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Abstract 

An assessment of the Sn unary system is presented. First, the literature on phase equilibria, 

the thermodynamic properties, the volume and related properties, and shock compression of 

tin is thoroughly reviewed. Second, the Sn system is investigated by means of synchrotron X-

ray diffraction in a diamond-anvil cell up to pressures and temperatures of 57 GPa and 730 K. 

New information is obtained on the thermal stability and thermal expansion coefficient of the 

γ (𝐼4/𝑚𝑚𝑚) and γ’’ (𝐼𝑚3𝑚) phases. Third, density functional theory calculations are 

conducted on the six allotropic phases of tin observed in experiments using both a local 

density approximation (LDA) and a generalized gradient approximation (GGA) functional. 

This combined experimental and theoretical investigation provides further insights on the 

pronounced metastable nature of Sn in the 30 - 70 GPa range. Last, a Gibbs energy modeling 

is conducted using the recently proposed Joubert-Lu-Grover model which is compatible with 

the CALPHAD method. Special emphasis is placed on discussing extrapolations to high 

pressures and temperatures of the volume and of the thermodynamic properties. While the 

description of the heat capacity is approximate at moderate pressure, all available data are 

closely reproduced up to 2500 K, which is 5 times higher than the atmospheric pressure 

melting point of tin, and 150 GPa, which is almost 3 times the standard bulk modulus of β-Sn. 
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1. Introduction 

Modeling of multi-component phase diagrams at high pressures is important for applications 

not only in geophysics, but also more and more in metallurgy [1–5]. Yet, to account for the 

effect of temperature, pressure, but also composition on the thermodynamic functions is a 

challenging task. On the one hand, the models should carry an explicit physical meaning, so 

that they can result in reasonable extrapolations under extreme conditions of p and T. On the 

other hand, the treatment of solution phases imposes significant constraints. To enable 

extrapolations toward higher-order systems, it is required to describe end-members in mostly 

the entire p - T space, including in domains where they might be metastable or unstable. The 

potential spurious re-stabilization of end-members also has to be avoided, a typical case being 

solids re-stabilizing over the liquid at atmospheric pressure at high temperatures when the 

quasi-harmonic model is used to describe their heat capacity [6]. Physical Helmholtz energy 

models answer the first requirements, but a comprehensive and consensual framework to 

describe solution phases is not in place. They are not the focus of the present study. 

Phenomenological Gibbs energy models answer the second set of requirements within the 

framework provided by the CALPHAD method, but their application to high pressures has 

been mostly considered unsuccessful, as they tend to lead to unphysical predictions in the 

high p - T range [7]. The only alternative so far to build high-pressure Gibbs energy databases 

seems to be the model developed by Brosh et al. [6], which proposes a compromise to meet 

both the requirements mentioned above. This approach was successfully applied to the 

modeling of several binary systems [1,8–10]. 

In a recent study [7], the causes of the shortcomings of Gibbs energy approaches were 

discussed, and the recently proposed Joubert-Lu-Grover model [11,12] was identified as a 

promising candidate to extend CALPHAD databases toward high pressures. To evaluate the 
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application potential of a Gibbs energy model, it should be applied to the modeling of a unary 

system, paying particular attention to extrapolations to high pressures and temperatures of the 

volume and of the thermodynamic properties. Then, as long as the models are compatible 

with the CALPHAD method, they can be extended to multi-component systems including 

solution phases. 

The tin unary is an interesting system to put models to the test, because considerable 

experimental information is available up to relatively extreme temperatures and pressures. 

This element has a relatively low atmospheric pressure melting point compared with the more 

refractory materials commonly studied in geophysics, and data on the Sn liquidus are 

available up to 3000 K, which is 6 times higher than its 105 Pa melting point. Besides, Sn is 

also relatively compressible, and static and dynamic compression studies were performed up 

to volume changes of 50% and 70%, respectively. The Sn unary system was modeled using 

Helmholtz energy approaches in several studies [13–16], but an explicit Gibbs energy 

modeling of this unary was never performed. 

In the present study, a comprehensive review of the literature data on phase equilibria, 

thermodynamic properties, volume and related properties, and shock compression in the Sn 

system is provided. An experimental investigation is conducted by synchrotron X-ray 

diffraction (XRD) in a diamond-anvil cell (DAC) up to pressures and temperatures of 57 GPa 

and 730 K. Density functional theory (DFT) calculations are performed using both a local 

density approximation (LDA) and a generalized gradient approximation (GGA) functional. A 

thermodynamic modeling of the system is conducted using the recently proposed Joubert-Lu-

Grover approach [11] that was so far only applied to the Pt-Os system [12].  
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2. Assessment of literature data 

2.1 Solid phases 

The known solid phases of the Sn unary system are presented in Table 1. The upper stability 

limit of the β-Sn phase at 298 K was determined as the mean of the 8 available measurements 

[17–24] with an expanded uncertainty with a 0.95 confidence level on the basis of a two-sided 

Student’s t-distribution. The lower stability limit of the γ’’-Sn phase at 298 K was determined 

in a similar fashion based on the 3 available measurements [22–24]. 

Table 1 - Stable solid phases of the Sn system, their crystal structure, and their stability limit 

along the 298 K isotherm and the 105 Pa isobar. (a) Assessed data, (b) experimental data, and 

(c) modeled data. Data used to build the table are from [17–28]. TW stands for this work, DIA 

for diamond cubic, BCT for body-centered tetragonal, BCO for body-centered orthorhombic, 

BCC for body-centered cubic, and HCP for hexagonal close packed. 

Phase/ 
Lattice 

Pearson 
Symbol/ 
Space Group/ 
Prototype 

Stability at 105 Pa (in K) Stability at 298.15 K (in GPa) 

α-Sn 
DIA 

cF8 
𝐹𝑑3𝑚  
C (Diamond) 

0 < T < 285±2a, [27] 
0 < T < 286.3c, [26] 

- 

β-Sn 
BCT 

tI4 
𝐼4ଵ/𝑎𝑚𝑑  
β-Sn 

Tfus = 505.078a, [25] 
286.3c < T < 505.08c, [26] 

0 < p < 10.2±1.9a, TW 
0 < p < 9.7c, TW 

γ-Sn 
BCT 

tI2 
𝐼4/𝑚𝑚𝑚  
In 

- 
10.2±1.9a < p < 41.2±8.4a, TW 
9.7c < p < 43.3c, TW 

γ’-Sn 
BCO 

oI2 
𝐼𝑚𝑚𝑚  
MoPt2 

- 
30.5b < p < 70b, lower limit: TW, 
upper limit: [24] 

γ’’-Sn 
BCC 

cI2 
𝐼𝑚3𝑚  
W 

- 
41.2±8.4a < p < 157b, lower limit: 
TW, upper limit: [28] 
43.3c < p < 157c, TW 

δ-Sn 
HCP 

hP2 
𝑃6ଷ/𝑚𝑚𝑐  
Mg 

- 
157b < p < N/A, [28]   
157c < p, TW 



6 
 

2.2 Phase equilibria 

2.2.1 Phase equilibria at atmospheric pressure 

The transition from β-Sn to α-Sn is commonly referred to as the tin pest, as it causes problems 

for numerous applications [29], notably because of the large volume increase of roughly 26% 

[30] associated with this transformation. Despite a long-standing interest [31], the equilibrium 

temperature of this transition and its underlying mechanisms are still questioned in the recent 

literature [26,32]. That is because the α to β transition is very sluggish [33–35], and long 

holding times of several hours are needed [33,36,37] to determine this thermodynamic 

equilibrium precisely. Furthermore, measurements are sensitive to the presence of ppm of 

impurities and to the material initial state [37]. Literature data on the thermal stability of α-Sn 

[27,31,32,34,36–43] are presented in Table 2. It appears from this review that differential 

thermal analysis (DTA) measurements [32,34,42,43] are scattered, and lead to higher 

transition temperatures than the former electrochemical [38,39] or dilatometric [31,36,37,40] 

studies. This is due to the fact that in these later DTA investigations, holding times are 

insufficient to reach a precise determination. In fact, these studies are more focused on the 

kinetics of the transformation, and the authors themselves considered the later measurement 

from Cohen et al. [36] as the actual equilibrium temperature. In the critical assessment from 

Gamsjäger et al. [27], the later measurement from Cohen et al. [36] was also considered to be 

the most reliable, along with the data from Raynor et al. [37]. Indeed, meticulous work is 

reported by Raynor et al. [37], and in both studies [36,37] the authors took care to obtain 

reactive α-Sn samples by thermal cycling. In the present work, the value of 285±2 K assessed 

by Gamsjäger et al. [27] is selected. It is in good agreement with the temperature of 286.35 K 

modeled by Khvan et al. [26]. 
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Table 2 - Literature data on the α-Sn to β-Sn transition temperature at atmospheric pressure 

Ref Method T (K) 
[38] Coh99 Electrochemical analysis 293 
[39] Coh08 Electrochemical analysis 291 
[40] Coh27 Dilatometric analysis 285 - 287.45 
[36] Coh35 Dilatometric analysis 286.35±0.1 

[37] Ray58 

Dilatometric analysis, 99.997% pure Sn, Fe as main 
impurity 

283.05 - 
283.95 

Dilatometric analysis, 99.997% pure Sn, Pb as main 
impurity 

286.15 - 
286.75 

[41] Vnu84 Change in electrical resistance 304.8 

[31] Smi85 
Dilatometric analysis, commercial Sn 286 
Dilatometric analysis, zone-refined Sn 285 

[42] Oji90 Differential thermal analysis, heating rate of 5 K.min-1 303 - 308 
[34] Gia09 Differential thermal analysis, heating rate of 10 K.min-1 326 
[43] Zuo13 Differential thermal analysis, heating rate of 0.2 K.min-1 297 
[32] Maz19 Differential thermal analysis, heating rate of 2 K.min-1 307.55 
[27] Gam12 Critical assessment 285±2 

 

The melting point of the β-Sn is considered well-known [27], and is set at 505.078 K in the 

ITS-90 [25]. 

Finally, it is noted that an additional phase transition was suspected in the literature at roughly 

440 K. First, an anomaly in the heat capacity was observed by Bartenev [44] at this 

temperature. Second, this hypothesis was further fuelled by Klemm and Niermann [45], as the 

authors reported on a small but sudden increase in the a parameter of the β-Sn tetragonal 

structure, along with a very slight discontinuity in enthalpy and thermal conductivity. 

