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Abstract
Remixed Eulerian numbers are a polynomial q-deformation of Postnikov’s mixed Eulerian numbers. They arose
naturally in previous work by the authors concerning the permutahedral variety and subsume well-known families
of polynomials such as q-binomial coefficients and Garsia–Remmel’s q-hit numbers. We study their combinatorics
in more depth. As polynomials in q, they are shown to be symmetric and unimodal. By interpreting them as
computing success probabilities in a simple probabilistic process we arrive at a combinatorial interpretation
involving weighted trees. By decomposing the permutahedron into certain combinatorial cubes, we obtain a second
combinatorial interpretation. At 𝑞 = 1, the former recovers Postnikov’s interpretation whereas the latter recovers
Liu’s interpretation, both of which were obtained via methods different from ours.
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2 P. Nadeau and V. Tewari

1. Introduction

This article studies a large family of polynomials, the remixed Eulerian numbers, which were introduced
in a previous work of the authors [18]. The terminology follows that of Postnikov [21, Section 16] where
mixed Eulerian numbers were introduced. We first recall their original geometric definition.

Throughout this article, r is a positive integer. Consider real numbers 𝜆1 ≥ · · · ≥ 𝜆𝑟+1 and
let 𝜆 � (𝜆1, . . . , 𝜆𝑟+1). The permutahedron Perm(𝜆) is the convex hull of the points 𝜆𝜎 �
(𝜆𝜎 (1) , . . . , 𝜆𝜎 (𝑟+1) ) ∈ R𝑟+1, where 𝜎 is a permutation in the symmetric group S𝑟+1. It sits in the
hyperplane {(𝑧𝑖) ∈ R𝑟+1 | 𝑧1 + · · · + 𝑧𝑟+1 = 𝜆1 + · · · +𝜆𝑟+1}. After projecting it to R𝑟 × {0}, one can com-
pute its volume vol(Perm(𝜆)). The latter is known to be a polynomial in the differences 𝜇𝑖 � 𝜆𝑖 − 𝜆𝑖+1,
homogeneous of degree r. It can thus be written as

vol(Perm(𝜆)) =
∑

𝑐=(𝑐1 ,...,𝑐𝑟 )

𝐴𝑐
𝜇𝑐1

1 · · · 𝜇𝑐𝑟𝑟

𝑐1! · · · 𝑐𝑟 !
(1.1)

with 𝑐 in W𝑟 � {(𝑐1, . . . , 𝑐𝑟 ) | 𝑐1 + · · · + 𝑐𝑟 = 𝑟}.

Definition 1.1 [21, Section 16]. For 𝑐 ∈ W𝑟 , 𝐴𝑐 is called a mixed Eulerian number.

We now recall the definition of remixed Eulerian numbers 𝐴𝑐 (𝑞) introduced in [18, Section 4.3],
where it is also pointed out why 𝐴𝑐 (1) = 𝐴𝑐 .

Let S𝑟+1 act on C[𝑞, 𝑥1, . . . , 𝑥𝑟+1] by permuting the indices of the indeterminates 𝑥1 through 𝑥𝑟+1.
Consider the operator 𝜕𝑤𝑜 that acts on polynomials 𝑓 ∈ C[𝑞, 𝑥1, . . . , 𝑥𝑟+1] as

𝜕𝑤𝑜 ( 𝑓 ) =
1∏

1≤𝑖< 𝑗≤𝑟+1
(𝑥𝑖 − 𝑥 𝑗 )

∑
𝜎∈S𝑟+1

𝜖 (𝜎)𝜎( 𝑓 ), (1.2)

where 𝜖 (𝜎) is the sign of𝜎. Then 𝜕𝑤𝑜 ( 𝑓 ) is a symmetric polynomial in 𝑥1, . . . , 𝑥𝑟+1. If f is homogeneous
of degree d in 𝑥1, . . . , 𝑥𝑟+1, then 𝜕𝑤𝑜 ( 𝑓 ) vanishes if 𝑑 <

(𝑟+1
2

)
and has degree 𝑑 −

(𝑟+1
2

)
in 𝑥1, . . . , 𝑥𝑟+1

otherwise.
Given 𝑓 ∈ C[𝑞, 𝑥1, . . . , 𝑥𝑟+1], define the q-divided symmetrization operator by

〈
𝑓
〉𝑞
𝑟+1 = 𝜕𝑤𝑜

�	
 𝑓
∏

1≤𝑖< 𝑗−1≤𝑟
(𝑞𝑥𝑖 − 𝑥 𝑗 )

��
. (1.3)

Now, assume f has total degree r in 𝑥1, . . . , 𝑥𝑟+1. Then 𝑓
�	


∏
1≤𝑖< 𝑗−1≤𝑟

(𝑞𝑥𝑖 − 𝑥 𝑗 )
��
 has degree

(𝑟+1
2

)
, and

thus
〈
𝑓
〉𝑞
𝑟+1 is a polynomial in C[𝑞] by the property of 𝜕𝑤𝑜 recalled above. In particular, for 𝑐 ∈ W𝑟 we

consider the degree r polynomial 𝑦𝑐 defined as:

𝑦𝑐 = 𝑥
𝑐1
1 (𝑥1 + 𝑥2)

𝑐2 . . . (𝑥1 + · · · + 𝑥𝑟 )
𝑐𝑟 . (1.4)

Definition 1.2 (Remixed Eulerian number 𝐴𝑐 (𝑞)). For 𝑐 ∈ W𝑟 , the remixed Eulerian number 𝐴𝑐 (𝑞) ∈
C[𝑞] is defined as

𝐴𝑐 (𝑞) =
〈
𝑦𝑐

〉𝑞
𝑟+1.

The polynomials 𝐴𝑐 (𝑞) may be equivalently defined in a number of other ways; see Section 2.
Several properties of mixed Eulerian numbers 𝐴𝑐 were given by Postnikov in a long list [21, Theorem

16.3] that exhibits the rich combinatorics attached to them. The theorem was reproduced by Liu [15,
Theorem 4.1] who used his combinatorial interpretation of 𝐴𝑐 to reprove several items on the list (and
add some more).
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The next theorem shows that all of these properties of Postnikov’s theorem q-deform nicely to 𝐴𝑐 (𝑞).
We have kept exactly the order in which Postnikov stated the properties in his statement. Where necessary,
we appeal to standard notation (as can be found in [22, 23] for instance) for various permutation statistics
and q-analogs.
Theorem 1.3. Let 𝑐 = (𝑐1, . . . , 𝑐𝑟 ) ∈ W𝑟 .
(1) 𝐴𝑐 (𝑞) is a polynomial in q with nonnegative integer coefficients.
(2) 𝐴(𝑐1 ,...,𝑐𝑟 ) (𝑞) = 𝑞

(𝑟2)𝐴(𝑐𝑟 ,...,𝑐1) (𝑞
−1).

(3) 𝐴(...,0,𝑟 ,0,...) (𝑞) with r in the ith position equals∑
𝜎∈S𝑟

des(𝜎)=𝑖−1

𝑞maj(𝜎) .

(4)
∑
𝑐∈W𝑟

𝐴𝑐1 ,...,𝑐𝑟 (𝑞)

𝑐1! · · · 𝑐𝑟 !
=

(𝑟)𝑞!
𝑟!

(𝑟 + 1)𝑟−1.

(5)
∑
𝑐∈W𝑟

𝐴𝑐1 ,...,𝑐𝑟 (𝑞) = (𝑟)𝑞! Cat𝑟 where Cat𝑟 = 1
𝑟+1

(2𝑟
𝑟

)
is the rth Catalan number.

(6) 𝐴(...,0,𝑘,𝑟−𝑘,0,...) (𝑞), with k in ith position, equals∑
𝜎∈S𝑟+1 ,des(𝜎)=𝑖
𝜎 (𝑟+1)=𝑟+1−𝑘

𝑞maj(𝜎)−𝑘 .

(7) 𝐴1,...,1 (𝑞) = (𝑟)𝑞!.
(8) 𝐴𝑘,0,...,0,𝑟−𝑘 (𝑞) = 𝑞(

𝑘
2)

(𝑟
𝑘

)
𝑞

.
(9) Assume that c satisfies

∑
𝑖≤ 𝑗 𝑐𝑖 ≥ 𝑗 for 𝑗 = 1, . . . , 𝑟 . Then one has

𝐴𝑐 (𝑞) = (1)𝑐1
𝑞 (2)𝑐2

𝑞 · · · (𝑟)𝑐𝑟𝑞 .

Some of these properties were already given in [18], while the others will be proved at various
locations in the text: (1) is [18, Proposition 5.4]. (2) is Lemma 5.1. (3), as well as (6), (8) and (9), are
treated in Section 4. For (4), we refer to Section 6. (5) follows from the sum rule [18, Proposition 5.4],
as explained in Remark 2.1. Finally, (7) is part of [18, Theorem 4.8].

Combinatorial interpretations for the case 𝑞 = 1 have been given in previous works: in [21, Section
17] Postnikov defined certain weighted trees to give a combinatorial interpretation for 𝐴𝑐 . Another
interpretation was given by Liu [15], in terms of C-compatible permutations. As we will argue in this
work, such permutations can be naturally seen as bilabeled trees with leaf labels 1, 𝑐1 + 2, 𝑐1 + 𝑐2 +

3, . . . , 𝑐1 + · · · + 𝑐𝑟 + 𝑟 + 1 = 2𝑟 + 1. Both these interpretations come from finding functional equations
for the volume polynomial (1.1) and extracting coefficients.

We will refine both these combinatorial interpretations by interpreting the powers of q in each, by
fairly different methods. These are stated in terms of certain families of trees that are described in detail
in Sections 3 and 6.
◦ 𝐴𝑐 (𝑞) is the total weight of all ‘Postnikov trees’ with a fixed associated sequence i of content c

(Theorem 3.5).
◦ 𝐴𝑐 (𝑞) is the total weight of all ‘bilabeled trees’ with leaf labels 1, 𝑐1 + 2, 𝑐1 + 𝑐2 + 3, . . . , 𝑐1 + · · · +

𝑐𝑟 + 𝑟 + 1 = 2𝑟 + 1 (Theorem 7.1).

Outline of the article

We recall some alternative definitions of 𝐴𝑐 (𝑞) in Section 2; these have already appeared in [18]. The
last one is probabilistic in nature and is used in Section 3 to give a first combinatorial interpretation
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4 P. Nadeau and V. Tewari

of 𝐴𝑐 (𝑞). In Section 4, we distinguish two large subfamilies of indices c that give particularly nice
polynomials 𝐴𝑐 (𝑞). In Section 5, we show that the sequence of coefficients of 𝐴𝑐 (𝑞) is always symmetric
and unimodal. This requires the determination of the degree and valuation of 𝐴𝑐 (𝑞). In Section 6, we
link 𝐴𝑐 (𝑞) with the original geometry for 𝑞 = 1, as the parameter q is interpreted via a certain cubical
dissection of the permutahedron. From this, a second combinatorial interpretation of 𝐴𝑐 (𝑞) follows; see
Section 7.

2. Alternative definitions of remixed Eulerian numbers

For 𝑛 ∈ Z≥0 and 0 ≤ 𝑘 ≤ 𝑛, set

(𝑛)𝑞 �
𝑞𝑛 − 1
𝑞 − 1

= 1 + 𝑞 + · · · + 𝑞𝑛−1; (𝑛)𝑞! �
∏

1≤𝑖≤𝑛
(𝑖)𝑞;

(
𝑛

𝑘

)
𝑞

�
(𝑛)𝑞!

(𝑘)𝑞!(𝑛 − 𝑘)𝑞!
. (2.1)

These are the q-integers, q-factorials and q-binomial coefficients. Given integers 𝑎 ≤ 𝑏, we denote the
interval {𝑎, 𝑎+1, . . . , 𝑏} by [𝑎, 𝑏]. If 𝑎 = 1, we often shorten this to [𝑏]. For any undefined combinatorial
terminology, we refer the reader to standard texts such as [22, 23].

In contrast to the computational perspective provided in Definition 1.2, we offer three more perspec-
tives that may be treated as alternative definitions.

The reader will note the similarity between the perspectives that follow: They are indeed easily seen
to be equivalent. In contrast, the fact that any of these definitions is equivalent to Definition 1.2 is not
obvious, and this was a key result in [18].

2.1. Coefficients in the Klyachko algebra

The q-Klyachko algebra K is the commutative algebra over C(𝑞) on the generators {𝑢𝑖 | 𝑖 ∈ Z} subject
to the following relations for all 𝑖 ∈ Z:

(𝑞 + 1)𝑢2
𝑖 = 𝑞𝑢𝑖𝑢𝑖−1 + 𝑢𝑖𝑢𝑖+1.

