 % relative statistical uncertainties on MCNP calculations for the photofission
282	rate in the plutonium, DU and HEU samples;
283	- a 2 % uncertainty on the photofission cross-section, according to datasets available
284	in the EXFOR library [29];
285	Finally, using the characteristics of the beam (electron energy distribution and photon flux)
286	and the experimental position of the samples with respect to the tungsten target, the
287	photofission rates in the samples calculated with MCNP are:
288	$\tau_{p,Pu\ 1} = (1.32 \pm 0.19) \cdot 10^7 \text{ s}^{-1}$
289	$\tau_{p,Pu2} = (2.33 \pm 0.34) \cdot 10^6 \text{s}^{-1}$

290
$$\tau_{n \text{ DH}} = (2.66 \pm 0.38) \cdot 10^8 \text{ s}^{-1}$$

291
$$\tau_{p,HEU} = (3.38 \pm 0.48) \cdot 10^7 \text{ s}^{-1}$$

292 It was shown in our previous work [19] that neutron fissions in the actinides are mainly due to fast neutrons produced in the samples themselves. Indeed, the neutron shielding 293 294 around the LINAC head (tungsten target and lead collimator), composed of borated polyethylene and cadmium, was proven to be efficient since the presence of thermal 295 neutrons was not observed from neutron activation of the metallic pellets. Indeed, although 296 radiative capture gamma rays of ^{116m}In, due to the ¹¹⁵In(n, γ)^{116m}In activation reaction, 297 highlight the presence of epithermal neutrons with an energy larger than 0.5 MeV (not 298 absorbed by the cadmium foil in front of the LINAC head), thermal neutrons are not 299 detected through the activation of the gold foil. Indeed, we do not observe in the gamma 300 spectrum the 411.8 keV line of ¹⁹⁸Au, which was expected from the ¹⁹⁷Au $(n,\gamma)^{198}$ Au 301 reaction, despite a high cross section for thermal neutrons of 100 b ($1 \text{ b} = 10^{-28} \text{ m}^2$) at 0.025 302 303 eV according to ENDF/B-VIII.0 library [23].

MCNP simulations were conducted to characterize the origin of the fissions occurring in the samples, i.e. photofission vs. neutron fissions are reported in Table 6, in order to calculate the photofission yields as precisely as possible for the three actinides.

307

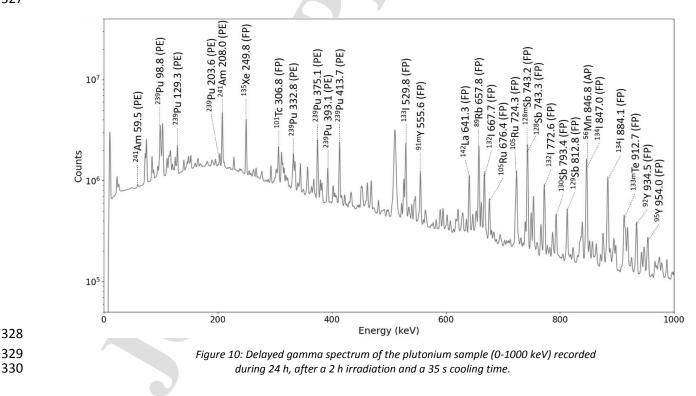
Table 6: Origin of the fissions in the different actinide samples.

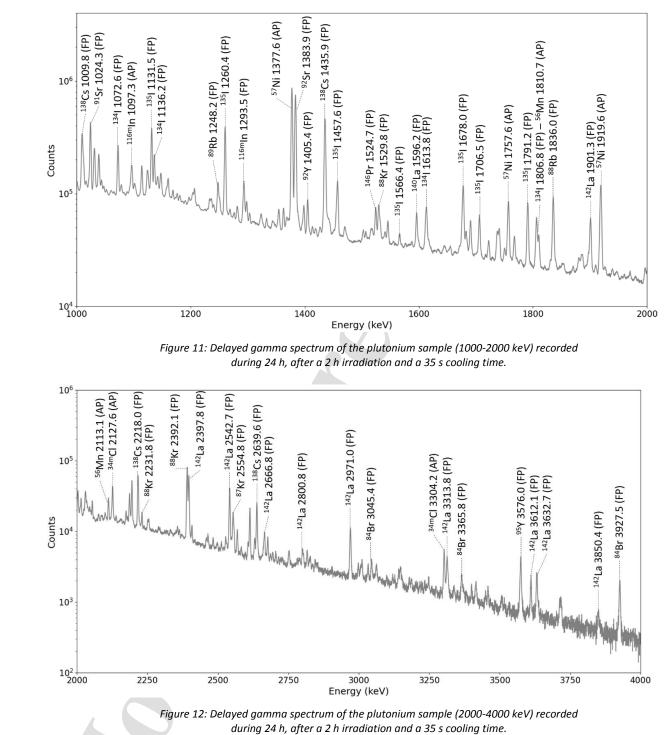
Plutoniun	n	Uranium	
Sample	Pu	Sample DU	HEU
Photofissions	98.3 %	Photofissions of ²³⁸ U 94.2 %	3.6 %
Neutron fissions	1.7 %	Photofissions of ²³⁵ U -	93.1 %
		Neutron fissions of ²³⁸ U 5.8 %	-
		Neutron fissions of ²³⁵ U -	3.3 %

308

In the plutonium sample, the only 1.7 % of neutron fissions will be subtracted to obtain the photofission yields of ²³⁹Pu. Besides, given the similarity between the photofission cross sections of ²³⁹Pu and ²⁴⁰Pu (cf. Figure 4), we assume that all photofissions occur on ²³⁹Pu. Concerning the DU sample with a ²³⁵U content of 0.3 %, we consider that all fissions occur on ²³⁸U. Among them, 5.8 % are ²³⁸U fissions caused by fast neutrons. As a result, the delayed gamma rays measured with the DU sample are used to directly calculate the ²³⁸U

photofission products cumulative yields, after subtraction of the neutron fission 315 contribution. In the HEU sample, however, 3.6 % of photofissions occur on ²³⁸U and 316 93.1 % on ²³⁵U. Moreover, 3.3 % of fissions are fast neutron fissions on ²³⁵U. Therefore, 317 the ²³⁸U contribution to photofission and the ²³⁵U contribution to neutron fission will be 318 subtracted to calculate the ²³⁵U photofission products cumulative yields. 319


5. Cumulative yields of ²³⁹Pu, ²³⁵U and ²³⁸U photofission products 320


Figures 10 to 12 show the delayed gamma spectrum of the plutonium sample (denoted 321 as the Pu 1 measurement in Table 3) recorded during 24 h, after a 2 h irradiation with a 322 17.5 MeV endpoint energy Bremsstrahlung photon beam and a 35 s cooling time. The 323 notations used are PE for Passive Emission, AP for Activation Product and FP for Fission 324 Product. Note that delayed gamma spectra for DU and HEU photofission products have 325 already been presented in our previous work [19]. 326

329

330

For all actinide samples, the delayed gamma-ray spectra have been recorded by sequences of 60 s during several dozens of hours, which allows a spectrum analysis with different cooling and measurement times to limit some interferences between close-inenergy gamma rays, by exploiting the differences in the radioactive periods of their emitting isotopes (we can enhance short-lived isotopes by summing the spectra acquired
shortly after irradiation, and long-lived ones latter). The spectra analysis is performed with
the MAGIX software (see description in Section 2).

344 Theoretically speaking, the fission products created during irradiation are part of radioactive decay chains and their activities can be calculated by solving Bateman 345 equations [31]. In general, these equations can be simplified by considering only the 346 activation of the photofission product emitting the delayed gamma rays of interest, as 347 below in (2). However, as explained further to introduce (3), it is sometimes needed to 348 consider the direct precursor of the photofission product of interest, which are respectively 349 called the father and daughter nuclides, like in the work of Kahane et al. [6] and Carrel et 350 al. [7]. 351

For a mixture of two actinides k and l, when the delayed gamma rays are emitted by a nucleus with a much longer half-life than its precursors and the cooling time, the net area $N(E_i)$ of its gamma rays of energy E_i is directly related to cumulative photofission yields $Y_{ck,p}$ and $Y_{cl,p}$ through equation (2):

$$N(E_{i}) = \frac{I(E_{i}) \varepsilon(E_{i})}{\lambda_{j}} \left(1 - e^{-\lambda_{j} \cdot t_{cool}} \left(1 - e^{-\lambda_{j} \cdot t_{cool}} \left(1 - e^{-\lambda_{j} \cdot t_{cool}}\right) \left[\tau_{p} \left(\eta_{k,p} Y_{ck,p} + \eta_{l,p} Y_{cl,p}\right) + \tau_{n} \left(\eta_{k,n} Y_{ck,n} + \eta_{l,n} Y_{cl,n}\right)\right]$$
(2)

356 With:

 $I(E_i)$ the gamma-ray intensity taken from JEFF-3.3 database [26];

- $\varepsilon(E_i)$ the absolute detection efficiency taking into account, in addition to the 358 abovementioned intrinsic detector and geometric efficiencies, the interrogating 359 photon flux self-shielding and delayed gamma self-attenuation in the uranium 360 sample, both estimated with MCNP. For example, regarding the self-shielding in 361 the DU sample, the photofission rate is 2.5 times higher on the entrance surface of 362 the sample, with respect to the LINAC photon beam, than on its rear exit surface. 363 Concerning self-attenuation, for instance, less than 60 % of 1 MeV delayed gamma 364 rays emitted in the DU sample manage can escape from it; 365 λ_i the radioactive decay constant of the fission product j in s⁻¹; 366 t_{irr} , t_{cool} and t_{count} respectively the irradiation, cooling and counting time, in s; 367
- 368 τ_p and τ_n the photofission and neutron fission rates in the sample, in s⁻¹;

- 369 $Y_{ck,p}$ and $Y_{cl,p}$ the cumulative photofission yields of photofission product j, 370 respectively for actinides k and l (for example ²³⁵U and ²³⁸U);
- Y_{ck,n} and Y_{cl,n} the cumulative fast neutron fission product yields of fission product
 j, respectively for actinides k and l, taken from ENDF/B-VIII.0 database [23];
- 373 $\eta_{k,p}$ and $\eta_{l,p}$ are the fractions of photofissions occurring respectively in actinides 374 *k* and *l*, determined via MCNP simulations;
- 375 $\eta_{k,n}$ and $\eta_{l,n}$ are the fractions of neutron fissions occurring respectively in actinides 376 *k* and *l*, determined via MCNP simulations.

However, when the photofission product of interest is a daughter nuclide in a decay chain
with a father having a similar half-life (for instance ¹³⁴I and ¹³⁸Cs, which are respectively
the daughters of ¹³⁴Te and ¹³⁸Xe, with respective radioactive periods of 41.8 and 33.4 min),
net peak areas are given by (3).

$$N(E_{i}) = I(E_{i})\varepsilon(E_{i})(\tau_{p}[\eta_{k,p}(Y_{ik,p}^{d}f_{d} + Y_{ck,p}^{f}f_{f}) + \eta_{l,p}(Y_{il,p}^{d}f_{d} + Y_{cl,p}^{f}f_{f})] \dots$$

$$\dots + \tau_{n}[\eta_{k,n}(Y_{ik,n}^{d}f_{d} + Y_{ck,n}^{f}f_{f}) + \eta_{l,n}(Y_{il,n}^{d}f_{d} + Y_{cl,n}^{f}f_{f})])$$
(3)

381 Where:

382 - $I(E_i), \varepsilon(E_i), \tau_p, \tau_n, \eta_{k,p}, \eta_{l,p}, \eta_{k,n} \text{ and } \eta_{l,n} \text{ keep the same meaning as in (2);}$

383 - $Y_{ck,p}^{f}$ and $Y_{cl,p}^{f}$ are the cumulative yields of the father nuclide, respectively for the 384 photofission of actinides *k* and *l*;

 $Y_{ik,p}^d$ and $Y_{il,p}^d$ are the independent yields of the daughter nuclide, respectively for 385 the photofission of actinides k and l. The independent yield (in %) of a 386 photofission product corresponds to the number of nuclei created per 100 387 photofissions of the considered actinide, right after the prompt neutron emission 388 but before the delayed neutron emission. These values will be calculated to 389 determine the cumulative photofission yield of the daughter nuclide, which is the 390 391 sum of its independent yield with that of its precursor. Note that, as in Kahane et al. [6] and Carrel et al. [7], we only consider only one precursor, since the 392 precursors of the father nuclide have a relatively short half-life compared to the 393 394 cooling time of these experiments.

