Supplementary Information

High-throughput screening for extracellular inhibitors of the FLT3 receptor tyrosine kinase reveals chemically diverse and druggable negative allosteric modulators.

Romain Hany, *, * Jean-Philippe Leyris, *, \$, *, * Guillaume Bret, * Sylvie Mallié, *, \$ Chamroeun Sar, *, \$ Maxime Thouaye, *, \$ Abdallah Hamze, * Olivier Provot, * Pierre Sokoloff, * Jean Valmier, *, \$ Pascal Villa * and Didier Rognan*, *

[†]Plate-forme de Chimie Biologique Intégrative de Strasbourg (PCBIS), UAR3286 CNRS-Université de Strasbourg, Institut du Médicament de Strasbourg, ESBS Pôle API, Bld Sébastien Brant, 67412 Illkirch Cedex, France

[‡]Institut des Neurosciences de Montpellier (INM), INSERM, Institut National de la Santé et de la Recherche Médicale, UMR1051, Hôpital Saint-Eloi, 34000 Montpellier, France.

§Université de Montpellier, 34000 Montpellier, France.

[△] Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France.

[¶]Laboratoire d'Innovation Thérapeutique (LIT), UMR7200 CNRS-Université de Strasbourg, 67400 Illkirch, France

[≠]BIODOL Therapeutics, CAP Alpha, 34830 Clapiers, France

"Both authors equally contributed to this work.

* To whom correspondence should be addressed (phone: +33 3 68 85 42 35, fax: +33 3 68 85 43 10, email: rognan@unistra.fr)

- Table S1. Filtering rules to select hit-like compounds
- Table S2. Purity of validated hits
- **Figure S1:** Dose-response curves of three primary hits in inhibiting the binding of fluorescent-labeled FL-d2 to Lumi4-Tb-SNAP-FLT3 overexpressed in HEK-293 cells.
- **Figure S2.** Sunitinib inhibits the binding of fluorescent-labeled FL-d2 to Lumi4-Tb-SNAP-FLT3 overexpressed in HEK-293 cells.
- Figure S3. ¹H-NMR and ¹³C-NMR spectra of compound **22**

```
Table S1. Filtering rules to select hit-like compounds
#Copyright (C) 2000-2005 by OpenEye Scientific Software, Inc.
#This file defines the rules for filtering multi-structure files based on
#properties and substructure patterns.
                      "Minimum molecular weight"
MIN_MOLWT
              150
MAX MOLWT
               750
                       "Maximum molecular weight"
                     "Minimum number of heavy atoms"
MIN NUM HVY 10
                      "Maximum number of heavy atoms"
MAX NUM HVY 55
MIN RING_SYS 0
                   "Minumum number of ring systems"
                   "Maximum number of ring systems"
MAX RING SYS 7
MIN_RING_SIZE 0
                   "Minimum atoms in any ring system"
MAX_RING_SIZE 20
                     "Maximum atoms in any ring system"
                         "Minimum number of connected non-ring atoms"
MIN CON NON RING 0
MAX_CON_NON_RING 20
                         "Maximum number of connected non-ring atoms"
MIN FCNGRP
               0
                   "Minimum number of functional groups"
MAX FCNGRP
                    "Maximum number of functional groups"
                      "Minimum number of connected unbranched non-ring atoms"
MIN UNBRANCHED 0
                       "Maximum number of connected unbranched non-ring atoms"
MAX UNBRANCHED 8
                    "Minimum number of carbons"
MIN CARBONS
MAX_CARBONS
                     "Maximum number of carbons"
                40
                        "Minimum number of heteroatoms"
MIN HETEROATOMS 2
                         "Maximum number of heteroatoms"
MAX HETEROATOMS 20
MIN Het C Ratio 0.10
                       "Minimum heteroatom to carbon ratio"
MAX_Het_C_Ratio 1.0
                       "Maximum heteroatom to carbon ratio"
MIN_HALIDE_FRACTION
                        0.0
                             "Minimum Halide Fraction"
MAX HALIDE FRACTION
                              "Maximum Halide Fraction"
                        0.5
                                          (#BondsInRing)
                                                                    (RigidBondsInRing)
#count
       ring
              degrees
                            freedom =
                        of
(BondsSharedWithOtherRings)
#must be >= 0, from JCAMD 14:251-265,2000.
ADJUST ROT FOR RING
                              "BOOLEAN for whether to estimate degrees of freedom in rings"
                       true
                      "Minimum number of rotatable bonds"
MIN ROT BONDS 0
MAX_ROT_BONDS 20
                      "Maximum number of rotatable bonds"
MIN RIGID BONDS 0
                       "Minimum number of rigid bonds"
MAX_RIGID_BONDS 50
                        "Maximum number of rigid bonds"
MIN_HBOND_DONORS 0
                         "Minimum number of hydrogen-bond donors"
MAX HBOND DONORS 6
                         "Maximum number of hydrogen-bond donors"
```