For a finite subset 𝐼 ⊂ Z, let 𝑢𝐼 �
∏
𝑖∈𝐼 𝑢𝑖 . By [18, Proposition 3.9], the set B of such square-free

monomials forms a linear basis for K. Given 𝑐 ∈ W𝑟 , we have

𝐴𝑐 (𝑞) = (𝑟)𝑞! × coefficient of 𝑢 [𝑟 ] in the expansion of 𝑢𝑐1
1 · · · 𝑢𝑐𝑟𝑟 in B. (2.2)

2.2. Recurrence relation

The remixed Eulerian number 𝐴𝑐 (𝑞) for 𝑐 = (𝑐1, . . . , 𝑐𝑟 ) ∈ W𝑟 is the unique polynomial satisfying the
initial condition 𝐴(1𝑟 ) (𝑞) = (𝑟)𝑞! and the relation

(𝑞 + 1)𝐴𝑐 (𝑞) = 𝑞𝐴(...,𝑐𝑖−1+1,𝑐𝑖−1,... ) (𝑞) + 𝐴(...,𝑐𝑖−1,𝑐𝑖+1+1,... ) (𝑞) for any 𝑖 satisfying 𝑐𝑖 ≥ 2. (2.3)

On the right-hand side we ignore the ill-defined terms in the case 𝑖 = 1 or 𝑖 = 𝑟 .
A more efficient recurrence based approach is as follows. The initial condition continues to be

𝐴(1𝑟 ) (𝑞) = (𝑟)𝑞!. Otherwise, consider i such that 𝑐𝑖 ≥ 2. Let Supp(𝑐) denote the support of c, that is,
the set of all indices j such that 𝑐 𝑗 > 0. Let [𝑎, 𝑏] be the maximal interval in Supp(𝑐) containing i. We
let 𝐿𝑖 (𝑐) (resp. 𝑅𝑖 (𝑐)) denote the composition obtained by decrementing 𝑐𝑖 by 1 and incrementing 𝑐𝑎−1
(resp. 𝑐𝑏+1) by 1. Then we have

(𝑏 − 𝑎 + 2)𝑞𝐴𝑐 (𝑞) = 𝑞𝑖−𝑎+1(𝑏 − 𝑖 + 1)𝑞𝐴𝐿𝑖 (𝑐) (𝑞) + (𝑖 − 𝑎 + 1)𝑞𝐴𝑅𝑖 (𝑐) (𝑞). (2.4)

Again, if 𝑎 = 1 (resp. 𝑏 = 𝑟), then 𝐿𝑖 (𝑐) (resp. 𝑅𝑖 (𝑐)) is not well defined, and the corresponding remixed
Eulerians are 0.
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2.3. Probabilistic interpretation

Consider the integer line Z as a set of sites. A configuration is an N-vector 𝑐 = (𝑐𝑖)𝑖∈Z with
∑
𝑖 𝑐𝑖 < ∞,

which we visualize as a finite set of particles with 𝑐𝑖 particles stacked at site i. Stable configurations are
those for which 𝑐𝑖 ≤ 1 for all i. They are identified with finite subsets of Z via their support.

Given jump probabilities 𝑞𝐿 , 𝑞𝑅 ≥ 0 satisfying 𝑞𝐿 + 𝑞𝑅 = 1, consider the following process with
state space the set of configurations. Suppose we are in a configuration c. If c is stable, the process
stops. Otherwise, pick any i such that 𝑐𝑖 > 1 and move the top particle at site i to the top of site 𝑖 − 1
(resp. 𝑖 + 1) with probability 𝑞𝐿 (resp. 𝑞𝑅). The process ends in a stable configuration with probability
1. Furthermore, it is known that the probability of ending in a particular stable configuration does not
depend on the choice of site i at each step.

For a finite subset 𝐼 ⊂ Z, we can then define P𝑐 (𝐼) to be the probability that the process starting at
configuration c ends in the stable configuration given by I. Assume 𝑞𝑅 > 0 and let 𝑞 � 𝑞𝐿/𝑞𝑅. By [18,
Proposition 5.1], for 𝑐 ∈ W𝑟 we have

P𝑐 ([𝑟]) =
𝐴𝑐 (𝑞)

(𝑟)𝑞!
. (2.5)

Note that we have then 𝑞𝐿 = 𝑞
1+𝑞 and 𝑞𝑅 = 1

1+𝑞 .

Remark 2.1. Using this interpretation one has the following ‘cyclic sum rule’ [18, Proposition 5.3]:
Given 𝑐 = (𝑐1, . . . , 𝑐𝑟 ) ∈ W𝑟 , let Cyc(𝑐) be the set of all 𝑐′ ∈ W𝑟 such that (𝑐′, 0) is a cyclic rotation
of (𝑐, 0). Then ∑

𝑐′ ∈Cyc(𝑐)

𝐴𝑐′ (𝑞) = (𝑟)𝑞!. (2.6)

There are Cat𝑟 sets of the form Cyc(𝑐) so that summing equation (2.6) over all of them proves Theorem
1.3(8).

We record a slightly different way to think about the previous process as it will be particularly helpful.
Sequential process: Fix any word i = (𝑖1, . . . , 𝑖𝑟 ) ∈ [𝑟]𝑟 . Starting with the empty configuration,

drop particles one at a time at sites 𝑖1, 𝑖2, . . . , 𝑖𝑟 , and stabilize at every step. Each such step involves
the particle either landing on an interval of occupied sites in the current stable configuration, and then
proceeding to exit either to the left or to the right, or landing on an unoccupied site in which case it
stabilizes immediately. We denote by Pi (𝐼) the probability to end up with the stable set I.

Let cont(i) = (𝑐1, . . . , 𝑐𝑟 ) ∈ W𝑟 , where 𝑐 𝑗 is the the number of instances of j in i for 𝑗 ∈ [𝑟]. Then
we have

Pi(𝐼) = Pcont(i) (𝐼) (2.7)

and thus by equation (2.5),

Pi([𝑟]) =
𝐴cont(i) (𝑞)

(𝑟)𝑞!
. (2.8)

3. Combinatorial interpretation via Postnikov trees

Postnikov showed that mixed Eulerian numbers 𝐴𝑐 enumerate a certain family of trees [21]. His proof
uses an equation for the volume of the permutahedron vol(Perm(𝜆)), proved purely geometrically
(and valid for any ‘root system’). Using the expansion (1.1) and differentiation, he then obtains a
combinatorial interpretation of the numbers 𝐴𝑐 as enumerating certain weighted trees. Here, we will
define a q-deformation of these weights, based on the probability process, that turns out to give a
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combinatorial interpretation of 𝐴𝑐 (𝑞). Postnikov’s trees can then be reinterpreted naturally as recording
possible histories of the process.

3.1. A recursive formula for Pi ([𝑎, 𝑏])

Consider i = 𝑖1 · · · 𝑖𝑟 , and let us compute Pi([𝑎, 𝑏]), where we assume that 𝑏 − 𝑎 + 1 = 𝑟 and 𝑖 𝑗 ∈ [𝑎, 𝑏]
for all j since Pi([𝑎, 𝑏]) = 0 otherwise.

Let us condition on the stable set obtained just before dropping the last particle 𝑖𝑟 . This set is
necessarily of the form [𝑎, 𝑏] \ { 𝑗} = [𝑎, 𝑗 −1] � [ 𝑗 +1, 𝑏] for 𝑗 ∈ [𝑎, 𝑏] in order to have Pi ([𝑎, 𝑏]) ≠ 0.
We thus get

Pi ([𝑎, 𝑏]) =
𝑏∑
𝑗=𝑎

P𝑖1 · · ·𝑖𝑟−1 ([𝑎, 𝑏] \ { 𝑗}) P𝑖𝑟 ([𝑎, 𝑏], 𝑗), (3.1)

where P𝑖 ([𝑎, 𝑏], 𝑗) is the probability to reach the stable set [𝑎, 𝑏] from [𝑎, 𝑏] \ { 𝑗} after dropping a
particle at the site 𝑖 ∈ [𝑎, 𝑏] and stabilizing.

The probability P𝑖1 · · ·𝑖𝑟−1 ([𝑎, 𝑏] \ { 𝑗}) is clearly zero unless

(*) there are 𝑗 − 𝑎 indices t such that 𝑖𝑡 ∈ [𝑎, 𝑗 − 1] and 𝑏 − 𝑗 indices t such that 𝑖𝑡 ∈ [ 𝑗 + 1, 𝑏].

Indeed, the site j is empty at all times before the last step, so the particles that are dropped on either side
of it stay on that side during the process. Assuming (*) is satisfied, let i′, i′′ be the two subsequences of
i consisting of 𝑖𝑡 < 𝑗 and 𝑖𝑡 > 𝑗 , respectively. Then we have

P𝑖1 · · ·𝑖𝑟−1 ([𝑎, 𝑏] \ { 𝑗}) = Pi′ ( [𝑎, 𝑗 − 1]) Pi′′ ( [ 𝑗 + 1, 𝑏]). (3.2)

The other factor P𝑖𝑟 ([𝑎, 𝑏], 𝑗) in equation (3.1) is also straightforward to compute: If 𝑖𝑟 > 𝑗 , then
the particle must exit to the left of the interval [ 𝑗 + 1, 𝑏] while if 𝑖𝑟 ≤ 𝑗 , it must exit to the right of the
interval [𝑎, 𝑗 − 1]. These are the well-known exit probabilities of a biased discrete random walk on an
interval [4]. We thus obtain explicitly P𝑖𝑟 ([𝑎, 𝑏], 𝑗) = wt𝑞 ([𝑎, 𝑏], 𝑗 , 𝑖𝑟 ), where for any 𝑖 ∈ [𝑎, 𝑏],

wt𝑞 ([𝑎, 𝑏], 𝑗 , 𝑖) =

{ (𝑏−𝑖+1)𝑞
(𝑏− 𝑗+1)𝑞 𝑞

(𝑖− 𝑗) 𝑖 > 𝑗 ,
(𝑖−𝑎+1)𝑞
( 𝑗−𝑎+1)𝑞 𝑖 ≤ 𝑗 .

(3.3)

The reader may recognize these as q-deformations of the weights wt(𝑖, 𝑗) in [21, Equation 17.1], which
can therefore be interpreted as exit probabilities in the symmetric case 𝑞 = 1.

Substituting equations (3.2) and (3.3) in equation (3.1) gives a recursive way to compute Pi([𝑎, 𝑏]):

Pi ([𝑎, 𝑏]) =
∑

𝑗satisfying(∗)
Pi′ ( [𝑎, 𝑗 − 1]) Pi′′ ( [ 𝑗 + 1, 𝑏]) wt𝑞 ([𝑎, 𝑏], 𝑗 , 𝑖𝑟 ). (3.4)

The initial condition is simply P𝜖 (∅) = 1, where 𝜖 is the empty word.

3.2. Postnikov trees

Given a binary tree T, we let Nodes(𝑇) denote its set of nodes. A standard labeling of a binary tree
T with r nodes is a bijective labeling of Nodes(𝑇) with integers drawn from [𝑟]. The binary search
labeling of T is the standard labeling given recursively by traversing the left subtree first, then the root,
then the right subtree, and assigning a node the label 𝑖 ∈ [𝑟] if it is the ith node encountered in this
traversal. This is illustrated in Figure 1 by the labels inside the nodes. Let the bs-label of a node be this
label 𝑏𝑠(𝑣) � 𝑗 ∈ [𝑟].
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Figure 1. With i = 34717843, a Postnikov tree is represented on the left: The binary search labeling
is pictured inside the nodes, while the unique decreasing labeling is between brackets in blue. The
associated history of the sequential process is illustrated in the second and third panels, reading each
panel from top to bottom.

Given a node v in T, let [𝑙𝑣 , 𝑟𝑣 ] refer to the set of bs-labels of its descendants in T (itself included).
A coloring 𝑓 : Nodes(𝑇) → Z is compatible if for all v, we have 𝑓 (𝑣) ∈ [𝑙𝑣 , 𝑟𝑣 ]. In particular, if v has
no children, then 𝑓 (𝑣) is necessarily the bs-label of v. The weight wt(𝑇, 𝑓 ) is then defined as

wt(𝑇, 𝑓 ) =
∏
𝑣 ∈𝑇

wt𝑞 ([𝑙𝑣 , 𝑟𝑣 ], 𝑣, 𝑓 (𝑣)).

We call a labeled tree decreasing if it has a standard labeling such that the label of a node is larger
than the labels of all its descendants. On the leftmost panel in Figure 1, the exterior labels (in blue) give
a decreasing labeling of the underlying tree.

Definition 3.1. Given i = 𝑖1 · · · 𝑖𝑟 ∈ [𝑟]𝑟 , a tree T is i-compatible if it has a decreasing labeling
dec : Nodes(𝑇) → [𝑟] such that 𝑣 ↦→ 𝑖dec(𝑣) is a compatible labeling. The weight wt(𝑇, i) is the weight
of this compatible labeling.

The decreasing labeling is necessarily unique if it exists. Indeed, suppose T is i-compatible, and let
dec be as in the definition. The root receives the greatest label. Let the bs-label of the root be j. By the
definition of compatibility, if t is the dec-label of a node in the left (resp. right) subtree, then 𝑖𝑡 < 𝑗
(resp. 𝑖𝑡 > 𝑗). Thus, the sets of dec-labels in both subtrees are determined by i. One can then conclude
by induction that the whole dec-labeling of T is determined by i.