395 In this case, we can write
$$Y_{c,p}^d = Y_{i,p}^d + Y_{c,p}^f$$

- 396 $Y_{ck,n}^{f}$ and $Y_{cl,n}^{f}$ are the cumulative yields of the father nuclide, respectively for the 397 neutron fission of actinides *k* and *l*. These values are taken from ENDF/B-VIII.0 398 database [23];
- Y^d_{ik,n} and Y^d_{il,n} are the independent yields of the daughter nuclide, respectively for
 the neutron fission of actinides k and l. These values are taken from ENDF/BVIII.0 database [23];
- 402 The terms f_d and f_f describe the evolution of the respective numbers of daughter 403 and father nuclei over time, and are given by:

$$f_{d} = \frac{1}{\lambda_{d}} \left(1 - e^{-\lambda_{d} \cdot t_{irr}} \right) e^{-\lambda_{d} \cdot t_{cool}} \left(1 - e^{-\lambda_{d} \cdot t_{count}} \right)$$

$$f_{f} = \frac{1}{\lambda_{d} - \lambda_{f}} \left[\frac{\lambda_{d}}{\lambda_{f}} \left(1 - e^{-\lambda_{f} \cdot t_{irr}} \right) e^{-\lambda_{f} \cdot t_{cool}} \left(1 - e^{-\lambda_{f} \cdot t_{count}} \right) \dots \right]$$

$$\dots - \frac{\lambda_{f}}{\lambda_{d}} \left(1 - e^{-\lambda_{d} \cdot t_{irr}} \right) e^{-\lambda_{d} \cdot t_{cool}} \left(1 - e^{-\lambda_{d} \cdot t_{count}} \right) \right]$$

404

405

406

With λ_d and λ_f the radioactive decay constants of the daughter and father nuclides (in s⁻¹), respectively, and t_{irr} , t_{cool} , t_{count} the irradiation, cooling and counting times (in s).

- 407 Note that when the half-life of the father nuclide is much shorter than that of the daughter 408 nuclide, the cumulative yield of the daughter nuclide can be estimated with (2) by analyzing 409 the delayed gamma spectrum after a cooling time equal to six times the half-life of the 410 father nuclide (corresponding to the decay of 98.5 % of father nuclei). This approach is 411 used in practice for the majority of fission products, the precursors of which having very 412 short half-lives.
- For the plutonium sample, the 1.7 % of neutron fissions (see Table 6) are subtracted to 413 obtain the cumulative photofission yields of ²³⁹Pu. Concerning the DU sample, with a ²³⁵U 414 enrichment of 0.3 %, the measured delayed gamma rays directly lead to the cumulative 415 vields of ²³⁸U photofission products, after subtraction of neutron fissions on ²³⁸U that 416 represent 5.8 % of total fissions in the sample. For the HEU sample with more than 90 % 417 of ²³⁵U, the 3.3 % of neutron fissions are subtracted to obtain the photofission rate, and the 418 3.6 % of photofissions in 238 U are subtracted to calculate the cumulative yields of 235 U 419 photofission products. For this purpose, we use the photofission yields obtained in this 420 work for ²³⁸U to evaluate the ²³⁵U yields. For each case, the fast neutron fission yields 421

available in ENDF/B-VIII.0 database [23] are used to subtract the neutron fission
contribution to the net areas of the gamma rays emitted by the fission products created in
the actinide samples.

Finally, 26 and 28 photofission products have been identified in the spectra from their 425 delayed gamma rays, respectively for ²³⁹Pu as well as ²³⁵U and ²³⁸U, and their cumulative 426 photofission yields calculated from (2) or (3). The cumulative photofission yields measured 427 for ²³⁹Pu, ²³⁸U and ²³⁵U are given respectively in Table 7, Table 9 and Table 11. Note that 428 when several delayed gamma rays are measured for a photofission product, we calculate a 429 430 weighted average of the cumulative yields obtained with all the peaks that are correctly processed by MAGIX software (outliers of the net areas, for instance due to interferences, 431 are discarded). The weighting coefficient for each gamma ray is defined as the inverse of 432 the squared relative uncertainty on the net peak area, as described in (4). Note that the 433 434 weighted mean does not take into account the accuracy of the emission intensity of the considered gamma rays. 435

$$\overline{y_c} = \frac{\sum_{i=1}^{N} \frac{y_{c,i}(E_i)}{\left(\frac{\sigma(N(E_i))}{N(E_i)}\right)^2}}{\sum_{i=1}^{N} \frac{1}{\left(\frac{\sigma(N(E_i))}{N(E_i)}\right)^2}}$$
(4)

Where $y_{c,i}(E_i)$ is the cumulative photofission yield calculated with the net peak area $N(E_i)$ of the gamma ray of energy E_i , and $\sigma(N(E_i))$ is the statistical uncertainty calculated by $\sigma(N(E_i)) = \sqrt{N(E_i) + 2B}$, with *B* the Compton background under this peak.

The uncertainty associated to the average cumulative yield is calculated with a quadraticpropagation of the main uncertainties listed below:

442 - the 14.3 % uncertainty on the photofission rate in the samples (refer to section 4) 443 mainly due to the uncertainty on the interrogating Bremsstrahlung photon flux 444 (section 3). This is the largest part of the overall uncertainty, and it could be 445 reduced in the future by accurately measuring the (γ ,n) cross-sections of the 446 activation materials used to characterize the photon beam, since their uncertainties 447 are around 10 % in EXFOR library [29];

448 - the uncertainty on the absolute detection efficiency of the gamma ray of energy E_i , 449 which is estimated to 7 %;

450 - the relative statistical uncertainty on the weighted average (5), $\frac{\sigma_{stat}(\overline{y_c})}{\overline{y_c}}$, with

451
$$\sigma_{stat}(\overline{y}_{c}) = \sqrt{\frac{1}{\sum_{i=1}^{N} \left(\frac{N(E_{i})}{\sigma(N(E_{i}))}\right)^{2}}}$$

The ²³⁹Pu cumulative photofission yields measured with the plutonium sample are given 452 in Table 7 and we provide in Table 8 all the details of the delayed gamma-ray analysis: 453 cooling and counting times for each delayed gamma ray, energy and intensity coming from 454 JEFF-3.3 database [26], net peak area with its associated uncertainty, and cumulative yield 455 computed for each line. Our data ("this work") are then compared to the values of 456 photofission products cumulative yields previously published. Note that we report a simple 457 average of the yields when several gamma rays are given in the other publications. The 458 characteristics of the interrogating photon beams are indicated in the first two lines of Table 459 7. For Bremsstrahlung photon beams, the energy indicated corresponds to the endpoint 460 energy. The nuclides half-lives are from JEFF-3.3 database [26], except for ⁹²Sr because it 461 is not consistent in the different databases, its half-life being taken from Leconte et al. [32]. 462

- 463
- 464 465

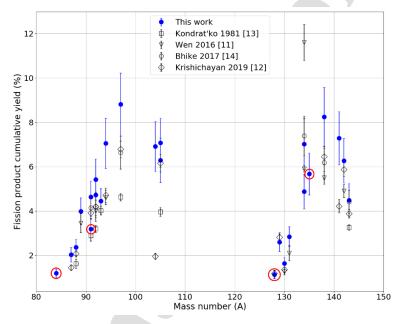
Table 7 : Cumulative yields (number of photofission products per 100 fissions) for the photofission of ²³⁹Pu and comparison with published data

Photon beam type Energy (MeV)			Bremsstrahlung 17.5	Bremsstrahlung 28.0	Bremsstrahlung 22.0	Monoenergetic 11.0	Monoenergetic 13.0
Fission product		T1/2	This work	Kondrat'ko 1981 [13]	Wen 2016 [11]	Bhike 2017 [14]	Krishichayan 2019 [12]
⁸⁴ Br		31.8 min	1.19 ± 0.19	-	-	-	-
⁸⁷ Kr		1.3 h	2.03 ± 0.32	-	-	-	1.45 ± 0.12
⁸⁸ Kr		2.8 h	2.36 ± 0.36	1.62 ± 0.21	-	-	2.08 ± 0.15
⁸⁹ Rb	(a)	15.4 min	3.99 ± 0.61	-	3.45 ± 0.43	-	-
⁹¹ Sr		9.7 h	4.63 ± 0.72	2.89 ± 0.23	-	4.15 ± 0.51	3.91 ± 0.24
^{91m} Y	(a)	49.7 min	3.19 ± 0.56	-	-	-	-
⁹² Sr		2.6 h	4.73 ± 0.76	-	4.00 ± 0.20	4.21 ± 0.49	4.19 ± 0.66
⁹² Y		3.5 h	5.42 ± 0.93	3.20 ± 0.16	-	-	-
⁹³ Y		10.2 h	4.45 ± 0.58	4.02 ± 0.20	-	-	-
⁹⁴ Y	(a)	18.7 min	7.05 ± 1.13	-	4.60 ±0.32	-	4.71 ± 0.33

⁹⁷ Zr		16.7 h	8.81 ± 1.41	4.63 ± 0.17	-	6.63 ± 0.73	6.78 ± 0.38
¹⁰⁴ Tc	(a)	18.3 min	6.91 ± 1.12	-	-	-	1.96 ± 0.14
¹⁰⁵ Ru		4.4 h	6.29 ± 1.01	-	-	-	6.16 ± 0.39
¹⁰⁵ Rh		34.5 h	7.08 ± 1.11	3.96 ± 0.20	-	-	-
¹²⁸ Sn		59.1 min	1.14 ± 0.18	-	-	-	1.18 ± 0.16
¹²⁸ Sb		9 h	1.14 ± 0.19	-	-	-	
¹²⁹ Sb		4.4 h	2.60 ± 0.42	-	-	-	2.82 ± 0.15
¹³⁰ Sb		39.5 min	1.64 ± 0.26	-	1.25 ± 0.12		1.36 ± 0.11
¹³¹ Sb	(a)	23 min	2.84 ± 0.45	-	2.10 ± 0.34	<u> </u>	-
¹³⁴ Te		41.8 min	4.88 ± 0.78	-	11.6 ± 0.81	-	-
¹³⁴ I		52.5 min	7.02 ± 1.16	-	5.90 ± 0.15	7.39 ± 0.89	-
¹³⁵ I		6.6 h	5.67 ± 0.94	-	-		-
¹³⁸ Cs		33.4 min	8.24 ± 1.33	-	5.50 ± 0.29	6.18 ± 0.75	6.45 ± 0.37
¹⁴¹ Ba	(a)	18.3 min	7.28 ± 1.20	-		-	4.22 ± 0.31
¹⁴² La		1.5 h	6.27 ± 1.00	-	4.90 ± 0.29	-	5.87 ± 0.31
¹⁴³ Ce		1.4 d	4.48 ± 0.76	3.26 ± 0.13	-	4.41 ± 0.51	3.88 ± 0.20

^(a)Results obtained with the measurement referred to as Pu 2 in Table 3 and Figure 5. The other cumulative photofission yields of ²³⁹Pu are obtained with the Pu 1 measurement.