However, this possible phase transition was question by Grønvold [46], as the heat capacity 

measurements from the authors showed no discontinuity. This trend was confirmed in 

numerous other datasets that are presented in the review provided by Khvan et al. [26]. 

Therefore, it is considered that there is no phase transition at 440 K. 
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2.2.2 Phase equilibria at high pressure 

The available experimental studies [17–24,28,41,47–62] on high pressure phase equilibria in 

the tin system are reviewed in Table 3. Besides, the Sn phase diagram was also investigated 

by DFT calculations with LDA [63–66] and GGA [28,67–70] functionals, as well as by 

molecular dynamics simulations [71]. 

Table 3 - Experimental literature on high pressure phase equilibria in the Sn system 

Ref. Method T-range (K) 
p-range 
(GPa) 

[47] Dud60 
Change in electrical resistance along isobars in a 
tetrahedral-anvil apparatus 

531 - 771 0.6 - 10.7 

[17] Stag62 
Change in electrical resistance in a homemade 
piston-cylinder apparatus 

298 11.4 

[18] Str64 
Change in electrical resistance in gridle-anvil 
apparatus 

298 10.7 

[41] Vnu84 Change in electrical resistance along isotherms 273 - 304 0 - 0.07 

[48] Wei12 
Change in electrical resistance and in the power - 
T curve in a resistive heating DAC 

1276 - 1996 10.4 - 44.7 

[49] McD62 Thermal analysis 506 - 529 0 - 0.5 
[50] Ken63 DTA in a piston-cylinder apparatus 518 - 637 0.5 - 4.9 
[51] Kin80 DTA in a piston-cylinder apparatus 505 - 630 0 - 3.7 
[52] Xu14 Change in sound velocity (multi-anvil apparatus) 538 - 694 0.7 - 4.6 
[53] Ram03 Isochoric measurements and XRD in a DAC 325 - 950 0.7 - 9.6 
[54] Bar63 XRD in a tetragonal apparatus 469 - 650 1.1 - 6.7 
[19] Jef66 XRD in a tetrahedral apparatus 298 9.2±0.3 
[20] Mii68 XRD in an opposed anvil apparatus 298 9.4±0.4 
[21] Oht77 XRD in a multi-anvil apparatus 298 9.31±5.2 
[22] Oli84 XRD 298 0 - 50 
[23] Liu86 XRD in a DAC 296±2 0 - 53.4 
[55] Des89 XRD in a DAC 298 52.1 - 120 
[56] Kie03 XRD in a T-cup multi-anvil apparatus 775 - 974 6 - 14 
[28] Sal11 XRD in DAC 298 148 - 194 

[57] Bri12 
XRD and change in the temperature - time 
profiles in a laser heated DAC 

1552 - 5520 18 - 105 

[24] Sal13 XRD in DAC 298 0 - 140 

[58] Bri17 
XRD and change in the power - temperature 
curve in a laser heated DAC 

1550 - 3100 22 - 105 

[59] Sch10 
Observation of laser induced speckle motion in 
DAC, or of textural change in quenched sample 

1324 - 2285 17.5 - 68 

[60] Mab99 Shock compression measurements 894 - 2295 5 - 49 
[61] Nik73 Mössbauer spectrometry 78 1.6 
[62] Bab62 Change in volume 505 - 533 0 - 0.9 
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Below 80 GPa, phase equilibria in the Sn unary system are difficult to characterize due to 

their pronounced metastable nature. The phases identified in various XRD studies [22–24,55] 

along the room temperature isotherm are presented in Fig. 1. 

 

Fig. 1 – Phases identified in various XRD studies along the 298 K isotherm up to 80 GPa 

With increasing pressure, β-Sn first transforms into an indium-like tetragonal structure noted 

γ. Both crystalline varieties were observed coexisting from 9.7±1 GPa to 11.1±8 GPa by Liu 

and Lui [23], and on a larger range in a later study [24]. 

Then, it was assumed in former studies that the γ-Sn phase would transform into a BCC 

structure noted γ’’ in this work. Once again, both phases were observed coexisting from 40.5 

to 56 GPa by Olijnyk and Holzapfel [22], and from 44±2 to at least 53.4 GPa in [23]. 

However, this metastable behavior was questioned by Desgreniers et al. [55], as only the γ’’ 

phase was characterized by the authors at 52.1±0.2 GPa. Besides, in a more recent study, 

Salamat et al. [24] observed a transition at 32 GPa from the γ tetragonal variety to a BCO 

phase noted γ’. From this point, the transition with the γ’’ BCC variety was noted from 40 

GPa, but the γ’ BCO phase was observed to exist up to 70 GPa. DFT calculations conducted 

by the authors [24] revealed that, above 30 GPa and up to at least 50 GPa, the potential-

energy surface for the body-centered phases was flat and centered around b/a and c/a ratios of 



10 
 

1. Therefore, it appears that the BCC phase can transit into the BCT or BCO varieties by 

simple and continuous distortion of the lattice in response to slight deviations from 

hydrostatic conditions. This is why the indium-like BCT, the BCO and the BCC crystal 

varieties are all referred to the same γ letter designation in the present study. 

Finally, a transition from the γ’’ BCC phase to a HCP structure noted δ in this work was 

evidenced experimentally at 157 GPa at room temperature [28]. This finding was 

corroborated by several DFT studies [28,66,67,70]. 

The available phase diagram information is presented in Fig. 2. It is noted that the original 

data from Dudley et al. [47] were corrected. Instead of using the 1952 pressure scale from 

Bridgman [72], the former results from the author [73–75] that were eventually found to be 

more precise [76] were used to reprocess the measurements. Besides, regarding room 

temperature XRD studies where metastable two-phase equilibria were observed, it is noted 

that the equilibrium pressure was taken at the first occurrence of the higher-pressure phase. 
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Fig. 2 – Experimental and ab initio data on the Sn phase diagram. (a) is an overview, (b) a 

focus on the α to β transition, and (c) a focus on the β-γ-liquid triple point. The symbols have 

the following meanings: △ change in electrical resistance, ☆ DTA,  change in sound 

velocity, ⬡ isobaric method,  XRD, ▭ visual determination, ▽ change in the laser heating 

profile,  shock compression,  Mössbauer spectrometry, ◷ change in volume,  ab initio 

calculations,  assessment from the literature data. 

In the low-pressure range, the available information on the α to β transition is presented in 

Fig. 2(b). The atmospheric pressure transition temperature measured by Vnuk et al. [41] is 20 
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K higher than the value assessed in [27] that was accepted in this work. The authors suggested 

that their measurements were too high due to a kinetic inhibition, but that the slope of the α-β 

boundary that they obtained was correct nonetheless. 

Experimental data on the β-γ-liquid triple point are presented in Fig. 2(c). The liquidus of the 

β phase is very well-defined. Regarding the -γ monovariant line, the results reported by Xu 

et al. [52] are shifted from roughly 30 K compared with the consistent measurements obtained 

in other studies [50,51,53,54]. Mabire et al. [60] observed an hysteresis of this transition 

under shock compression, that is delimited in Fig. 2(c) by the data point that seem to support 

the trend obtained in [52], and the one close to the liquidus of γ-Sn. The presence of this 

hysteresis under dynamic conditions was further evidenced by Briggs et al. [77]. It was 

suggested by Mabire et al. [60] that the true equilibrium transition was located somewhere in 

between their two data points. The  to γ transition at room temperature was studied in 8 

independent studies, resulting in two slightly conflicting trends. 4 XRD studies [19–21,23] 

agree within their quoted uncertainties with a transition at roughly 9.4 GPa, whereas the other 

measurements [18,22,24] point toward a transition at 10.8 GPa, or even 11.4 GPa [17]. The 

data from Rambert et al. [53] on the -γ monovariant line suggest a transition in between both 

the reported trend. Finally, the liquidus of the γ-Sn phase is the most disputed area. It was 

argued by Xu et al. [52] that Barnett et al. [54] underestimated the true equilibrium 

temperature in their XRD study because they detected the fast recrystallization temperature 

instead of the true melting point. The liquidus data point from Mabire [60] appears as an 

upper limit. Besides, the trend observed by Dudley et al. [47] is in poor agreement with the 

datasets available at higher temperatures. The measurements from Kingon and Clark [51] and 

Rambert et al. [53] seem the most reliable, because of their consistency with higher 

temperature measurements, as well as with several other datasets on the -γ transition line and 

on the liquidus of the -Sn phase. 
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The high-pressure liquidus of the γ-Sn phase is presented in Fig. 2(a). It was found by Briggs 

et al. [58] that the sudden increase that was observed around 70 GPa in a former study [57] 

was in fact due to the melting of the KBr pressure transmitting media. Then, the data from 

Weir et al. [48] are more scattered than other measurements, and a few of their liquidus data 

seem underestimated. Besides these two considerations, an overall satisfying agreement was 

reached between the available datasets [48,53,57,59,60], well within the uncertainties 

associated with this challenging experimental work, and this trend is further supported by 

molecular dynamics simulations [71]. 

2.3 Thermodynamic properties 

2.3.1 Thermodynamic properties at atmospheric pressure 

The literature on the heat capacity of the α, β and liquid phases was reviewed by Khvan et al. 

[26]. On this basis, a modeling was proposed by the authors. Another representation and a 

tabulation up to 300 K of the heat capacity data for both solid phases can be found in [78]. 

Regarding α-Sn, the description from [26] appears reliable up to at least 100 K. Above this 

temperature, the results are slightly more uncertain due to the lack of reliable experimental 

data. Regarding the β-Sn variety, the description proposed in [26] is very reliable up to the 

melting point of the phase, as consistent and abundant data were closely reproduced by the 

authors. The experimental information on the liquid phase are more disputed, but a consistent 

fit of several independent studies was reached by the authors up to at least 1100 K. Above this 

temperature, the heat content data measured by Feber et al. [79] up to 1800 K suggest that the 

heat capacity modeled in [26] starts to become underestimated. 

The enthalpy change associated with each phase transition was also evaluated by Khvan et al. 

[26]. Regarding the α-Sn to β-Sn transition, a lack of data was noted by the authors, as only 

two conflicting experimental measurements [38,80] are available. An enthalpy of 2.101 
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kJ.mol-1 was assessed by Khvan et al. [26], based on the later calorimetric determination of 

2.23 kJ.mol-1 from [80] and on their own DFT data. The enthalpy of fusion of tin is well-

known and was assessed to be 7.179 kJ.mol-1 [26]. 

