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a b s t r a c t
In Cyber-Physical Manufacturing Systems (CPMS), numerous distributed control architectures were sug-gested to make different production entities 
active with respect to decision-making and control processes, so that they can process information, interact, and make control decisions in an autonomous 
and adaptive way. Nevertheless, developing Product-Driven Control (PDC) mechanisms that enable Smart Products (SPs) to make control decisions to cope 
with disturbances is still a complex, open-ended, and challenging pro-blem. This article suggests a PDC approach that enables SPs to learn how to make 
control decisions to react to disturbances and maintain continuity of operations. The control mechanism involves an Analytic Hierarchy Process 
(AHP) augmented with Expert rules to cope with the limitations of standard AHP in dealing with dynamic problems. The mechanism is applied to a 
dispatching problem in an industrial scale assembly process. A multi-agent discrete event simulation model is used to create a set of normal and 
disturbed production scenarios. SP agents use context indicators and performance assessment to activate Expert rules and update AHP preferences and 
scales before making dispatching control decisions to react to disturbances. Data analytics tools are developed to help manufacturing system Experts define 
and fine-tune rules, based on rule firing statistics and corresponding context indicators and performance assessment acquired from simulation. 
Experimentations and results show competitive performance and highlight in-teresting research directions. 

1. Introduction

The new developments in the industry 4.0 paradigm and tech
nologies have led to the emergence of Cyber-Physical Manufacturing 
Systems (CPMS), which take advantage of digitalization and auto
mation at multiple levels within a factory and across the enterprise 
to enable higher productivity, higher quality, and lower costs 
(Napoleone et al., 2020). CPMS promote the concept of “activeness” 
of smart production entities (e.g., devices, machines, products, and 
augmented operators). This concept is closely related to autonomous 
behaviour and to participation in decision-making and control 

processes (Sallez et al., 2010). In this way, smart entities become able 
to interact with each other and with Enterprise Information Systems 
(Romero and Vernadat, 2016), to handle data, information and 
knowledge (Aven, 2013), and to make control decisions in more 
autonomous, adaptive and resilient ways (Napoleone et al., 2020). 

Despite the advanced capabilities that CPMS offer, these systems 
are still faced with complex challenges, mainly related to change 
management at design and operational stages (Panetto et al., 2019). 
At design stage, change is related to fast-paced technological evo
lution, and to managing changes in functional (e.g., mass-customi
zation and servitization) and non-functional (e.g., performance and 
resilience) requirements of both engineered products, processes and 
services. This article focuses on changes at operational stage, which 
are related to disturbances that may disrupt the continuity of flows 
and operations. Examples of such disturbances include supply or 
demand uncertainty, resource unavailability and/or resource un
reliability (Attajer et al., 2019; Chaabane and Trentesaux, 2019; 
Sanchis and Poler, 2019). Dealing with disturbances appropriately is 
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2. Related works

Manufacturing control systems and architectures are generally 
classified into centralized, decentralized and hybrid control archi
tectures (Meissner et al., 2017; Trentesaux, 2009). Each class has its 
own advantages and limitations, and therefore, the selection of a 
class over another will depend more on the requirements set by 
manufacturing system experts, and on their expectations regarding 
the manufacturing system behaviour and performance (Jaskó et al., 
2020). Whereas centralized control offers global optimization op
portunities, it suffers scalability, flexibility and reactivity limitations. 
Several recent research streams suggest the advantages and benefits 
of autonomous control concepts compared to traditional centralised 
approaches (Antons and Arlinghaus, 2022). Unfortunately, existing 
manufacturing control systems and architectures still offer limited 
capabilities with respect to the management of disturbances and 
risks (Bayar et al., 2015, 2016; Darmoul et al., 2013). Volatility, Un
certainty, Change and Ambiguity (VUCA) in manufacturing en
vironments motivate orienting this article towards autonomous 
distributed control for the sake of increased flexibility, reactivity and 
ultimately, resilience (Mack et al., 2015). 

Dealing with disturbances and risks is achieved by com
plementary approaches in industry and academy, each with its own 
advantages and limitations. Industrial practice focuses more on de
veloping Intelligent Manufacturing Execution Systems (MES) to 
monitor operations, improve real-time context awareness, and 
therefore support advised decision-making and control 
(Shojaeinasab et al., 2022). However, MES still lack specific func
tions, dedicated to disturbance and risk management, while being 
sufficiently generic to enable dealing simultaneously and compre
hensively with many types of disturbances and risks (Bayar et al., 
2015, 2016; Darmoul et al., 2013). 

The control of manufacturing systems encompasses planning, 
scheduling, dispatching, and routing decisions (Wu, 2014). Sche
duling tends to be increasingly sensitive to real-time events, which 
intensifies an already existing trend towards real-time monitoring 
and dispatching due to proliferation of sensing and data-driven 

technologies (Parente et al., 2020). This article develops an approach 
and illustrates it on the dispatching process, defined as “the activity 
to assign the next job to be processed from a set of jobs awaiting service” 
(Wu, 2014). Although robust or predictive scheduling approaches are 
possible to consider the available information on future jobs (Echsler 
Minguillon and Stricker, 2020), this article focuses on reactive con
trol to promote autonomy, flexibility and reactivity through the 
decentralization of control decision-making over SPs. Therefore, the 
approach suggested in this article exploits the synergy of three do
mains: Product-Driven Control (PDC), Machine Learning in PDC, and 
the Analytic Hierarchy Process (AHP). The following sub-sections 
review some specific aspects of literature on these three topics. 