466


Table 8: Detailed data of the delayed gamma-ray analysis for each ²³⁹Pu photofission product

Fission Product	Cooling time	Counting time	Gamma-ray energy (keV)	Relative intensity (%)	Net peak area (counts)	Photofission cumulative yield (%)
			1897.60	14.56	24858 ± 312	1.23
			1015.90	6.16	18493 ± 565	1.46
⁸⁴ Br	50.1 min	2.3 h	2484.10	6.66	7682 ± 164	1.01
			3927.50	6.78	5977 ± 79	1.16
			1463.80	1.96	3631 ± 357	1.13
			402.59	49.60	958383 ± 1801	2.00
⁸⁷ Kr	50.1 min	6.8 h	2554.80	9.23	74263 ± 308	2.17
			2558.10	3.92	31501 ± 229	2.17
			196.30	25.98	547139 ± 2605	2.23
			2392.11	34.60	525449 ± 752	2.31
			834.83	12.97	426400 ± 1122	2.64
			1529.77	10.93	224744 ± 660	2.28
⁸⁸ Kr	50.1 min	16.2 h	2195.84	13.18	222652 ± 544	2.40
			2029.84	4.53	80749 ± 413	2.39
			2035.41	3.74	66486 ± 394	2.39
			2231.77	3.39	51489 ± 342	2.19
			1518.39	2.15	44384 ± 508	2.28
			1032.00	63.60	30790 ± 352	3.80
⁸⁹ Rb	9.5 min	1.7 h	1248.20	45.60	21750 ± 277	4.24
ĸ	9.5 1111	1.7 11	657.80	11.00	7528 ± 523	4.24
			2570.10	10.18	2629 ± 82	3.81
			1024.30	33.50	1799550 ± 1512	4.50
⁹¹ Sr	1.8 h	22.9 h	749.80	23.68	1580910 ± 1540	4.86
			652.90	8.04	510024 ± 1294	4.33

