Jean-Marc Joubert

To cite this version:

HAL Id: hal-03747849
https://hal.science/hal-03747849
Submitted on 8 Aug 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
In a recent paper [1], Meifang Tang et al. report an investigation of the ternary Ni–V–W system. Though this is not the main subject of their paper, they mention results related to the binary Ni–W system that need to be commented.

In one ternary alloy (sample A13), they found a phase of measured composition \(\text{Ni}_{50.33}\text{V}_{0.36}\text{W}_{49.31} \). This phase was identified as corresponding to the (slight) ternary extension of WNi binary phase. They therefore conclude on the existence of this phase in the binary Ni–W system. They also mention and take into account in the thermodynamic assessment the NiW\(_2\) phase, though they do not provide any experimental result about this phase.

However, in a previous (not-cited) work, Cury et al. [2] had shown that there is no compelling evidence for the existence of the two previously reported phases NiW and NiW\(_2\). Previous evidence is actually better interpreted in terms of the presence of the two ternary carbides Ni\(_6\)W\(_6\)C and Ni\(_2\)W\(_4\)C that would have been taken mistakenly for binary phases. It was later shown that, similarly, the so-called FeW phase in the Fe–W system corresponds also probably to the ternary Fe\(_6\)W\(_6\)C phase [3]. The results on Ni–W system have been confirmed since then by several authors, see e.g. [4–7]. In particular, in Ref. [6], Isomäki et al., made a complete review (see references therein) and reach the same conclusions.

Any discussion is absent from the paper of Meifang Tang et al. to rebute the arguments developed in previous literature. The statement 'In their (Isomäki's) assessment, the WNi phase is considered to be metastable' is misleading. Contrary to what is suggested by the authors, the conclusions by Isomäki are not based on first-principles calculations but rather on a careful literature review. Their conclusion is that the so-called NiW does exist and is in fact a ternary carbide. This is not a question of 'metastability'.

The conclusions of Meifang Tang et al. are based on EDS analysis and an X-ray diffraction pattern. No analysis of the carbon content by EDS is provided to support the conclusion that the 'WNi' phase is truly an intermetallic compound. The diffraction pattern of sample A13 is shown with an indexation of WNi phase for phase 3. But, the crystal structure used for the indexation is not provided. It is supposed it comes from the old literature reporting the existence of this phase for which no crystal structure has ever been reported. A careful look shows that the diffraction lines of phase 3 can actually be very well indexed by the diffraction pattern simulated with the crystal structure of the ternary carbide Ni\(_6\)W\(_6\)C [8] (Fig. 1). This diagram instead of being a proof of the existence of WNi turns to be a proof that the authors actually have a ternary carbide instead.

This clarification on the binary Ni–W system does not cast doubt on the rest of the study. This is a minor point in the publication of the ternary Ni–V–W system. It is however important to avoid introducing new confusions in the literature as far as the binary system is concerned. Note also that the same authors made the same misinterpretation of their results in the Ref. [9] on the Mo–Ni–W system.
Fig. 1. Diffraction pattern of sample A13 in Ref. [1] with superposition of the calculated pattern of Ni$_6$W$_6$C [8] (black) and visible diffraction lines indexed by this carbide (red arrows).

References