For instance, the tree T in Figure 1 is i-compatible, where i = 34717843. Furthermore, we have

wt(𝑇, i) =
(1)𝑞
(1)𝑞

·
(1)𝑞
(1)𝑞

·
(1)𝑞
(1)𝑞

·
(1)𝑞
(1)𝑞

·
(1)𝑞
(2)𝑞

· 𝑞2 (1)𝑞
(3)𝑞

· 𝑞2 (1)𝑞
(3)𝑞

·
(3)𝑞
(5)𝑞

=
𝑞4

(2)𝑞 (3)𝑞 (5)𝑞
.

The order of the terms on the right-hand side is obtained by considering the weights of nodes v
encountered according to the decreasing labeling.

Remark 3.2. Postnikov uses increasing trees instead of decreasing ones. Our notion of i-compatibility
corresponds to rev(i)-compatibility in his sense, where rev(i) is obtained by reversing i. This choice
changes nothing of the underlying combinatorics and was made by us because it matches more naturally
with the probabilistic process. In addition, his trees record the decreasing labeling together with the
i-labeling. As we pointed out in the previous definition, given (𝑇, i), such a decreasing labeling is in
fact necessarily unique and can thus safely be removed from the definition.

Let P (i) be the set of i-compatible trees. These are referred to as Postnikov trees in the introduction,
with content cont(i) determined by the multiplicity of each letter in i.
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Theorem 3.3. For any i ∈ [𝑟]𝑟 , we have

Pi ([𝑟]) =
∑

𝑇 ∈P (i)
wt(𝑇, i).

Proof. This follows from the recurrence (3.4). Let us specify that recurrence to the case 𝑎 = 1, 𝑏 = 𝑟
and simply write Pi instead of Pi ([𝑟]). Write also i2 for the word i′′, where all letters are decreased by
j, so that they are between 1 and 𝑟 − 𝑗 . We obtain the recurrence

Pi =
∑

𝑗satisfying(∗)
Pi′ Pi2 wt𝑞 ([𝑟], 𝑗 , 𝑖𝑟 ).

We need to show that 𝑆(i) �
∑

𝑇 ∈P (i)
wt(𝑇, i) also satisfies such a recurrence. Given a tree in P (i),

let 𝑗 − 1 and 𝑟 − 𝑗 be the sizes of its left and right subtrees, respectively. The root has necessarily label
𝑖𝑟 and thus weight wt𝑞 ([𝑟], 𝑗 , 𝑖𝑟 ). The compatibility condition imposes that all labels of the left subtree
𝑇 ′ are between 1 and 𝑗 − 1, while all labels on the right subtree 𝑇 ′′ are between 𝑗 + 1 and r. This
corresponds precisely to the condition (*) that has to be satisfied, and we let i′, i′′ be the subsequences
of i corresponding to 𝑇 ′ and 𝑇 ′′. Then 𝑇 ′ is in P (i′), while 𝑇 ′′ is in P (i′′). By subtracting j from all
labels in 𝑇 ′′, we obtain a tree 𝑇2 in P (i2), and the recurrence

𝑆(i) =
∑

𝑗satisfying(∗)
𝑆(i′) 𝑆(i2) wt𝑞 ([𝑟], 𝑗 , 𝑖𝑟 ).

This is precisely the recurrence satisfied by the Pi, and we obtain the desired result since the initial
conditions match: for 𝑖 ∈ Z, P𝑖 = 𝑆(𝑖) = 1 if 𝑖 = 1 and 0 otherwise. �

A direct byproduct of the proof is that trees inP (i) correspond precisely to a ‘history’ of the sequential
process started with i. The decreasing tree encodes the filling order in which sites get occupied along the
process: The kth site to be occupied is 𝑗 = 𝑏𝑠(𝑣), where v is the node with dec(𝑣) = 𝑘 . This is nothing
but the standard bijection between decreasing trees and permutations, which we recall at the beginning
of Section 6.2. Such a filling order is possible with i as initial word precisely when the corresponding
decreasing tree is i-compatible. In that case, the weight of the tree is the probability of that ordering.
Example 3.4. For ease of comparison with Postnikov’s interpretation, we revisit [21, Example 17.6].
Consider i = 34717843. The process of dropping particles and stabilizing at each step is depicted in
Figure 1 on the right, and the corresponding Postnikov tree is on the left. The labels inside record the
binary search labeling, whereas the decreasing labeling is on the outside in parentheses.

Equation (2.8) now immediately yields the following q-analogue of [21, Theorem 17.7].
Theorem 3.5. For any 𝑐 ∈ W𝑟 and any i ∈ [𝑟]𝑟 such that cont(i) = 𝑐, we have

𝐴𝑐 (𝑞) =
∑

𝑇 ∈P (i)
(𝑟)𝑞! wt(𝑇, i).

Example 3.6. Consider i = 2244. Then cont(i) = (0, 2, 0, 2). Figure 2 shows the relevant Postnikov
trees.

Theorem 3.5 now tells us that

𝐴(0,2,0,2) (𝑞) = (4)𝑞! ·
1

(2)𝑞
· 𝑞3 (1)𝑞

(4)𝑞
+ (4)𝑞! · 𝑞

1
(2)𝑞

· 𝑞
(1)𝑞
(2)𝑞

= 𝑞2 (1 + 𝑞 + 𝑞2)2.

Remark 3.7. Note that each of the two summands above belong to N[𝑞]. This is the case in general
indeed. Keeping with the theme, one simply needs to ‘q-ify’ [21, Lemma 17.5]. Consider (𝑟)𝑞! times
all denominators in wt(𝑇, i) times the power of q accumulated in the numerator. This rational function
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Figure 2. The two Postnikov trees for i = 2244.

is a polynomial which tracks 𝑞ℓ (𝑤) over the following set of permutations w, contingent on T and i
naturally. As in loc. cit., consider labelings of the underlying tree T with permutations 𝑤 ∈ S𝑟 such that
if we are in the first case (resp. second case) of equation (3.3) for some node j, then 𝑤( 𝑗) exceeds the
labels 𝑤(𝑘) for all k in its right (resp. left) subtree.1
Remark 3.8. Since different choices of i with same cont(i) determined the same remixed Eulerian
number, smart choices can optimize computations a bit. For instance, starting the sequence i with all
elements of Supp(𝑐) (in any order) gives simpler trees in general. This corresponds of course to starting
the particle process by dropping one particle at each site of the support.

4. Two special subfamilies

We consider two large subfamilies of 𝐴𝑐 (𝑞) by restricting the possible indices in Supp(𝑐). These
families encompass all special cases listed in Theorem 1.3. They have specific properties that make them
particularly nice from an enumerative standpoint: Elements of the first family have elementary product
formulas that generalize q-binomial coefficients, cf. Proposition 4.2. Elements of the second subfamily
have certain generating functions whose coefficients have simple product formulas, cf. equation (4.4),
and coincide with the family of q-hit polynomials.

4.1. An extension of q-binomial coefficients

Definition 4.1. We define 𝐸𝐵𝑟 ⊂ W𝑟 to be the set of 𝑐 = (𝑐1, . . . , 𝑐𝑟 ) such that there exists a
𝑘 ∈ {0, . . . , 𝑟} satisfying

∑
𝑖≤ 𝑗

𝑐𝑖 ≥ 𝑗 for 𝑗 = 1, . . . , 𝑘 and
∑
𝑖≤ 𝑗

𝑐𝑟+1−𝑖 ≥ 𝑗 for 𝑗 = 1, . . . , 𝑟 − 𝑘 .

Remark that both items (8) and (9) of Theorem 1.3 are in this subfamily 𝐸𝐵𝑟 . The following explicit
product formula proves and generalizes them.
Proposition 4.2. For any 𝑐 ∈ 𝐸𝐵𝑟 with k as in Definition 4.1, we have

𝐴𝑐 (𝑞) = 𝑞
𝑑𝑐

(
𝑟

𝑘

)
𝑞

𝑘∏
𝑖=1

(𝑖)𝑐𝑖𝑞

𝑟−𝑘∏
𝑖=1

(𝑖)𝑐𝑟+1−𝑖
𝑞 , (4.1)

where 𝑑𝑐 =
𝑟−𝑘∑
𝑗=1

𝑗∑
𝑖=1

(𝑐𝑟+1−𝑖 − 1).

Note that by equation (4.1), 𝑑𝑐 is the smallest exponent of q occurring in 𝐴𝑐 (𝑞). We give a formula
for this exponent in equation (5.3) that is valid for any 𝑐 ∈ W𝑟 , and specializes to the expression above
when 𝑐 ∈ 𝐸𝐵𝑟 .

Proof. We use the probabilistic interpretation of 𝐴𝑐 (𝑞) in Section 2.3 in its sequential version. We
choose the word

1There is a minor typo in the statement of [21, Lemma 17.5]: The word ‘branch’ should be replaced by ‘tree’.
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i = 1𝑐1 2𝑐2 · · · 𝑘𝑐𝑘 𝑟𝑐𝑟 (𝑟 − 1)𝑐𝑟−1 · · · (𝑘 + 1)𝑐𝑘+1 .

It corresponds to the following dropping order of particles: Start with all 𝑐1 particles at site 1, then all
𝑐2 particles at site 2, and so on until we drop 𝑐𝑘 particles at site k. Then, drop all particles at site r, then
at site 𝑟 − 1, and so on down to 𝑘 + 1.

The first part of the definition of 𝐸𝐵𝑟 implies that in order to end with the stable configuration
{1, . . . , 𝑟}, the following must hold: For 𝑖 ≤ 𝑘 − 1, the intermediate stable configuration after the ith
step is the interval {1, . . . , 𝑖}, and the (𝑖 + 1)-st particle either drops at site 𝑖 + 1 or drops on the previous

interval and exits to the right. The probability of this happening is 1
(𝑘)𝑞!

𝑘∏
𝑖=1

(𝑖)𝑐𝑖𝑞 by equation (3.3).

For the remaining particles, the situation is symmetric of the first part, since the stable interval
{1, . . . , 𝑘} does not interfere with the analysis. The probability of success in this second half is worked

out to be 𝑞𝑑𝑐

(𝑟−𝑘)𝑞!

𝑟−𝑘∏
𝑖=1

(𝑖)𝑐𝑟+1−𝑖
𝑞 by equation (3.3) again.

Now, by equation (2.5), we obtain 𝐴𝑐 (𝑞) by multiplying these two expressions together with (𝑟)𝑞!,
thus giving the desired expression. �

In terms of the tree interpretation from Section 3, we have in fact shown that for words i considered
in the preceding proof, there is a unique compatible tree. We further note that Proposition 4.2 is the
q-analogue of [15, Theorem 4.4]. Finally, the expression for 𝐴𝑐 (𝑞) for 𝑐 ∈ 𝐸𝐵𝑟 motivates understanding
the valuation 𝑑𝑐 in general; we return to this in Section 5.
Example 4.3. Consider 𝑐 = (2, 0, 1, 0, 2, 1) ∈ 𝐸𝐵6. Then the k in Definition 4.1 equals 3. We have
𝑑𝑐 = 𝑐6 − 1 + 𝑐6 + 𝑐5 − 2 + 𝑐6 + 𝑐5 + 𝑐4 − 3 = 1. The reader may verify that

𝐴𝑐 (𝑞) = 𝑞
1
(
6
3

)
𝑞

(1)2
𝑞 (3)𝑞 (2)2

𝑞 (1)𝑞 .

4.2. Interval support and q-hit numbers

We now focus on the case where Supp(𝑐) is an interval. That is, c can be written as 𝑐 = 0𝑖𝛽0𝑟−𝑘−𝑖 where
𝛽 � 𝑟 is a (strong) composition with 𝑘 � ℓ(𝛽). Thus, the first i and the last 𝑟 − 𝑘 − 𝑖 entries in c are all 0.

By [18, Proposition 5.6], we have

∑
𝑗≥0

𝑡 𝑗
𝑘∏
𝑖=1

( 𝑗 + 𝑖)
𝛽𝑖
𝑞 =

𝑟−𝑘∑
𝑖=0

𝐴0𝑖𝛽0𝑟−𝑘−𝑖 (𝑞)𝑡
𝑖

(𝑡; 𝑞)𝑟+1
. (4.2)

Here, (𝑡; 𝑞)𝑟+1 � (1 − 𝑡) (1 − 𝑡𝑞) · · · (1 − 𝑡𝑞𝑟 ).
Remark 4.4. If 𝛽 has a single part, so 𝛽 = (𝑟), we get

∑
𝑗≥0

( 𝑗 + 1)𝑟𝑞 𝑡 𝑗 =

𝑟−𝑘∑
𝑖=0

𝐴0𝑖 ,𝑟 ,0𝑟−𝑘−𝑖 (𝑞)𝑡
𝑖

(𝑡; 𝑞)𝑟+1
. (4.3)

This shows Theorem 1.3(3), since the left-hand side was already considered by Carlitz [1] and this
shows by comparison that 𝐴0𝑖 ,𝑟 ,0𝑟−𝑘−𝑖 (𝑞) counts permutations in S𝑟 with i descents with q-weight given
by the major index. An alternative proof of this is given in [17].