			652.30	2.98	189136 ± 1163	4.33
^{91m} Y	9.5 min	20.4 h	555.57	95.00	302322 ± 923	3.19
1	<i>7.3</i> mm	20.4 II	1383.90	93.00	3168600 ± 1831	4.74
⁹² Sr	1.8 h	22.9 h	953.30	3.62	148282 ± 809	4.64
51	1.0 11	22.7 11	1142.39	2.86	108084 ± 785	4.70
⁹² Y	1.8 h	22.9 h	934.50	13.90	100034 ± 703 1140370 ± 1291	5.42
1	1.0 II	22.9 11	266.90	7.42	406743 ± 2240	3.64
⁹³ Y	1.8 h	22.9 h	200.90 947.10	2.12	137801 ± 806	5.35
1	1.0 11	22.9 11	680.20	0.67	45512 ± 1029	4.79
⁹⁴ Y	9.5 min	1.8 h	918.74	56.00	$\frac{+3312 \pm 1029}{70359 \pm 1167}$	7.05
⁹⁷ Zr	1.8 h	22.9 h	1147.97	2.62	211786 ± 796	8.81
ZI	1.0 11	22.9 11		14.69	211780 ± 790 22763 ± 609	7.00
			535.10 884.40	10.95	12685 ± 394	6.44
¹⁰⁴ Tc	9.5 min	2.1 h	893.10	10.93	12083 ± 394 13116 ± 394	7.18
IC	9.5 mm	2.1 11	1676.80	7.83	6592 ± 196	7.13
			1612.40	5.79	4632 ± 199	6.59
			724.30	47.30	3994660 ± 2209	6.30
			469.37	17.55	1727880 ± 2019	6.22
			676.36	17.55	1727880 ± 2019 1365110 \pm 1557	6.30
¹⁰⁵ Ru	1.8 h	22.9 h	316.44	13.00	1363110 ± 1337 1076530 ± 2253	6.06
ixu	1.0 11	22.7 11	393.36	3.78	1070330 ± 2233 383858 ± 1781	6.22
			875.85	2.50	211630 ± 895	6.93
			969.44	2.11	164478 ± 813	6.66
			318.90	19.10	104478 ± 813 1045508 ± 2234	7.07
¹⁰⁵ Rh	1.8 h	22.9 h	306.10	5.10	285966 ± 2103	7.28
¹²⁸ Sn	50.1 min	5.1 h	482.30	59.00	483730 ± 1472	1.14
511	50.1 IIIII	5.1 11	314.10	61.00	1233351 ± 2298	1.14
			754.00	100.00	123331 ± 2298 1639830 ± 1557	1.18
¹²⁸ Sb	1.8 h	22.9 h	636.20	36.00	457603 ± 1144	0.86
			628.70	31.00	415906 ± 2162	0.80
			812.80	47.60	1586460 ± 1505	2.66
			914.50	20.94	584657 ± 1065	2.36
¹²⁹ Sb	1.8 h	22.9 h	760.80	3.33	114663 ± 934	2.66
50	1.0 11	22.7 11	772.80	3.05	104078 ± 911	2.66
			876.00	2.86	81428 ± 819	2.36
			793.40	100.00	549107 ± 1050	1.63
			330.91	78.00	569154 ± 1592	1.03
¹³⁰ Sb	50.1 min	3.1 h	839.52	100.00	533861 ± 1023	1.63
~~~			182.33	65.00	$204834 \pm 1730$	1.52
			732.00	22.00	$100176 \pm 888$	1.30
121~*	0 <b>-</b> ·		943.40	46.20	$29222 \pm 394$	2.78
¹³¹ Sb	9.5 min	2.1 h	933.10	25.87	$17640 \pm 382$	2.98
134	50.1		277.95	21.30	$411731 \pm 1685$	4.88
¹³⁴ Te	50.1 min	3.3 h	201.24	8.90	$123133 \pm 1767$	4.92
			857.29	6.70	$432668 \pm 1051$	7.21
134 I	50.1 min	8.6 h	1613.80	4.31	$177159 \pm 583$	6.50
			1741.49	2.57	$107325 \pm 487$	7.34
			1260.41	28.70	$1844600 \pm 1454$	5.87
			1131.51	22.59	$1416620 \pm 1386$	5.40
			1038.76	7.95	$552762 \pm 1017$	5.69
			1038.76 836.80	7.95 6.69	$552762 \pm 1017$ $476552 \pm 1059$	5.69 5.27
¹³⁵ I	1.8 h	22.9 h				
¹³⁵ I	1.8 h	22.9 h	836.80	6.69	$476552 \pm 1059$	5.27
¹³⁵ I	1.8 h	22.9 h	836.80 1678.03	6.69 9.56 8.67 7.72	$476552 \pm 1059$ $497395 \pm 781$	5.27 5.65
¹³⁵ I	1.8 h	22.9 h	836.80 1678.03 1457.56 1791.20 1124.00	6.69 9.56 8.67 7.72 3.62	$476552 \pm 1059$ $497395 \pm 781$ $499735 \pm 818$	5.27 5.65 5.75 5.80 5.40
¹³⁵ I	1.8 h	22.9 h	836.80 1678.03 1457.56 1791.20	6.69 9.56 8.67 7.72	$\begin{array}{r} 476552 \pm 1059 \\ 497395 \pm 781 \\ 499735 \pm 818 \\ 394075 \pm 690 \end{array}$	5.27 5.65 5.75 5.80
¹³⁵ I	1.8 h	22.9 h	836.80 1678.03 1457.56 1791.20 1124.00	6.69 9.56 8.67 7.72 3.62	$\begin{array}{r} 476552 \pm 1059 \\ 497395 \pm 781 \\ 499735 \pm 818 \\ 394075 \pm 690 \\ 227641 \pm 847 \end{array}$	5.27 5.65 5.75 5.80 5.40
			836.80 1678.03 1457.56 1791.20 1124.00 1706.46	6.69 9.56 8.67 7.72 3.62 4.10	$\begin{array}{r} 476552 \pm 1059 \\ 497395 \pm 781 \\ 499735 \pm 818 \\ 394075 \pm 690 \\ 227641 \pm 847 \\ 211984 \pm 563 \end{array}$	5.27 5.65 5.75 5.80 5.40 5.67
¹³⁵ I	1.8 h 50.1 min	22.9 h 4.7 h	836.80 1678.03 1457.56 1791.20 1124.00 1706.46 1435.86	6.69 9.56 8.67 7.72 3.62 4.10 76.30	$\begin{array}{r} 476552 \pm 1059 \\ 497395 \pm 781 \\ 499735 \pm 818 \\ 394075 \pm 690 \\ 227641 \pm 847 \\ 211984 \pm 563 \\ 1214440 \pm 1177 \end{array}$	5.27 5.65 5.75 5.80 5.40 5.67 8.32

			2639.59	7.63	$77034 \pm 304$	8.12
¹⁴¹ Ba	9.5 min	1.7 h	739.20	4.83	6597 ± 467	7.07
Da	9.5 mm	1.7 11	625.40	3.59	5681 ± 529	7.64
			641.29	47.40	3033430 ± 2131	6.28
		9.3 h	894.90	8.34	$460260 \pm 1040$	6.33
¹⁴² La	¹⁴² La 50.1 min		1901.30	7.16	230758 ± 578	5.99
			1011.40	3.93	$202468 \pm 856$	6.34
			1043.70	2.70	135455 ± 805	6.29
			293.27	42.80	$1816230 \pm 2477$	4.78
¹⁴³ Ce	1.8 h	22.9 h	350.62	3.23	144406 ± 1899	4.78
Ce	1.6 []	22.9 h	231.55	2.05	$59502 \pm 2382$	4.08
			880.46	1.03	34612 ± 787	4.82

468 Our photofission products cumulative yields data for ²³⁹Pu are compared in Figure 13 to 469 already published data.



470 471

Figure 13: Fission product yields distribution for the photofission of ²³⁹Pu and comparison with existing data.

In this work, we provide the cumulative photofission yields of ²³⁹Pu fission products ⁸⁴Br, 472 ^{91m}Y, ¹²⁸Sb and ¹³⁵I that were not published before (circled points in Figure 13). We can 473 note that relative yields were recently published by Parlag et al. [33] for ¹³⁵I and ^{91m}Y for 474 a 17.5 MeV Bremsstrahlung endpoint energy, but in this paper, all yields are normalized 475 to that of ⁹⁷Zr published by Kondrat'ko et al. [13] (first dataset published in 1981 476 concerning the photofission yields of ²³⁹Pu), which is significantly lower than other 477 478 published data and particularly our work, see Table 7. More globally, the photofission yields provided in our work are a little larger but consistent with the other data. We can 479 note a few singular points like the ¹⁰⁴Tc yield from Krishichayan *et al.* [12], 1.96  $\pm$  0.14 %, 480

481 which is much lower than expected for this mass number. Our work gives  $6.91 \pm 1.12$  % 482 and for comparison, the neutron fission yield is 5.69 % from ENDF/B-VIII.0 database [23]. We can also mention that Kondtrat'ko et al. data [13] are globally low and some points 483 also appear as singular, such as the yield of  105 Rh,  $3.96 \pm 0.20$  %, compared to our 484 measurement, 7.08  $\pm$  1.11 %, and to the yields of ¹⁰⁵Ru with the same atomic number (near 485 6 %). The yield of ¹³⁴Te from Wen *et al.* [11] also looks like an outlier with 11.6  $\pm$  0.81 %, 486 compared to our data  $4.88 \pm 0.78$  % and to ¹³⁴I with this atomic number (near 6-7 %). 487 Except for the singular data mentioned above, the observed discrepancies in the published 488 photofission yields is probably due, for a significant part, to the different experimental 489 configurations (geometry of the samples, energy spectrum and intensity of the interrogating 490 photon beams, photoneutron production, irradiation-cooling-counting times, detectors, 491 492 etc.) and possibly to data analysis (subtraction of neutron fissions, gamma-ray interferences, decay chain calculations to take into account precursors, etc.). In our case, 493 analyzing several gamma-ray lines for a same photofission product (when possible, for 494 example ⁸⁷Kr, ⁸⁸Kr, ¹³⁴I, ¹³⁵I, ¹³⁸Cs, ¹⁴²La) and observing a good consistency in the different 495 yields associated with each line improves the confidence of the weighted average reported 496 497 as cumulative yield. It is also important to mention that our results share a common uncertainty of 14 % related to the photon flux assessment. In addition, our plutonium 498 sample is not exclusively made of ²³⁹Pu, the photofission yields of the other actinides 499 composing it (²⁴⁰Pu, ²⁴²Pu, ²⁴¹Am) should be investigated with as pure as possible samples 500 in order to evaluate the contribution of each isotope. 501

502

503 The ²³⁸U cumulative photofission yields measured with the DU sample are given in Table

- 504 9, and the details of the delayed gamma-ray analysis in Table 10.
- 505 506

Table 9: Cumulative yields (number of photofission products per 100 fissions) for the photofission of ²³⁸U and comparison with published data

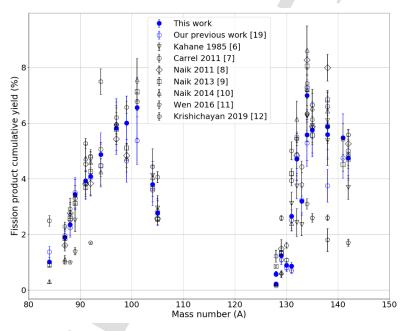
Photon beam type	,	Bremsstrahlung	Bremsstrahlung	Neutron-capture gamma rays	Bremsstrahlung	Bremsstrahlung	Bremsstrahlung	Bremsstrahlung	Bremsstrahlung	Monoenergetic
Energy (MeV)		17.5	15.8	7.8	16.3	10.0	14.987	8.0	22.0	13.0
Fission Product	T1/2	This work	Our previous work [19]	Kahane 1985 [6]	Carrel 2011 [7]	Naik 2011 [8]	Naik 2013 [9]	Naik 2014 [10]	Wen 2016 [11]	Krishichayan 2019 [12]
⁸⁴ Br	31.8 min	$1.01 \pm 0.16$	$1.37\pm0.20$	-	-	-	$0.90\pm0.06$	$0.30\pm0.06$	-	$2.49\pm0.19$
⁸⁷ Kr	1.3 h	$1.90 \pm 0.29$	$1.96\pm0.31$	$1.82\pm0.21$	-	$1.61\pm0.20$	$1.86\pm0.30$	$1.11\pm0.13$	$1.0\pm0.06$	$2.29\pm0.16$
⁸⁸ Kr	2.8 h	$2.35\pm0.38$	$2.24\pm0.34$	-	$2.52\pm0.23$	$2.77\pm0.53$	$2.58\pm0.19$	$2.77\pm0.38$	$1.0 \pm 0.03$	$2.92\pm0.17$
⁸⁹ Rb	15.4 min	$3.44\pm0.55$	$3.50\pm0.55$	$2.51\pm0.40$	$3.30\pm0.20$	-	$3.12\pm0.16$	$3.42\pm0.34$	$1.4 \pm 0.13$	-

⁹¹ Sr	9.7 h	$3.93 \pm 0.64$	$3.86\pm0.60$	$3.81\pm0.45$	$4.53\pm0.22$	$3.82\pm0.17$	3.69 ± 0.23	$4.75\pm0.48$	-	$5.27\pm0.18$
⁹² Sr	2.6 h	$4.09\pm0.66$	$4.04\pm0.63$	-	$4.77\pm0.22$	$3.83 \pm 0.45$	$4.26\pm0.13$	$4.59\pm0.47$	$1.7\pm0.02$	$4.82\pm0.15$
⁹⁴ Y	18.7 min	$4.87\pm0.79$	$4.48\pm0.77$	-	$5.06 \pm 0.24$	-	$4.47\pm0.25$	$4.25\pm0.47$	-	$7.50\pm0.46$
⁹⁷ Zr	16.7 h	$5.82 \pm 0.94$	$5.95\pm0.93$	$5.89 \pm 0.66$	-	5.43 ± 0.19	$5.78\pm0.17$	$6.00 \pm 0.64$	-	$6.20\pm0.19$
⁹⁹ Mo	2.7 d	$6.01 \pm 0.97$	$4.65\pm0.77$	-	-	$4.84\pm0.44$	$5.11 \pm 0.15$	$4.75\pm0.50$	-	$6.57\pm0.22$
¹⁰¹ Mo	14.6 min	$6.56 \pm 1.09$	$5.37 \pm 0.86$	-	$6.78\pm0.32$	-	$7.13\pm0.30$	$7.56 \pm 0.77$	-	-
¹⁰⁴ Tc	18.3 min	$3.80\pm0.63$	$3.60\pm0.56$	$4.13\pm0.50$	-	-	$3.65\pm0.28$	$4.06 \pm 0.42$	-	$4.44\pm0.64$
¹⁰⁵ Ru	4.4 h	$2.78\pm0.46$	$2.76\pm0.44$	$2.95\pm0.45$	-	$2.57\pm0.21$	$2.55\pm0.06$	$2.91 \pm 0.38$	-	$4.06\pm0.20$
