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ABSTRACT

Accurate prediction of binding affinities from protein-ligand atomic coordinates remains a major
challenge in early stages of drug discovery. Using modular message passing graph neural networks
describing both the ligand and the protein in their free and bound states, we unambiguously evidence
that explicit description of protein-ligand non-covalent interactions does not provide any advantage
with respect to ligand or protein descriptors. Simple models, inferring binding affinities of test samples
from that of the closest ligands or proteins in the training set, already exhibit good performances
suggesting that memorization largely dominates true learning in the deep neural networks. The current
study suggests considering only non-covalent interactions while omitting their protein and ligand
atomic environments. Removing all hidden biases probably require much denser protein-ligand
training matrices and a coordinated effort of the drug design community to solve the necessary

protein-ligand structures.



INTRODUCTION

Predicting absolute binding free energies (affinities) from three-dimensional atomic coordinates of
protein-ligand complexes remains one of the grand challenges of computational chemistry.! For
example, drug discovery would immediately benefit from key advances in this topic, by better triaging
potentially interesting molecules among virtual screening hits>3 and proposing viable analogs in
emerging ultra-large chemical spaces® for hit to lead optimization. With the ever increasing amount of
high-resolution experimentally-determined protein-ligand structures,® binding affinity prediction
algorithms have switched from physics-based® to empirical scoring functions,” and in the last years to
machine learning® and deep learning methods.>° The latter category of descriptor-based scoring
functions has notably led to numerous protein-ligand affinity models 138 (see a non-exhaustive list
Table S1), notably because deep learning does not require explicit descriptor engineering and is ideally
suited to find hidden non-linear relationships between three-dimensional protein-ligand structures
and binding affinity. The first deep neural networks (DNNs) to predict binding affinities were
convolutional neural networks (CNN) reading a protein-ligand complex as an ensemble of grid-based
voxels with multiple channels corresponding to pharmacophoric properties.!> ¢ The CNN
architecture is relatively inefficient from a computational point of view since most of the voxels do not
carry any relevant information. Moreover, the search for the best possible hyperparameters is very
demanding with respect to memory usage and cpu time. Last, the same object must be presented in
multiple orientations in a three-dimensional (3D) grid to remove the dependency to the initial atomic
coordinates. To overcome these issues and speed-up the training process, most recently developed
DNNs reads inputs in the form of a molecular graph®® where nodes are represented by atoms and
edges by bonds and/or non-covalent intra- and intermolecular interactions. Atoms and edges are
embedded with user-defined atomic and/or pharmacophoric properties, enabling all graph
components to be updated according to their surroundings all along the network during the training

phase.



A gold standard dataset to probe DNN models is the PDBbind database, developed by Wang et al.*°
and updated on a regular basis.*! In its last version (v.2020), it stores 19443 protein-ligand X-ray
structures of known binding affinity expressed as either inhibition constant (K;), dissociation constant
(Kg) or half-maximum inhibition concentrations (ICso). The general set which encompasses all data is
further split in a refined set (5316 entries in the v.2020 release) containing high-quality X-ray structures
and the most reliable affinity data (Ki and Kqonly), and a core set (290 entries) made of a set of 58
proteins co-crystallized with five different ligands of various affinity. Despite several warnings on the
composition?® and completeness*? of the PDBbind archive, it remains the largest resource to train
machine learning models for structure-based prediction of binding affinities. Many graph neural
networks (GNN), used as end-to-end standalone architecture,'® %20 24 38 in cascade® or in
combination with CNNs,** have been described recently. None of them significantly outperforms first-
generation CNNs, most models presenting rather similar accuracies (Pearson correlation coefficient in
the 0.80-0.85 range; root-mean square error around 1.2-1.3 pK unit) in predicting affinities for the

PDBbind core set (Table S1) but significantly lower accuracies for true external test sets.3%33 35

Despite the strong commitment of data scientists, we believe that drug discovery has not really
benefited from the already described models for the major reasons that machine (deep) learning
scoring functions still generalize poorly and are not readily applicable to virtual screening of large
compound libraries.3? This major discrepancy does not prevent computer scientists to propose novel
deep learning models, almost on a monthly basis, usually focusing on the novelty of the deep neural
network architecture but often omitting to answer three questions: (i) is the apparent performance

43-4% or the protein-ligand training space? % * (ii) does the

biased by either the chosen descriptors,
model generalize well to external test sets? (iii) has the model captured the physics of intermolecular

interactions and does it achieve good predictions for meaningful reasons?