As briefly touched upon in [18, Section 5.3], the family of remixed Eulerian numbers 𝐴0𝑖𝛽0𝑟−𝑘−𝑖 (𝑞)
coincides with polynomials enumerating q-hit numbers appearing in the work of Garsia–Remmel [5].
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Figure 3. Partition in a square (left), superimposition with the graph of a permutation.

This observation is also instrumental in order to relate these numbers to recent work around chromatic
symmetric functions; see [19]. We now justify this claim.

Fix r and consider 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑟 ) with 𝜆𝑖 integers satisfying 𝑟 ≥ 𝜆1 ≥ · · · ≥ 𝜆𝑟 ≥ 0. So 𝜆
can be seen as a Young diagram in an 𝑟 × 𝑟 square; see Figure 3 with 𝑟 = 6 and 𝜆 = (5, 5, 3, 3, 3, 0).
Following [5], the q-hit numbers 𝐻 𝑗 (𝜆, 𝑞) can be defined by:

∑
𝑗≥0

𝑡 𝑗
𝑟∏
𝑖=1

(𝑖 − 𝜆𝑟+1−𝑖 + 𝑗)𝑞 =

𝑟∑
𝑗=0

𝐻 𝑗 (𝜆, 𝑞)𝑡
𝑗

(𝑡; 𝑞)𝑟+1
. (4.4)

Remark 4.5. For 𝑞 = 1, the hit numbers 𝐻 𝑗 (𝜆) � 𝐻 𝑗 (𝜆, 1) enumerate permutations in S𝑟 whose
associated graph has exactly j points inside of the shape 𝜆. Figure 3 (right) shows a permutation
contributing to 𝐻2 (𝜆).

There exists a refinement of this interpretation that gives the q-hit numbers [3]. We refrain from
stating it given its technicality and particularly as we do not need it in the sequel and simply note that
Theorem 1.3(6) can be deduced from this combinatorial interpretation.

We will now compare the left-hand sides of equations (4.2) and (4.4). We will show that every nonzero
q-hit polynomial is a remixed Eulerian number 𝐴𝑐 (𝑞) where c has interval support and vice versa.

For 𝑖 = 1, 2, . . . , 𝑟 , the values 𝑖 − 𝜆𝑟+1−𝑖 occurring in equation (4.4) go from 1− 𝜆𝑟 ≤ 1 to 𝑟 − 𝜆1 ≥ 0
with successive differences in {1, 0,−1,−2, . . . }. Geometrically, these values express the algebraic
distance in each row between 𝜆 and the staircase 𝛿𝑟 � (𝑟, 𝑟 − 1, . . . , 1), computed from bottom to top.
In our running example, we have the sequence of values 1,−1, 0, 1, 0, 1, as Figure 3 reveals.

A moment’s thought shows that these values must thus form an interval, say [𝑎, 𝑎+ 𝑘 −1] with 𝑘 ≥ 1,
that necessarily contains 0 or 1. Define 𝛽𝑖 (= 𝛽𝑖 (𝜆)) to be the number of times that the values 𝑎 + 𝑖 − 1
is obtained so that 𝐵(𝜆) � (𝛽1, . . . , 𝛽𝑘 ) is a composition of length k. The coefficient 𝐶 𝑗 of 𝑡 𝑗 on the
left-hand side of equation (4.4) can be rewritten as

𝑘∏
𝑖=1

( 𝑗 + 𝑎 + 𝑖 − 1)𝛽𝑖𝑞 .

If 𝑎 = 1, we recognize this as the coefficient of 𝑡 𝑗 on the left-hand side of equation (4.2) with
𝛽 = 𝐵(𝜆). We thus have 𝐻 𝑗 (𝜆, 𝑞) = 𝐴0 𝑗𝛽0𝑟−𝑘− 𝑗 (𝑞) for 𝑗 = 0, . . . , 𝑟 − 𝑘 and is zero otherwise.

If 𝑎 ≠ 1, one has 𝑎 ≤ 0 to ensure that 0 or 1 belong to [𝑎, 𝑎 + 𝑘 − 1], which also implies 𝑘 ≥ 1 − 𝑎.

Thus 𝐶 𝑗 = 0 for 𝑗 = 0, . . . ,−𝑎 and 𝐶 𝑗−𝑎+1 =
𝑘∏
𝑖=1

( 𝑗 + 𝑖)
𝛽𝑖
𝑞 . The left-hand side of equation (4.4) is

then 𝑡1−𝑎 times the left-hand side of equation (4.2). It follows that 𝐻 𝑗 (𝜆, 𝑞) = 𝐴0 𝑗−1+𝑎𝛽0𝑟−𝑘+1−𝑎− 𝑗 (𝑞) for
𝑗 = 1 − 𝑎, . . . , 𝑟 − 𝑘 + 1 − 𝑎 and is zero otherwise.

We have shown that every nonzero q-hit polynomial is a remixed Eulerian number 𝐴𝑐 (𝑞), where c
has interval support. Conversely, given a composition 𝛽 = (𝛽1, . . . , 𝛽𝑘 ), it is always possible to construct
𝜆 such that 𝐵(𝜆) = 𝛽, and thus, 𝐻 𝑗 (𝜆, 𝑞) = 𝐴0 𝑗𝛽0𝑟−𝑘− 𝑗 (𝑞) as above.
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Indeed, let 𝑙𝑟 (𝛽) = (𝑙1, . . . , 𝑙𝑟 ) be obtained by concatenating 𝛽𝑘 occurrences of k, 𝛽𝑘−1 occurrences
of 𝑘 − 1 and so on until 𝛽1 occurrences of 1. If one defines 𝜆 � 𝛿𝑟 − 𝑙𝑟 (𝛽) with componentwise
subtraction, then 𝜆 corresponds to a Young diagram inside an 𝑟 × 𝑟 square that satisfies 𝐵(𝜆) = 𝛽.

5. Degree, symmetry, unimodality

In this section, we study the 𝐴𝑐 (𝑞) as polynomials in q. They are known to have nonnegative integer
coefficients, cf. [18, Proposition 5.4]. We will revisit the proof of this fact to show that the 𝐴𝑐 (𝑞) are
symmetric and unimodal. To do this, we first need to determine the degree and valuation of 𝐴𝑐 (𝑞).

5.1. Degree and valuation

The following simple relation was recorded as Theorem 1.3(2) in the introduction. For any finite
sequence 𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑘 ), define rev(𝑎) = (𝑎𝑘 , 𝑎𝑘−1, . . . , 𝑎1).
Lemma 5.1. Let 𝑐 = (𝑐1, . . . , 𝑐𝑟 ) ∈ W𝑟 . Then we have

𝐴𝑐 (𝑞) = 𝑞(
𝑟
2)𝐴rev(𝑐) (𝑞

−1).

Proof. This is straightforward from the probabilistic perspective. Indeed, we can reverse the lattice of
sites Z, and then consider the IDLA2 process obtained by swapping 𝑞𝐿 and 𝑞𝑅. The probability of
reaching the stable configuration [𝑟] starting from rev(𝑐) in this flipped process (with 𝑞 = 𝑞𝑅/𝑞𝐿) is
the same as that of reaching [𝑟] starting from c in the original description (with 𝑞−1 = 𝑞𝐿/𝑞𝑅). This
implies the equality in question. �

Given 𝑐 ∈ W𝑟 , we let 𝐷𝑐 denote the degree of 𝐴𝑐 (𝑞). We also define 𝑑𝑐 as the valuation of 𝐴𝑐 (𝑞),
that is, the smallest exponent of q with a nonzero coefficient.
Remark 5.2. Before the general case, let us characterize the c such that 𝑑𝑐 = 0. Equivalently, we need to
determine when the constant term 𝐴𝑐 (0) vanishes. From the probabilistic process point of view, 𝑞 = 0
corresponds to particles only jumping right. It is then easily shown that 𝐴𝑐 (0) is zero unless c satisfies∑
𝑖≤ 𝑗

𝑐𝑖 ≥ 𝑗 for 𝑗 = 1, . . . , 𝑟 , in which case 𝐴𝑐 (0) = 1. It follows immediately that 𝑑𝑐 = 0 if and only if

that condition is satisfied.
It turns out that 𝐴𝑐 (𝑞) is symmetric with respect to the interval [𝑑𝑐 , 𝐷𝑐], as we shall show in

Theorem 5.6. To this end, we collect some notation that helps describe 𝐷𝑐 and 𝑑𝑐 combinatorially. For
𝑡 ∈ R, we use

𝑡+ � max(0, 𝑡).

The following pictorial perspective for 𝑐 ∈ W𝑟 is occasionally useful. Recall that a Łukasiewicz path is
a (finite) lattice path beginning at the origin that takes steps corresponding to translations by (1, 𝑘) for
𝑘 ≥ −1. Attach a Łukasiewicz path 𝑃𝑐 with 𝑐 = (𝑐1, . . . , 𝑐𝑟 ) by starting at the origin and translating by
(1, 𝑐𝑖 − 1) as c is read from left to right. See Figure 4. For 𝑖 ∈ [𝑟], we define ℎ𝑖 (𝑐) to be the ordinate on
𝑃𝑐 after the ith step. More precisely, ℎ𝑖 (𝑐) =

∑
1≤ 𝑗≤𝑖

(𝑐 𝑗 − 1). Note that ℎ𝑟 (𝑐) is necessarily 0. We let

𝐻 (𝑐) �
∑

1≤𝑖≤𝑟−1
ℎ𝑖 (𝑐), (5.1)

𝐻−(𝑐) �
∑

1≤𝑖≤𝑟−1
(−ℎ𝑖 (𝑐))

+. (5.2)

2internal diffusion limited aggregation (see [2])
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Figure 4. 𝑃𝑐 when 𝑐 = (0, 3, 0, 0, 0, 1, 3).

Theorem 5.3. Let 𝑐 = (𝑐1, . . . , 𝑐𝑟 ) ∈ W𝑟 . The following equalities hold:

𝑑𝑐 = 𝐻−(𝑐), (5.3)

𝐷𝑐 =

(
𝑟

2

)
−

∑
1≤𝑖≤𝑟−1

(ℎ𝑖 (𝑐))
+. (5.4)

The reader will note that equation (5.3) generalizes the result of Remark 5.2, as well as the power of
q in Proposition 4.2.

Proof. First, we establish equation (5.3). The claim is true when 𝑐 = (1𝑟 ). In this case, 𝐴𝑐 (𝑞) = (𝑟)𝑞!
and we have 𝑑𝑐 = 0 = 𝐻−(𝑐). We proceed by (downward) induction on the number of parts in c that
equal 1.

Consider 𝑖 ∈ [𝑟] such that 𝑐𝑖 ≥ 2. Let [𝑎, 𝑏] be the maximal interval in Supp(𝑐) containing i. We
have by equation (2.4) that

(𝑏 − 𝑎 + 2)𝑞𝐴𝑐 (𝑞) = 𝑞𝑖−𝑎+1(𝑏 − 𝑖 + 1)𝑞𝐴𝐿𝑖 (𝑐) (𝑞) + (𝑖 − 𝑎 + 1)𝑞𝐴𝑅𝑖 (𝑐) (𝑞). (5.5)

It follows that the following relation holds

𝑑𝑐 = min(𝑖 − 𝑎 + 1 + 𝑑𝐿𝑖 (𝑐) , 𝑑𝑅𝑖 (𝑐) ). (5.6)

We want to check that 𝐻−(𝑐) satisfies the same recurrence. Consider the boundary cases first. If 𝑎 = 1,
only 𝑅𝑖 (𝑐) is defined, and it is easily checked that 𝐻−(𝑐) = 𝐻−(𝑅𝑖 (𝑐)). If 𝑏 = 𝑟 , only 𝐿𝑖 (𝑐) is defined
and we need to check that 𝐻−(𝑐) = 𝑖 − 𝑎 + 1 + 𝐻−(𝐿𝑖 (𝑐)). Note that we have 𝑐 𝑗 > 0 for all 𝑗 ∈ [𝑎, 𝑟]
and 𝑐𝑎−1 = 0. From this, and the fact that ℎ𝑟 (𝑐) = 0, it follows that ℎ 𝑗 (𝑐) ≤ 0 for all 𝑗 ∈ [𝑎 − 1, 𝑟].
Furthermore since 𝑐𝑖 ≥ 2 we are in fact guaranteed that ℎ 𝑗 (𝑐) < 0 for 𝑗 ∈ [𝑎−1, 𝑖−1]. Now, ℎ(𝐿𝑖 (𝑐)) is
obtained from ℎ(𝑐) by adding 1 to all entries ℎ 𝑗 (𝑐) for 𝑗 ∈ [𝑎 − 1, 𝑖 − 1] and leaving the rest unchanged.
Since ℎ 𝑗 (𝑐) < 0 for such j, we still have ℎ 𝑗 (𝐿𝑖 (𝑐)) ≤ 0. It follows that 𝐻−(𝑐) = 𝑖 − 𝑎 + 1 + 𝐻−(𝐿𝑖 (𝑐))
in this case.