2.3.2 Thermodynamic properties at high pressure 

There is no experimental information available at high pressure on the thermodynamic 

properties of the phases. Several DFT studies have been conducted, and they will be discussed 

later along with the calculations performed in the present study. 

2.4 Volume and related properties 

2.4.1 Volume and related properties at atmospheric pressure 

The volume, thermal expansion and bulk modulus data at atmospheric pressure on α-Sn and 

β-Sn were assessed in [30], and a tabulation can be found in [78]. Regarding α-Sn, few but 

consistent measurements are available from very low temperatures up to the decomposition 

temperature of the phase, and these data are closely reproduced in [30]. Regarding the β-Sn 

phase, more datasets are available, but they are also more conflicting. Nonetheless, the 

description proposed in [30] is supported by several consistent experimental studies. 

Many studies are available regarding the density of the liquid phase. Several datasets were 

reviewed by Assael et al. [81], and a fit was proposed by the authors. Several additional 

research works were discussed by Alchagirov et al. [82]. The studies reported in both reviews 

[82–103] were compiled, and they are listed in Table 4. It is noted that several theses and 

reports cited in [82] could not be retrieved, and are thus not included here. The data will be 

presented later along with the results of the modeling. 
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Table 4 - Literature data on the density of liquid tin at atmospheric pressure 

Ref Method T-range (K) Uncertainty (%) Comment 
[83] Kir52 

Archimedean 

504-2745 - Digitalized 
[84] Kan68 508-731 0.5  
[85] Ber68 523-1017 0.3 Smoothed curve 
[86] Ber70 505-711 0.3 Smoothed curve 
[87] Kan73 529-715 -  
[88] She74 500-1100 - Smoothed curve 
[89] Bia86 573-1492 0.4  
[90] Wan03 505-1133 0.05 Digitalized 
[91] Fis54 

Bubble pressure 

504-674 - Digitalized (low res.) 
[92] Luc64 565-954 0.2-0.7 Digitalized 
[93] Tim86 800-1300 0.7 Smoothed curve 
[94] Fri97 594-956 - Highly scattered 
[95] Her60 

Pycnometric 

573-823 0.07 Digitalized 
[96] Thr68 511-754 0.1  
[97] Mat83 507-614 - Smoothed curve 
[82] Alc00 506-761 -  
[98] Yat72 Large-drop 

technique 
510-924 - Digitalized 

[99] Niz94 485-1784 -  

[100] Nak74 
Dilatometric 
method 

629-908 0.1 Smoothed curve 

[101] Dro79 
γ-ray attenuation 

512-1342 - Digitalized 
[102] Nas95 505-1503 0.75  
[103] Sta06 1100-1950 0.3 Smoothed results 

 

The compressibility of liquid tin can be indirectly determined from measurements of sound 

velocity. First, the adiabatic bulk modulus 𝐾ௌ can be calculated from the speed of sound 𝑣௦ 

and the density 𝜌 as follows: 

𝐾ௌ = 𝜌𝑣௦
ଶ                                                                                                                                              (2.1) 

Then, by definition 𝐾ௌ is related to the isothermal bulk modulus 𝐾் as follows: 

𝐾ௌ = 𝐾்(1 + 𝛼𝛾𝑇)                                                                                                                              (2.2) 

with 𝛼 the volumetric thermal expansion coefficient, and 𝛾 the Grüneisen parameter which 

can be expressed as: 
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𝛾 =
𝛼𝐾்

𝜌𝐶௏
=

𝛼𝐾௦

𝜌𝐶௣
                                                                                                                                   (2.3) 

with 𝐶௏ and 𝐶௣ the isochoric and isobaric heat capacities. Finally, it follows from Eq. (2.1), 

(2.2) and (2.3) that the isothermal bulk modulus can be calculated from the speed of sound as: 

𝐾் =
𝜌𝑣௦

ଶ

1 +
𝛼ଶ𝑣௦

ଶ𝑇
𝐶௣

                                                                                                                                (2.4) 

The available sound velocity measurements on liquid tin [104–113] were recently reviewed 

by Humrickhouse [114]. It was noted by the author that, if the measurements from Kleppa 

[104] and Berthou and Tougas [110] are outliers, the 8 other remaining datasets are consistent 

with each other. It appears from the present compilation that there was a conversion error in 

the treatment of the data from [110] by Humrickhouse [114]. This dataset is in fact in a much 

better agreement with the other measurements than suggested in the author’s review. All the 

data will be presented afterwards when discussing the modeling. 

2.4.2 Volume and related properties at high pressure 

The volume of each phase listed in Table 1, except α-Sn, were investigated in various XRD 

studies [22–24,28,53,55] along the room temperature isotherm. A good agreement was 

reached, well within the quoted uncertainties. These data will be presented in a later time 

along with the results of the present experimental study. 

The bulk modulus data on the β phase were reviewed in [7]. Measurements [115–118] are 

available along the room temperature isotherm up to 4 GPa. They are scattered within roughly 

3 GPa, which represents a spread of approximately 5%. Nonetheless, the general trend is 

rather well defined, as it is supported by the available volume data. 
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Finally, the volume of the liquid phase was measured up to 4 GPa along the 573 K isotherm 

by Rambert et al. [53] based on an isochoric method. These data are the only experimental 

information available on the pressure dependence of the volume of the liquid phase. 

2.5 Shock compression 

For a material undergoing shock compression, the Rankine-Hugoniot equations are derived 

from the laws of mass, momentum and energy conservation along the shock front, leading to: 

𝑉ଵ

𝑉଴
=

𝑢௦ − 𝑢௣

𝑢௦
                                                                                                                                        (2.5) 

𝑝ଵ − 𝑝଴ =
𝑢௦𝑢௣

𝑉଴
                                                                                                                                   (2.6) 

𝐻ଵ − 𝐻଴ =
1

2
(𝑝ଵ − 𝑝଴)(𝑉ଵ + 𝑉଴)                                                                                                     (2.7) 

with 𝑢௦ the shock velocity, 𝑢௣ the particle velocity, 𝑉 the molar volume, 𝑝 the pressure, 𝐻 the 

enthalpy, and the subscript “0” and “1” referring to the state of the material before and after 

the shock, respectively. It is noted that Eq. (2.5), (2.6) and (2.7) are usually expressed in term 

of the density and the internal energy, but the present form is more adequate for Gibbs energy 

approaches. 

It follows from the Rankine-Hugoniot equations that once 𝑢௦, 𝑢௣ and 𝑉଴ are known, 

information on the difference in enthalpy, volume and pressure between the initial state and 

the shocked state can be obtained. 𝑢௦ and 𝑢௣ were measured in various studies [119–125] 

along the principal Hugoniot of Sn, i.e. when the initial temperature is 298.15 K. Data are 

available up to 700 GPa, and are in a good agreement as it will be highlighted later on. 

Besides, experiments were also performed by Volkov and Sibilev [124] along the off-

Hugoniot starting from 683 K at atmospheric pressure, where Sn is liquid. 
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It is noted that the 1958 study from Al’tshuler et al. [126] is not considered in the present 

study as the results are almost identical from the authors’ 1962 compilation [121]. 

Furthermore, the Hugoniot data plotted on the phase diagram in [60] and [127] are also not 

considered, because they are model-dependent.  
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3. Methodology 

3.1 Experimental investigation 

High-pressure high-temperature X-ray diffraction experiments were carried out at the MARS 

beamline of the SOLEIL synchrotron [128] with an internal heated DAC which consisted in 

slight modifications of the ceramic DAC designed by LeToullec [129]. The angular aperture 

for the diffracted X-ray was increased up to 65° by using on the body part an Almax-Boehler 

geometry [130] diamond anvil (300µm culet size) glued on a conical WC seat. The DAC was 

also equipped with a membrane to allow for a fine tuning of the pressure. 

A rhenium gasket with an initial thickness of 250 µm was pre-pressed to 40 µm and then 

drilled to form a hole of 170 µm in diameter. A 10 µm thickness tin sample (purity > 99.935% 

from Indonesian State Tin Corporation) was loaded in the high-pressure cavity (HPC) of the 

DAC together with several pressure-temperature markers: ruby balls (Al2O3:Cr3+) and a 5 

mole % samarium-doped strontium borate powder (SrB4O7:Sm2+ referenced thereafter as 

borate) used as optical sensors [131] along with a 10 µm thickness platinum foil (purity > 

99.95% from GoodFellow). The pressure transmitting medium, neon, was loaded at room 

temperature at the pressure of 2 kbar. Diffraction of neon was also used as a pressure marker 

when it was in the solid state. A photograph of the HPC is shown in Supplementary Note A. 

The DAC was put inside a vacuum container in order to avoid graphitization of the diamonds 

at high temperatures (the pressure was kept inferior to 0.7 mbar during the experiment). Two 

K-type thermocouples were fixed close to the diamonds for the temperature regulation using a 

Watlow 988 device. We chose not to use the regulation of the thermocouple in the present 

experiment but let the temperature evolve at fixed power. A water-cooling circuit was also 

integrated in the container to cool the metallic body of the DAC. The monochromatic X-ray 

beam (λ=0.69266 Å – Zirconium K-edge) was focused to 14x12µm2 FWHM at the sample 



20 
 

position using mirrors in the Kirkpatrick-Baez geometry [128]. The angle dispersive X-ray 

diffraction signals were collected using a MAR345 imaging plate system, located at a distance 

of 244.9 mm from the sample. The Fit2D software [132] was used to treat and integrate 

experimental diffraction images after having determined the diffraction geometry from the 

diffracted signal of a LaB6 standard powder. Fullprof [133] was used to analyze diffraction 

patterns. 

The DAC was slightly moved during the X-ray exposition (exposure time ranging between 10 

and 60 sec.) in order to obtain the diffraction of both Sn and Pt in the same image. In the first 

part of the experiment, luminescence of the ruby R1 and borate 5D0–7F0 lines was measured 

after excitation with a Nd:YAG laser (532 nm), using a 1800 lines/mm spectrometer (Jobyn 

Yvon HR320) coupled with a 64x1024 pixels CCD captor (C5809 Hamamatsu). Assuming no 

pressure dependence of the temperature-induced line shift of the ruby R1 line in our 

experiment [131], we used the IPPS-Ruby2020 pressure scale [134] to describe the pressure-

induced line shift at room temperature together with a 3rd order polynomial law (Eq. 2 in 

[131]) to describe the temperature-induced line shift of ruby. In the case of borate, we used 

Eqs. 8 and 9 in [131] to describe the pressure and temperature-induced 5D0–7F0 line shift. 