A first warning has been raised by several groups noticing that CNNs trained on voxelized protein-

ligand complexes or graphs do not really learn the physics of protein-ligand recognition because ligand-



only or protein-only models exhibit performances quite similar to those reached by protein-ligand

1138 rayeals

reading models.1% 46442935 Comparison of the performance of 24 recently-published DNNs
that the model accuracy is independent on the size of the training set (e.g. PDBbind general vs. refined
set; Table S1), contradicting the general idea that more high-quality input protein-ligand structures are
required to generate better models. Data augmentation strategies consisting in adding high-quality
docking poses to PDBbind X-ray structures also leads to contradictory results.?? 28 3% 38 Although very
few attempts to predict a true thermodynamic cycle, considering proteins and ligands in their free and
bound states have been reported;'* 2> 35 it remains counter-intuitive that the best models are not
obtained with architectures explicitly taking into account the three bound/unbound species.
Moreover, there is no relationship between the complexity of protein (sequence vs. structure) and
ligand (SMILES strings vs. 2D graphs vs. 3D structures) descriptors and the accuracy of the resulting
DNN models.*’-*%39 Simple models even omitting to consider the protein-ligand bound state are equally

47,31, 48, 42 1t is therefore tempting to speculate that DNNs just

good at predicting binding affinities.
memorize hidden patterns in either the ligand or protein spaces on which the models have been
trained. As a consequence, modifications of protocols used to split input data into training, validation

and test sets have a major impact on the accuracy and applicability domain of obtained models.'> %

Since the publicly available training set is limited to the world of PDBbind protein-ligand complexes,
there is a need of better identifying still hidden biases in the PDBbind archive, as well as to remove
probable redundancies in the choice of descriptors. In the current study, we present a critical
evaluation of a modular message passing graph neural network architecture to predict binding
affinities from three independent graphs describing proteins, ligands and their complexes. The
modularity of the DNN architecture enables to depict the true contribution of each state (free vs.
bound) of the two partners and to clearly evidence serious biases in both the ligand and protein
composition of the PDBbind space. The current study suggests that descriptors focusing on non-
covalent interactions with no ligand/protein additional information are the most suited to unbiased

learning.



RESULTS AND DISCUSSION.

Describing ligands, proteins and protein-ligand complexes as graphs. Ligand graphs were generated
from PDBbind mol2 input files, defining atoms as nodes and bonds as edges. Each node was annotated
by the corresponding atom element, whereas each edge was annotated by the corresponding bond

length (Figure 1A).

Protein graphs were described from ligand-binding sites, defined as any amino acid, ion or water
molecule for which one heavy atom is less than 4 A away from any ligand heavy atom (Figure 1B). In
the protein graph, nodes correspond to protein pseudoatoms (PPA), as previously defined by Schmitt
et al.,* and placed at key main chain/side chain positions and annotated by the molecular interaction
properties of the corresponding residue (Figure S1). A total of six properties were used to annotate
protein nodes with the following labels and interaction properties: CA, Aliphatic (hydrophobic
interactions); O, hydrogen-bond acceptor (hydrogen bond); CZ, aromatic (m-m interaction); OG,
hydrogen-bond acceptor and donor (hydrogen bond); N, hydrogen-bond donor (hydrogen bond); ZN,
metal (metal chelation). To avoid keeping protein residues whose side chains are pointing outwards
the ligand-binding cavity, a residue-based filtering was done based on the angle between the ligand
center of mass, the residue c-alpha atom and all residue-specific PPAs. PPAs of amino acid side chains,
for which the corresponding angle was higher than 90 deg. were removed from the binding site
definition. Last, edges were added between final protein nodes distant by less than 4.0 A and further

annotated according to the distance between the corresponding PPAs.
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Figure 1. Encoding protein, ligand and protein-ligand structures (PDB ID 2PSV) in graphs. A) Nodes are set at
ligand atomic coordinates (2D sketch in insert), and labelled by atomic element. Edges represent bonds,
annotated by bond length. B) Proteins are represented by ligand-binding site pseudoatoms (slate blue spheres)
placed at amino acid-specific positions. Nodes are set at protein pseudoatom coordinates and annotated by
pharmacophoric properties. Edges link two nodes distant by less than 4.0 A. C) Protein-ligand interactions are
represented by interaction pseudoatoms (pink and blue spheres) set at protein and ligand-interacting atoms.
Edges are placed between two nodes (protein, blue; ligand, red) in direct interaction, or between protein or ligand
notes if distant by less than 4.0 A. Each edge is annotated by the distance between the corresponding nodes.



Non-covalent interactions (hydrophobic, aromatic, hydrogen bonds, ionic bonds, metal chelation; see
details in Table S2) between protein and ligands were computed on the fly with the GRIM routine of

the IChem v5.2.9 package.*

For each interaction, interaction pseudoatoms (IPA) are placed at the two atoms of the interacting pair
(Figure 1C). The resulting representation was converted to a graph where nodes represent either
protein or ligand-interacting atoms. Edges between nodes were added in two consecutive steps. First,
the principal edges were added between interacting IPAs. Then, secondary edges were added between
non-interacting IPAs at the conditions that the corresponding IPAs originate from the same molecule
(protein or ligand) and that their distance is less than 4 A. Each node was annotated by one of the
following label, according to the nature of the corresponding non-covalent interaction: CA,
hydrophobic; NZ; ionic (Interacting protein atom is positively charged); N, hydrogen-bond (interacting
protein atom is donor); OG, hydrogen-bond (interacting protein atom is both acceptor and donor); O,
hydrogen-bond (interacting protein atom is acceptor); CZ, aromatic; OD1, ionic (interacting protein
atom is negatively charged); ZN: metal coordination. An additional binary label was added to nodes to
account for their belonging to either the protein or the ligand. The only edge feature is the distance
between pseudoatoms corresponding to the graph nodes (edge length). Therefore, the information
on the spatial structure of the binding site was partially preserved, while the representation remained

invariant to binding site rotations and node numbering

Deep neural network architecture. We used a graph convolutional neural network architecture that
belongs to the family of message passing neural networks (MPNN), recently shown to exhibit excellent
performance in predicting quantum chemical properties.* The MPNN is here applied to an undirected
graph G with node features x,and edge features e,,,. In a MPNN, each node v in the graph has a
hidden state hl, (feature vector). For each node v, a function of hidden states and edges of all

neighboring nodes is aggregated. The hidden state of the node Vt is then updated with the obtained



t+1

message m;," ~and its previous hidden state. Three main equations characterize the MPNN on graphs.