We now consider the generic situation where 1 < 𝑎 ≤ 𝑏 < 𝑟 . The arguments are similar to those just
presented, and we keep the exposition terse. We set ℎ0 (𝑐) = 0. Now, note that the hypotheses on 𝑎, 𝑏, 𝑖
are equivalent to

ℎ𝑎−2 > ℎ𝑎−1 ≤ ℎ𝑎 ≤ · · · ≤ ℎ𝑏−1 ≤ ℎ𝑏 > ℎ𝑏+1

and ℎ𝑖−1 < ℎ𝑖 . Then ℎ(𝐿𝑖 (𝑐)) is obtained by adding from ℎ(𝑐) by adding 1 to ℎ𝑎−1, . . . , ℎ𝑖−1, while
ℎ(𝑅𝑖 (𝑐)) is obtained from ℎ(𝑐) by subtracting 1 from ℎ𝑖 , . . . , ℎ𝑏 .

It is clear from this description that 𝐻−(𝑐) ≤ 𝑖 − 𝑎 + 1 + 𝐻−(𝐿𝑖 (𝑐)) and 𝐻−(𝑐) ≤ 𝐻−(𝑅𝑖 (𝑐)). To
show that it is equal to one of them, consider the sign of ℎ𝑖 . If ℎ𝑖 > 0, then ℎ𝑖 , . . . , ℎ𝑏 > 0 from which
it follows 𝐻−(𝑐) = 𝐻−(𝑅𝑖 (𝑐)). If ℎ𝑖 ≤ 0, then ℎ𝑎−1, . . . , ℎ𝑖−1 < 0, and so these 𝑖 − 𝑎 + 1 values imply
𝐻−(𝑐) = 𝑖 − 𝑎 + 1 + 𝐻−(𝐿𝑖 (𝑐)).
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We finally establish equation (5.4). It follows from Lemma 5.1 that

𝑑rev(𝑐) + 𝐷𝑐 =

(
𝑟

2

)
.

Now, ℎ𝑖 (rev(𝑐)) = −ℎ𝑟−𝑖 (𝑐) for 𝑖 ∈ [0, 𝑟] by a direct computation. Using equation (5.3), the claim
follows. �

In terms of the path 𝑃𝑐 , we have that 𝑑𝑐 equals the sum of the absolute values of the heights of all
lattice points that lie strictly below the x-axis, and 𝐷𝑐 equals

(𝑟
2
)
−sum of the heights of all lattice points

that are strictly above the x-axis.

Example 5.4. For 𝑐 = (0, 3, 0, 0, 0, 1, 3), the Łukasiewicz path in Figure 4 tells us that

𝑑𝑐 = 1 + 1 + 2 + 2 = 6

𝐷𝑐 =

(
7
2

)
− 1 = 20.

As a matter of fact, the full polynomial 𝐴𝑐 (𝑞) is given by

2𝑞20 + 6𝑞19 + 11𝑞18 + 18𝑞17 + 27𝑞16 + 35𝑞15 + 40𝑞14 + 42𝑞13 + 40𝑞12 + 35𝑞11

+ 27𝑞10 + 18𝑞9 + 11𝑞8 + 6𝑞7 + 2𝑞6.

We remark that we have a symmetric polynomial above. This is quite surprising, as no symmetry is
apparent in c. It turns out to be a general fact, valid for all polynomials 𝐴𝑐 (𝑞), that we will now prove
together with unimodality.

5.2. Symmetry and unimodality

Let us say that a polynomial 𝑃(𝑞) is psu(𝑁) if it has positive coefficients and is unimodal and symmetric
with respect to 𝑁/2. Note that N is then the sum of the degree and valuation of P. We have the following
classical properties; see [7] for instance.

Lemma 5.5. If P and Q are psu(𝑁), then 𝑃 +𝑄 is psu(𝑁).
If P is psu(𝑁) and Q is psu(𝑁 ′), then 𝑃𝑄 is psu(𝑁 + 𝑁 ′).

We introduce the reduced remixed Eulerian numbers [18]

�̃�𝑐 (𝑞) �
𝐴𝑐 (𝑞)∏
𝑗 (𝑚 𝑗 )𝑞!

, (5.7)

where𝑚1, . . . , 𝑚𝑝 are the cardinalities of the maximal intervals 𝐼1, . . . , 𝐼𝑝 in Supp(𝑐), ordered from left
to right. Using the notations 𝑖, 𝑎, 𝑏, 𝐿𝑖 (𝑐), 𝑅𝑖 (𝑐) in the recurrence relations (2.4) for 𝐴𝑐 (𝑞), the �̃�𝑐 (𝑞)
satisfy the modified recurrence relation ([18, Proof of Prop. 5.4])

�̃�𝑐 (𝑞) = 𝑏𝐿 𝑞
𝑖−𝑎+1(𝑏 − 𝑖 + 1)𝑞 �̃�𝐿𝑖 (𝑐) (𝑞) + 𝑏𝑅 (𝑖 − 𝑎 + 1)𝑞 �̃�𝑅𝑖 (𝑐) (𝑞), (5.8)

where 𝑏𝐿 , 𝑏𝑅 are defined as follows. Let j be the index such that 𝐼 𝑗 = [𝑎, 𝑏].

◦ If 𝑗 > 1 and 𝐼 𝑗−1 = [ 𝑓 , 𝑎 − 2] for a certain f, then 𝑏𝐿 =
(𝑏− 𝑓 +1
𝑏−𝑎+2

)
𝑞

. Otherwise, 𝑏𝐿 = 1.
◦ If 𝑗 < 𝑝 and 𝐼 𝑗+1 = [𝑏 + 2, 𝑔] for some 𝑔 ≤ 𝑟 , then 𝑏𝑅 =

(𝑔−𝑎+1
𝑏−𝑎+2

)
𝑞

. Otherwise, 𝑏𝑅 = 1.

In any case, note that both 𝑏𝑅 and 𝑏𝐿 are psu(𝑁) for some N (in general distinct): Indeed, the
Gaussian binomial coefficient

(𝑛
𝑘

)
𝑞

is known to be psu(𝑘 (𝑛 − 𝑘)).
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Theorem 5.6. For any 𝑐 ∈ W𝑟 , we have that �̃�𝑐 (𝑞) is psu
( (𝑟

2
)
− 𝐻 (𝑐) −

∑
𝑗

(𝑚 𝑗

2
) )

. It follows that 𝐴𝑐 (𝑞)
is psu

( (𝑟
2
)
− 𝐻 (𝑐)

)
.

Proof. We establish some notation for convenience. Suppose the lengths of the maximal intervals in
Supp(𝑐) are 𝑚1 through 𝑚𝑝 . We let

𝑛(𝑐) �
∑

1≤ 𝑗≤𝑝

(
𝑚 𝑗

2

)
. (5.9)

We have 𝐴𝑐 = �̃�𝑐
∏

𝑗 (𝑚 𝑗 )𝑞!, and each (𝑚 𝑗 )𝑞! is psu(
(𝑚 𝑗

2
)
). By Lemma 5.5, the result for 𝐴𝑐 thus

follows from the one for �̃�𝑐 . We proceed to prove the latter by induction on 𝑒(𝑐) � |𝑐 | − |Supp(𝑐) |.
The base case corresponds to 𝑐 = (1𝑟 ), for which �̃�𝑐 (𝑞) = 1 and the claim is clearly true. Now,

assume 𝑒(𝑐) > 0, and consider the recurrence (5.8) for a fixed i with 𝑐𝑖 ≥ 2: we retain the notations
𝑎, 𝑏, 𝐿𝑖 (𝑐), 𝑅𝑖 (𝑐). Note first that 𝑑𝑐 + 𝐷𝑐 =

(𝑟
2
)
− 𝐻 (𝑐) by summing the expressions in equations (5.3)

and (5.4). It then follows from the description of ℎ(𝐿𝑖 (𝑐)) and ℎ(𝑅𝑖 (𝑐)) given in the proof of equation
(5.3) that 𝑑𝐿𝑖 (𝑐) + 𝐷𝐿𝑖 (𝑐) = 𝑑𝑐 + 𝐷𝑐 − (𝑖 − 𝑎 + 1) and 𝑑𝑅𝑖 (𝑐) + 𝐷𝑅𝑖 (𝑐) = 𝑑𝑐 + 𝐷𝑐 + (𝑏 − 𝑖 + 1).

Since 𝑒(𝐿𝑖 (𝑐)) = 𝑒(𝑅𝑖 (𝑐)) = 𝑒(𝑐) − 1, we can apply induction to conclude that �̃�𝐿𝑖 (𝑐) (𝑞) and
�̃�𝑅𝑖 (𝑐) (𝑞) are psu

( (𝑟
2
)
− 𝐻 (𝐿𝑖 (𝑐)) − 𝑛(𝐿𝑖 (𝑐))

)
and psu

( (𝑟
2
)
− 𝐻 (𝑅𝑖 (𝑐)) − 𝑛(𝑅𝑖 (𝑐))

)
, respectively. Let

𝐵𝑖 and 𝐶𝑖 denote the left and right summands on the right-hand side of equation (5.8). It will suffice
to show that 𝐵𝑖 and 𝐶𝑖 are both psu

( (𝑟
2
)
− 𝐻 (𝑐) − 𝑛(𝑐)

)
; by Lemma 5.5 so is their sum �̃�𝑐 which then

completes the proof.
We focus on 𝐵𝑖 , the proof for 𝐶𝑖 being entirely similar. Assume first that 𝑏𝐿 = 1. Then

deg(𝐵𝑖) + val(𝐵𝑖) = 2(𝑖 − 𝑎 + 1) + 𝑏 − 𝑖 +
(
𝑟

2

)
− 𝐻 (𝐿𝑖 (𝑐)) − 𝑛(𝐿𝑖 (𝑐))

= 𝑏 + 𝑖 − 2𝑎 + 2 +

(
𝑟

2

)
− 𝐻 (𝐿𝑖 (𝑐)) − 𝑛(𝐿𝑖 (𝑐)). (5.10)

Note that 𝐻 (𝐿𝑖 (𝑐)) − 𝐻 (𝑐) = 𝑖 − 𝑎 + 1. Since 𝑏𝐿 = 1, we know that 𝑛(𝐿𝑖 (𝑐)) − 𝑛(𝑐) = 𝑏 − 𝑎 + 1. Thus,
we may rewrite equation (5.10) as

deg(𝐵𝑖) + val(𝐵𝑖) =
(
𝑟

2

)
− 𝐻 (𝑐) − 𝑛(𝑐), (5.11)

which disposes off the case 𝑏𝐿 = 1.
To finish this proof, we finally consider the case where 𝑏𝐿 =

(𝑏− 𝑓 +1
𝑏−𝑎+2

)
𝑞

. This time we get

deg(𝐵𝑖) + val(𝐵𝑖) = 𝑏 + 𝑖 − 2𝑎 + 2 + (𝑎 − 𝑓 − 1) (𝑏 − 𝑎 + 2) +
(
𝑟

2

)
− 𝐻 (𝐿𝑖 (𝑐)) − 𝑛(𝐿𝑖 (𝑐))

= 𝑖 − 𝑎 + (𝑎 − 𝑓 ) (𝑏 − 𝑎 + 2) +
(
𝑟

2

)
− 𝐻 (𝐿𝑖 (𝑐)) − 𝑛(𝐿𝑖 (𝑐)). (5.12)

Like before, the equality 𝐻 (𝐿𝑖 (𝑐)) − 𝐻 (𝑐) = 𝑖 − 𝑎 + 1 holds. Unlike before, we have

𝑛(𝐿𝑖 (𝑐)) − 𝑛(𝑐) =

(
𝑏 − 𝑓 + 1

2

)
−

(
𝑎 − 𝑓 − 1

2

)
−

(
𝑏 − 𝑎 + 1

2

)
(5.13)

= (𝑎 − 𝑓 ) (𝑏 − 𝑎 + 2) − 1.

We leave it to the reader to put the pieces together and conclude that equation (5.11) holds. �

Example 5.7. Recall that we computed 𝐴𝑐 (𝑞) for 𝑐 = (0, 3, 0, 0, 0, 1, 3) in Example 5.4, and it is seen
to be psu(26), which is in accordance with Theorem 5.6. Indeed,

(7
2
)
− 𝐻 (𝑐) = 21 + 5 = 26.

https://doi.org/10.1017/fms.2023.57 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.57


16 P. Nadeau and V. Tewari

6. q-volumes and a dissection of the permutahedron

In this section and the next, we will give a second combinatorial interpretation of 𝐴𝑐 (𝑞) after the one
in Section 3. As we will show in Section 7, it can be interpreted as extending the one given by Liu [15]
for 𝑞 = 1. In order to interpret the parameter q, we will use a decomposition of the permutahedron into
cubes which is of independent interest.