In reason of the high sensitivity with temperature of the ruby luminescence, we used the 

coupling of the optical sensors with the Pt and Ne equation of state [135,136] to determine the 

pressure PHPC and temperature THPC conditions within the HPC. The relation between THPC 

and the temperatures Tc1 and Tc2 recorded by the thermocouples was fit with a linear relation 

(THPC(K) = 295 + 0.48*(Tc - 295), with Tc being the average of Tc1 and Tc2) which shows that 

strong temperature gradients occurred between the thermocouples locus and the HPC (around 

100 K for THPC(K) = 400 K).  This calibration relation was used in the second part of the 

experiment to determine THPC from the thermocouples records, the error being set to ∆THPC = 

|Tc1-Tc2|/2, PHPC being calculated from the Ne and Pt equation of states. 
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3.2 DFT calculations 

In the present work, we perform ab initio calculations using the ABINIT code [137,138] and 

the projector augmented wave (PAW) [139,140] formalism. The six allotropic phases of tin 

are considered in this study: α-Sn (Diamond, with 2 atoms in the unit cell), β-Sn (BCT, with 2 

atoms in the unit cell), γ-Sn (BCT, with 1 atom in the unit cell), γ’-Sn (BCO, with 1 atom in 

the unit cell), γ’’-Sn (BCC, with 1 atom in the unit cell) and δ-Sn (HCP, with 2 atoms in the 

unit cell). For each, we compute their ground state properties, at various pressures from 0 to 

1500 GPa. The pressure step is adjusted to have a good precision on the phase stability: 10 

GPa between 0 and 100 GPa, 20 GPa between 100 and 200 GPa, and 100 GPa thereafter. 

Two PAW atomic data are generated using the ATOMPAW code [141,142], considering 14 

electrons in the valence, a cutoff radius of 2.5 bohr leading to a cutoff energy equal to 700 eV 

and an exchange and correlation (XC) energy treated using the LDA Perdew-Wang (PW) 

[143] and the GGA Perdew–Burke–Ernzerhof (PBE) [144] functionals, respectively. A 

careful treatment of the electronic density integration has been achieved with the use of a (24 

× 24 × 24) Monkhorst–Pack (MP) mesh [145], whatever the crystal structure. This fine 

resolution of the MP mesh is needed in order to have well converged enthalpies [28]. 

For each target pressure, XC functional and crystallographic phase, the unit cell has been 

relaxed by conserving the crystal symmetries (Table 1) and by using a convergence criterion 

fixed to 0.2 meV between two consecutive iterations. To summarize, all the convergences 

(cutoff energy, MP mesh and structure relaxation) have been carefully checked in order to 

have an accuracy on enthalpies at most equal to 1 meV. 
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3.3 Thermodynamic modeling 

3.3.1 Modeling of the Gibbs energy at atmospheric pressure 

In the nomenclature used thereafter, the subscript “0” will be referring to the reference 

temperature of 0 K, and superscript “0” to the atmospheric pressure (105 Pa). 

The Gibbs energy at atmospheric pressure is described using a so-called 3rd generation 

CALPHAD model [146,147]. The isobaric heat capacity of the crystalline phases is described 

based on a multi-frequency Einstein model as in [26,148–150]: 

𝐶௣
଴ = 3𝑅 ෍ 𝛼௜ ൬

𝜃௜

𝑇
൰

ଶ

௜

exp ቀ
𝜃௜

𝑇
ቁ

(exp ቀ
𝜃௜

𝑇
ቁ − 1)ଶ

+ 𝑎𝑇 + 𝑏𝑇ଶ                                                                  (3.1) 

with 𝑅 the gas constant, 𝜃௜ the Einstein temperature for the ith mode of vibration, 𝛼௜ the 

corresponding pre-factor constrained so that the sum all 𝛼௜ is equal to the phase 

stoichiometry, and 𝑎 and 𝑏 parameters to account for electronic and anharmonic contributions 

[151]. The following expression is then obtained for the Gibbs energy: 

𝐺଴ = 𝐸଴ +
3

2
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𝑇
൰൰

௜
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𝑎
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𝑏

6
𝑇ଷ                           (3.2) 

with 𝐺 the Gibbs energy referred to the enthalpy for the element in its stable form at 298 K 

and 105 Pa, and 𝐸଴ the cohesive energy at 0 K. In order to avoid the spurious re-stabilization 

of crystalline phases at very high temperatures, the following empirical Gibbs energy 

expression taken from [152] is used above their melting point: 

𝐺଴ = 𝐸଴ + 𝐻ᇱ +
3

2
𝑅 ෍ 𝛼௜𝜃௜

௜
+ 3𝑅𝑇 ෍ 𝛼௜ ln ൬1 − exp ൬−

𝜃௜
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௜

− 𝑆ᇱ𝑇 + 𝑎ᇱ𝑇 ln(𝑇) −
𝑏ᇱ

30
𝑇ି଺

−
𝑐ᇱ

132
𝑇ିଵ                                                                                               (3.3) 
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𝑎ᇱ, 𝑏ᇱ and 𝑐′ are parameters set to ensure that (i) the 𝐶௣ converges toward a constant value at 

high temperatures that is lower or equal to the heat capacity of the liquid phase, and (ii) the 𝐶௣ 

and its temperature derivative are continuous at the melting point. 𝐻ᇱ and 𝑆ᇱ are parameters 

set to ensure the continuity of the enthalpy and entropy functions at the junction. It is noted 

that this treatment is the same as the SGTE method of extrapolation [153] used in 2nd 

generation databases. 

The liquid and amorphous phase was described using the two-state model [154,155]. The 

atmospheric pressure Gibbs energy of the amorphous phase, noted 𝐺௔௠଴, can be expressed 

using Eq. (3.2). However, no 𝑏 parameter [152] and only a single Einstein frequency should 

be used. Then, the atmospheric pressure Gibbs energy of the liquid and amorphous phase, 

noted 𝐺௟௜௤ି ଴
, is modeled as follows: 

𝐺௟௜௤ି௔௠଴
= 𝐺௔௠଴

− 𝑅𝑇𝑙𝑛 ൬1 + exp ൬−
∆𝐺ௗ

𝑅𝑇
൰൰                                                                           (3.4) 

In Eq. (3.4), ∆𝐺ௗ is the Gibbs energy difference between the liquid-like and the amorphous-

like states, and is expressed as follows: 

∆𝐺ௗ = 𝐵 + 𝐶𝑇 + 𝐷𝑇𝑙𝑛(𝑇)                                                                                                               (3.5) 

Recommendations on starting values and on the optimization procedure for the 𝐵, 𝐶 and 𝐷 

parameters or for the description of 𝐺௔௠଴ can be found elsewhere [26,146–149,152]. 

3.3.2 Modeling of the volume 

The volume is described using the revision by Joubert et al. [11] of the model proposed by Lu 

et al. [156]. The volume is expressed as follows: 

𝑉 = −𝑐𝐸𝑖ିଵ ൭𝐸𝑖 ൬−
𝑉௣

𝑐
൰ −

1

𝐾்
௣ exp ൬−

𝑉௣

𝑐
൰ (𝑝 − 𝑝଴)൱                                                           (3.6) 



24 
 

with 𝑉 the molar volume, 𝑐 a constant, and 𝐸𝑖(𝑥) = ∫ 𝑒௧/𝑡 𝑑𝑡
௫

ିஶ
 the exponential integral 

function that can be calculated numerically from tabulations. In the original model proposed 

by Lu et al. [156], 𝐾்
௣ and 𝑉௣ are the atmospheric pressure bulk modulus and molar volume, 

but after the revision from [11], this is only true at low pressure. In this work, the atmospheric 

pressure bulk modulus and molar volume are described based on the multi-frequency Einstein 

model proposed in [30]. This model was adapted to the Joubert-Lu-Grover framework in [7], 

leading to the following expression for 𝐾்
௣: 

𝐾்
௣ =

1

𝜒்଴
଴ + 𝐹௖௨௧𝑋 ∑

𝛼௜

exp ቀ
𝜃௜

𝑇
ቁ − 1

௜

                                                                                              (3.7) 

with 𝜒்଴
଴ the isothermal compressibility at 0 K and 105 Pa, and 𝑋 a constant that governs the 

temperature dependence of the bulk modulus. It is underlined that the 𝜃௜ and 𝛼௜ parameters 

are shared in common with the thermodynamic models presented in Section 3.3.1. 𝐹௖௨௧ is a 

pressure cutoff function that is expressed as: 

𝐹௖௨௧ = exp ൬−
𝑝

𝑝஼௎்
൰                                                                                                                          (3.8) 

with 𝑝஼௎் a cutoff pressure that is significantly higher than 105 Pa. Then, 𝑉௣ is expressed as 

follows: 

𝑉௣ = 𝑉଴
଴ exp ቌන 𝛼௣𝑑𝑇

்

଴

ቍ                                                                                                                (3.9) 

In Eq. (3.9), 𝑉଴
଴ is the molar volume at 0 K and 105 Pa, and ∫ 𝛼௣𝑑𝑇

்

଴
 is expressed as: 
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with 𝛾௜଴
଴ the 0 K and 105 Pa Gruneisen parameter associated with the ith Einstein mode of 

vibration, and 𝐴 a parameter which meaning is discussed in [30]. 𝐹௖௨௧
ᇱ is a second pressure 

cutoff function expressed as: 

𝐹௖௨௧
ᇱ = exp ൬−

𝑝

𝑝஼௎்
ᇱ
൰                                                                                                                     (3.11) 

with 𝑝஼௎்
ᇱ a cutoff pressure that is significantly higher than 105 Pa. The role of 𝐹௖௨௧ in Eq. 

(3.7) and (3.10) is to ensure that the temperature derivative of 𝛼 and 𝐾் becomes equal to 0 at 

high pressure, whereas 𝐹௖௨௧
ᇱ ensures that the thermal expansion itself tends to 0 in this 

domain. 