First the message mi*! obtained from all neighboring nodes N(v) is given by equation 1:

mitt =¥ enw) Me(hy, by, eu) (1)

where M is the aggregation function applied at step t,

h% the hidden state of node v,

ht, the hidden state of the neighboring node w,

e,y is the feature of edge between v and w.

The hidden state h}*! of the node v is then updated according to equation 2:
hytt = Up(hs,my™)  (2)

where U;, the update function is another neural network used to update the hidden state by taking

into account both the sum of all previous messages and the previous hidden state.

The message passing algorithm is repeated a user-defined number of times until the readout phase

generates a final feature vector ¥ describing the entire graph G according to equation 3:
y=R{hjlveG) (3)
where R is the readout function

T is the number time steps

The message functions M, , node update function U; and readout function R are all learned

differentiable functions. The complete architecture of the graph convolutional network (Figure 2A)
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Figure 2. General architecture of a MPNN with two message passing steps. A) Initial graph with node and edge
labels. B) Transformation of node and edge feature vectors with fully connected layers (fc) C) Application of linear
layers to node and edge feature vectors. D) Message generation. E) Message passing. F) Node features update
using a standard LSTM cell architecture. G) Graph with updated node features. H) Readout. I) Fully connected (fc)
layers.

includes an MPNN module with a customizable hidden size and a two-layer dense module with a top

layer size of hidden size / 4. The invariance of the MPNN readout function to node and edge re-
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enumeration enables applying MPNNs to a merged input consisting of multiple disconnected graphs
describing protein, ligand, and protein-ligand interactions without modifying the network architecture.
In the current study, MPNN models have been derived from graphs describing the two molecular
species (protein, ligand) in both their liganded and unliganded states, thereby enabling to evaluate the
exact contribution of each state. To ascertain the fairest possible comparison, all models were trained

on the same training/validation set using exactly the same input graphs.

DNN models are heavily biased by ligand and protein features. Starting from three possible input
graphs describing the protein, the ligand and their non-covalent interactions, seven combinations (one
graph, two graphs, three graphs) were first tested as baselines with two objectives: (i) benchmark the
performance of MPNN in predicting binding affinities with respect to other DNN architectures,!'3% 3%

38 (ii) analyze the contribution of each input graph and assess their potential synergistic use (Table 1).

Despite our customized protocol to process PDBbind entries, we were able to reproduce the

performance of the native Pafnucy model,®

estimated by the Pearson’s correlation coefficient Rp in
predicting experimentally-derived affinities for samples of the PDBBind 2016 core set (Rp=0.777; Table
1). Our seven MPNN models exhibit various performances with Rp values ranging from 0.687 to 0.813.
Intuitively, one would have expected that a model trained on protein-ligand interactions (I model)
achieves better performance than models trained solely on either the ligands (L model) or the proteins
(P model). However, the P and L models exhibit a better performance than the | model (Table 1). Out
of the one-component models, the ligand-based model is clearly the one leading to the best results
(Rp = 0.749, RMSE=1.567). Combining two graph inputs increases the accuracy of the corresponding
predictions, with a clear advantage to the PL model (Rp = 0.812, RMSE=1.553) omitting protein-ligand
interaction features. The most sophisticated model, taking into account the three graph inputs (PLI

model), does not provide any clear advantage compared to the PL model, suggesting that explicitly-

defined molecular interactions are not required to predict binding affinities of the core set sample.
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Applying the models to a much larger (n=3386) and more difficult hold-out set, obtained by temporal
splitting of the PDBbind dataset (hold-out 2019 set) illustrates a moderate generalization capacity, with

the Rp value decreasing by ca. 0.15 unit for all models (Table 1).

Table 1. Performance of modular MPNN models in predicting affinities for the external 2016 core set

and the 2019 hold-out set.

Model® 2016 core set 2019 hold-out set
Rp RMSE® Rp RMSE
P 0.725 1.569 0.570 1.528
L 0.749 1.567 0.611 1.455
0.687 1.605 0.538 1.563
PL 0.812 1.553 0.645 1.512
Pl 0.777 1.462 0.613 1.485
LI 0.780 1.477 0.630 1.425
PLI 0.813 1.511 0.652 1.481
Pafnucy® 0.773 1.429 0.456¢ 1.642

2 P: protein graph, L: ligand graph, I: interaction graph; PL: merged protein and ligand graphs, PI: merged protein and interaction graph; LI:
merged ligand and interaction graph; PLI: merged protein, ligand and interaction graph.