6.1. The polytopes C𝜆 (𝑢)

Fix 𝜆 ∈ R𝑟+1 = (𝜆1, 𝜆2, . . . , 𝜆𝑟+1) such that 𝜆𝑖 ≥ 𝜆𝑖+1 for 𝑖 = 1, . . . , 𝑟 . For the next definition, we
embed S𝑟 into S𝑟+1 as usual by treating 𝑟 + 1 as a fixed point. Recall that 𝑠𝑖 for 1 ≤ 𝑖 ≤ 𝑟 is the simple
transposition that swaps i and 𝑖 + 1. Recall further from the introduction that given 𝑣 ∈ S𝑟+1, we let
𝜆𝑣 � (𝜆𝑣 (1) , . . . , 𝜆𝑣 (𝑟+1) ).

Definition 6.1. For 𝑢 ∈ S𝑟 , consider the interval 𝐼𝑢 = [𝑢, 𝑠1𝑠2 · · · 𝑠𝑟𝑢] in the Bruhat order on S𝑟+1. The
polytope C𝜆 (𝑢) is defined as the convex hull in R𝑟+1 of the points 𝜆𝑣 for 𝑣 ∈ 𝐼𝑢 .

We multiply permutations from right to left, so if 𝑢 = 𝑢1, . . . , 𝑢𝑟 , 𝑟 + 1 in one-line notation, then
𝑠1𝑠2 · · · 𝑠𝑟𝑢 = 𝑢1 + 1, . . . , 𝑢𝑟 + 1, 1.

Example 6.2. For 𝑟 = 1, we have 𝑢 = 1 which 𝐼1 = [12, 21] = {12, 21} ⊆ S2.
For 𝑟 = 2, we get 𝐼12 = [123, 231] = {123, 213, 132, 231} and 𝐼21 = [213, 321] =

{213, 231, 312, 321}.
For 𝑟 = 3 and 𝜆 = (3, 2, 1, 0), the six polytopes C𝜆 (𝑢) for 𝑢 ∈ S𝑟 are illustrated at the bottom left of

Figure 5. They are all Bruhat interval polytopes introduced by Tsukerman–Williams [25].

Remark 6.3. Recall that the 𝜆𝑣 for 𝑣 ∈ S𝑟+1 are the vertices of the permutahedron Perm(𝜆). It follows
that the 𝜆𝑣 for 𝑣 ∈ 𝐼𝑢 are the vertices of C𝜆 (𝑢) for any 𝑢 ∈ S𝑟 .

This description of C𝜆 (𝑢), while possessing the virtue of brevity, is not entirely convenient in practice
as it requires listing elements of 𝐼𝑢 . We now proceed to give another perspective on 𝐼𝑢 which is more
enlightening.

Recall that the code code(𝑤) of a permutation 𝑤 ∈ S𝑟+1 is the weak composition (𝑐1, . . . , 𝑐𝑟+1)
where 𝑐𝑖 = |{ 𝑗 > 𝑖 | 𝑤𝑖 > 𝑤 𝑗 }|. For instance, code(23514) = (1, 1, 2, 0, 0). It sends S𝑟+1 bijectively to
the sequences (𝑐1, . . . , 𝑐𝑟+1) such that 0 ≤ 𝑐𝑖 ≤ 𝑟 + 1 − 𝑖 for all i.

Lemma 6.4. For any 𝑢 ∈ S𝑟 , the Bruhat interval 𝐼𝑢 of S𝑟+1 is isomorphic to the Boolean lattice B𝑟 of
cardinality 2𝑟 .

Proof. Denote the bottom and top element of 𝐼𝑢 , respectively, by 𝑢− = 𝑢1, . . . , 𝑢𝑟 , 𝑟 + 1 and 𝑢+ =
𝑢1 + 1, . . . , 𝑢𝑟 + 1, 1 in one-line notation.

Given 𝑆 ⊂ [𝑟], let e𝑆 ∈ R𝑟+1 denote the indicator vector of S, that is, e𝑆 equals the sum of the
standard basis vectors 𝑒𝑖 (in R𝑟+1) for 𝑖 ∈ 𝑆. Define

𝐽𝑢 � {𝑐 = (𝑐1, . . . , 𝑐𝑟+1) | 𝑐 = code(𝑢−) + e𝑆for𝑆 ⊂ [𝑟]}.

We claim that 𝑣 ∈ 𝐼𝑢 (i.e., 𝑢− ≤ 𝑣 ≤ 𝑢+ in Bruhat order) if and only code(𝑣) ∈ 𝐽𝑢 , and that this
gives a poset isomorphism (the order on weak compositions is componentwise). Note that this proves
the lemma since 𝐽𝑢 is clearly order isomorphic to B𝑟 .

We have code(𝑢+) = code(𝑢−) + e[𝑟 ] as is checked immediately. Therefore, 𝐽𝑢 consists of all weak
compositions c such that code(𝑢−) ≤ 𝑐 ≤ code(𝑢+).

We leave it to the reader to check that the full claim follows from invoking the following well-known
tableau criterion: 𝑢 ≤ 𝑣 in Bruhat order if for any i, the weakly increasing rearrangement of 𝑢1 . . . 𝑢𝑖
is smaller, componentwise, than the weakly increasing rearrangement of 𝑣1 . . . 𝑣𝑖 . In view of this, the
condition 𝑢− ≤ 𝑣 ≤ 𝑢+ translates to exactly two choices for each 𝑣𝑖 as i goes from 1 through r. �
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Figure 5. Slicing of the three dimensional permutahedron (top), its full dissection into cubes (bottom
left) and the associated cubical complex (bottom right).

Figure 6. Decreasing tree T(𝑢) for 𝑢 = 47128635.

6.2. The cube decomposition

We recall the classical bijection 𝑢 ↦→ T(𝑢) between S𝑟 and decreasing binary trees. T(𝑢) is defined
more generally for u a word with distinct letters in Z>0. Assume 𝑢 = 𝑢𝐿𝑀𝑢𝑅, where M is the maximal
integer in u. Then T(𝑢) is constructed recursively as the binary tree with root label M whose left (resp.
right) subtree is T(𝑢𝐿) (resp. T(𝑢𝑅)). For instance, the tree in Figure 6 corresponds to the permutation
𝑢 = 47128635.

Given 𝑢 ∈ S𝑟 and 𝑖 ∈ [𝑟], let 𝐿(𝑢, 𝑖) � {𝑖 − 𝑓𝑖 , . . . , 𝑖 − 1} and 𝑅(𝑢, 𝑖) � {𝑖 + 1, . . . , 𝑖 + 𝑔𝑖}, where
𝑓𝑖 , 𝑔𝑖 ≥ 0 are maximal such that 𝑢 𝑗 < 𝑢𝑖 for 𝑗 ∈ 𝐿(𝑢, 𝑖) ∪𝑅(𝑢, 𝑖). These are the labels of the descendants
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of the node i in T(𝑢): More precisely, 𝐿(𝑢, 𝑖) (resp. 𝑅(𝑢, 𝑖)) is the set of labels of the left (resp. right)
subtree of that node.

We now assume 𝜆𝑖 > 𝜆𝑖+1 for 𝑖 = 1, . . . , 𝑟 . Although the next theorem can be adapted for cases with
identical values, we do not need it since we will be interested in the volume of Perm(𝜆), for which we
will obtain polynomial formulas in the 𝜆𝑖 that will still be valid in the general case.

Theorem 6.5. The 𝑟! polytopes {C𝜆(𝑢)}𝑢∈S𝑟 are combinatorial cubes that are the maximal faces of a
polyhedral subdivision of Perm(𝜆).

The facet description of C𝜆 (𝑢) is given by

(left) 𝑡𝑢𝑖 +
∑

𝑗∈𝐿 (𝑢,𝑖)

𝑡𝑢 𝑗 ≤ 𝜆𝑖− 𝑓𝑖 + · · · + 𝜆𝑖; (6.1)

(right) 𝑡𝑢𝑖 +
∑

𝑗∈𝑅 (𝑢,𝑖)

𝑡𝑢 𝑗 ≥ 𝜆𝑖+1 + · · · + 𝜆𝑖+𝑔𝑖+1, (6.2)

for 𝑖 = 1, . . . , 𝑟 .

Proof. Recall that we assume 𝜆𝑖 > 𝜆𝑖+1 for 𝑖 = 1, . . . , 𝑟 . We have that Perm(𝜆) is contained between
the hyperplanes 𝑥1 = 𝜆1 and 𝑥1 = 𝜆𝑟+1.

Now, fix i satisfying 1 ≤ 𝑖 ≤ 𝑟 , and consider the slice 𝑃𝑖 � Perm(𝜆1, . . . , 𝜆𝑟+1) ∩ {𝜆𝑖 ≥ 𝑥1 ≥ 𝜆𝑖+1}.
The sections 𝑆𝑡 � Perm(𝜆1, . . . , 𝜆𝑟+1) ∩ {𝑥1 = 𝑡} of 𝑃𝑖 for 𝜆𝑖 ≥ 𝑡 ≥ 𝜆𝑖+1 are explicitly described in
Liu’s work [15, Proposition 3.7]:

𝑆𝑡 = {𝑡} × Perm(𝜆1, . . . , 𝜆𝑖−1, 𝜆𝑖 + 𝜆𝑖+1 − 𝑡, 𝜆𝑖+2, . . . , 𝜆𝑟+1).

Note that 𝜆𝑖−1 > 𝜆𝑖 + 𝜆𝑖+1 − 𝑡 > 𝜆𝑖+2 for 𝜆𝑖 ≥ 𝑡 ≥ 𝜆𝑖+1. It follows from that result that the slice 𝑃𝑖
is in particular combinatorially equivalent to the product of [0, 1] with a permutahedron of dimension
one less. Proceeding inductively, one can decompose into cubes the two permutahedra that appear as
intersections with the hyperplanes 𝑥1 = 𝜆𝑖 and 𝑥1 = 𝜆𝑖+1. By taking the direct product with [0, 1], we
obtain the decomposition of Perm(𝜆) into cubes.

It is then easily checked inductively that these cubes are precisely the cubes C𝜆 (𝑢) and that the facet
description is as described in equations (6.1) and (6.2). �

See Figure 5 for an illustration of the decomposition in the case of the three-dimensional standard
permutahedron. We analyze the cube C𝜆 (213) to illustrate the preceding theorem. The table next
displays all the relevant information along with the facet-defining inequalities. Each vertex of the cube
is obtained by forcing exactly one of the two inequalities in any column to be an equality. Forcing all left
(resp. right) inequalities to be equalities produce the vertex 𝜆𝑢− (resp. 𝜆𝑢+ ) in the notation of Lemma 6.4.

i 1 2 3

𝐿 (𝑢, 𝑖) ∅ ∅ {1, 2}
𝑅 (𝑢, 𝑖) {2} ∅ ∅

(left) 𝑡2 ≤ 𝜆1 𝑡1 ≤ 𝜆2 𝑡3 + 𝑡1 + 𝑡2 ≤ 𝜆1 + 𝜆2 + 𝜆3
(right) 𝑡2 + 𝑡1 ≥ 𝜆2 + 𝜆3 𝑡1 ≥ 𝜆3 𝑡3 ≥ 𝜆4

Remark 6.6. When 𝑢 = 𝑖𝑑 the polytope C𝜆 (𝑢) is the Pitman–Stanley polytope [24], and the latter is
well known to be a combinatorial cube. As we shall see in the next section, this is directly related to
setting 𝑞 = 0 in our framework.

Remark 6.7. For any 𝜆, 𝑢, the polytope C𝜆(𝑢) is a generalized permutahedron [21]. One needs to check
that each edge of C𝜆(𝑢) is parallel to 𝑒𝑖 − 𝑒 𝑗 for some 𝑖, 𝑗 . Now, we know that the face poset of C𝜆 (𝑢)
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corresponds to an interval in the Bruhat order, so adjacent vertices of C𝜆 (𝑢) have coordinates 𝜆𝑣 and
𝜆𝑣′ , where v covers 𝑣′ in Bruhat order, which implies that 𝜆𝑣 − 𝜆𝑣′ is parallel to 𝑒𝑖 − 𝑒 𝑗 for some 𝑖, 𝑗 as
desired.

6.3. q-volume

We now recall the notion of q-volume of the permutahedron introduced by the authors [18, Section 9].
Given 𝜆, we define the q-volume of Perm(𝜆) as

𝑉𝑞 (𝜆) =
1

(𝑟)𝑞!
〈
(𝜆1𝑥1 + · · · + 𝜆𝑟+1𝑥𝑟+1)

𝑟
〉𝑞
𝑟+1. (6.3)

The remixed Eulerians arise as follows:

𝑉𝑞 (𝜆) =
∑
𝑐∈W𝑟

𝐴𝑐 (𝑞)
(𝜆1 − 𝜆2)

𝑐1

𝑐1!
· · ·

(𝜆𝑟 − 𝜆𝑟+1)
𝑐𝑟

𝑐𝑟 !
. (6.4)

At 𝑞 = 1, this recovers 𝑉1(𝜆) = vol(Perm(𝜆)) [21]. From the subdivision of Perm(𝜆) into cubes
(C𝜆 (𝑢))𝑢∈S𝑟 it follows that

𝑉1(𝜆) = vol(Perm(𝜆)) =
∑
𝑢∈S𝑟

vol(C𝜆 (𝑢)). (6.5)

Theorem 6.8 below is a q-deformation of this equality by weighing each summand by 𝑞ℓ (𝑢) . To prove
it, we will need some results from [8, Section 6].