¹²⁸ Sn	59.1 min	$0.58\pm0.09$	$0.57\pm0.09$	-	-	-	$0.85 \pm 0.04$	$0.21 \pm 0.03$	-	$1.22\pm0.22$
¹²⁸ Sb	9 h	$0.22 \pm 0.04$	$0.21\pm0.03$	-	$0.16\pm0.01$	-		-	-	-
¹²⁹ Sb	4.4 h	$1.24\pm0.20$	$1.09 \pm 0.17$	$0.54\pm0.10$	$1.33\pm0.06$	1.48 ± 0.33	$1.35 \pm 0.16$	$0.63\pm0.06$	-	$2.59\pm0.09$
¹³⁰ Sb	39.5 min	$0.89 \pm 0.14$	$0.79\pm0.12$	-	$1.08\pm0.05$	-	-	-	-	$1.61\pm0.11$
¹³¹ Sb	23 min	$2.65\pm0.43$	$2.51\pm0.37$	-	3.94 ± 0.19		$4.18\pm0.18$	$2.40\pm0.27$	-	$5.01 \pm 0.33$
^{131m} Te	1.3 d	$0.86\pm0.14$	$0.70\pm0.10$	$3.12\pm0.40$	-	-	5.	-	-	-
¹³² Te	3.2 d	$4.71\pm0.77$	$4.71\pm0.73$	$2.43\pm0.50$	-	$4.84 \pm 0.46$	5.48 ± 0.14	$6.15\pm0.65$	-	$5.44 \pm 0.25$
132 I	2.3 h	$4.72\pm0.79$	$4.87\pm0.76$	$3.74\pm0.46$	-	-	-	-	-	-
^{133m} Te	55.4 min	$3.19\pm0.51$	$3.23\pm0.44$	$2.35\pm0.39$	$4.43 \pm 0.21$		-	-	$3.8 \pm 0.42$	-
¹³⁴ Te	41.8 min	$5.58 \pm 0.92$	$5.29 \pm 0.84$	$6.25 \pm 0.89$	6.34 ± 0.30	$8.27\pm0.26$	$7.23 \pm 0.33$	$7.21 \pm 0.74$	-	$7.43 \pm 0.51$
134 I	52.5 min	$7.00 \pm 1.25$	$7.30 \pm 1.16$	$6.29 \pm 0.94$			$8.06\pm0.34$	$8.63 \pm 0.87$	3.1 ± 0.19	-
135 I	6.6 h	$5.75\pm0.95$	$5.85\pm0.92$	$5.91 \pm 0.68$	$6.66 \pm 0.42$	$5.88 \pm 0.57$	$5.57\pm0.12$	$6.55\pm0.67$	$2.6\pm0.16$	6.13 ± 0.29
¹³⁸ Xe	14.1 min	$5.59 \pm 0.90$	$3.75 \pm 0.59$	5.38 ± 0.90	$6.60 \pm 0.58$	-	-	$5.91 \pm 0.63$	$1.8 \pm 0.41$	-
¹³⁸ Cs	33.4 min	5.87 ± 1.11	$5.91 \pm 0.86$	$6.10 \pm 0.71$	-	$8.00\pm0.48$	$6.84 \pm 0.25$	$6.44\pm0.68$	$2.6\pm0.10$	-
¹⁴¹ Ba	18.3 min	$5.48 \pm 0.86$	$4.75 \pm 0.73$	-		-	$4.51\pm0.23$	$5.44\pm0.56$	-	-

507

#### 508

Table 10: Detailed data of the delayed gamma-ray analysis for each ²³⁸U photofission product


Fission Product	Cooling time	Counting time	Gamma-ray energy (keV)	Relative intensity (%)	Net peak area (counts)	Photofission cumulative yield (%)
		R	881.60 1897.60 1015.90	41.60 14.56 6.16	$72262 \pm 695 24041 \pm 318 13767 \pm 562$	0.88 0.95 1.13
⁸⁴ Br	20.0 min	3.2 h	802.20 2484.10 3927.50	5.99 6.66 6.78	$9578 \pm 723$ $10377 \pm 173$ $8729 \pm 95$	0.82 1.03 1.20
			3365.80 3235.30	2.87 2.04	$3461 \pm 78$ $2452 \pm 77$ $250860 \pm 1350$	0.99 0.95
⁸⁷ Kr	19.0 min	7.6 h	402.59 2554.80 2558.10 2011.88	49.60 9.23 3.92 2.88	$250860 \pm 1359 60419 \pm 281 25636 \pm 211 19727 \pm 313$	1.79 1.97 1.97 1.79
⁸⁸ Kr	19.0 min	16.7 h	2392.11 834.83 1529.77 2029.84 2035.41 2231.77	34.60 12.97 10.93 4.53 3.74 3.39	$\begin{array}{c} 400897 \pm 659 \\ 191623 \pm 938 \\ 159206 \pm 571 \\ 58502 \pm 374 \\ 48190 \pm 358 \\ 39608 \pm 314 \end{array}$	2.34 2.39 2.42 2.39 2.39 2.39 2.26

	I		1518.39	2.15	$31391 \pm 456$	2.42
			1032.00	63.60	$149511 \pm 623$	3.43
			1248.20	45.60	$149511 \pm 023$ 106176 ± 516	3.43
⁸⁹ Rb	19.0 min	1.7 h	657.80	11.00	$23747 \pm 801$	3.44
			2570.10	10.18	$17964 \pm 177$	3.47
⁹¹ Sr	19.0 min	41.6 h	1024.30	33.50	$1025360 \pm 1223$	3.97 3.83
920	10.0 .	1671	749.80	23.68	$666694 \pm 1258$	
⁹² Sr	19.0 min	16.7 h	1383.90	93.00	$2317890 \pm 1589$	4.09
⁹⁴ Y	19.0 min	1.9 h	918.74	56.00	$260995 \pm 1461$	4.87
			550.9	4.93	<u>19427 ± 892</u>	4.94
⁹⁷ Zr	19.0 min	41.6 h	1149.97	2.62	$105437 \pm 705$	5.83
			1750.24	1.09	39384 <u>+</u> 399	5.78
⁹⁹ Mo	19.0 min	41.6 h	739.50	12.12	$215280 \pm 1085$	6.01
			590.10	19.21	69639 <u>±</u> 824	6.76
¹⁰¹ Mo	19.0 min	1.4 h	1012.47	13.02	52392 ±524	6.49
			1532.49	6.14	$23139 \pm 337$	6.40
			358.00	89.00	$178773 \pm 1124$	3.87
			535.10	14.69	$40712 \pm 913$	3.57
¹⁰⁴ Tc	19.0 min	1.9 h	893.10	10.23	$32790 \pm 599$	3.37
10	17.0 11111	1.7 11	1596.70	4.18	$14101 \pm 332$	3.80
			1157.40	2.85	$11038 \pm 479$	4.10
			2123.80	2.23	$6507 \pm 241$	3.70
			724.30	47.30	$919049 \pm 1370$	2.81
¹⁰⁵ Ru	19.0 min	26.2 h	676.36	15.66	$275906 \pm 1169$	2.59
			469.37	17.55	$260961 \pm 1454$	2.76
¹²⁸ Sn	19.0 min	5.6 h	482.30	59.00	$93194 \pm 1186$	0.58
¹²⁸ Sb	1.5 h	40.4 h	754.00	100.00	$141414 \pm 801$	0.22
50	1.5 11	10.11	812.80	47.60	$403876 \pm 1076$	1.24
			544.70	18.09	$141730 \pm 1277$	1.36
¹²⁹ Sb	19.0 min	26.2 h	966.50	8.14	$66692 \pm 746$	1.16
			683.50	5.66	$44137 \pm 1051$	1.10
			839.52		$103362 \pm 624$	0.85
			793.40	100.00 100.00	$103302 \pm 024$ $109564 \pm 652$	0.85
¹³⁰ Sb	1.0 h	3.0 h	330.91	78.00	$109304 \pm 032$ 43614 ± 946	0.92
						0.92
			732.00	22.00	$21619 \pm 634$	
			943.40	46.20	$162988 \pm 677$	2.66
¹³¹ Sb	19.0 min	1.9 h	933.10	25.87	$90233 \pm 626$	2.63
			1207.40	3.88	$13656 \pm 458$	2.66
121			2335.00	1.85	4798 ± 191	2.45
^{131m} Te	19.0 min	41.6 h	852.21	21.40	$90922 \pm 897$	0.86
¹³² Te	40.2 min	41.3 h	228.33	88.12	$301254 \pm 8404$	4.71
$^{132}I$	19.0 min	41.6 h	667.71	98.7	$1128590 \pm 1521$	4.72
			912.67	55.27	$633754 \pm 1055$	3.17
^{133m} Te	19.0 min	7.6 h	647.51	19.40	$208071 \pm 1112$	3.25
10	19.0 1111	7.0 11	863.96	15.64	$181664 \pm 862$	3.25
			914.77	10.94	$123117 \pm 772$	3.10
			767.20	29.60	$448907 \pm 1026$	5.67
¹³⁴ Te	10.0	2.0.1	565.99	18.60	$230043 \pm 1096$	5.22
re	19.0 min	3.9 h	277.95	21.30	$123853 \pm 1307$	5.49
			464.64	5.03	$54548 \pm 1119$	5.32
			884.09	65.08	$2484463 \pm 1738$	6.95
134-	10.0		1136.16	9.09	$364607 \pm 843$	7.36
¹³⁴ I	19.0 min	9.2 h	540.83	7.66	$252969 \pm 1237$	7.49
17			1613.80	4.31	$159594 \pm 543$	7.32
			1260.41	28.70	$1282530 \pm 1250$	5.86
			1131.51	22.59	$919069 \pm 1151$	5.22
125			1678.03	9.56	$410034 \pm 736$	6.06
¹³⁵ I	19.0 min	38.9 h	1457.56	8.67	$388947 \pm 768$	6.07
			1038.76	7.95	$352406 \pm 900$	5.72
			1791.20	7.72	$312318 \pm 652$	5.83
L	L	l	1771.20	1.14	512510 <u>1</u> 052	5.05

			836.80	6.69	$298895 \pm 1021$	5.95
			1706.46	4.10	$175261 \pm 549$	6.06
			1124.00	3.62	147227 ± 746	5.22
¹³⁸ Xe	19.0 min	1.4 h	1768.26	16.73	49177 ± 340	5.59
			462.80	30.75	431772 ± 1294	5.83
¹³⁸ Cs	19.0 min	4.4 h	871.80	5.11	$100812 \pm 759$	6.13
			408.98	4.66	$58254 \pm 1179$	5.87
			304.19	25.44	53238 ± 1030	5.28
¹⁴¹ Ba	19.0 min	1.4 h	343.67	14.44	37741 ± 988	5.60
			739.20	4.83	23791 ± 682	5.78
			641.29	47.40	743908 ± 1202	4.93
			2397.80	13.27	156821 ± 415	4.26
			894.90	8.34	134809 ± 672	4.60
¹⁴² La	19.0 min	9.2 h	1901.30	7.16	105968 ± 397	4.78
			1011.40	3.93	$66289 \pm 560$	4.76
			2055.20	2.18	$31017 \pm 274$	4.76
			3313.80	0.95	9499 ± 104	4.55

509 Our fission products cumulative yields for  238 U are compared in Figure 14 to other existing

510 data.



511 512

Figure 14: Fission product yields distribution for the photofission of ²³⁸U and comparison with existing data.

The values provided for the cumulative photofission yields of  238 U through this experimental campaign confirm the results obtained in our previous work [19]. No significant difference of the photofission yields is observed between the 15.8 MeV and 17.5 MeV electron endpoint energy, except that of  138 Xe for which counting statistics was greatly improved in our new measurement, allowing to refine this yield (and in the same way for  101 Mo, to a lesser extent). Wen *et al.* [11] data seem to show a systematic bias and are mostly below the expected values for the different mass numbers of the reported

- 520 photofission products. The yield of ⁹⁴Y from Krishichayan *et al.* [12] also looks like an
- outlier with 7.50  $\pm$  0.46 %, compared to our data 4.87  $\pm$  0.79 %, which is coherent with
- 522 all the other datasets displayed.
- 523
- 524 The ²³⁵U cumulative photofission yields measured with the HEU sample are given in Table 11
- 525 and the details of gamma analysis in
- 526 Table 12.
- 527 528

Table 11: Cumulative yields (number of photofission products per 100 fissions) for the photofission of 235U andcomparison with published data

Photon b Energy		Bremsstrahlung 17.5	Bremsstrahlung 15.8	Bremsstrahlung 16.3	Monoenergetic 13.0
Fission product	<b>T</b> 1/2	This work	Our previous work [19]	Carrel 2011 [7]	Krishichayan 2019 [12]
⁸⁴ Br	31.8 min	$1.71\pm0.30$	-	-	$1.77 \pm 0.13$
⁸⁷ Kr	1.3 h	$3.07 \pm 0.53$	$4.64 \pm 0.74$	-	$3.45 \pm 0.28$
⁸⁸ Kr	2.8 h	$3.59\pm0.59$	$5.34 \pm 0.84$	$3.63 \pm 0.32$	$3.87 \pm 0.22$
⁸⁹ Rb	15.4 min	$4.76\pm0.82$	$6.89 \pm 1.08$	$4.69 \pm 0.28$	-
⁹¹ Sr	9.7 h	$4.62 \pm 0.82$	7.71 ± 1.18	$5.37 \pm 0.26$	$6.08\pm0.26$
⁹² Sr	2.6 h	$5.17 \pm 0.90$	7.92 ± 1.24	$5.59 \pm 0.26$	$6.52\pm0.21$
⁹⁴ Y	18.7 min	$6.03 \pm 1.04$	-	$5.81 \pm 0.27$	$6.84 \pm 0.37$
⁹⁹ Mo	16.7 h	$4.28 \pm 0.77$	Y	-	$5.32 \pm 0.20$
¹⁰¹ Mo	14.6 min	$5.43 \pm 0.96$	-	$4.19\pm0.20$	-
¹⁰⁴ Tc	18.3 min	1.99 ± 0.36	$1.52 \pm 0.24$	-	$2.37\pm0.14$
¹⁰⁵ Ru	4.4 h	$1.28 \pm 0.23$	1.86 ± 0.29	-	$1.90 \pm 0.11$
¹²⁸ Sn	59.1 min	0.96 ± 0.16	$1.38 \pm 0.22$	-	$1.22 \pm 0.16$
¹²⁹ Sb	4.4 h	$1.67 \pm 0.28$	$2.46\pm0.36$	$1.60 \pm 0.08$	$2.47\pm0.12$
¹³⁰ Sb	39.5 min	$1.12 \pm 0.19$	$1.49 \pm 0.25$	$1.12 \pm 0.05$	$0.82 \pm 0.06$
¹³¹ Sb	23 min	$2.03 \pm 0.37$	$3.42 \pm 0.53$	$2.75\pm0.13$	1.59 ± 0.13
^{131m} Te	1.3 d	$1.15 \pm 0.17$	$1.98 \pm 0.33$	-	-
¹³² Te	3.2 d	$4.57 \pm 0.80$	-	-	$4.98\pm0.26$
¹³² I	2.3 h	$4.89 \pm 0.86$	-	-	-
^{133m} Te	55.4 min	$3.18\pm0.55$	-	$4.21\pm0.20$	-
¹³⁴ Te	41.8 min	$4.12\pm0.74$	5.33 ± 0.84	3.16 ± 0.15	5.37 ± 0.39
¹³⁴ I	52.5 min	$5.00 \pm 1.87$	$7.52 \pm 2.22$	-	-
¹³⁵ I	6.6 h	$4.72\pm0.85$	$7.34 \pm 1.14$	$5.06 \pm 0.32$	$4.72\pm0.21$
¹³⁸ Xe	14.1 min	$4.35 \pm 0.78$	7.36 ± 1.18	$4.62 \pm 0.41$	-

¹³⁸ Cs	33.4 min	$4.99 \pm 1.80$	$7.79 \pm 2.61$	-	$7.74 \pm 0.33$
¹⁴¹ Ba	18.3 min	$5.25 \pm 0.88$	$6.92 \pm 1.06$	-	$4.43\pm0.27$
¹⁴² La	1.5 h	$5.29 \pm 0.92$	6.39 ± 2.18	$5.15 \pm 0.24$	$5.98 \pm 0.19$

529 530

 Table 12: Detailed data of the delayed gamma-ray analysis for each ²³⁵U photofission product

			Gamma-ray	Relative	Net peak	Photofission
Fission	Cooling	Counting	energy	intensity	area	cumulative yield