® root-mean square error, in pK unit.
¢ in-house Pafnucy prediction (Rp=0.78 in the original paper)*®

9 predictions failed for 29 entries.

From a pure statistical point of view, the performance of four out of the seven MPNN models is
superior to that achieved with the CNN Pafnucy model, when applied to the 2016 external core set

(Table 1). Extending predictions to the challenging 2019 hold-out set suggests that all models

12



outperform Pafnucy. Assuming that a Pearson Rp threshold value of 0.600 is commonly used in
pharmaceutical industrial settings to qualify a good predictive QSAR model,*? five out of the seven
MPNN models could be considered as satisfactory. However, these models remain enigmatic from a
physicochemical point of view since ligand-only and protein-only models still outperform the
interaction model. Moreover, the impact on model predictive performance of the explicit
consideration of protein-ligand interactions in the two or three-component models remains very
limited (Table 1). Noteworthy, focusing the analysis on three target classes for which enough samples
are present in the hold-out set (GPCRs, 47 samples; kinases, 572 samples; nuclear receptors, 106

samples) did not change the above conclusions (Figure S2).

Several conclusions can be drawn from these results. First, the herein implemented MPNN architecture
provides a lower accuracy to previously reported CNN and GNN models, when just protein-ligand
interactions are taken as input. Pafnucy, used here as a state-of-the-art CNN achieves a better accuracy
than the MPNN | model (Table 1). Second, protein-ligand binding affinities of the 2016 core set can
apparently be predicted from sole protein or ligand structures. Third, the explicit description of
protein-ligand interactions does not provide any clear advantage compared to the corresponding
interaction-agnostic models (e.g. compare P to PI, L to LI, and PL to PLI models, Table 1). Fourth, all
models exhibit a decreased accuracy when applied to a hold-out set of newly described complexes,
suggesting a probable overtraining. Most of these observations are counter-intuitive and cannot been
rationally explained by first-principle physics. They evidence, to our viewpoint, potential biases in the
composition of the PDBbind training/test sets suggesting that the derived models have partly
memorized input data but not learned the physics of protein-ligand non-covalent interactions. This
phenomenon has already been described for many ligand-based machine learning models and
frequently happens when training and test sets exhibit significant redundancies.>®* Another alert, that

we already mentioned for both machine learning and deep neural networks,*> >*

is their propensity to
predict binding affinities with apparently satisfactory performance metrics (Rp, RMSE), but where the

predicted values are in fact contained within a very tiny range centered on the mean value of training

13



samples. This tendency is again observed for the current predictions of all MPNN models, whatever

the chosen input graph(s) and external test set (Figure 3).
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Figure 3. Distribution of experimental and predicted affinities for the 2016 core set (n=257) and the 2019 hold-
out set (n=3386). Exp: experimental affinity; P, L, I, PL, PI, LI, PLI: predicted by MPNN models using protein(P),
ligand(L) and protein-ligand interaction (I) graphs used alone or in combinations; Paf: predicted by the Pafnucy
model. The boxes delimit the 25" and 75t percentiles, and the whiskers delimit the 1t and 99" percentiles. The
median and mean values are indicated by a horizontal line and a filled square in the box, respectively. Outliers
are indicated by a diamond.

Whereas experimental affinities of the two external test sets are spread over 10 pk units, MPNN and
Pafnucy predictions are restricted to ca. 6 pk units. Considering only the 25" and 75" percentiles of
the distributions (boxes in Figure 3), 50% of the predicted data are centered on a mean value + 1.5 pk
unit, Pafnucy predictions lying even in a narrower range for 2019 hold-out set predictions (Figure 3).
The prediction error is statistically minored if the output value is close to the mean of trained samples.
This may be a reason why machine learning models tend to yield narrow distribution of predicted
values. This phenomenon might be even amplified in machine learning models for which the loss
function aims at minimizing the root-mean-square error. Altogether, we suspect significant biases in
the ligand and protein composition of the PDBbind archive which, to our viewpoint, should prevent

the blind usage of DNN models in prospective applications.
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Simple memorization models suggest that ligand and protein neighborhoods contribute massively
to MPNN predictions. To estimate the relative contribution of simple memorization vs. true learning
when applying MPNNs to predict affinities for PDBbind samples, we generated simple memorization
baseline models in which the predicted affinity of a test sample was just inferred by ligand or protein
similarity to the five closest training samples (Table 2). Of course, such memorization models are

meaningless and just define baselines to quantify the amount of biases in the training dataset.

Table 2. Performance of simple memorizing models in predicting affinities for the external 2016 core

set and the 2019 hold-out set.

Model 2016 core set 2019 hold-out set
Rp RMSE Rp RMSE
PLI MPNN? 0.813 1.511 0.652 1.481
Ligand similarity® 0.663 1.624 0.509 1.641
Protein similarity© 0.547 1.765 0.310 1.794

? three —component (protein, ligand, protein-ligand interactions) MPNN model of Table 1

® prediction is equal to the average affinity of the five training samples with the most similar ligands, similarity being expressed by a Tanimoto
coeeficient on ECFP4 circular fingerprints (see Experimental section).