MIN HBOND ACCEPTORS 0 "Minimum number of hydrogen-bond acceptors" MAX HBOND ACCEPTORS 10 "Maximum number of hydrogen-bond acceptors" "Minimum number of hydrogens on O & N atoms" MIN LIPINSKI DONORS 0 "Maximum number of hydrogens on O & N atoms" MAX_LIPINSKI_DONORS 5 MIN LIPINSKI ACCEPTORS 0 "Minimum number of oxygen & nitrogen atoms" MAX LIPINSKI ACCEPTORS 10 "Maximum number of oxygen & nitrogen atoms" MIN_COUNT_FORMAL_CRG 0 "Minimum number formal charges" "Maximum number of formal charges" MAX COUNT FORMAL CRG 3 MIN SUM FORMAL CRG -2 "Minimum sum of formal charges" MAX_SUM_FORMAL_CRG 2 "Maximum sum of formal charges" MIN_CHIRAL_CENTERS 0 "Minimum chiral centers" MAX_CHIRAL_CENTERS 4 "Maximum chiral centers"

MIN_XLOGP -2.0 "Minimum XLogP" MAX XLOGP "Maximum XLogP" 6.0

#choices are insoluble<poorly<moderately<soluble<very<highly MIN_SOLUBILITY moderately "Minimum solubility"

PSA_USE_SandP true "Count S and P as polar atoms" MIN_2D_PSA 0.0 "Minimum 2-Dimensional (SMILES) Polar Surface Area" 150.0 "Maximum 2-Dimensional (SMILES) Polar Surface Area" MAX_2D_PSA

"Eliminate known aggregators" AGGREGATORS true "Eliminate predicted aggregators" PRED AGG false

#secondary filters (based on multiple primary filters) true "PSA>140 or >10 rot bonds"

GSK VEBER MAX LIPINSKI 2 "Maximum number of Lipinski violations" "Minimum probability F>10% in rats" MIN ABS 0.5

PHARMACOPIA true "LogP > 5.88 or PSA > 131.6"

ALLOWED_ELEMENTS H,C,N,O,F,S,Cl,Br,I,P ELIMINATE_METALS Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Y,Zr,Nb,Mo,Tc,Ru,Rh,Pd,Ag,Cd

#acceptable molecules must have <= instances of each of the patterns below

#specific, undesirable functional groups

RULE 0 quinone

RULE 0 pentafluorophenyl esters

RULE 0 paranitrophenyl_esters

RULE 0 HOBT_esters

RULE 0 triflates

RULE 0 lawesson_s_reagent

RULE 0 phosphoramides

```
RULE 0 beta_carbonyl_quat_nitrogen
```

- RULE 0 acylhydrazide
- RULE 0 cation C Cl I P or S
- RULE 0 phosphoryl
- RULE 0 alkyl_phosphate
- RULE 0 phosphinic_acid
- **RULE 0 phosphanes**
- **RULE 0 phosphoranes**
- RULE 0 imidoyl_chlorides
- RULE 0 nitroso
- RULE 0 N_P_S_Halides
- RULE 0 carbodiimide
- RULE 0 isonitrile
- RULE 0 triacyloxime
- RULE 0 cyanohydrins
- RULE 0 acyl_cyanides
- RULE 0 sulfonylnitrile
- RULE 0 phosphonylnitrile
- RULE 0 azocyanamides
- RULE 0 beta_azo_carbonyl
- RULE 0 polyenes
- RULE 0 saponin_derivatives
- RULE 0 cytochalasin derivatives
- RULE 0 cycloheximide_derivatives
- RULE 0 monensin derivatives
- RULE 0 squalestatin_derivatives

#functional groups which often eliminate compounds from consideration

- RULE 0 acid halide
- RULE 0 aldehyde
- RULE 0 alkyl halide
- RULE 0 anhydride
- RULE 0 azide
- RULE 0 azo
- RULE 0 di_peptide
- RULE 0 michael_acceptor
- RULE 0 beta_halo_carbonyl
- RULE 0 nitro
- RULE 0 oxygen_cation
- RULE 0 peroxide
- RULE 0 phosphonic_acid
- RULE 0 phosphonic ester
- RULE 0 phosphoric acid
- RULE 0 phosphoric_ester
- RULE 0 sulfonic_acid
- RULE 0 sulfonic ester
- RULE 0 tricarbo_phosphene
- RULE 0 epoxide
- RULE 0 sulfonyl_halide
- RULE 0 halopyrimidine
- RULE 0 perhalo_ketone