3.3.3 Modeling of the effect of pressure on the Gibbs energy 

The Gibbs energy should be calculated as the sum of the atmospheric contribution detailled in 

Section 3.3.1, and of the integral of the volume over the pressure. In this work however, the 

following expression is used instead: 

𝐺 = 𝐺଴ + 𝑐𝐾்
௣ ൬exp ൬

𝑉௣ − 𝑉

𝑐
൰ − 1൰                                                                                          (3.12) 

Eq. (3.12) was derived by Lu et al. [156], but becomes inexact after the modification 

proposed in [11] due to the fact that 𝑉௣ and 𝐾்
௣ became pressure dependent. A more detailed 
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discussion can be found in [7]. The motivations and consequences of using Eq. (3.12) will be 

discussed in Section 4.3.1.1. 

3.3.4 Modeling procedure 

The optimization of the model parameters and the calculations were performed using the 

Thermo-Calc software [157]. The α (diamond cubic), β (BCT), γ (BCT), γ’’ (BCC), δ (HCP), 

and liquid and amorphous phases were modeled following the procedure (how parameters 

were adjusted, which data was selected…) detailed in Supplementary Note B. The γ’ BCO 

phase was not modeled as it was considered to be metastable. This choice is justified as 

follows. Among the 4 XRD studies along the 298 K isotherm [22–24,55] presented in Fig. 1, 

the presence of a BCO phase was observed only by Salamat et al. [24]. This can be explained 

by the fact that there is no energy barrier between the body-centered phases in the 30-50 GPa 

range [24], as discussed in Section 2.2.2. In the present XRD study, the diffraction pattern of 

the BCO phase could hardly be distinguished from the one of the BCT phase in this moderate 

pressure range (Section 4.1). This is consistent with our DFT calculations showing that the 

BCO lattice converges toward the BCT lattice from 15 to 35 GPa, and toward the BCC lattice 

at higher pressure (Section 4.2).  
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4. Results and discussion 

4.1 Experimental investigation 

Tin was studied up to 57 GPa and 730 K and the data are presented in the p - T space in Fig. 

3. Most of the data are spread along 2 isotherms (at room temperature and around 670 K). 

 

Fig. 3 – Results of the XRD investigation in the p - T space. Only a part of the literature data 

on phase equilibria that was presented in Fig. 2 is re-plotted for the sake of clarity. 

In recent studies, the γ’ BCO variety was observed coexisting with the γ’’ BCC phase from 32 

GPa to 70 GPa along the room temperature isotherm [24], and from 298 K up to at least 2130 

K along the 46 GPa isobar [58]. In the present work, we cannot tell whether the BCO γ’ 

structure is present above room temperature as its diffraction pattern would be too close to the 

one of γ-Sn to be distinguished with our data, even if we clearly observe a broadening of the 

(200) reflection of the BCT structure. Therefore, we chose to fit our diffraction patterns above 

room temperature only with the γ phase. The only pattern indexed with the BCO structure was 

recorded at room temperature at 31 GPa. 

The γ to γ’’ transition is found to start at 37.6 GPa at 669 K, and both phases are observed 

coexisting for more than 10 GPa or 50 K. The evolution of the diffraction patterns along the 
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650 K isotherm is presented in Fig. 4. In an ongoing study [158], this γ to γ’’ transition was 

observed at roughly 26.4 GPa at 1050 K. These observations are consistent with the room 

temperature transition pressure of 41.2±8.4 GPa assessed in Table 1. They also suggest that 

the change in electrical resistance observed at 44.8 GPa and 1242 K by Weir et al. [48] was 

not caused by the γ to γ’’ transition. 

 

Fig. 4 – X-ray diffraction patterns showing the γ (BCT) to γ’’ (BCC) transition along the 650 

K isotherm 
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The volume data measured in this work along the room temperature isotherm are presented in 

Fig. 5(b-e). The obtained results are in good agreement with the literature data [22–

24,28,53,55]. The results obtained at higher temperatures will be presented in Section 4.3.2.1. 

Fig. 5 – Volume of the crystalline phases of the Sn system as measured at room temperature 

in the present study and in the literature, calculated by DFT at 0 K, and modeled along the 0 K 

and the 298 K isotherms  
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4.2 DFT calculations 

For each of the 6 allotropes considered, the volume calculated at 0 K is presented in Fig. 5. 

The results obtained with the LDA functional lead to an underestimated volume, whereas the 

DFT-GGA calculations lead to an overestimated volume compared with experiments. At 

higher pressures, the difference between both functionals is reduced, and a closer agreement 

with experiments is obtained, especially for the DFT-LDA calculations. 

The difference in enthalpy with respect to the γ’’ BCC phase is presented for each phase in 

Fig. 6(a-b). The calculated evolution with pressure of the lattice parameter ratios of the γ BCT 

and γ’ BCO phases is shown in Fig. 6(c). For both the LDA and GGA calculations, the γ’ 

BCO lattice converges toward the BCT lattice from 15 to 35 GPa, and then toward the γ’’ 

BCC lattice hereafter. While the γ BCT variety is calculated to be slightly distorted from the 

BCC phase from 40 GPa to 160/180 GPa by LDA/GGA, both structures are extremely close 

in energy in this domain, with a difference of less than 2 meV. This result is consistent with 

the DFT-GGA calculations from [24], in which a flat potential-energy curve centered around 

the c/a ratio of 1 was obtained at 57 GPa, with a difference of less than 3 meV from c/a ratios 

of 0.94 to 1.02. Therefore, the present results further support the absence of a marked energy 

barrier between the γ BCT and γ’’ BCC phases in the moderate pressure range. Last but not 

least, both the present LDA and GGA calculations point toward a re-stabilization of the γ’’ 

BCC phase over the δ HCP variety at the extremely high pressure of 1350 GPa, as the volume 

of δ-Sn is predicted to become higher than the one the of γ’’ phase from roughly 700 GPa. 

The calculated phase transitions at 0 K are presented and compared with the results of the 

modeling in Table 5. It is noted that the δ HCP variety was calculated as the stable phase by 

DFT-GGA from 4.6 to 26.3 GPa. This result is not corroborated by experimental work, and is 

not shown in Table 5. For all the other phase transitions, the discrepancy between the DFT 
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data and the model is somewhat consistent with the important spread observed between the 

different theoretical studies that can be seen in Fig. 2. 

 

Fig. 6 – Difference in enthalpy with respect to the γ’’ BCC phase calculated with a (a) LDA 

and (b) GGA functional. Inlets: data obtained at extremely high pressure for the γ’’ and δ 

phases. (c) is the c/a and b/a lattice parameter ratio of the γ BCT and γ’ BCO phases as 

calculated by DFT-LDA.  
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Table 5 - Phase transitions at 0 K obtained by LDA and GGA calculations compared with the 

results of the modeling, disregarding the presence of the γ’ BCO phase and the stabilization 

predicted by DFT-GGA of the δ phase at low pressure 

Transition P (GPa) (DFT-LDA) P (GPa) (DFT-GGA) P (GPa) (Model) 
α → β N/A 0.9 0.3 
β → γ 10.6 5.4 11.2 
γ → γ’’ 27.6 32.8 51.7 
γ’’ → δ 224.2 174.9 155.8 
δ → γ’’ 1323 1351 N/A 

 

The volume of the crystalline phases of the system calculated at 105 Pa by DFT-LDA and 

DFT-GGA are compared with the literature DFT data and with the results of the modeling in 

Supplementary Note C (Fig. S2). The same comparison is provided regarding the enthalpy of 

formation each phase in Fig. S3. Notable differences are observed between the different 

calculations, especially in regard to the enthalpy of formation. 

4.3 Thermodynamic modeling 

4.3.1 Thermodynamic properties 

4.3.1.1 Crystalline phases 

The heat capacity at atmospheric pressure of the phases modeled in this work is presented in 

Supplementary Note D (Fig. S4). A comparison between the model and the experiments for 

the α and β phases was provided in [26]. 

It follows from Eq. (2.2) and (2.3) that: 

𝐶௣ = 𝐶௏(1 + 𝛼𝛾𝑇)                                                                                                                              (4.1) 

At high pressure, the thermal expansion coefficient α tends to 0, and it follows from Eq. (4.1) 

that 𝐶௣ converges to 𝐶௏. At high pressure and temperature, 3R per mole of atoms is thus a 
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reasonable limit for the isobaric heat capacity, as discussed by Brosh et al. [159]. In this work, 

an approximate expression, Eq. (3.12), is used to extend the atmospheric pressure Gibbs 

energy toward higher pressures. It follows from this approach that at high pressure, the 𝐶௣ 

increases back up to its atmospheric pressure value [7,11]. This behavior is illustrated in 

Supplementary Note D (Fig. S5), where the heat capacity of the phases is presented along the 

1400 K isotherm. While this feature is unphysical, this approach enables to achieve 

compatibility with the atmospheric pressure CALPHAD databases built upon the SGTE 

method of extrapolation [153], as discussed in [7]. This method consists in setting the 𝐶௣ of 

crystalline phases to an arbitrary value above their atmospheric pressure melting point to 

avoid their spurious re-stabilization over the liquid at very high temperatures. In this work, 

this SGTE limit was set to 3R, and thus, a reasonable heat capacity is obtained for crystalline 

phases under elevated conditions of T and p. However, their heat capacity will still go above 

this value below their 105 Pa melting point, even at high pressure, and it will impact their 

entropy. Taking the practical case of β-Sn, and considering that the heat capacity should not 

rise above 3R at high pressure, the present approach leads to an entropy overestimated by at 

least 4% at 505 K. Because variations of the Einstein temperatures with pressure are also not 

considered in the model, the overestimation of the entropy at high pressure is likely to be 

higher than that, but this value gives an order of magnitude. It is not straightforward to assess 

the impact of this approximate description of the entropy on the phase diagram. It is noted that 

this 3R constraint was not applied to the liquid and amorphous phase, which heat capacity 

rises above this value at high T and p. This may lead to an overestimated thermal stability of 

the liquid phase in this domain, although the results of the present modeling rather suggest the 

opposite (Section 4.3.3). 

In summary, the present approach leads to an inaccurate description of the heat capacity and 

entropy of the phases at high pressure. Nonetheless, this inaccuracy has arguably a limited 
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impact on the phase diagram. It may be considered as an acceptable tradeoff, given that the 

model is readily compatible with the CALPHAD method, thus enabling the modeling of 

solution phases as well as extrapolations to multicomponent systems. 