Product	time	time	(keV)	(%)	(counts)	(%)
			881.60	41.60	$27836 \pm 387$	1.79
⁸⁴ Br	19.9 min	2.8 h	2484.10	6.66	$27830 \pm 387$ $2322 \pm 84$	1.48
Ы	17.7 IIIII	2.0 11	3927.50	6.78	$1765 \pm 42$	1.56
			402.59	49.60	$1703 \pm 42$ 178305 ± 914	3.09
			2554.80	9.23	$16155 \pm 149$	2.96
⁸⁷ Kr	5.8 min	7.5 h	2558.10	3.92		
			2011.88	2.88	$7386 \pm 116$ $5792 \pm 182$	3.20 2.95
			196.30	25.98	$102192 \pm 1261$	3.46
⁸⁸ Kr	42 s	17.0 h	834.83	12.97	$60791 \pm 570$	3.48
			1529.77	10.93	$34211 \pm 325$	3.71
			2231.77	3.39	$10623 \pm 184$	3.55
⁸⁹ Rb	16.9 min	1.8 h	1248.20	45.60	$28161 \pm 258$	4.80
			2570.10	10.18	4169 ± 85	4.58
010	<b>.</b>	<b>aa</b> o <b>1</b>	1024.30	33.50	$194351 \pm 588$	4.68
⁹¹ Sr	5.8 min	23.8 h	749.80	23.68	$146727 \pm 674$	4.47
02 -			925.8	3.85	$23247 \pm 462$	4.68
⁹² Sr	42 s	17.0 h	1383.90	93.00	532609 <u>+</u> 778	5.17
⁹⁴ Y	7.8 min	1.8 h	918.74	56.00	$93343 \pm 448$	6.03
1	7.0 1111	1.0 II	1138.9	5.99	9275 <u>+</u> 271	6.03
⁹⁹ Mo	9.8 min	23.8 h	739.50	12.12	$21083 \pm 571$	4.24
			777.92	4.28	$7828 \pm 530$	4.56
¹⁰¹ Mo	42 s	1.4 h	1012.47	13.02	$19380 \pm 432$	5.43
			358.00	89.00	67074 ± 763	2.00
¹⁰⁴ Tc	5.8 min	2.1 h	1596.70	4.18	$1782 \pm 188$	1.71
			3149.20	1.16	$334 \pm 35$	1.74
			724.30	47.30	85493 ± 557	1.28
¹⁰⁵ Ru	46.2 min	23.2 h	676.36	15.66	$29663 \pm 534$	1.31
			316.44	11.12	$23348 \pm 897$	1.32
1280	10	5.0.1	482.30	59.00	56919 ± 796	0.93
¹²⁸ Sn	42 s	5.9 h	680.50	15.93	$16847 \pm 590$	1.12
120			812.80	47.60	$114447 \pm 637$	1.67
¹²⁹ Sb	1.5 h	22.4 h	544.70	18.09	$49999 \pm 766$	1.71
120			793.40	100.00	$26825 \pm 361$	1.10
¹³⁰ Sb	1.0 h	2.9 h	839.52	100.00	$26971 \pm 346$	1.13
121			943.40	46.20	$36721 \pm 387$	2.08
¹³¹ Sb	5.8 min	2.1 h	933.10	25.87	$18752 \pm 366$	1.87
101			852.21	21.40	$10752 \pm 500$ 14450 ± 527	1.00
^{131m} Te	42 s	23.9 h	1125.44	11.90	$9653 \pm 380$	1.33
¹³² Te	40.1 min	23.3 h	228.33	88.12	$129579 \pm 1055$	4.57
10	+0.1 mm	23.3 11	667.71	98.70	$129579 \pm 1055$ $189532 \pm 779$	4.89
¹³² I	42 s	23.9 h	522.65	15.99	$32271 \pm 782$	4.87
	42.5	23.7 11	630.19	13.32	$26635 \pm 693$	4.87
			912.67	55.27	$151897 \pm 584$	3.13
			647.51	19.40	$131897 \pm 384$ 61265 ± 665	
^{133m} Te	42 s	8.0 h	863.96	19.40		3.23
					$43916 \pm 520$ 13606 ± 411	3.14
¹³⁴ Te	40 -	4 1 1-	978.30	4.86	$13696 \pm 411$	3.30
Te	42 s	4.1 h	767.20	29.60	95959 ± 587	4.12
134 I	42 s	9.4 h	884.09	65.08 14.03	$413068 \pm 789$	5.00
			1072.55	14.93	88376 ± 471	5.00

						1 o <b>-</b>
			595.36	11.10	$78034 \pm 708$	4.87
			1260.41	28.70	$176093 \pm 518$	4.80
			1131.51	22.59	$134550 \pm 516$	4.44
$^{135}I$	42 s	23.9 h	1038.76	7.95	$48496 \pm 460$	4.43
			1678.03	9.56	$52684 \pm 322$	4.92
			1457.56	8.67	$52650 \pm 352$	5.09
¹³⁸ Xe	42	146	1768.26	16.73	$15536 \pm 246$	4.34
¹³⁰ Xe	³⁸ Xe 42 s	1.4 h	258.41	31.50	43390 ± 1181	4.39
			1435.86	76.30	271157 ± 573	4.99
¹³⁸ Cs	42 s	4.7 h	1009.78	29.38	$122123 \pm 506$	5.03
			2218.00	15.18	$42828 \pm 255$	4.87
		1.7 h	190.328	46.00	62679 ± 942	4.98
¹⁴¹ Ba	2.7		304.19	25.44	54247 ± 828	5.37
тва	2.7 min		276.95	23.41	$48450 \pm 836$	5.43
			343.67	14.44	30891 ± 758	5.28
			641.29	47.4	$189460 \pm 632$	5.30
			894.90	8.34	$30424 \pm 362$	5.37
¹⁴² La	111	076	1901.30	7.16	$18446 \pm 188$	5.17
La	1.1 h	8.7 h	2187.20	3.70	9598 ± 146	5.65
			2971.00	3.13	$5885 \pm 80$	4.97
			2055.20	2.18	5271 ± 136	5.04

- 531 Our fission products cumulative yields for ²³⁵U are compared in Figure 15 to existing
- 532 published data.

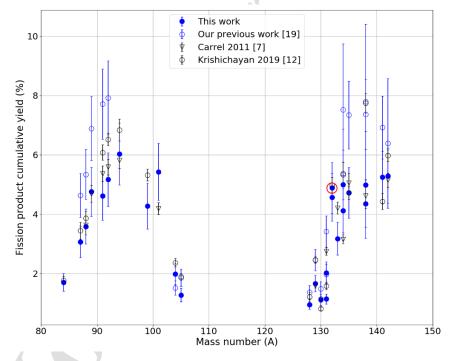





Figure 15: Fission product yields distribution for the photofission of ²³⁵U and comparison with existing data.

535 Contrary to our previous work [19], we were not able to measure the cumulative yields of 536 some short half-life photofission products (like ⁹³Sr or ¹⁴²Ba, with respective radioactive 537 periods of 7.4 min and 10.6 min) because of the dead time issues mentioned in section 2.

However, we measured new yields (⁸⁴Br, ^{91m}Y, ⁹⁹Mo, ¹⁰¹Mo, ¹³²Te, ¹³²I, ^{133m}Te) that can 538 be compared with existing data. We also provide the ²³⁵U cumulative yield for ¹³²I (circled 539 in Figure 15), which was not reported so far in prior publications. For the others, the 540 cumulative yields obtained in this work are consistent with existing data. In particular, we 541 observe a better agreement with Carrel et al. [7] than in our previous work. The prior 542 discrepancy was probably due to the poor knowledge of the geometry of the low-mass 543 HEU sample used in the previous experimental campaign [19]. The HEU sample used in 544 this work has a simpler geometry, i.e., a single fissile core instead of several cores separated 545 546 by Zircaloy spacers.

#### **6. Differentiation of actinide isotopes**

As photofission cross sections are of the same order of magnitude for all actinides, the 548 measured delayed gamma-ray signal can provide an estimation of the total nuclear material 549 mass. However, it does not indicate whether it is uranium or plutonium (with very different 550 specific activities, in Bq/g, which is essential for waste management especially for the long-551 term alpha activity [34]), fissile or fertile isotopes (for criticality safety purpose in waste 552 package transport, interim storage, or final repository). This section deals with the 553 possibility to differentiate actinides using delayed gamma-ray ratios of their photofission 554 555 products.

556 When photofission occurs, the formation of two asymmetric fission fragments is the 557 most likely to happen, resulting in a mass distribution curve of the fission products 558 comporting two bumps: one for a heavy nucleus centered around mass number 140, and 559 one for a light nucleus centered around 95. Examples of this theoretical mass distribution 560 for photofission products are given in the work of Bernard *et al.* [22] and reported in Figure 561 16 for several actinides.

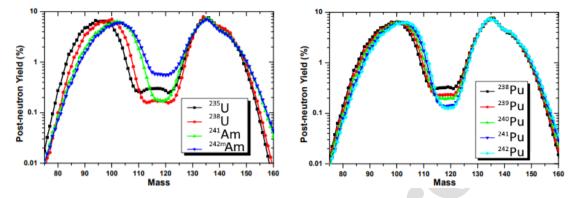





Figure 16: Independent photofission mass yields obtained with the GEF code [35], as reported in ref. [22].

A differentiation information can be obtained between uranium or plutonium isotopes 564 thanks to their different photofission product yields, through the measurement of the 565 relative intensities of specific delayed gamma lines emitted by photofission products 566 567 having different yields for the different actinides [1][17]. The enrichment, defined as the proportion of the actinide(s) of interest in the mixture, can thus be computed from the ratio 568 of two net areas and from the ratios of the photofission yields of their two emitting 569 photofission products. The objective is to select specific photofission products pairs 570 showing the largest differences, according to the actinide, in their gamma ratios. Some 571 important parameters such as the energy of the gamma rays emitted by the photofission 572 products (related to possible interferences with gamma rays of activation products, matrix 573 attenuation effects, and the level of the Compton continuum under the peaks) and their 574 intensity that determines the achievable counting statistics will also need to be taken into 575 account to identify the most efficient photofission product couples. 576

577 For a mixture of ²³⁵U and ²³⁸U, the net peak area of a delayed gamma-ray line of energy 578  $E_i$  emitted by photofission product *j* is given by (5):

$$A_{j}(E_{i}) = \frac{I(E_{i})\varepsilon(E_{i})N_{A}}{\lambda_{j}} \times \left(1 - e^{-\lambda_{j}t_{irr}}\right) \times e^{-\lambda_{j}t_{cool}} \times \left(1 - e^{-\lambda_{j}t_{count}}\right)$$

$$\times \dots \left[Y_{j5}\frac{\alpha m_{u}}{\mathcal{M}_{5}}\int_{E_{threshold}}^{E_{max}} \varphi(E)\sigma_{5}(E)dE + Y_{j8}\frac{(1 - \alpha)m_{u}}{\mathcal{M}_{8}}\int_{E_{threshold}}^{E_{max}} \varphi(E)\sigma_{8}(E)dE\right]$$
(5)

579 Where:

580 -  $A_j(E_i)$  is the net peak area of the gamma-ray line of energy  $E_i$  emitted by 581 photofission product *j*;

582 -  $I(E_i)$  is the gamma-ray emission intensity;

583	-	$\varepsilon(E_i)$ is the detection efficiency at energy $E_i$ ;
584	-	$N_A$ is the Avogadro constant (in mol ⁻¹ );
585	-	$\lambda_j$ is the radioactive decay constant of photofission product j (in s ⁻¹ );
586	-	$t_{irr}$ , $t_{cool}$ and $t_{count}$ are respectively the irradiation, cooling and counting times
587		(in s);
588	-	$Y_{j5}$ and $Y_{j8}$ are the cumulative yields of photofission product <i>j</i> for ²³⁵ U and ²³⁸ U,
589		respectively;
590	-	$m_u$ is the total uranium mass (in g);
591	-	$\mathcal{M}_5$ and $\mathcal{M}_8$ are respectively the molar masses of ²³⁵ U and ²³⁸ U (in g.mol ⁻¹ );
592	-	$\alpha$ is the enrichment, i.e. the proportion of ²³⁵ U in the uranium mixture;
593	-	$E_{threshold}$ is the threshold energy of the photofission reaction;
594	-	$E_{max}$ is the endpoint energy of the Bremsstrahlung photon beam;
595	-	$\varphi(E)$ is the Bremsstrahlung photon flux at energy E (in cm ⁻² .s ⁻¹ );
596	-	$\sigma_5(E)$ and $\sigma_8(E)$ are the photofission cross sections (in cm ² ) at energy E for ²³⁵ U
597		and ²³⁸ U, respectively.
598		
599	(5) car	be rearranged and written as (6):
		$A_j(E_i) = k_j(E_i) \times m_u \times \left[ Y_{j8}(\alpha - 1) - \Sigma \alpha Y_{j5} \right] $ (6)
600	With:	
601	-	$k_j(E_i)$ a constant defined for the sake of simplification, which depends on the
602		photofission product radioactive constant, the gamma-ray intensity and detection
603		efficiency, and the measurement time parameters (irradiation, cooling, counting):