- RULE 0 aziridine
- RULE 1 oxalyl
- RULE 0 alphahalo amine
- RULE 0 halo_amine
- RULE 0 halo_alkene
- RULE 0 acyclic_NCN
- RULE 0 acyclic_NS
- RULE 0 SCN2
- RULE 0 terminal vinyl
- RULE 0 hetero hetero
- RULE 0 hydrazine
- RULE 0 N methoyl
- RULE 0 NS_beta_halothyl
- **RULE 0 propiolactones**
- RULE 0 iodoso
- RULE 0 iodoxy
- RULE 0 noxide

#groups of molecules

RULE 0 dye

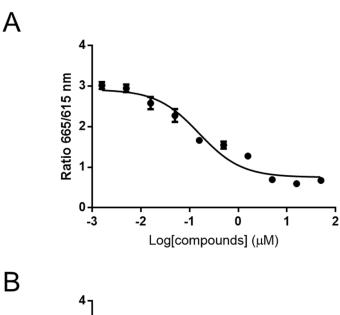
#functional groups which are allowed, but may not be wanted in high quantities #common functional groups

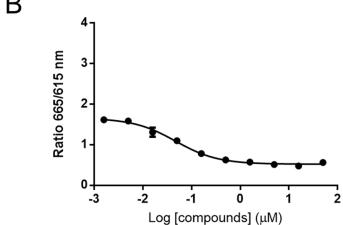
- RULE 6 alcohol
- RULE 8 alkene
- RULE 4 amide
- RULE 4 amino_acid
- RULE 4 amine
- RULE 4 primary_amine
- RULE 4 secondary_amine
- RULE 4 tertiary amine
- RULE 4 carboxylic acid
- RULE 6 halide
- RULE 1 iodine
- RULE 4 ketone
- RULE 4 phenol
- RULE 2 imine
- RULE 1 methyl_ketone
- RULE 1 alkylaniline
- RULE 4 sulfonamide
- RULE 1 sulfonylurea
- RULE 0 phosphonamide
- RULE 0 alphahalo_ketone
- RULE 0 oxaziridine
- RULE 1 cyclopropyl
- RULE 2 guanidine
- RULE 0 sulfonimine
- RULE 0 sulfinimine
- RULE 1 hydroxamic_acid

- RULE 0 sulfinylthio
- RULE 0 disulfide
- RULE 0 enol ether
- RULE 0 enamine
- RULE 0 organometallic
- RULE 0 dithioacetal
- RULE 1 oxime
- RULE 0 isothiocyanate
- RULE 0 isocyanate
- RULE 3 lactone
- RULE 3 lactam
- RULE 1 thioester
- RULE 1 carbonate
- RULE 0 carbamic_acid
- RULE 1 thiocarbamate
- RULE 0 triazine
- **RULE 1 malonic**

#other functional groups

- RULE 2 alkyne
- RULE 4 aniline
- RULE 4 aryl halide
- **RULE 4 carbamate**
- **RULE 4 ester**
- RULE 4 ether
- RULE 1 hydrazone
- RULE 0 nonacylhydrazone
- RULE 1 hydroxylamine
- RULE 2 nitrile
- RULE 2 sulfide
- RULE 2 sulfone
- RULE 2 sulfoxide
- RULE 0 thiourea
- RULE 1 thioamide
- RULE 1 thiol
- RULE 2 urea
- RULE 0 hemiketal
- RULE 0 hemiacetal
- RULE 0 ketal
- **RULE 1 acetal**
- RULE 0 aminal
- RULE 0 hemiaminal


#protecting groups


- RULE 0 benzyloxycarbonyl_CBZ
- RULE 0 t_butoxycarbonyl_tBOC
- RULE 0 fluorenylmethoxycarbonyl_Fmoc
- RULE 1 dioxolane_5MR
- RULE 1 dioxane_6MR