¢ prediction is equal to the average affinity of the five training samples with the most similar proteins, similarity being expressed by an
Euclidean distance on protein cavity fingerprints (see Experimental section)

Given its simplicity, the ligand memorization model performs remarkably well on the two external test
sets (Table 2) and is almost equivalent in accuracy to the protein-ligand interaction MPNN model (I
model, Table 1). The protein similarity model exhibits a decreased but still noticeable performance.
The observed dependency was relatively insensitive to the number of closest training samples (ligands,
proteins) used to infer average affinity values for prediction (Figure S3). We can therefore conclude
that simple memorization probably accounts for a large part of the excellent performance of the MPNN

model using ligand, protein and protein-ligand interaction graphs as input (Table 2).
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Undersampling the training set does not remove ligand and protein biases. The goal of this procedure
was to reduce the bias originating from the sampling of proteins and ligands present in the PDBBind
dataset. So, we undersampled the PDBbind training set by removing progressively the protein-ligand
pairs which are easily predictable if we rely solely on protein or ligand graphs, while ignoring the
interaction graphs. Intuitively, those are probably the most biased datapoints. As a first approach to
remove potential ligand and protein biases in the training set, we filtered out all training samples
whose affinities were easily predicted by ligand-only or protein-only five-fold cross-validation MPNN
models. The protocol was repeated for batches of 50 samples to get a good tradeoff between speed

and precision of the unbiasing algorithm.

2016 core set 2019 hold-out set
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Figure 4. Effect of undersampling the PDBbind training set on the on the scoring power of MPNN models in
predicting binding affinities for the 2016 core set and the 2019 hold-out set. Default models were trained on the
full set (9662 entries) whereas undersampled models were trained only on 4635 samples. P: protein graph model,
L: ligand graph model, I: interaction graph model; PL: merged protein and ligand graphs model, PI: merged protein
and interaction graphs model; LI: merged ligand and interaction graphs model; PLI: merged protein, ligand and
interaction graphs model.

Undersampling reduced the size of the training set from 9662 to 4635 samples, but marginally affected
the accuracy of all MPNN models, whatever the graphs used as inputs (Figure 4). Interestingly,
decreasing the size of the training set by 50% did not alter the quality of the predictions for both

16



external sets. However, the same obvious biases (good performance of ligand-only and protein-only
models, no benefit of explicitly considering protein-ligand interactions) were found again, suggesting

that the hidden biases reported above are still present in the undersampled training set.

Influence of ligand buriedness. In a second approach, we looked whether the buriedness of the
protein-bound ligands in the training and external sets may be a source of potential biases. Indeed, a
fully buried ligand would generate quite complementary protein and ligand graphs that implicitly
encode all possible non-covalent protein-ligand interactions. In such cases, it might be conceivable to
predict albeit with a moderate accuracy the binding affinity of the corresponding complex from sole

ligand or protein graphs.

Computing the buried surface area of all PDBbind ligands in their bound state shows a similar
distribution for the three sets (training, 2016 core set, 2019 hold-out set) centered on a mean value

close to 60-65% (Figure 5A).
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Figure 5. Effect of ligand buriedness on MPNN predictions. (A) Distribution of the buried surface area of protein-
bound PDBbind ligands. (B) Influence of the protein-bound ligand buriedness on the scoring power of MPNN
models in predicting binding affinities for the core set and the 2019 hold-out set. P: protein graph model, L: ligand
graph model, I: interaction graph model ; PL: merged protein and ligand graphs model, Pl: merged protein and
interaction graphs model; LI: merged ligand and interaction graphs model; PLI: merged protein, ligand and
interaction graphs model.
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We then trained novel MPNN models on two subsets of the PDBbind training set defined by ligand
buriedness. The first subset contained the samples with the 50% less buried ligands, whereas the
second subset encompassed complexes with the 50% more buried ligands. Using these new MPNN
models to predict the binding affinities of samples from the two external sets gave disappointing
results (Figure 5B). First, all new models were less accurate that the former models trained on the full
training set. Second, neither the ligand nor the protein dependency was removed in the new models
since novel ligand-only (I models) and protein-only models (P models) were still able to predict binding
affinities of both external test samples (Figure 5B). We can therefore safely conclude that ligand

buriedness is not the cause of protein and ligand biases in the PDBbind dataset.

Complexity of the protein-ligand interaction descriptors. As a third approach, we made the
hypothesis that the importance of protein and ligand descriptors with respect to the interaction
descriptors may originate from the different complexity level of the input graphs. Indeed, interactions
graphs computed in IChem are far simpler than the cognate protein and ligand graphs, when
considering the number of nodes, edges and the graph density. By default, protein-ligand interactions
have been computed using strict geometrical rules (distances, angles),>® notably interaction-specific
upper distance thresholds (hydrogen bond: 3.5 A, aromatic rt- it interactions: 4.0 A, ionic bonds: 4.0 A,
hydrophobic interactions: 4.5 A), leading to relative simple graphs with respect to the number of nodes
and edges (Figure 6). To increase the importance of protein-ligand interactions in our MPNN models,
we therefore increased the complexity of interaction graphs by registering non-covalent interactions
up to of 6.0 A. The new interaction graphs ("int6" label) contain much more nodes and edges, are

definitely denser and are now comparable with protein and ligand graphs (Figure 6).
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Figure 6. Distribution of the number of nodes (A), number of edges (B) and density (C) for interaction (int), protein