4.3.1.2 Liquid phase 

The heat capacity at atmospheric pressure of the liquid and amorphous phase is presented in 

Fig. 7(a) along with the available data and the description from [26]. The same comparison is 

provided for heat contents in Fig. 7(b). The present description is in close agreement with the 

heat capacity measurements from Chen and Turnbull [160], whereas the modeling provided 

by Khvan et al. [26] is more consistent with the 𝐶௣ measured by Heffan [161]. Both 

descriptions satisfactorily reproduce most of the available heat capacity and heat content data, 

except for the more conflicting dataset from Klinkhardt [162], Yurchak and Philippov [163], 

and Wüst et al. [164]. As discussed in Supplementary Note B, the main difference between 

both assessments is that that a lower Einstein temperature was attributed to the amorphous 

phase in the present work, and that the high temperature heat content data from Feber et al. 

[79] were reproduced more closely, as highlighted in Fig. 7(b). 

Fig. 7 – Atmospheric pressure (a) heat capacity and (b) heat content of the liquid and 

amorphous phase as modeled in the present work compared with experimental data 

[26,44,79,160–168] and the recent assessment from Khvan et al. [26] 
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4.3.2 Volume and related properties 

4.3.2.1 Crystalline phases 

The atmospheric pressure description of the volume and bulk modulus of α-Sn and β-Sn was 

accepted from [30]. For the other crystalline phases of the system, only the volume and bulk 

modulus at 0 K and 105 Pa were adjusted. The parameters governing the temperature 

dependence of these properties were taken from the description of β-Sn due to the lack of 

data. 

The volume of the crystalline phases calculated along the 0 K and 298 K isotherms is 

presented in Fig. 5. The available experimental data are well reproduced. Besides, the DFT-

LDA data obtained in this work at 180 GPa are also closely reproduced. 

The bulk modulus of β-Sn calculated along the room temperature isotherm is compared with 

the experimental data [115–118] in Supplementary Note D (Fig. S6). The later measurements 

from Bridgman [117] are closely reproduced. 

The volume of the γ BCT and γ’’ BCC phases calculated along different isotherms is 

presented and compared with the results of the present experimental study in Fig. 8. 

Regarding γ-Sn, a fair agreement between the model and the experimental data is observed, 

although the volume of the phase may be slightly overestimated. Regarding the γ’’-Sn phase, 

the measurements are closely reproduced. These results along with those obtained on FCC Pt 

[11] and HCP Os [12] suggest that the Joubert-Lu-Grover model enables to achieve a 

satisfactory description of the volume up to temperatures of at least 1.5 times the melting 

point of the material of interest, and up to pressures of 2 to 3 times its standard bulk modulus. 
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Fig. 8 – Modeled and measured molar volume of (a) γ-Sn and (b) γ’’-Sn 

4.3.2.2 Liquid phase 

The volume of liquid Sn calculated at atmospheric pressure is presented along with 

experimental data [82–103] and the assessment from Assael et al. [81] in Fig. 9. The present 

description leads to a slightly lower volume than in [81] above 1000 K. This difference comes 

from the fact that additional datasets were considered in the present study, as well as from the 

weighting procedure as detailed in Supplementary Note B. 

Fig. 9 – (a) Molar volume of liquid and amorphous Sn calculated at atmospheric pressure 

compared with experimental data and with a recent assessment from 0 to 3000 K. (b) is a 

magnified view in the 500 - 1500 K range, and the legend is the same as in (a). 
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The sound velocity in liquid Sn calculated at atmospheric pressure is compared with the 

available data [104–113] in Fig. 10(a). The bulk modulus of liquid Sn is calculated from the 

sound velocity based on Eq. (2.4) using the present description of its heat capacity and 

volume, and the results are presented in Fig. 10(b). The model and the data are in good 

agreement, except for the conflicting results from Gordon [105]. 

Fig. 10 – (a) Sound velocity in liquid Sn and (b) bulk modulus of the phase calculated at 

atmospheric pressure compared with the experimental data 

The volume of liquid Sn calculated along the 505 K isotherm is presented in Fig. 11. A fair 

agreement was reached between the model and the measurements from [53], with a maximum 

discrepancy of 0.6% obtained at 1.5 GPa. 
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Fig. 11 – Molar volume of liquid Sn calculated along the 505 K isotherm compared with the 

experimental data 

 

4.3.3 Phase equilibria and Hugoniot 

The calculated Sn phase diagram is presented along with experimental data in Fig. 12. A 

comparison between the model and the data available along the principal Hugoniot and the 

683 K off-Hugoniot is provided in Fig. 13. It can be seen from Fig. 12(a) that both these 

Hugoniot curves follow the liquidus monovariant line on a wide range of pressure. The phase 

proportion in this particular domain has a significant influence on the volume changes 

calculated along the Hugoniot, but it is not straightforward to compute it. Therefore, in Fig. 

13(b) and (c), the upper and lower limit for the volume changes is plotted in these two-phase 

regions, instead of an arbitrary mean value. Thereafter, the results are discussed from low to 

high pressures. 
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Fig. 12 – Calculated Sn phase diagram compared with the available data. (a) is an overview, 

(b) a magnified view of the low pressure α to β transition, and (c) magnified view of the β-γ-

liquid triple point. The symbols are chosen based on the experimental method as detailed in 

the caption of Fig. 2. 
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Fig. 13 – Calculated (a-b) principal Hugoniot and (c) 683 K off-Hugoniot compared with the 

experimental data. (a) is an overview of the principal Hugoniot, and (b) a magnified view in 

the 0 - 100 GPa range. 

First, in the low-pressure range, it is shown in Fig. 12(b) that the calculated α to β 

monovariant line is in a satisfying agreement with the experimental data from Vnuk et al. 

[41], considering that the slope measured by the authors is correct, but that their data are 

shifted (Section 2.2.2). 
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Then, it is shown in Fig. 12(c) that satisfying results are obtained near the β-γ-liquid triple 

point, that is calculated at 577 K and 2.8 GPa. Regarding the liquidus of the β phase, the 

maximum deviation between the model and the data is of only 10 K. Regarding the more 

disputed liquidus of the γ phase and β-γ monovariant line, the measurements from Kingon and 

Clark [51] and Rambert et al. [53] are closely reproduced. The β to γ phase transition at room 

temperature is calculated at 9.7 GPa, which is in a better agreement with the 4 consistent 

studies [19–21,23] suggesting a slightly lower transition pressure.  

When pressure is further increased, it is shown in Fig. 12(a) that a satisfying agreement is 

obtained between the model and the data near the γ-γ’’-liquid triple point, that is calculated at 

1566 K and 20.4 GPa. Regarding the transition from the γ BCT phase to the γ’’ BCC variety, 

the results should be considered with care due to the pronounced metastable nature of Sn in 

this domain. At room temperature, the γ to γ’’ transition is calculated at 43.3 GPa, compared 

with the pressure of 41.2±8.4 GPa assessed in this work based on the 3 available 

measurements [22–24]. At 669 K, this transition is calculated at 33.1 GPa, compared with the 

pressure of 37.6 GPa where both phases were first observed coexisting in the present 

experimental investigation. At 1050 K, the γ to γ’’ transition calculated at 26.1 GPa is in a 

close agreement with the value of 26.4 GPa obtained in an on-going study [158]. 

Overall, a close agreement was reached between the modeled phase diagram and the available 

data in the 0 - 50 GPa and 0 - 2000 K range that was discussed so far. The consistency of the 

modeling in this domain is further supported by the fact the available shock compression data 

were closely reproduced, as shown in Fig. 13(b). This is especially true given that these data 

were not used in the optimization procedure of the crystalline phases, so this is an outcome. 
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The high-pressure high-temperature liquidus of the γ’’ BCC phase is the most disputed 

region. A satisfying fit was obtained up to 70 GPa and 3000 K as shown in Fig. 12(a). Past 

this point, the data from [58] are not closely reproduced anymore, and the calculated liquidus 

temperatures appear overestimated. It would suggest that either the entropy of the liquid is 

underestimated compared to the one of the γ’’ BCC phase, or its volume is overestimated. The 

first possibility seems unlikely in the present modeling, as discussed in Section 4.3.1.1. 

Regarding the second possibility, to set a lower volume for the liquid phase in this 60 - 150 

GPa range would lead to a discrepancy between the calculated and measured volume changes 

along the Hugoniot curves. It is interesting to note that in previous modeling of the system 

based on Helmholtz energy approaches, significant deviations from the high-pressure liquidus 

data from Briggs et al. [58] were also obtained. At 80 GPa, the liquidus of the γ’’ phase was 

measured by the authors at 2848±201 K. In the present work, the liquidus is calculated at 

3384 K at this pressure, whereas temperatures of 5380 K, 3045 K, 3420 K and 3538 K were 

obtained by Molodets and Nabatov [13], Khishchenko [14], Cox and Christie [15] and Rehn 

et al. [16], respectively. It has to be noted however that the high-pressure liquidus is concave 

upward in this work, whereas concave downward liquidus were obtained in the mentioned 

Helmholtz energy modeling. 

Next, the γ’’ to δ transition is calculated to occur at 157 GPa at room temperature, in 

accordance with the only available experimental data from [28]. It is noted that the calculated 

γ’’-δ monovariant line is completely arbitrary in the absence of further data. 

Last but not least, it appears from Fig. 13(a) that there is an increasing gap between the 

calculated and the measured volume changes along the Hugoniot in the very high–pressure 

range from 100 GPa to 700 GPa. A similar trend was observed in [11] when applying the 

Joubert-Lu-Grover model to FCC Pt. In this model, the cold compression curve is described 

based on the empirical law discovered by Grover et al. [169], which is only valid up to 



43 
 

pressures of roughly twice the standard bulk modulus of the material. For liquid Sn, it 

corresponds to approximately 120 GPa. Beyond this pressure, it can be deduced from [169] 

that the volume will start to become underestimated. This limitation appears clearly in 

Supplementary Note D (Fig. S7), in which the volume of γ’’-Sn is calculated up to 1800 GPa 

and compared with the DFT calculations. Besides, it is also possible that the thermal 

expansion coefficient is underestimated at extremely high pressures and temperatures. This 

would be due to the mathematical form of the cut-off parameters introduced in the model, and 

to the fact that the rise from high temperatures of electronic or thermal vacancies 

contributions that are often assessed based on ab initio calculations [170] was not considered. 
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4.3.4 Model parameters 

The model parameters to describe the atmospheric pressure Gibbs energy of the phases are 

presented in Table 6. 