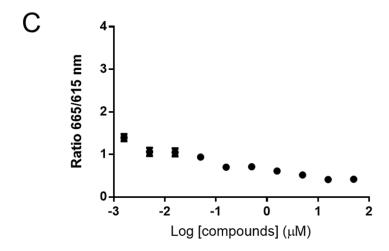

- RULE 1 tetrahydropyran_THP
- RULE 1 methoxyethoxymethyl_MEM
- RULE 2 benzyl_ether
- RULE 2 t_butyl_ether
- RULE 0 trimethylsilyl_TMS
- RULE 0 t_butyldimethylsilyl_TBDMS
- RULE 0 triisopropylsilyl_TIPS
- RULE 0 t_butyldiphenylsilyl_TBDPS
- RULE 1 phthalimides_PHT
- RULE 2 arenesulfonyl

Table S2. Purity of validated hits

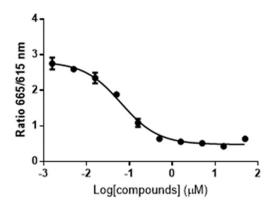

Cpd	Purity data	
•	Technique	Purity,%
7	¹ H-NMR	97
22	LC-MS	100
23	LC-MS	100
28	¹ H-NMR	>95
44	LC-MS	100
48	¹ H-NMR	95
49	LC-MS	90.5
59	¹ H-NMR	97
65	¹ H-NMR	98
66	¹ H-NMR	98
67	¹ H-NMR	95

Figure S1: Dose-response curves of three primary hits in inhibiting the binding of fluorescent-labeled FL-d2 to Lumi4-Tb-SNAP-FLT3 overexpressed in HEK-293 cells. The ratio of fluorescence intensities emitted at 665 and 615 nm (indicative of FL-d2 binding and subsequent FRET signal) is measured at 10 concentrations of competitor in triplicate. **A)** Validated inhibition of FL-d2 binding by a FCL competitor, **B)** Non-validated inhibition of FL-d2 binding because of a too low signal ratio (665/615 nm ratio = 1.6) at the lowest competitor concentration, **C)** Non-validated inhibition of FL-d2 binding because of a concentration-independent low signal ratio.

Figure S2: Sunitinib inhibits the binding of fluorescent-labeled FL-d2 to Lumi4-Tb-SNAP-FLT3 overexpressed in HEK-293 cells ($IC_{50} = 64 \pm 5$ nM). The normalized ratio of fluorescence intensities emitted at 665 and 615 nm (indicative of FL-d2 binding and subsequent FRET signal) is measured at 10 concentrations of competitor in triplicate.

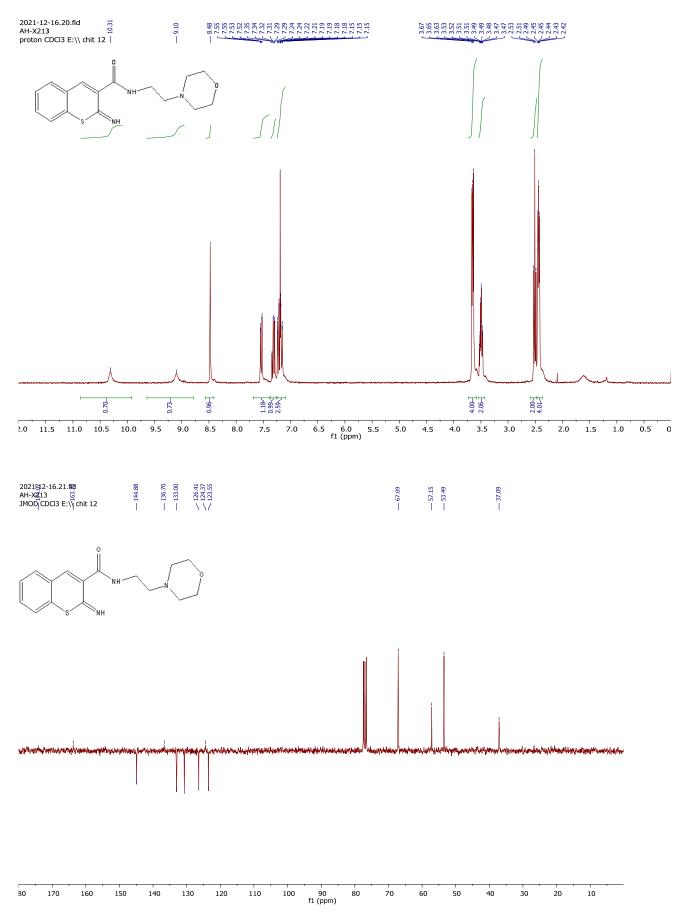


Figure S3. ¹H-NMR (top) and ¹³C-NMR (bottom) spectra of compound 22.