To each 𝑢 ∈ S𝑟 , one can associate a Richardson variety

𝑅(𝑢) = 𝑋1×𝑤𝑟
𝑜𝑢 ∩ 𝑋𝑢 (6.6)

in the variety of complete flags of C𝑟+1. Its cohomology class can be represented by the product of
Schubert polynomials 𝔖𝑢𝔖1×𝑤𝑟

𝑜𝑢 , and its volume polynomial is then given by:

Vol𝜆 (𝑅(𝑢)) =
1

(𝑟)𝑞!
𝜕𝑤𝑜

((∑
𝑖

𝜆𝑖𝑥𝑖

)𝑟
𝔖𝑢𝔖1×𝑤𝑟

𝑜𝑢

)
. (6.7)

It is shown in [8, Remark 6.5] that 𝑅(𝑢) is a toric variety and that Vol𝜆 (𝑅(𝑢)) = vol(C𝜆 (𝑢)). We
emphasize here that 𝑤𝑜 is the longest element in S𝑟+1 while 𝑤𝑟𝑜 is the longest element in S𝑟 .

Theorem 6.8. For any 𝜆, we have

𝑉𝑞 (𝜆) =
∑
𝑢∈S𝑟

𝑞ℓ (𝑢) vol(C𝜆 (𝑢)). (6.8)

Proof. Throughout this proof, set 𝐿 �
∑

1≤𝑖≤𝑟+1
𝜆𝑖𝑥𝑖 and 𝑃𝑟 �

∏
1≤𝑖< 𝑗−1≤𝑟

(𝑞𝑥𝑖 − 𝑥 𝑗 ). By definition of

q-divided symmetrization (1.3), we have

𝑉𝑞 (𝜆) =
1

(𝑟)𝑞!
𝜕𝑤𝑜 (𝐿

𝑟𝑃𝑟 ). (6.9)

We now link 𝑃𝑟 to double Schubert polynomials. Letting𝑤𝑟𝑜 denote the longest element in S𝑟 interpreted
as a permutation in S𝑟+1 by affixing 𝑟 +1 as a fixed point, we have the following equality for the dominant
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double Schubert polynomial

𝔖𝑤𝑟
𝑜
(𝑥1, . . . , 𝑥𝑟+1; 𝑦1, . . . , 𝑦𝑟+1) =

∏
𝑖+ 𝑗≤𝑟

(𝑥𝑖 − 𝑦 𝑗 ). (6.10)

This by comparison yields

𝑃𝑟 = 𝔖𝑤𝑟
𝑜
(𝑞𝑥1, . . . , 𝑞𝑥𝑟+1; 𝑥𝑟+1, . . . , 𝑥1). (6.11)

Now, by Cauchy’s formula [16, Proposition 2.4.7], for any permutation 𝑤 ∈ S𝑟+1, one has

𝔖𝑤 (𝑥1, . . . , 𝑥𝑟+1; 𝑦1, . . . , 𝑦𝑟+1) =
∑

𝑢,𝑣 ∈S𝑟+1
𝑣−1𝑢=𝑤

ℓ (𝑣)+ℓ (𝑢)=ℓ (𝑤)

𝔖𝑢 (𝑥1, . . . , 𝑥𝑟+1)𝔖𝑣 (−𝑦1, . . . ,−𝑦𝑟+1)

=
∑

𝑢,𝑣 ∈S𝑟+1
𝑣−1𝑢=𝑤

ℓ (𝑣)+ℓ (𝑢)=ℓ (𝑤)

𝔖𝑢 (𝑥1, . . . , 𝑥𝑟+1)𝔖𝑤𝑜𝑣𝑤𝑜 (𝑦𝑟+1, . . . , 𝑦1), (6.12)

where the second equality is modulo the ideal 𝐼𝑟+1 in Q[𝑥1, . . . , 𝑥𝑟+1] generated by symmetric polyno-
mials with zero constant term. Indeed, 𝔖𝑣 (−𝑦1, . . . ,−𝑦𝑟+1) = 𝔖𝑤𝑜𝑣𝑤𝑜 (𝑦𝑟+1, . . . , 𝑦1) mod 𝐼𝑟+1.

Now, on setting 𝑤 = 𝑤𝑟0 in (6.12) and combining with equation (6.11), we get:

𝑃𝑟 =
∑

𝑢,𝑣 ∈S𝑟+1
𝑣−1𝑢=𝑤𝑟

𝑜
ℓ (𝑣)+ℓ (𝑢)=ℓ (𝑤𝑟

𝑜 )

𝑞ℓ (𝑢)𝔖𝑢 (𝑥1, . . . , 𝑥𝑟+1)𝔖𝑤𝑜𝑣𝑤𝑜 (𝑥1, . . . , 𝑥𝑟+1) mod 𝐼𝑟+1. (6.13)

As explained in [20, Section 9.5], the indexing set in equation (6.13) may be simplified to give

𝑃𝑟 =
∑
𝑢∈S𝑟

𝑞ℓ (𝑢)𝔖𝑢𝔖1×𝑤𝑟
𝑜𝑢 mod 𝐼𝑟+1. (6.14)

Now, note that we may replace 𝑃𝑟 in equation (6.9) by any homogeneous polynomial of the same degree
equivalent modulo 𝐼𝑟+1. Substituting in equation (6.9), we get

𝑉𝑞 (𝜆) =
∑
𝑢∈S𝑟

𝑞ℓ (𝑢)
1

(𝑟)𝑞!
𝜕𝑤𝑜

(
𝐿𝑟𝔖𝑢𝔖1×𝑤𝑟

𝑜𝑢
)
=

∑
𝑢

𝑞ℓ (𝑢)Vol𝜆 (𝑅(𝑢)), (6.15)

where we used equation (6.7) in the last equality. We can then conclude since Vol𝜆(𝑅(𝑢)) = vol(C𝜆 (𝑢))
as recalled before the theorem. �

Theorem 6.8 further justifies dubbing 𝑉𝑞 (𝜆) a q-volume. Based on this result and the expansion
(1.1), we give a combinatorial interpretation of remixed Eulerian numbers in Section 7. We end this
section with some remarks.

Remark 6.9. Setting 𝑞 = 0 in equation (6.8), we have that𝑉0(𝜆) is the volume of C𝜆 (𝑖𝑑). This polytope
is the Pitman–Stanley polytope as noticed in Remark 6.6. Using Remark 5.2, it is then immediate that
the expansion (6.4) at 𝑞 = 0 recovers the well-known expansion in [24, Theorem 1].

Remark 6.10. It would be nice to have a more direct proof of the previous result, avoiding the use of
the Richardson variety 𝑅(𝑢). A possibility would be to show by a direct computation that

𝑣𝑞 (𝜇) =
𝑟∑
𝑖=1

𝑞𝑖−1
∫ 𝜇𝑖

0
𝑣𝑞 (𝜇1, . . . , 𝜇𝑖−2, 𝜇𝑖−1 + 𝜇𝑖 − 𝑡, 𝑡 + 𝜇𝑖+1, 𝜇𝑖+2, . . . , 𝜇𝑟 ) d𝑡,
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where 𝑣𝑞 (𝜇) is the expression of 𝑉𝑞 (𝜆) in terms of 𝜇𝑖 = 𝜆𝑖 − 𝜆𝑖+1.3 Indeed, this recurrence relation is
satisfied by the right-hand side in Theorem 6.8 by slicing the permutahedron as in the proof of Theorem
6.5. This is in fact the q-deformation of [15, Proposition 3.9]; we come back to this in Section 7.2.

Remark 6.11. Let T𝑟 denote the set of (rooted) complete binary trees with r internal nodes. Fix 𝑇 ∈ T𝑟 .
We denote by S𝑇 the set of all permutations in S𝑟 whose decreasing tree (completed so that it has 𝑟 + 1
unlabeled leaves) has underlying shape T. Theorem 6.5 implies that as u ranges over S𝑇 , the cubes C𝜆 (𝑢)
are all congruent, that is, they differ only up to a permutation of coordinates. Thus, we may without any
harm consider our cubes to be indexed by trees in T𝑟 .

Endow T with the binary search labeling. This has the advantage that rewriting inequalities in
Theorem 6.5 with the new coordinates results in inequalities of the form 𝑡𝑖 + · · · + 𝑡 𝑗 ≥ 𝜆𝑖+1 + · · · + 𝜆 𝑗+1
or 𝑡𝑖 + · · · + 𝑡 𝑗 ≤ 𝜆𝑖 + · · · + 𝜆 𝑗 . It follows from [14, Definition 3.3] that C𝜆 (𝑇) is an alcoved polytope.
Since C𝜆 (𝑇) is also a generalized permutahedron, we infer that C𝜆 (𝑇) is a polypositroid [14, Definition
3.8]. In particular, each C𝜆 (𝑢) is obtained by permuting coordinates in C𝜆 (𝑇) according to u.

Remark 6.12. In view of the preceding remark, we may compactify the 𝑉𝑞 (𝜆) as a sum over T𝑟 :

𝑉𝑞 (𝜆) =
∑
𝑢∈S𝑟

𝑞ℓ (𝑢)vol(C𝜆 (𝑢)) =
∑
𝑇 ∈T𝑟

vol(C𝜆 (𝑇))
∑
𝑢∈S𝑇

𝑞ℓ (𝑢) . (6.16)

Appealing to the q-hook length formula for binary trees we get

𝑉𝑞 (𝜆) =
∑
𝑇 ∈T𝑟

vol(C𝜆 (𝑇)) × 𝑞
stat(𝑇 )

(𝑟)𝑞!∏
𝑣 ∈𝑇 (ℎ𝑣 )𝑞!

, (6.17)

where stat(𝑇) is the sum over all internal nodes of the number of right edges in the unique path from root
to node, though this precise description is not relevant for the discussion at hand. Given the expression
for q-volume in equation (6.17) as a sum over binary trees involving the hook length formula, it is natural
to compare it with [21, Theorem 17.1] that expresses the ordinary volume of the permutahedron as a sum
over binary trees as well. When we set 𝑞 = 1 and specialize to the case of the standard permutahedron,
it can be checked that vol(C𝜆 (𝑇)) does not become the product on the right-hand expression in loc. cit..
In particular, our expansion does not yield Postnikov’s hook length formula [21, Corollary 17.3] despite
the similarity.

7. Combinatorial interpretation via bilabeled trees

We turn our attention to providing a combinatorial interpretation for 𝐴𝑐 (𝑞) using the q-volume perspec-
tive coupled with work of [8]. The overarching idea is that the cubes C𝜆 (𝑢) are obtained as images of
certain special faces of the Gelfand–Tsetlin polytope GT(𝜆) under a simple volume-preserving map.

7.1. Gelfand–Tsetlin polytope, face diagrams and shifted tableaux

The Gelfand–Tsetlin polytope GT(𝜆) ⊂ R(
𝑛
2) contains all points (𝑥𝑖 𝑗 )1≤𝑖≤ 𝑗≤𝑛, where

𝑥𝑖, 𝑗−1 ≥ 𝑥𝑖, 𝑗 ≥ 𝑥𝑖+1, 𝑗 (7.1)

holds for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. Here, we assume that 𝑥𝑖𝑖 = 𝜆𝑖 for all 𝑖 ∈ [𝑛]. Points in GT(𝜆) can be
interpreted as fillings of a triangular array as shown in Figure 7 subject to conditions in equation (7.1).

The authors of [8] take inspiration from work of Kogan [13], Kiritchenko [11], Kiritchenko–Smirnov–
Timorin [10], and use a combinatorial gadget called face diagrams to emphasize equalities defining
faces of GT(𝜆).

3In personal communication, Jang Soo Kim has found a proof following this route.
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𝑥11 𝑥12 . . . . . . 𝑥1𝑛

𝑥22 . . . . . . 𝑥2𝑛
...

...
...

...
...

𝑥𝑛𝑛

Figure 7. Gelfand–Tsetlin pattern.

Figure 8. FD(𝑢) for 𝑢 = 2647351 ∈ S7 (left) and the corresponding (𝑇, dec) (right).

Consider a graph on a set of
(𝑛+1

2
)

vertices, each placed at the centre of the boxes in Figure 7. We
address the vertex in row i from the top and column j from the left by (𝑖, 𝑗). Faces of GT(𝜆) of interest
to us are determined by declaring at most one inequality among 𝑥𝑖, 𝑗 ≤ 𝑥𝑖, 𝑗+1 ≤ 𝑥𝑖+1, 𝑗+1 to be an
equality. Pictorially, we emphasize this equality by drawing an edge between the appropriate vertices.
The resulting graphs are called face diagrams.