604		$k_j(E_i) = \frac{I(E_i)\varepsilon(E_i)N_A}{\lambda_j} \times (1 - e^{-\lambda_j \cdot t_{irr}}) \times e^{-\lambda_j \cdot t_{cool}} \times (1 - e^{-\lambda_j \cdot t_{count}}) \text{ (in s}^{-1} \cdot \text{mol}^{-1});$
605	-	$\Sigma$ another simplification constant depending on the actinide mixture, defined as:
606		$\Sigma = \frac{\frac{1}{\mathcal{M}_{5}} \int_{E_{threshold}}^{E_{max}} \varphi(E)\sigma_{5}(E)dE}{\frac{1}{\mathcal{M}_{8}} \int_{E_{threshold}}^{E_{max}} \varphi(E)\sigma_{8}(E)dE} \approx \frac{\int_{E_{threshold}}^{E_{max}} \varphi(E)\sigma_{5}(E)dE}{\int_{E_{threshold}}^{E_{max}} \varphi(E)\sigma_{8}(E)dE}.$
607		
608	Then, the ratio of the net areas of two delayed gamma rays emitted by two different	
609	photofission products is given by (7):	

$$R = \frac{k_1}{k_2} \times \frac{Y_{18}(\alpha - 1) - \Sigma \alpha Y_{15}}{Y_{28}(\alpha - 1) - \Sigma \alpha Y_{25}} = \frac{k_1}{k_2} \times R'$$
(7)

610 Where:

611 -  $k_1$  and  $k_2$  correspond to constants  $k_j(E_i)$  described in (6). It is important to 612 mention that we are not limited to ratios of close-in-energy gamma rays. This 613 implies that detection efficiency at both energies has to be estimated and requires 614 a prior localization of actinides, for example with the method described in [18];

- 615  $\alpha$  and  $\Sigma$  have the same meaning as in (5) and (6);
- 616  $Y_{18}$  and  $Y_{15}$  are the cumulative yields for the first photofission product for ²³⁸U and 617  235 U, respectively;
- 618  $Y_{28}$  and  $Y_{25}$  are the cumulative yields for the second photofission product for ²³⁸U 619 and ²³⁵U, respectively;
- 620 R' is the net area ratio R corrected by the ratio of constants  $k_1$  and  $k_2$  taking into 621 account gamma-ray intensities and detection efficiencies of the two photofission 622 product gamma rays, and irradiation parameters of the two photofission products 623 (exponential terms in (5)).
- 624

The efficiency of this differentiation method can be assessed by defining a criterion  $\delta$ based on the variability of the calculated enrichment compared to the variability of the corrected gamma-ray ratio (8).

$$\delta = \frac{d\alpha}{dR'} \frac{R'}{\alpha} = \frac{\Sigma(Y_{15}Y_{28} - Y_{25}Y_{18})}{\left[\left(\frac{Y_{18}(\alpha - 1) - \Sigma\alpha Y_{15}}{Y_{28}(\alpha - 1) - \Sigma\alpha Y_{25}}\right)(Y_{28} - \Sigma Y_{25}) - Y_{18} + \Sigma Y_{15}\right]^2} \cdot \frac{Y_{18}\frac{\alpha - 1}{\alpha} - \Sigma Y_{15}}{Y_{28}(\alpha - 1) - \Sigma\alpha Y_{25}}$$
(8)

By minimizing this criterion over the whole enrichment range, the most appropriate photofission product couples can be identified based on their cumulative photofission product yields reported in previous section for ²³⁵U and ²³⁸U. The six most efficient photofission product couples for ²³⁵U vs. ²³⁸U discrimination are thus ⁸⁴Br/¹⁰⁵Ru, ¹⁰⁵Ru/¹²⁸Sn, ⁸⁷Kr/¹⁰⁵Ru, ⁸⁴Br/¹⁰⁴Tc, ¹⁰⁴Tc/¹²⁸Sn and ⁸⁷Kr/¹⁰⁴Tc. The curves representing the ²³⁵U enrichment as a function of the R' corrected ratio (deduced from the R measured ratio) are provided in Figure 17, showing that it seems possible to estimate  $\alpha$  (or at least the

enrichment range) with the different couples if R' is measured with a reasonably low 635 uncertainty, which will mainly depend on counting statistics uncertainties of the delayed 636 gamma-ray net areas. For instance, a 20 % uncertainty on R' will convert to a relative 637 uncertainty of 65 % on the ²³⁵U enrichment,  $\alpha$ , for the couple ⁸⁷Kr/¹⁰⁵Ru and a limited 638 enrichment ( $\alpha$ =0.2). Besides, a 20 % uncertainty on R' for the couple ⁸⁴Br/¹⁰⁵Ru 639 corresponds to a relative uncertainty of 30 % on  $\alpha$  for a higher enrichment ( $\alpha$ =0.6). A 640 combination of the results, such as a weighted average of the enrichments obtained with 641 642 the different couples, will probably be valuable. Further investigation will be conducted to demonstrate the differentiation efficiency of these photofission product couples on real 643 actinide mixtures placed inside a matrix. 644

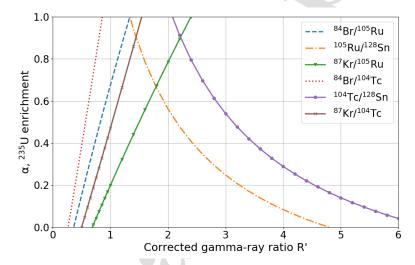



Figure 17: Evolution of ²³⁵U enrichment as a function of R' corrected ratio for the 6 most efficient photofission product
 couples in a ²³⁵U/²³⁸U mixture.

645

Beyond a simple uranium mixture only, the photofission product yield values show that a differentiation of the fertile isotope (²³⁸U) and the fissile ones (²³⁵U and ²³⁹Pu considered as a whole), could be achieved since the photofission cross-sections of ²³⁵U and ²³⁹Pu are similar and that of ²³⁸U is way different, as shown in Figure 18. Indeed, there is only a 21% difference between the photofission rate in ²³⁹Pu and ²³⁵U for the 17.5 MeV endpoint energy Bremsstrahlung spectrum presented in this paper.

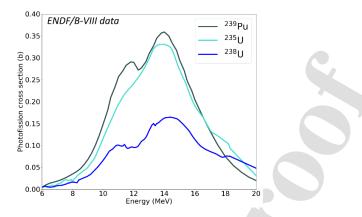
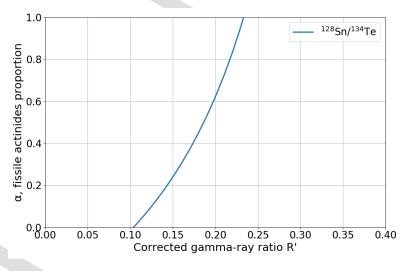




Figure 18: Photofission cross sections of ²³⁵U, ²³⁸U and ²³⁹Pu [23].

The most efficient photofission product couple for that purpose is ¹²⁸Sn/¹³⁴Te. The two 656 isotopes share a similar ratio of cumulative yields for  ${}^{235}U\left(\frac{Y_{c}({}^{128}Sn)}{Y_{c}({}^{134}Te)}=0.23\pm0.06\right)$  and 657  239 Pu $\left(\frac{Y_c(^{128}Sn)}{Y_c(^{134}Te)} = 0.23 \pm 0.05\right)$ , and a different ratio for  238 U $\left(\frac{Y_c(^{128}Sn)}{Y_c(^{134}Te)} = 0.10 \pm 0.02\right)$ . 658 Therefore, ²³⁵U and ²³⁹Pu can be regarded as a global fissile mass that can be differentiated 659 from ²³⁸U mass. The curve representing the fissile actinides proportion as a function of the 660 R' corrected ratio (deduced from the R measured ratio) is provided in Figure 19. Note that 661 the contrast for the differentiation between  ${}^{235}U+{}^{239}Pu$  and  ${}^{238}U$  is lower compared to the 662 differentiation between ²³⁵U and ²³⁸U in Figure 17. 663



664

665Figure 19: Evolution of the fissile actinides proportion in a 235 U/239 Pu/238 U mixture as a function of R' corrected ratio666for the couple 128 Sn/134 Te

667 It is worth noting that such a global fissile vs. fertile actinides differentiation based on 668 photofission had not been proposed yet, as the yields of these fission products reported in 669 the literature are scarce for  235 U or  239 Pu, for instance only one measured yield was reported 670 so far concerning  128 Sn and  134 Te photofission products of  239 Pu.

#### 671 **7. Conclusion**

New measurements of cumulative photofission yields with a 17.5 MeV endpoint 672 Bremsstrahlung photon beam produced by a SATURNE electron LINAC have been 673 performed in CINPHONIE facility, at CEA Cadarache IRESNE Institute, France. To this 674 aim, a characterization of the Bremsstrahlung photon beam has been first carried out by 675 photon activation analysis with different samples of Au, Ni, U, Zn and Zr. In a former 676 study, we highlighted that most of neutron fissions arise from fast neutrons produced in the 677 678 actinide sample itself, but not from the photoneutron production in the LINAC components (target, collimator). As a result, the neutron fission rate in the different samples has been 679 numerically estimated with MCNP to subtract it from the total fission rate. Finally, the 680 cumulative production yields of 26 photofission products have been measured for ²³⁹Pu 681 and ²³⁵U and 28 have been evaluated for ²³⁸U. Four of them are not reported in the literature 682 for ²³⁹Pu, and one for ²³⁵U. Among these available photofission product yields, some show 683 large discrepancies between actinides and thus appear as good candidates for their 684 differentiation based on gamma-ray ratios. To that extent, the six most efficient couples 685 enabling the differentiation between ²³⁵U and ²³⁸U have been determined. Furthermore, a 686 photofission products couple (128Sn/134Te) has been identified for the differentiation 687 between fissile (²³⁵U+²³⁹Pu) and fertile (²³⁸U) isotopes in a mixture of uranium and 688 plutonium. 689

Further work will be dedicated to the selection of the most efficient photofission product 690 691 couples in presence of a waste matrix, causing gamma attenuation effects that depend on actinide localization. To this aim, a new experimental campaign will be carried out to test 692 the differentiation of actinide isotopes inside a concrete matrix, as reported in [18] for 693 actinide localization. One of the main objectives of this long-term R&D program is to 694 assess nuclear materials in heterogeneous technological waste blocked in 870 L cemented 695 drums. Therefore, the quantification of their mass and the differentiation of actinides will 696 be finally tested with an 870 L mock-up drum with uranium and plutonium samples inside. 697

### 698 Acknowledgements

The authors would like to thank the French National Radioactive Waste Management
Agency (ANDRA) contributing for several years to this research and development activity
within a cooperation framework under the COV – F32678 DEN4908 – C43R9T5480
contract.

### 703 **References**

- [1] F. Carrel, M. Agelou, M. Gmar, F. Lainé, J. Loridon, J.-L. Ma, C. Passard, B.
  Poumarède, "Identification and Differentiation of Actinides Inside Nuclear Waste *Packages by Measurement of Delayed Gammas*", IEEE Trans. Nucl. Sci., 57 (5)
  2862, (2010).
- [2] F. Carrel, M. Agelou, M. Gmar, F. Lainé, "Detection of high-energy delayed gammas for nuclear waste packages characterization", Nuclear Instruments and Methods in Physics Research Section A, vol. 652 (1), 137-139 (2011).