Table 6 - Model parameters for the description of the atmospheric pressure Gibbs energy of 

the phases, given in J.mol-1 

 
Atmospheric pressure Gibbs energy of the crystalline phases below 505.08 K and of the amorphous phase based on Eq. (3.2) 

 

𝐺଴ = 𝐸଴ +
3

2
𝑅 ෍ 𝛼௜𝜃௜

௜
+ 3𝑅𝑇 ෍ 𝛼௜ ln ൬1 − exp ൬−

𝜃௜

𝑇
൰൰

௜

−
𝑎

2
𝑇ଶ −

𝑏

6
𝑇ଷ 

 
Phase 𝐸଴ 𝛼ଵ 𝛼ଶ 𝜃ଵ 𝜃ଶ 𝑎 𝑏 Ref 
α-Sn -9849.7499 0.67374 0.32626 218.4858 61.9652 1.1454E-03 N/A 

[26] 
β-Sn -7873.5615 0.64684 0.35316 159.075 61.122 

3.9694E-03 1.5563E-05 
γ-Sn -4248.56 

1 N/A 

89.5 

N/A TW 
γ’’-Sn 776.44 

91.7 
δ-Sn 1937.92 

Amorphous -1941.79 80 2.18705E-03 N/A 
 

Atmospheric pressure Gibbs energy of the crystalline phases above 505.08 K according to Eq. (3.3) 
 

𝐺଴ = 𝐸଴ + 𝐻ᇱ +
3

2
𝑅 ෍ 𝛼௜𝜃௜

௜
+ 3𝑅𝑇 ෍ 𝛼௜ ln ൬1 − exp ൬−

𝜃௜

𝑇
൰൰

௜

− 𝑆ᇱ𝑇 + 𝑎ᇱ𝑇 ln(𝑇) −
𝑏ᇱ

30
𝑇ି଺ −

𝑐ᇱ

132
𝑇ିଵଶ 

 
Phase 𝐻ᇱ 𝑆ᇱ 𝑎ᇱ 𝑏ᇱ 𝑐ᇱ Ref 
α-Sn 241.72132 0.73116428 

N/A 

2.0809E+16 -1.860263E+32 [26] 
β-Sn 

2206.1005 5.63281 -2.28095E+17 -2.139945E+33 TW 
γ-Sn 

γ’’-Sn 
δ-Sn 

 
Atmospheric pressure Gibbs energy of the liquid and amorphous phase according to Eq. (3.4) and (3.5) 

 

𝐺௟௜௤ି௔௠଴
= 𝐺௔௠଴ − 𝑅𝑇𝑙𝑛 ቆ1 + exp ቆ−

𝐵 + 𝐶𝑇 + 𝐷𝑇𝑙𝑛(𝑇)  

𝑅𝑇
ቇቇ 

 
B C D Ref 

5654.227 -7.426965 N/A TW 
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The model parameters to describe the volume and isothermal compressibility of the phases at 

are presented in Table 7. 

Table 7 - Model parameters for the description of the molar volume and isothermal 

compressibility of the phases, given in m3.mol-1 and in Pa-1 respectively 

 
Atmospheric pressure molar volume and compressibility of the crystalline phases based on Eq. (3.7), (3.9) and (3.10) 
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𝜒்
଴ = 𝜒்଴

଴ + 𝑋 ෍
𝛼௜

exp ቀ
𝜃௜

𝑇
ቁ − 1௜

 

 
Phase 𝑉଴

଴ 𝜒்଴
଴ 𝛾௜ଵ

଴ 𝛾௜ଶ
଴ 𝐴 𝑋 Ref 

α-Sn 2.05065E-05 2.407E-11 1.6204 -0.70538 N/A 2.8965E-12 
[30] 

β-Sn 1.60677E-5 1.6893E-11 

1.8394 

1.8394 

7.6494E-4 8.915E-13 
γ-Sn 1.59166E-05 2.02E-11 

N/A TW γ’’-Sn 1.55055E-05 1.7E-11 
δ-Sn 1.55742E-05 1.77E-11 

 
Atmospheric pressure molar volume and compressibility of the amorphous and liquid phase based on Eq. (3.7) and (S.1) 

 

𝑉଴ = 𝑉଴
଴ exp ൭

3𝑅

𝑉଴
଴ 𝑌

𝜃ா

𝑒
ఏಶ
் − 1

൱ , 𝜒்
଴ = 𝜒்଴

଴ + 𝑋 ෍
𝛼௜

exp ቀ
𝜃௜

𝑇
ቁ − 1௜

 

 
𝑉଴

଴ 𝜒்଴
଴ 𝑋 𝑌 Ref 

1.62639E-05 1.7172E-11 4.833E-12 6.15856E-11 TW 
 

Parameters from the Joubert-Lu-Grover model to extend the description toward high pressures using Eq. (3.6), (3.7), (3.10) 
 

𝑉 = −𝑐𝐸𝑖ିଵ ൭𝐸𝑖 ൬−
𝑉௣

𝑐
൰ −

1

𝐾்
௣ exp ൬−

𝑉௣

𝑐
൰ (𝑝 − 𝑝଴)൱ 

 
Phase 𝑐 𝑝஼௎் 𝑝஼௎்

ᇱ Ref 
α-Sn 3.95E-06 

1.5E9 

1.25E10 

TW 

β-Sn 3.26E-06 

γ-Sn 2.99E-06 
3.5E10 γ’’-Sn 3.055E-06 

δ-Sn 3.034E-06 

Liquid-amorphous 2.97E-06 2.7E9 1.85E10 
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Conclusion 

The Sn system was investigated by XRD up to 57 GPa and 730 K using a DAC, and new 

information on the volume, thermal expansion coefficient and thermal stability of the γ-Sn 

BCT and γ’’-Sn BCC phases were obtained. This experimental study combined with DFT 

calculations further highlights the metastable nature of Sn in the 30 - 70 GPa range, that can 

be explained by the fact the γ BCT and γ’ BCO phases are only slightly distorted and very 

close in energy from the γ’’ BCC variety in this domain. 

Based on the present investigation and on a thorough literature review, a thermodynamic 

modeling of the system was conducted. One of the aims of this work was to put to the test the 

recently proposed Joubert-Lu-Grover model. The approach taken here led to an approximate 

description of the heat capacity at moderate pressure, and as a result the sound velocity cannot 

be calculated accurately in this range. Nonetheless, the phase diagram, volume and Hugoniot 

data were reproduced closely up to at least 2500 K, which is 5 times higher than the 

atmospheric pressure melting point of Sn, and 150 GPa, which is almost 3 times the bulk 

modulus of β-Sn under standard conditions. At higher pressures, the Grover empirical law 

that is used to describe the cold compression curve becomes less precise, and the volume 

becomes underestimated. It is concluded that the present approach, which is readily 

compatible with the CALPHAD framework, appears promising to model multi-component 

phase diagrams at high pressure.  
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Supplementary Note A: Photograph of the high-pressure cavity 

An image of the high-pressure cavity (HPC) of the diamond-anvil cell (DAC) is shown in Fig. 

S1. 

 

Fig. S1 – Image of the high-pressure cavity at 20 GPa and 650 K. The Sn and Pt samples are 

embedded in Ne and are surrounded by luminescence sensors (ruby and borate). 
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Supplementary Note B: Detailed modeling procedure 

Modeling of the α-Sn (diamond cubic) phase 

The atmospheric pressure descriptions of the Gibbs energy, and of the volume and bulk 

modulus of α-Sn were accepted from [26] and [30], respectively. The 𝑐 parameter of Eq. (3.6) 

that governs the pressure dependence of the volume was assessed based on the DFT 

calculations performed in the present work using the LDA functional. In the absence of data, 

the same 𝑝஼௎் and 𝑝஼௎்
ᇱ parameters as for the β-Sn phase were accepted for α-Sn. 

Modeling of the β-Sn (BCT) phase 

The atmospheric pressure description of the volume and of the bulk modulus of β-Sn were 

accepted from [30]. The atmospheric pressure Gibbs energy description of the phase below its 

melting point was taken from [26]. Above the melting point of the phase, a change was made 

to the description proposed by the authors. In [26], the heat capacity of β-Sn tends towards the 

arbitrary value of 27.94 J.mol-1.K-1 at very high temperatures, whereas in this work, the value 

of 3R, i.e. 24.94 J.mol-1.K-1, was selected. That way, because Eq. (3.12) is used to compute 

the Gibbs energy function, the heat capacity of the phase is equal to 3R at high pressures and 

temperatures, which is considered a reasonable limit. The values for the 𝑐, 𝑝஼௎் and 𝑝஼௎்
ᇱ 

parameters were constrained using the isothermal bulk modulus [115–118] and molar volume 

[22–24,53] measurements performed along the room temperature isotherm up to 4 and 15 

GPa respectively, the volume calculated by DFT-LDA up to 180 GPa, and data on the 

liquidus of the phase and on the β-γ monovariant line. 
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Modeling of the γ-Sn (BCT) phase 

The γ-Sn phase is metastable at atmospheric pressure, and there is no data on the temperature 

dependence of its heat capacity, volume and bulk modulus. Therefore, to model the 

atmospheric pressure Gibbs energy of the phase, the only parameters from Eq. (3.2) and (3.3) 

that were adjusted are 𝐸଴, and a single Einstein temperature 𝜃ா . All the other parameters were 

taken from the description of the β-Sn, which is the reference stable phase at 298.15 K. This 

treatment is consistent with the recent recommendation of Dinsdale et al. [147] to model 

lattice stabilities in the 3rd generation of CALPHAD databases. The atmospheric pressure 

volume and bulk modulus of the phase were modeled in a similar fashion. Besides from 𝜃ா  

and from the 𝐹௖௨௧ and 𝐹௖௨௧
ᇱ functions that are equal to 1 at 105 Pa, the only parameters from 

Eq. (3.7) and (3.10) that were adjusted are 𝑉଴
଴ and 𝜒்଴

଴, while the remaining parameters were 

accepted from the description of β-Sn. Finally, there is also not enough information to fit the 

𝑝஼௎் parameter from Eq. (3.8) that is linked to the decrease of the temperature derivative of 

the thermal expansion coefficient and of the bulk modulus when pressure is increased. Once 

again, this parameter was thus set to the value selected for the β-Sn phase. 