2.1. Product-driven control 

PDC is relevant to distributed artificial intelligence, which can be 
developed through the agent, holonic, or else bionic frameworks 
(Antons and Arlinghaus, 2022; Derigent et al., 2020; Leitão, 2009; 
Trentesaux, 2009). Whereas considerable research focused on dis
tributing control over smart resources, relatively fewer research 
addressed distribution on SPs (Antons and Arlinghaus, 2022; 
Derigent et al., 2020). Several references discussed different defini
tions, classifications, levels of, and frameworks for, product “smart
ness” and “intelligence” (McFarlane et al., 2013; Meyer et al., 2009; 
Sallez, 2014; Wuest et al., 2018). PDC is closely related to the con
cepts of "smart products" and “holonic manufacturing” (Meyer et al., 
2009; Valckenaers, 2020). In (Derigent et al., 2020), the authors 
highlighted that product intelligence in existing Holonic Control 
Architectures (HCA) refers mainly to data management and inter
operability capabilities for the traceability of product evolution 
throughout its lifecycle. The authors particularly emphasized that 
only a few existing HCA study decentralized PDC mechanisms and 
architectures at manufacturing stage (Lenz et al., 2020). This is fur
ther emphasized in (Kovalenko et al., 2019), where the authors in
vestigated several product-driven HCA and multi-agent control 
architectures regarding decision-making and stressed that there is 
still room for developing product agents that use intelligent me
chanisms to make decisions. 

2.2. Artificial intelligence (AI) and machine learning (ML) in PDC 

Despite exhaustive reviews of AI and ML techniques applied to 
production planning and control literature, several recent surveys 
failed to identify applications to promote activeness of SPs with 
respect to decision-making and control processes (Antons and 
Arlinghaus, 2022; Bertolini et al., 2021; Bueno et al., 2020; Parente 
et al., 2020), which provides an extra motivation for this article to 
develop product embedded control mechanisms. 

Dispatching problems are traditionally addressed using reactive 
approaches, where no decision is taken in advance (Echsler 
Minguillon and Stricker, 2020). Instead, immediate and local deci
sions are made in the presence of real-time events, usually based on 
simple heuristics, such as Dispatching Rules (DR) (e.g. FIFO and 
shortest processing time), to prioritise jobs waiting to be processed 
in waiting lines and resource queues. DR are traditionally derived by 
empirical or analytical studies, sustained by scheduling theory. As 
simple sequencing procedures, DR are flexible, easy to implement, 
and extremely fast to execute. However, their performance is still 
limited, and depends heavily on the context (Ferreira et al., 2021). 
Traditional DR are neither adaptive, nor self-learning, nor else flex
ible enough to be effective under Industry 4.0 (Parente et al., 2020). 
The dispatching is made from the perspective of smart resources, 
waiting lines and queueing systems, rather then from the perspec
tive of SPs, which are considered passive, and do not participate 
actively in decision-making and control processes. 

important, because otherwise, they can cause detrimental con-
sequences, including both direct impacts and probable propagation. 
Disturbances potentially reduce productivity and cost-effectiveness, 
increase safety risks for production resources, disrupt the continuity 
of operations and business, in addition to disrupting financial and 
information flows in supply chains, therefore putting entire orga-
nizations at risk. As highlighted in a field survey by (Bokrantz et al., 
2016), dealing with production disturbances effectively and effi-
ciently is vital for both survival and competitiveness. 

Indeed, distributed control architectures, where information 
processing is distributed, and decision-making is decentralized over 
several smart production entities offer innovative mechanisms to 
control disturbances and operational risks (Derigent et al., 2020; 
Valckenaers, 2020). Unfortunately, only a few works succeeded in 
decentralizing control capabilities on SPs to enable them to play 
more active roles in decisional processes, particularly to react to 
disturbances and operational risks in an autonomous and adaptive 
way, while maintaining performance at acceptable levels. To fill in 
this gap, this article develops a Multi-Criteria Decision-making 
(MCDM) control mechanism, based on an Analytic Hierarchy Process 
Augmented with Expert rules (A-AHP) to enable SPs to make control 
decisions to react to disturbances and maintain continuity of op-
erations. Therefore, Section 2 analyses the related literature to better 
position the contributions of this article. Section 3 details the sug-
gested approach. Section 4 introduces a case study application of our 
approach. Experiments and results are discussed in Section 5. Finally, 
the Section 6 provides a conclusion and opens several future re-
search directions. 