(prot) and ligand graphs derived from PDBbind protein-ligand complexes (n=14 215). The graph density is defined

Nedges

as Density = where Nedges is the number of edges and Nnodes is the number of nodes. By default,

Nnodes (Nnodes —1)
protein-ligand interactions are computed using interaction-specific upper distance thresholds (hydrogen bond:

3.5 A, aromatic - mwinteractions: 4.0 A, ionic bonds: 4.0 A, hydrophobic interactions: 4.5 A). In the extended mode
(int6), a larger distance cut-off of 6.0 A is applied to all non-covalent interactions.

Using the new interaction graphs as input to MPNN models increased significantly the scoring power
of the interaction-only | model for the two external test sets (core set, Rp= 0.728; hold-out set,
Rp=0.607; Figure 7). Interestingly, this modification did not increase the accuracy of two-component
and three-component models (Figure 7). Given the marginal benefit of combining the new interaction
graph with either protein and/or ligand graphs, using the single new interaction graph definition
appears as the best possible compromise between prediction accuracy, model applicability and lower

risk of memorization effects.
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Figure 7. Influence of the interaction graph complexity on the on the scoring power of MPNN models in predicting
binding dffinities for the 2016 core set and the 2019 hold-out set. By default, (blue bars), protein-ligand
interactions are computed using interaction-specific upper distance thresholds (hydrogen bond: 3.5 A, aromatic
- 1 interactions: 4.0 A, ionic bonds: 4.0 A, hydrophobic interactions: 4.5 A). In the extended mode (tan bars), a
larger distance cut-off of 6.0 A is applied to all non-covalent interactions. P: protein graph model, L: ligand graph
model, I: interaction graph model; PL: merged protein and ligand graphs model, Pl: merged protein and
interaction graphs model; LI: merged ligand and interaction graphs model; PLI: merged protein, ligand and
interaction graphs model.

Sparsity of the training protein-ligand matrix.

Despite a regular increase in the number of entries in PDBbind (Fig. 8A), the accuracy of machine
learning models in predicting binding affinities has reached a plateau (Rp = 0.80 + 0.05), whatever the
DNN architecture, the chosen descriptors and the size of the training set (Table 1, Table S1). Higher
accuracies are not necessarily required, given the experimental error associated with heterogeneous
binding assays use to collect PDBbind affinities. However, better models are still desirable, notably to
achieve accurate and stable predictions when applied to external test sets. Looking at the yearly
increase in the number of PDBbind samples, it appears that the number of unique complexes grows
faster that the number of unique proteins, the latter increasing faster than the number of unique

ligands (Fig. 8A).
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Figure 8. Yearly evolution of the PDBbind dataset. A) Number of unique entries (protein-ligand complexes,
proteins, ligands), B) Sparsity of the protein-ligand matrix, C) Ten most frequent proteins (PDBbind 2020 release)

labelled by their UniProt identifier, D) Ten most frequent ligands (2020 release) labelled by their PDB ligand
identifier.

Considering a matrix of x proteins, y ligands and z protein-ligand complexes of known structure, the

sparsity S of the PDBbind matrix is defined by the following equation:

=1-=
S=1 oy (5)

In other words, the sparsity index describes the fraction of the overall matrix with a missing value (here
a protein-ligand complex of known structure and binding affinity). The sparsity S value is very high for
the PDBbind dataset (ca. 0.95) and even tends to slightly increases with time (Figure 8B). By
comparison with high-performance QSAR models, that rely on a minimal number of compound

annotations per assay (usually > 200), and now reach the accuracy of four-concentration ICso
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determinations,®? the sparsity of the corresponding protein-ligand matrices may reach values as low

as 0.65 56-57,52

The PDBbind matrix contains very few targets annotated by multiple ligands (Figure 8C). The number
of single ligands annotated by multiple proteins is even lower and mostly concerns target-permissive
cofactors and nucleotides (e.g. ATP, ADP, AMP, SAM; Figure 8D). To check the influence of the training
matrix sparsity, we selected the 2030 PDBbind entries from the ten most frequent proteins (Figure 8D)
to design novel training (n=1505), validation (n=147), and external test sets (core 2016, n=49; hold-out
2019, n=329). Importantly, the set membership (training, evaluation, core, hold-out) of selected
entries was kept unchanged, as well as the distribution of experimental affinities (Figure S4). The
previously described extended interaction model (int6) was here used to describe non-covalent
interactions. Altogether, the new subset contains only ten unique proteins and 1777 unique ligands,