- 711

716

721

- [3] T. Nicol, B. Pérot, C. Carasco, F. Brackx, A. Mariani, C. Passard, E. Mauerhofer, J.
  Collot, *"Feasibility study of ²³⁵U and ²³⁹Pu characterization in radioactive waste drums using neutron-induced fission delayed gamma rays"*, Nuclear Instruments and Methods in Physics Research Section A, vol. 832, 85-94 (2016).
- [4] R. De Stefano, C. Carasco, B. Pérot, E. Simon, T. Nicol, E. Mauerhofer, "Feasibility study of fissile mass detection in 870 L radioactive waste drums using delayed gamma rays from neutron-induced fission", Journ. Radioanal. Nucl. Chem., vol. 322, 1185-1194 (2019).
- [5] E. Simon, F. Jallu, B. Pérot, S. Plumeri, *"Feasibility study of fissile mass quantification by photofission delayed gamma rays in radioactive waste packages using MCNPX"*, Nuclear Instruments and Methods in Physics Research Section A, vol. 840, 28-35, (2016).

726	
727	[6] S. Kahane, A. Wolf, "Photofission of ²³⁸ U with neutron-capture gamma rays",
728	Phys. Rev. C, vol. 32, no 6, (1985).
729	
730	[7] F. Carrel, M. Agelou, M. Gmar, F. Lainé, J. Loridon, JL. Ma, C. Passard, (), B.
731	Poumarède, "New Experimental Results on the Cumulative Yields From Thermal
732	Fission of ²³⁵ U and ²³⁹ Pu and From Photofission of ²³⁵ U and ²³⁸ U Induced by
733	Bremsstrahlung", IEEE Transactions on Nuclear Science, 58, 2064-2072, (2011).
734	
735	[8] H. Naik, V. T. Nimje, D. Raj, S. V. Suryanarayana, A. Goswami, S. Singh, S. N.
736	Acharya, K. C. Mittal, S. Ganesan, P. Chandrachoodan, V. K. Manchanda, V.
737	Venugopal, S. Banarjee, "Mass distribution in the bremsstrahlung-induced fission
738	of ²³² Th, ²³⁸ U and ²⁴⁰ Pu", Nucl. Phys. A 853, 1 (2011).
739	
740	[9] H. Naik, F. Carrel, G. N. Kim, F. Laine, A. Sari, S. Normand, A. Goswami, "Mass
741	yield distributions of fission products from photo-fission of ²³⁸ U induced by 11.5-
742	17.3 MeV bremsstrahlung", Eur. Phys. J. A 49, 94 (2013).
743	
744	[10] H. Naik, B. S. Shivashankar, H. G. Raj Prakash, D. Raj, G. Sanjeev, N. Karunakara,
745	H. M. Somashekarappa, S. Ganesan, G. N. Kim, A. Goswami, "Measurements of
746	fission yield in 8 MeV bremsstrahlung induced fission of 232 Th and 238 U", J.
747	Radioanal. Nucl. Chem. 299, 127 (2014).
748	
749	[11] X. Wen, H. Yang, "Photofission product yields of ²³⁸ U and ²³⁹ Pu with 22-MeV
750	bremsstrahlung", Nuclear Instruments and Methods in Physics Research Section A,
751	vol. 821, 34 (2016).
752	
753	[12] Krishichayan, Megha Bhike, C. R. Howell, A. P. Tonchev, W. Tornow, "Fission
754	product yields measurements using monoenergetic photon beams", Physical
755	Review C 100, 014608 (2019).
756	

757	[13] M. Ya. Kondrat'ko, A. V. Mosesov, K. A. Petrzhak, O. A. Teodorovich, "Yields of
758	photofission of ²³⁹ Pu", Atomnaya Energiya, vol. 50, no 1, 34-36 (1981).
759 760	[14] M. Bhike, W. Tornow, Krishichayan, A. P. Tonchev, "Exploratory study of fission
761	product yield determination from photofission of ²³⁹ Pu at 11 MeV with
762	monoenergetic photons", Physical Review C 95 (2017).
763	
764	[15] C. L. Hollas, D. A. Close, C. E. Moss, "Analysis of fissionable material using
765	delayed gamma rays from photofission", Nuclear Instruments and Methods in
766	Physics Research Section B, vol. 24-25, Part 1, 503-505 (1987).
767	
768	[16] D. H. Beddingfield, F. E. Cecil, "Identification of fissile materials from fission
769	product gamma-ray spectra", Nuclear Instruments and Methods in Physics
770	Research Section A, vol. 417, 405-412 (1998).
771 772	[17] M. Gmar, J.M. Capdevila, "Use of delayed gamma spectra for detection of
773	actinides (U,Pu) by photofission", Nuclear Instruments and Methods in Physics
774	Research Section A, vol. 422, 841-845 (1999).
775	
776	[18] M. Delarue, Eric Simon, Bertrand Pérot, Pierre-Guy Allinei, Nicolas Estre, Daniel
777	Eck, Emmanuel Payan, David Tisseur, O. Gueton, Denise Ricard and Johann Collot,
778	"Localization of nuclear materials in large concrete radioactive waste packages
779	using photofission delayed gamma rays" EPJ Web of Conferences 253, 08003
780	(2021)
781	
782	[19] M. Delarue, E. Simon, B. Pérot, P.G. Allinei, N. Estre, E. Payan, D. Eck, D.
783	Tisseur, I. Espagnon, J. Collot, "Measurement of cumulative photofission yields of
784	²³⁵ U and ²³⁸ U with a 16 MeV Bremsstrahlung photon beam", Nuclear Instruments
785	and Methods in Physics Research Section A, vol. 1011 (2021).
786 787	[20] B. Pérot, F. Jallu, C. Passard, O. Gueton, PG. Allinei, L. Loubet, N. Estre, E.
788	Simon, C. Carasco, C. Roure, L. Boucher, H. Lamotte, J. Comte, M. Bertaux, A.
789	Lyoussi, P. Fichet, F. Carrel, "The characterization of radioactive waste: a critical

790	review of techniques implemented or under development at CEA, France", EPJ
791	Nuclear Sciences and Technologies 4, 3 (2018).
792	
793	[21] M. Bricka, VD. Nguyen, L. Portheos, "Le spectromètre neutrons à activation
794	SNAC – Principe – Description – Utilisation", CEA R-4226 report (1971).
795 796	[22] D. Bernard, O. Sérot, E. Simon, L. Boucher and S. Plumeri, "A Photofission
797	Delayed $\gamma$ -ray Spectra Calculation Tool for the Conception of a Nuclear Material
798	Characterization Facility", EPJ Web of Conferences 170, 06001 (2018).
799	
800	[23] D.A. Brown, et al., "ENDF/B-VIII.0: The 8 th Major Release of the Nuclear
801	Reaction Data Library with CIELO-project Cross Sections, New Standards and
802	Thermal Scattering Data", Nucl. Data Sheets 148, 1-142 (2018).
803 804	[24] A-C. Simon, J-P. Both, I. Espagnon, J. Lefevre, V. Picaud, A. Pluquet, "A new
805	computer code for the determination of the isotopic composition of actinides by X-
806	and gamma-ray spectrometry and its applications", European Nuclear Conference
807	2005, France (2006).
808	
809	[25] A-C. Simon, F. Carrel, I. Espagnon, M. Lemercier and A. Pluquet, "Determination
810	of Actinide Isotopic Composition: Performances of the IGA Code on Plutonium
811	Spectra according to the Experimental Setup", IEEE Transactions on Nuclear
812	Science, vol 58, no 2 (2011).
813 814	[26] A. J. M. Plompen, O. Cabellos, C. De Saint Jean <i>et al</i> . The joint evaluated fission
815	and fusion nuclear data library, JEFF-3.3. Eur. Phys. J. A 56 181 (2020).
816	
817	[27] R. Nath, RJ. Schulz, "Determination of high-energy X-ray spectra by
818	photoactivation", Medical Physics, vol. 3, no. 3, 133-141 (1975).
819	
820	[28] Los Alamos National Laboratory, Mcnp 6 TM User's Manual, Denise B. Pelowitz
821	(2013).
822	

823	[29] N. Otuka, E. Dupont, V. Semkova, B. Pritychenko, A. I. Blokhin, M. Aikawa, S.
824	Babykina, M. Bossant, G. Chen, S. Dunaeva, R. A. Forrest, T. Fukahori, N.
825	Furutachi, S. Ganesan, Z. Ge, O. O. Gritzay, M. Herman, S. Hlavač, K. Katō, B.
826	Lalremruata, Y. O. Lee, A. Makinaga, K. Matsumoto, M. Mikhaylyukova, G.
827	Pikulina, V. G. Pronyaev, A. Saxena, O. Schwerer, S. P. Simakov, N. Soppera, R.
828	Suzuki, S. Takács, X. Tao, S. Taova, F. Tárkányi, V. V. Varlamov, J. Wang, S. C.
829	Yang, V. Zerkin, Y. Zhuang, "Towards a More Complete and Accurate
830	Experimental Nuclear Reaction Data Library (EXFOR): International
831	Collaboration Between Nuclear Reaction Data Centres (NRDC)", Nucl. Data
832	Sheets 120, 272-276 (2014).
833	

- [30] C. Plaisir et al., "Measurement of the ⁸⁵Rb(γ, n)^{84m}Rb cross-section in the energy
  range 10–19 MeV with bremsstrahlung photons", Eur. Phys. Journal A 48:68
  (2012). (EXFOR G0033.002).
- 837 838
- [31] H. Bateman, "*The solution of a system of differential equations occurring in the theory of radioactive transformations*", Proc. Cambridge Philosophical Society, vol. 15, 423-427 (1910).
- 842

846

850

- [32] P. Leconte, J. P. Hudelot and M. Antony, "Accurate γ-ray spectrometry *measurements of the half-life of* ⁹²Sr", Applied Radiation and Isotopes, vol. 66, issue
  10, 1450-1458 (2008).
- [33] O. O. Parlag, V. T. Maslyuk, E. V. Oleynikov, I. V. Pylypchynets, A. I. Lengyel, *"Product yields for the photofission of ²³⁹Pu with bremsstrahlung at 17.5 MeV boundary energy"*, Problems of Atomic Science and Technology, vol. 136 (2021).
- [34] ANDRA (French Radioactive Waste Management Agency), Radioactive waste
   classification, website: <u>https://international.andra.fr/radioactive-waste-</u>
   <u>france/waste-classification</u>.

854

[35] K.-H. Schmidt, B. Jurado, C. Amouroux, C. Schmitt, "General Description of *Fission Observables: GEF model code*", Nucl. Data Sheets, vol. 131, 107-221
(2016).

### Highlights

- Photofission is a promising technique to assay nuclear waste packages
- Photon activation analysis is used to characterize a 17.5 MeV Bremsstrahlung beam
- Photofission products cumulative yields have been determined for ²³⁹Pu, ²³⁵U and ²³⁸U
- The contribution of neutron fission has been estimated with the MCNP code
- Photofission product yield difference makes actinides differentiation practicable

#### CRediT author statement:

**M. Delarue**: Methodology, Investigation, Software, Writing – Original Draft, Visualization, Formal analysis

- E. Simon: Conceptualization, Methodology, Writing Review & Editing
- B. Pérot: Supervision, Writing Review & Editing
- P.G. Allinei: Software, Investigation, Resources
- N. Estre: Investigation, Resources
- E. Payan: Investigation, Resources
- D. Eck: Investigation, Resources
- I. Espagnon: Software
- J. Collot: Supervision, Writing Review & Editing

#### **Declaration of interests**

 $\boxtimes$  The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: