On the frustration to predict binding affinities from protein-ligand structures with deep neural networks - Archive ouverte HAL
Article Dans Une Revue Journal of Medicinal Chemistry Année : 2022

On the frustration to predict binding affinities from protein-ligand structures with deep neural networks

Mikhail Volkov
Joseph-André Turk
  • Fonction : Auteur
Nicolas Drizard
  • Fonction : Auteur
Nicolas Martin
  • Fonction : Auteur
Brice Hoffmann
  • Fonction : Auteur
Yann Gaston-Mathé
  • Fonction : Auteur
Didier Rognan

Résumé

Accurate prediction of binding affinities from protein-ligand atomic coordinates remains a major challenge in early stages of drug discovery. Using modular message passing graph neural networks describing both the ligand and the protein in their free and bound states, we unambiguously evidence that explicit description of protein-ligand non-covalent interactions does not provide any advantage with respect to ligand or protein descriptors. Simple models, inferring binding affinities of test samples from that of the closest ligands or proteins in the training set, already exhibit good performances suggesting that memorization largely dominates true learning in the deep neural networks. The current study suggests considering only non-covalent interactions while omitting their protein and ligand atomic environments. Removing all hidden biases probably require much denser protein-ligand training matrices and a coordinated effort of the drug design community to solve the necessary protein-ligand structures.
Fichier principal
Vignette du fichier
revised.pdf (1.75 Mo) Télécharger le fichier
SI_revised.pdf (1016.66 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03747976 , version 1 (09-08-2022)

Identifiants

Citer

Mikhail Volkov, Joseph-André Turk, Nicolas Drizard, Nicolas Martin, Brice Hoffmann, et al.. On the frustration to predict binding affinities from protein-ligand structures with deep neural networks. Journal of Medicinal Chemistry, 2022, 65 (11), pp.7946-7958. ⟨10.1021/acs.jmedchem.2c00487⟩. ⟨hal-03747976⟩
71 Consultations
1289 Téléchargements

Altmetric

Partager

More