thereby achieves a lower sparsity (5=0.885) with respect to the full PDBbind 2019 dataset (5=0.958).
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Figure 9. Increasing the density of training protein-ligand matrices to predict binding affinities for the 2016 core
set and the 2019 hold-out set. P: protein graph model, L: ligand graph model, I: interaction graph model; PL:
merged protein and ligand graphs model, PI: merged protein and interaction graphs model; LI: merged ligand
and interaction graphs model; PLI: merged protein, ligand and interaction graphs model.
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The performance of the MPNN models on the new subset is higher than that obtained on the full set
(Figure 9). Unfortunately, neither protein nor ligand dependencies have been removed when
predicting affinities for the two external test sets still focusing of the 10 most frequent proteins. The
protein-only and ligand-only models remain very accurate, notably for predicting affinities of core set
samples. Interestingly, the interaction model is the only one for which the performance is significantly
increased for the two external test sets (core set, Rp=0.852, RMSE=1.256; hold-out set, Rp=0.605,
RMSE=1.363; Figure 9). The | model appears again as a reasonable choice for predicting affinities of
novel protein-ligand complexes. The current study suggests that increasing the density of the training
protein-ligand matrix is an attractive path to increase the accuracy of affinity prediction models. From
a practical point of view, it will necessitate a coordinated effort from the drug design community and
research financing agencies to solve a wide array of protein-ligand structures in which the same target

is repeatedly pictured with different ligands of various affinities, and vice-versa.

CONCLUSIONS

Predicting binding affinities of protein-ligand complexes by considering both the corresponding free
and bound states appears frustrating because the explicit description of non-covalent intermolecular
interactions does not provide any statistical advantage with respect to simpler approximations
omitting fine details of protein-ligand interactions. The current study confirms the protein and ligand
biases already observed in several studies using DUD-E and PDBbind datasets as sources of three-
dimensional information.121% 46 44, 29,32:33, 35 However, important controversies still remain regarding
the interpretation of these observations. On one side, many computer scientists are not alerted and
keep focusing on a pure metrics-based analysis which usually shows that adding descriptors of protein-
ligand interactions indeed produce prediction models with slightly better performance metrics
(Pearson R correlation, RMSE).1%1%32.35 On the other side, several warnings have been raised by a few

46, 44, 29

groups arguing that a machine learning model must be interpretable from a physicochemical

ground. We totally agree with the latter studies, but we were unable to find obvious ways to remove
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hidden protein and ligand biases in the PDBbind archive of protein-ligand complexes. Neither
undersampling, nor considering ligand buriedness and sparsity of the protein-ligand training matrix
could remove the observed tendency of deep neural models to accurately predict binding affinities
from sole ligand or protein descriptors. The approach proposed by Yang et al.?® to split the dataset
according to ligand scaffold and protein sequence/structure similarity is efficient in reducing protein
and ligand biases but remains artificial and not satisfactory for daily practice where affinity data have
to be predicted for new proteins bound to "old ligands" (repurposing), "old proteins" bound to new
ligands (hit to lead optimization) and new proteins bound to new ligands (virtual screening). In the
current study, we therefore privileged a temporal splitting protocol in which affinities for novel
protein-ligand complexes are predicted from a model trained on past structural data. The sparsity of
the protein-ligand training matrix appears to be the most important parameter, notably for models
trained only on protein-ligand interactions. To avoid building models relying on ligand-specific and
protein-specific features, we disfavor annotating the non-covalent interactions with explicit ligand and
protein descriptors, as often seen in graph neural networks with attention procedures to annotate
graph nodes with ligand and binding pocket connectivity atomic tables.'* %2632 As a3 conclusion, we
recommend training DNN models on pure interaction descriptors in order to reduce the risk of

overfitting. Only the latter models appear robust enough to be used for prospective applications.
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EXPERIMENTAL SECTION

Dataset preparation. The index files of the PDBbind 2019 release were downloaded from the PDBbind
website.*! For each registered protein-ligand complex, the corresponding atomic coordinates (PDB
format) were retrieved from the RCSB Protein Data Bank®® and processed with Protoss v.4.0%° to
generate atomic coordinates of hydrogen atoms while optimizing the protonation and ionisable states
of both ligand and protein amino acids. Each structure was then post-processed using an in-house
script to keep only water molecules exhibiting , according to IChem®® rules, at least two hydrogen
bonds to either protein or ligand atoms. Entries with covalently-bound ligands were excluded.
Remaining protonated ligand and protein (including all remaining bound water molecules, co-factors,
prosthetic groups and ions) were saved separately in mol2 file format. A curated set of 14215
complexes, for which graphs generation succeeded without any failure, was further split in two parts
according to the release date (part 1: until 2016-12-31, part 2: after 2017-01-01). Part 1 complexes,
corresponding to the general and refined 2016 sets, were divided into training (9662 entries),
validation (903 entries) and test (257 entries) as previously described.® Part 2 (3386 entries) was saved
as an external hold out set, mimicking a real temporal split scenario in which binding affinities for newly
released structures are predicted by a model trained on past structural data. Analyzing the distribution
of pairwise ligand similarities evidence a large scaffold diversity of each set (training set, 2016 core set,
2019 hold-out set) as well as the absence of obvious similarity biases when comparing the training set
to the two external sets. The pairwise similarity and UMAP®° plots of all PDBbind ligands are provided

as supplementary information (Figure S5).