As a first step, the volume of the γ-Sn phase was modeled. To begin with, the 𝑉଴
଴ parameter of 

the phase was set based on the volume obtained by DFT-LDA. These calculations lead to 

underestimated volumes: at 0 K and 105 Pa, the volume of α-Sn and β-Sn calculated by DFT-

LDA are shifted by 10-7 and 3x10-7 m3.mol-1 respectively compared with the ones assessed 

based on experimental data in [30]. A comparable shift of 3.5x10-7 m3.mol-1 was therefore 

applied to the DFT-LDA data for γ-Sn, and the 𝑉଴
଴ parameter of the phase was set to the 

resulting value. Then, the 𝑐 and 𝜒்଴
଴ parameters of Eq. (3.6) and (3.7) were adjusted using the 

volume data measured by XRD along the room temperature isotherm in the literature [22–

24,53] as well as in the present study. The upper limit of these measurements was reproduced 
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because it led to a better agreement with the available phase equilibria data. To further 

constrain 𝑐 and 𝜒்଴
଴, the volume calculated by DFT-LDA at 180 GPa was taken as a lower 

limit for the modeling. Next, the 𝑝௖௨௧
ᇱ parameter was adjusted using the high-temperature and 

high-pressure data on the volume of the phase obtained in the present study, under the 

constraint that it should be equal to the 𝑝௖௨௧
ᇱ parameter of the γ’’-Sn phase. That is because 

the γ BCT phase is only slightly distorted from the BCC variety in this pressure range, and 

this choice enabled to reduce the degrees of freedom in the modeling. In a second time, the 𝐸଴ 

and 𝜃ா  parameters of Eq. (3.2) and (3.3) were adjusted based on all the available information 

on the β-γ monovariant line. All the information reviewed in section 2.2.2 were considered in 

the process, except for the more conflicting datasets from Xu et al. [52], Stager et al. [17] and 

Mabire et al. [60]. 

Modeling of the γ’’-Sn (BCC) phase 

The modeling procedure for the γ’’ BCC phase is very similar to the one described for the γ 

phase. Only 5 parameters were adjusted to describe the volume and of the thermodynamic 

properties of the phase, that are 𝐸଴, a single Einstein temperature 𝜃ா , 𝑉଴
଴, 𝜒்଴

଴, and 𝑝௖௨௧
ᇱ. It 

was considered that not enough information was available to adjust the other parameters, and 

they were therefore taken from the description of the β-Sn. 

First, the 𝑉଴
଴ parameter of γ’’-Sn was set to the DFT-LDA value calculated in this work after 

it was shifted by 1.5x10-7 m3.mol-1. Then, the 𝑐 and 𝜒்଴
଴ parameters of the phase were 

adjusted to reproduce the volume data measured along the room temperature isotherm in the 

literature [22–24,28,55] and in the present study. Next, the 𝑝௖௨௧
ᇱ parameter was adjusted 

based on the volume data measured at high temperature and high pressure in this work, under 

the constraint that this parameter was taken to be equal to the one used for the γ BCT phase. 
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Finally, the 𝐸଴ and 𝜃ா  parameters of the γ’’-Sn phase were modeled based on the information 

on the transition from γ-Sn to γ’’-Sn, and on the liquidus of the γ’’ phase. 

Modeling of the δ-Sn (HCP) phase 

There is very limited information available on the HCP δ-Sn phase. Therefore, only 3 

parameters, that are 𝐸଴, 𝑉଴
଴, and 𝜒்଴

଴, were adjusted. For the 𝑝௖௨௧
ᇱ parameter, the same value 

as obtained for the γ and γ’’ phases was accepted. The same Einstein temperature as for the 

BCC γ’’ phase was arbitrarily selected. All the other parameters were taken from the 

description of β-Sn. 

The value for the 𝑉଴
଴ parameter of δ-Sn was set based on the volume obtained by DFT-LDA 

that was shifted by 1.5x10-7 m3.mol-1 as for the γ’’ phase. The 𝑐 and 𝜒்଴
଴ parameters were 

adjusted based on the volumes measured along the room temperature isotherm by Salamat et 

al. [28]. Finally, the 𝐸଴ parameter was adjusted based on the γ’’ to δ transition determined to 

occur at 298 K at 157 GPa by the same authors. 

Modeling of liquid Sn 

In the present work, modifications were made to the atmospheric pressure thermodynamic 

description proposed in [26]. The first reason behind this revision is that the Einstein 

temperature attributed to the amorphous phase by the authors was found to be higher than the 

one obtained for the high pressure γ and γ’’ varieties in this work. As a result, the entropy of 

the liquid and amorphous phase was slightly lower than the one of these crystalline phases in 

the low temperature range, which is abnormal. The second reason is that the high temperature 

heat content data from Feber et al. [79] that suggest an increase in the heat capacity of the 

liquid phase from 1200 K were not closely reproduced by Khvan et al. [26], and this choice 

has a noticeable impact on the atmospheric pressure description of the bulk modulus obtained 
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from sound velocity measurements. The Einstein temperature of the liquid and amorphous 

phase 𝜃ா  was set to the arbitrary value of 80 K, which is roughly 10 K lower than for the γ 

and γ’’ crystalline phases. The 𝐸଴ and 𝑎 parameters of Eq. (3.2) and the 𝐵 and 𝐶 of Eq. (3.5) 

were adjusted based on the heat capacity data from Bartenev [44], Heffan [161] and Chen and 

Turnbull [160] that were selected by Khvan et al. [26]. All the available heat content data 

[26,79,165–168] were also considered in the optimization, except for the earlier 

measurements from Wüst et al. [164] which were found to be inconsistent with other studies. 

Besides, the melting point of 505.078 K established in the ITS-90 [25] and the enthalpy of 

fusion of 7187 J.mol-1 selected by Khvan et al. [26] based on the measurements of Grønvold 

[46] were perfectly reproduced, as in [26]. 

Then, the atmospheric pressure molar volume and bulk modulus of the phase were modeled. 

It appears from the available density measurements that the volume of liquid Sn increases 

linearly with T up to at least 2750 K, suggesting a constant thermal expansion coefficient. The 

bulk modulus, however, decreases with T as suggested by the sound velocity measurements, 

and it follows from Eq. (3.10) that it leads to an increase in the thermal expansion coefficient. 

Therefore, it was found more suitable to simplify Eq. (3.10) as follows: 

න 𝛼௟௜௤ି௔௠
௣

𝑑𝑇

்

଴

=
3𝑅

𝑉଴
଴ 𝑌

𝜃ா

𝑒
ఏಶ
் − 1

𝐹௖௨௧
ᇱ                                                                                                (S. 1) 

with 𝑌 a constant that is linked to the product of the isothermal compressibility with the 

Grüneisen parameter. The 𝑌 and 𝑉଴
଴ parameters of Eq. (S.1) were obtained from all the 

available density datasets [82–103], except for the measurements from Friedrichs et al. [94] 

which are highly scattered. In the previous assessment of Assael et al. [81], the authors 

considered that the uncertainties for each dataset were of the same order of magnitude, and 

the data were only weighted according to the number of measurements. However, it appears 
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that for each dataset except [94], the measurements are rather precise, because the spread is 

low, but they are not very accurate, because conflicting trends are reported. Therefore, in the 

present work, a weight proportional to the number of points was attributed to each dataset, so 

that each reported trend would have the same weight in the optimization. Next, the available 

sound velocity measurements [104–113] were converted into isothermal bulk modulus data 

based on Eq. (2.4), using the previously obtained heat capacity and volume description. On 

this basis, the 𝜒்଴
଴ and 𝑋 parameters of Eq. (3.7) were adjusted. In the process, each dataset 

was weighted following the same logic as discussed above for the volume, except for the 

measurements from Kleppa [104] which are clearly outliers and were therefore not considered 

in the optimization. 

Finally, the parameters governing the pressure dependence of the volume were adjusted. First, 

the 𝑐 parameter was adjusted based on the shock data along the principal hugoniot available 

from 110 GPa to 200 GPa [121–123]. What was considered a reasonable lower limit for the 

volume changes was reproduced as it was found to be more consistent with the available data 

on the liquidus of γ’’-Sn. Then, the 𝑝௖௨௧
ᇱ parameter was assessed using all the information 

available reviewed on Section 2.2.2 on the high-pressure liquidus of the γ’’ phase, expect for 

the measurements from Weir et al. [48] and for the data above 70 GPa from the former study 

from Briggs et al. [57]. Last, the 𝑝௖௨௧ parameter was assessed using the data on the liquidus of 

the γ Sn obtained up to 6 GPa by Kingon and Clark [51] and Rambert et al. [53] 
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Supplementary Note C: Volume and enthalpy of formation calculated by DFT 

compared with literature DFT data and with the results of the modeling 

The volume of 6 allotropic phases of tin calculated at 105 Pa by DFT-LDA and DFT-GGA is 

compared with the literature DFT data and with the results of the modeling in Fig. S2. The 

same comparison is provided regarding the enthalpy of formation of each phase in Fig. S3. 

 

Fig. S2 –Volume of the crystalline phases calculated by DFT-LDA and DFT-GGA compared 

with literature DFT data and with the results of the modeling 

 

Fig. S3 – Enthalpy of formation of the crystalline phases with respect to β-Sn calculated by 

DFT-LDA and DFT-GGA compared with literature DFT data and the results of the modeling 



10 
 

Supplementary Note D: Additional modeling results 

In this note, additional figures are presented to further show the agreement between the model 

and experimental data, and to highlight the limitations of the model. 

The heat capacity of the α, β, γ, γ’, γ’’, δ and liquid and amorphous Sn phases are presented 

along the atmospheric pressure isobar in Fig. S4, and along the 1400 K isotherm in Fig. S5. 

A comparison between the model and the experimental data on the bulk modulus of β-Sn 

available along the room temperature isotherm is presented in Fig. S6. 

The volume of the γ’’ BCC phase calculated along the 0 K isotherm is compared with DFT 

calculations up to the extremely high pressure of 1800 GPa in Fig. S7.  
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Fig. S4 – Heat capacity at atmospheric pressure of the phases modeled in this work. The heat 

capacity of the γ, γ’’ and δ phases is too close to be distinguished. 

 

Fig. S5 – Heat capacity along the 1400 K isotherm of the phases modeled in this work. An 

approximate expression is used to extend the atmospheric pressure Gibbs energy toward high 

pressure, which result in the 𝐶௣ increasing back up to its 105 Pa value at high pressure. 
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Fig. S6 – Bulk modulus of β-Sn calculated along the room temperature isotherm compared 

with experimental data 

 

Fig. S7 – Volume of BCC Sn calculated along the 0 K isotherm compared with DFT 

calculations. Above pressures of twice the standard bulk modulus of the phase, the Grover 

empirical law [169] becomes less precise, and the volume starts to become underestimated. 