The face diagrams we are interested in are indexed by permutations. Pick 𝑢 ∈ S𝑟 , and let (𝑑1, . . . , 𝑑𝑟 )
be such that code(𝑢−1) = (𝑑1 − 1, . . . , 𝑑𝑟 − 1). Consider the face F(𝑢) of GT(𝜆) (and face diagram
FD(𝑢)) defined by the equalities

𝑥𝑖,𝑖+ 𝑗 = 𝑥𝑖,𝑖+ 𝑗−1 for 1 ≤ 𝑖 < 𝑑 𝑗 ; 𝑥𝑖,𝑖+ 𝑗 = 𝑥𝑖+1,𝑖+ 𝑗 for 𝑑 𝑗 < 𝑖 ≤ 𝑟 + 1 − 𝑗 . (7.2)

Then F(𝑢) is r dimensional. We now observe that the association FD(𝑢) ↔ 𝑢 is essentially the folklore
bijection between decreasing binary trees and permutations described in Section 6.2.

Indeed, note the following aspect of FD(𝑢). For a fixed 𝑗 ∈ [𝑟], there exists a unique 𝑖 ∈ [𝑟 + 1 − 𝑗]
such that the vertex (𝑖, 𝑖 + 𝑗) is neither connected to the vertex immediately below nor connected to the
vertex immediately to the left. Indeed this vertex is given by (𝑑 𝑗 , 𝑑 𝑗+ 𝑗). We enrich FD(𝑢) by introducing
edges joining (𝑑 𝑗 , 𝑑 𝑗 + 𝑗) to (𝑑 𝑗 + 1, 𝑑 𝑗 + 𝑗) and (𝑑 𝑗 , 𝑑 𝑗 + 𝑗 − 1) for each 𝑗 ∈ [𝑟]. Additionally, we
label the vertices (𝑑 𝑗 , 𝑑 𝑗 + 𝑗) by j. The resulting graph is connected and has

(𝑛+1
2

)
− 1 edges and hence

must be a tree (in a planar representation). One can treat it as a rooted binary tree with root given by the
vertex (1, 𝑛). See Figure 8 (middle) for the enriched face diagram for 𝑢 = 2647351 ∈ S7.

Shrinking all paths present in the original FD(𝑢) to length 0, we get a complete binary tree with
r labeled internal nodes and 𝑟 + 1 unlabeled leaves. Ignoring leaves, one obtains the decreasing tree
(𝑇, dec) attached to u.4 Here, T records the unlabeled underlying tree and dec the decreasing labeling.
See the decreasing tree on the right in Figure 8.

To give a combinatorial interpretation to 𝐴𝑐 (𝑞), we endow a decreasing tree (completed with
unlabeled leaves) with an additional labeling lr of the nodes and leaves with distinct positive integers
drawn from {1, . . . , 2𝑟+1} such that the label of any node is larger (resp. smaller) than that of its left (resp.
right) child. Furthermore, the labels on the leaves increase when read from left to right. We call the triple
(𝑇, dec, lr) a bilabeled tree. If the sequence of labels read off the leaves is (1 = ℓ1 < · · · < ℓ𝑟+1 = 2𝑟 +1),
we define the content of the bilabeled tree by setting 𝑐𝑖 = ℓ𝑖+1 − ℓ𝑖 − 1 for 𝑖 ∈ [𝑟].

4In the language of Section 6.2, this is T(𝑢) .

https://doi.org/10.1017/fms.2023.57 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.57


Forum of Mathematics, Sigma 23

Figure 9. All bilabeled trees with content (2, 0, 1).

Theorem 7.1. For 𝑐 ∈ W𝑟 , let 𝐵(𝑐) be the set of bilabeled trees with content c. We have

𝐴𝑐 (𝑞) =
∑

(𝑇 ,dec,lr) ∈𝐵 (𝑐)

𝑞ℓ (𝑢) ,

where 𝑢 ∈ S𝑟 is the permutation determined by (𝑇, dec).

Proof. It is shown in [8] that, under a simple transformation, the faces F(𝑢) of GT(𝜆) are the C𝜆 (𝑢);
see [8, Theorem 5.4] and results in Section 6 in loc. cit. Therefore, vol(F(𝑢)) = vol(C𝜆 (𝑢)). The former
quantity can be described in terms of shifted tableaux, which we then recast.

A shifted Young tableau P associated with F(𝑢) is a filling of the cells in Figure 7 with entries from
{1, . . . , 2𝑟 +1} so that they increase weakly from left to right and top to bottom, and neighboring entries
are equal if and only if the corresponding vertices are connected by an edge in FD(𝑢). The diagonal
vector of P is the sequence of entries in the cells (𝑖, 𝑖) as i ranges from 1 through 𝑟 + 1.

By [8, Proposition 3.1]

vol(F(𝑢)) =
∑
𝑐∈W𝑟

∑
𝑃∈ShT(𝑢,𝑐)

(𝜆1 − 𝜆2)
𝑐1

𝑐1!
· · ·

(𝜆𝑟 − 𝜆𝑟+1)
𝑐𝑟

𝑐𝑟 !
, (7.3)

where ShT(𝑢, 𝑐) is the set of shifted tableaux associated to F(𝑢) with prescribed diagonal vector
(1, 𝑐1 + 2, 𝑐1 + 𝑐2 + 3, . . . , 𝑐1 + · · · + 𝑐𝑟 + 𝑟 + 1). Theorem 6.8 then becomes

𝑉𝑞 (𝜆) =
∑
𝑢∈S𝑟

𝑞ℓ (𝑢)
∑
𝑐∈W𝑟

∑
𝑃∈ShT(𝑢,𝑐)

(𝜆1 − 𝜆2)
𝑐1

𝑐1!
· · ·

(𝜆𝑟 − 𝜆𝑟+1)
𝑐𝑟

𝑐𝑟 !
. (7.4)

Comparing with equation (6.4) yields the following interpretation:

𝐴𝑐 (𝑞) =
∑
𝑢∈S𝑟

∑
𝑃∈ShT(𝑢,𝑐)

𝑞ℓ (𝑢) . (7.5)

Mimicking how we went from FD(𝑢) to (𝑇, dec), we can translate shifted tableaux to bilabeled trees—
the inequalities defining the former translate into the ‘local binary search’ condition on the labeling lr
while the diagonal vector gives the leaf labeling. �

Example 7.2. Consider 𝑐 = (2, 0, 1) ∈ W3. Figure 9 shows all bilabeled trees with content c. The blue
labels on the outside record the lr labeling whereas the interior labels record the decreasing labeling.
We get

𝐴201(𝑞) = 𝑞
ℓ (123) + 𝑞ℓ (132) + 𝑞ℓ (231) = 1 + 𝑞 + 𝑞2.

7.2. Connection with Liu’s work

We now demonstrate how the bilabeled tree construction is related to work of Liu [15].
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Figure 10. An example of (𝑇, dec, lr) → (𝑇 ′, dec′, lr′).

Given a bilabeled tree (𝑇, dec, lr) with content c, consider the node 𝑣1 labeled 1 in the decreasing
labeling; its children are leaves, say with labels ℓ𝑖 < ℓ𝑖+1 in the labeling lr. Then we must have
𝑐𝑖 = ℓ𝑖+1 − ℓ𝑖 − 1. Let j be the lr-label of 𝑣1. The local binary search condition tells us that ℓ𝑖 < 𝑗 < ℓ𝑖+1.

If 𝑖 = 1, then necessarily 𝑗 = 2 since 𝑣1 is the only possible node with this label; similarly, if 𝑖 = 𝑟 ,
then 𝑗 = 2𝑟 . We obtain a bilabeled tree (𝑇 ′, dec′, lr′) as follows:

◦ 𝑇 ′ is obtained by replacing the node 𝑣1, and its two attached leaves by a single new leaf 𝑙𝑒𝑎 𝑓 .
◦ dec′ is obtained by decreasing dec by one on the remaining nodes in 𝑇 ′.
◦ lr′ is obtained by labeling the new leaf 𝑙𝑒𝑎 𝑓 by j, and then relabeling via the unique increasing

bijection {1, . . . , 2𝑟 + 1} \ {ℓ𝑖 , ℓ𝑖+1} → {1, . . . , 2𝑟 − 1}.

Figure 10 shows an example of this procedure.
Note that the content of (𝑇 ′, dec′, lr′) is (𝑐1, . . . , 𝑐𝑖−2, 𝑐𝑖−1+( 𝑗−𝑙𝑖−1), 𝑐𝑖+1+(𝑙𝑖+1− 𝑗−1), 𝑐𝑖+2, . . . , 𝑐𝑟 ).

Also, all bilabeled trees with this content are obtained in the manner described above. We thus get

𝐴𝑐 = 𝐴(𝑐1+𝑐2−1,𝑐3 ,...,𝑐𝑟 ) + 𝐴(𝑐1 ,...,𝑐𝑟−2 ,𝑐𝑟−1+𝑐𝑟−1) +

𝑟−1∑
𝑖=2

𝑐𝑖−1∑
𝑡=0

𝐴(𝑐1 ,...,𝑐𝑖−2 ,𝑐𝑖−1+𝑡 ,𝑐𝑖+1+𝑐𝑖−1−𝑡 ,𝑐𝑖+2...,𝑐𝑟 ) , (7.6)

where 𝐴𝑐 = 𝐴𝑐 (1) now. This is precisely Liu’s recurrence [15, p. 8] (where 𝐴𝑐 = 𝐴𝑐 (1)). Using the
same approach, one can in fact obtain a bijection between bilabeled trees with content c and Liu’s
C-permutations.

8. Concluding remarks

We conclude this article with some brief remarks that further demonstrate the combinatorial richness
of the 𝐴𝑐 (𝑞) and hopefully motivate the reader to investigate.

1. The statement of Theorem 1.3(4) has the mildly unattractive aspect in that both the ordinary factorial
and the q-factorial show up. In fact, appealing to Theorem 1.3(7), one can establish another q-
analogue: ∑

𝑐∈W𝑟

𝐴𝑐1 ,...,𝑐𝑟 (𝑞)

(𝑐1)𝑞! · · · (𝑐𝑟 )𝑞!
=

∑
𝑐∈W𝑟

∀𝑖≤𝑟 ,𝑐1+···+𝑐𝑖≥𝑖

(𝑟)𝑞!
(𝑐1)𝑞! · · · (𝑐𝑟 )𝑞!

=
∑

𝑓 ∈PF(𝑟 )
𝑞inv( 𝑓 ) . (8.1)

Here, PF(𝑟) is the set of parking functions of length r. The first equality in equation (8.1) is
simply invoking Theorem 1.3(7), whereas the second follows since the q-multinomial coefficient

(𝑟 )𝑞!
(𝑐1)𝑞!· · · (𝑐𝑟 )𝑞! for 𝑐 ∈ W𝑟 satisfying 𝑐1 + · · · + 𝑐𝑖 ≥ 𝑖 for all 𝑖 ≤ 𝑟 tracks the inversion (equivalently
the major index) statistic over parking functions with content c. Note that each individual summand
on the left-hand side in equation (8.1) is not necessarily a polynomial in q. Furthermore, one could
argue that the appearance of parking functions in the last step is contrived.

We say more on this matter in upcoming work that describes another (multivariate) perspective
on the 𝐴𝑐 (𝑞) wherein parking procedures come up organically. In that same work, the combinatorial
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interpretation for 𝐴𝑐 (𝑞) as counting bilabeled trees, obtained in Sections 6 and 7 via geometric
means, will be derived purely algebraically.

2. As mentioned earlier, the authors’ inspiration to introduce, and study, the 𝐴𝑐 (𝑞) came from Schubert
calculus [18, 20]. In particular, the Schubert class expansion of the cohomology class of the type
A permutahedral variety naturally involves mixed Eulerian numbers once the connection between
ordinary divided symmetrization and coefficient extraction Klyachko’s algebra [12] is made. Since
the latter algebra also arises as the cohomology ring of a regular nilpotent Hessenberg variety known
as the Peterson variety, it is not surprising that mixed Eulerian numbers arise in that context.

We make note of their occurrence in two recent works. Goldin–Gorbutt [6] compute structure
coefficients in the Peterson Schubert basis and give explicit expression for them in certain cases. In
particular, Corollary 2 in loc. cit. describes mixed Eulerian numbers 𝐴𝑐 (1), where c is a composition
of the form (0𝑝1𝑞2𝑟1𝑠0𝑡 ) for the appropriate 𝑝, 𝑞, 𝑟, 𝑠, and t, even though these numbers are not
explicitly identified as mixed Eulerian numbers in said work. More generally, several structural
constants in their work are products of 𝐴𝑐 where the c satisfy 𝑐𝑖 ≤ 2. The type A story in this context
is also present in [9].

3. Finally, other subfamilies of 𝐴𝑐 (𝑞) of interest are currently being investigated by Solal Gaudin, a
student of the first author, as part of his thesis: as an example, weak compositions c whose support
has size two, that is particle configurations with two piles. Note that these are not in general elements
of the two subfamilies studied in Section 4.
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