Molecular descriptors. Proteins, ligands, and protein-ligand interactions were represented as graphs
using in-house scripts and the IChem package.*® The graph processing pipeline was implemented using

the Networkx framework v.2.5.5%

25



Message passing neural networks. The neural network models were implemented using PyTorch
v.1.6.02 and PyTorch Lightning v.1.5.1.%3 The graph convolution procedure was implemented with a

Deep Graph Library framework v.0.5.0.%*

Two approaches were tested in order to consider the three molecular graphs. In the 'merged approach'
the feature vectors of the three input graphs are simply merged. An alternative architecture (parallel
approach) was tested, that included separate MPNNs for each input, yielding parallel hidden vectors,
which were concatenated before applying fully connected layers to them. Preliminary trials indicated
that the parallel architecture had higher memory requirements and demanded longer computational
time, while having an accuracy close to that obtained with the merged approach. Thus, the graph
merging was selected as the preferable procedure of multiple graph inputs. The parameter
optimization aimed to increase the determination coefficient R?in predicting binding affinities using a
stochastic gradient descent (SGD) approach with the ADAM optimizer. The learning rate (Ir) was
changed over time by the factor of 0.9 after 20 epochs with no improvement for the first Ir modification
and after 40 epochs for the subsequent Ir modifications. The weight decay and dropout rate were set
to values of 0.001 and 0.2, respectively. Other hyperparameters (batch size, size of hidden layers,

number of message passing steps) were systematically optimized by a grid search as follows:

Batch size: search space [32, 64, 128, 256 ], final value 256

size of hidden layers: search space [256, 512, 1024, 2054], final value 2054

message passing steps: search space [1, 2], final value 1

Data undersampling. Data undersampling was performed using an iterative five-fold cross-validation
approach on the whole PDBbind 2016 training set. At each iteration, ligand-only and protein-only
MPNN models were trained using one fold as a test set and the remaining folds as a training set.

Binding affinity was predicted for all test complexes with both models. At each iteration, training
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samples with the lowest sum of binding affinity prediction errors given by the two protein and ligand
models were removed from the dataset. 100 iterations of undersampling were performed and 50
complexes were removed at each iteration. The final undersampled training set contains 4635 protein-

ligand complexes.

Prediction of binding affinities with Pafnucy.'® The package was downloaded from the Pafnucy
website.®® In a first step, 3D grids were prepared for each protein-ligand complex in mol2 file format,
to create an HDF file with atoms' coordinates and features. In the second step, the recommended
model (batch5-2017-06-05T07:58:47-best) was used to rescore each protein-ligand complex,

expressing results in pKq unit.

Estimation of ligand buriedness. Ligand buriedness was computed with IChem v5.2.9%° using bound

states of protein and ligand in separate mol?2 files.

Ligand and protein pairwise similarity. Pairwise ligand similarities were computed from circular ECFP4
fingerprints® determined in PipelinePilot v.2019 (Dassault Systémes Biovia Corp., San Diego, U.S.A).
Protein similarities were estimated from the Euclidean distance of 89 cavity descriptors generated by

IChem v5.2.9.%°

Evaluation metrics. The scoring power of the different DNN models was evaluated using the Pearson's

correlation coefficient (Rp,; equation 4) and the root-mean square error metric (RMSE, equation 5).

Rp = i=1(X_i_X)(yi_Y) .
(e e

(4)
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n V.2
RMSE = /221“7” (5)

SUPPORTING INFORMATION

Location and pharmacophoric properties of protein pseudoatoms; Performance of modular MPNN
models in predicting affinities for specific target classes of the 2019 hold-out set; Influence of the
number of closest ligands or proteins used to average binding affinities in the performance of simple
memorization models; PDBbind low sparsity subset; Chemical diversity of PDBbind ligands; Structure-
based deep neural networks to predict protein-ligand binding affinities; Geometric rules to define

protein-ligand non-covalent interactions (PDF).

This material is available free of charge via the Internet at http://pubs.acs.org

DATA AVAILABILITY

Data. Input files (curated mol2 input files for PDBbind samples; ligand, protein and interaction graphs;
training, validation and test set membership) are freely available at http://bioinfo-pharma.u-
strasbg.fr/labwebsite/downloads/pdbbind.tgz.

Software. Pafnucy version 1.0 was downloaded from https://gitlab.com/cheminflBB/pafnucy, and
used with default settings. Rescoring was performed using the recommended model batch5-2017-06-
05T07:58:47-best. IChem (version 5.2.9) was downloaded from http://bioinfo-pharma.u-
strasbg.fr/labwebsite/download.html. IChem is freely available for non-profit academic research and

subjected to moderate license fees for companies.
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ABBREVIATIONS

2D, two-dimensional; 3D, three-dimensional; ADP, adenosine diphosphate; AMP, adenosine
monophosphate; ATP, adenosine triphosphate; CNN, convolutional neural network; CPU, central
processing unit; DNN, deep neural network; ECFP, extended connectivity fingerprint ; 1C50, half
maximal inhibitory concentration; IPA, interacting pseudoatom; kd, dissociation contant; Ki, inhibition
constant; MPNN, message passing neural network; PDB, protein data bank; PPA, protein pseudoatom;
Rp, Pearson correlation coefficient; RMSE, root-mean-square error; SAM, S-adenosyl methionine; t-

UMAP, Uniform Manifold Approximation and Projection.
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