Indeed, AI and ML were used to boost the effectiveness of DR. 
However, the suggested approaches make use of complex, black-box 
models, such as Neural Networks and tree ensembles, that are 
harder to interpret and manipulate by human decision makers. 
These models are designed and validated with little domain ex
pertise. Users can only observe the input-output relationships, thus 
missing the underlying reasons or processes to produce the outputs, 
which makes them uncomfortable and non-confident in the ob
tained results. Therefore, with black-box models, decision-makers 
are forced to sacrifice transparency, traceability and accountability in 
exchange of some expected performance in dealing with complex 
problems. As a result, despite their good behaviour in some tested 
cases, DRs frequently do not generalise well to unseen scenarios 
(Ferreira et al., 2021). 

To alleviate this limitation, some references suggest to gather 
knowledge about real time manufacturing contexts, and to use it to 
generate new and improved knowledge from which better dis
patching strategies may come to light (Ferreira et al., 2021; Parente 
et al., 2020; Zhang et al., 2022). Unfortunately, in such references, 
products are usually passive and they do not make their own deci
sions. 

2.3. Analytic hierarchy process 

Decision problems at manufacturing stages are multicriteria by 
essence because decisions can be rarely evaluated in terms of a 
single criterion. Time impacts, cost consequences, and quality out
comes all need to be considered when making decisions at manu
facturing execution stages. In this article, the AHP is chosen among 
many existing MCDM techniques (Figueira et al., 2005), because of 
its relative simplicity, ease of use, and great flexibility compared to 
other MCDM techniques (Ho and Ma, 2018) (a more detailed justi
fication is provided in the beginning of Section 3). In (Trentesaux 
et al., 1998), AHP was interfaced with Human Experts to handle 
conflicting objectives in a task allocation problem. AHP was 

distributed only on Resource Holons in (Ounnar and Ladet, 2004; 
Ounnar and Pujo, 2012; Pujo et al., 2009). In (Derigent et al., 2017), a 
two-stage AHP-based algorithm was suggested to handle un
expected machine breakdowns. The first stage determines which 
kind of strategy the product should adopt, while the second stage 
selects the most appropriate resource to fulfill the product require
ments. The assessments of decisions are entrusted to products 
through preference functions. Unfortunately, these functions are not 
adaptive, which limits the system’s capability to respond to dynamic 
changes. Although AHP has been studied extensively in literature 
(Ho and Ma, 2018; Khaira and Dwivedi, 2018), it has been used only 
scarcely in holonic/multi-agent manufacturing control (Derigent 
et al., 2020), and it has not yet been adapted to enable SPs to learn 
how to make control decisions in disturbed contexts. 

The analysis of literature shows that lots of efforts were dedi
cated to make resources smart, and relatively less effort was dedi
cated to make products active with respect to decision-making and 
control processes. When dealing with SPs, the focus is put more on 
product-embedded data management capacilities throughout a 
product lifecycle, and less on decision-making and control cap
abilities, particularly to enable them to react to disturbances and 
operational risks in an autonomous and adaptive way, while main
taining performance at acceptable levels. Achieving product smart
ness and activeness in terms of decision-making and control 
processes is important because it enforces product autonomy, con
tributes to increasing system flexibility and reactivity, and enhances 
system awareness, responsiveness, and resilience to disturbances 
and risks. 

3. Suggested control approach 

The main contribution of this article lies at the crossroad of the 
three previously reviewed topics (i.e. PDC, ML and AHP). An ap
proach is developed based on a hierarchical framework, which is 
illustrated on the dispatching process, as depicted in Fig. 1. 

Fig. 1. General framework of investigation.  



In Fig. 1, it is interesting to notice two loops:  

• An orange loop, involving the manufacturing system Expert, and 
enabling him/her to refine his/her knowledge and expectations, 
and to transfer them to SPs through the definition of rules.

• A green color loop, involving SPs, and enabling them to make 
decisions using the set of defined and refined rules. 

The hierarchical framework of Fig. 1 is further detailed in Fig. 2.
Expert rules are refined through data analytics and supervised 
learning, and embedded in SPs through the suggested A-AHP me
chanism. Simulation is used to create different scenarios of pro
duction and disturbances.  

1. First, the manufacturing system Expert sets the thresholds and 
provides rules to enable the SPs to adapt preferences among 
dispatching control decisions (arrow notated 1a in Fig. 2). These 
thresholds and rules are embbeded in SPs for decision-making. 
The Expert also sets the production scenarios to be simulated 
(arrow notated 1b in Fig. 2). 

2. Each SP follows its pre-established allocation planning to com
plete its service list. A SP collects context and performance in
dicators (arrow notated 2 in Fig. 2). Two cases are then 
considered:

• If no disturbance is detected, the default planned resource is 
considered as destination to receive the next service.

• If a disturbance is detected, the SP runs the A-AHP and the best 
ranked resource is selected to receive the next service.

3. The decision about the selected destination resource is sent to 
the simulation environment to update product routings (arrow 
notated 3 in Fig. 2).

4. By the end of a simulated scenario, statistics are collected (e.g.,
number of times a rule was fired and corresponding performance 
indicators), and sent to a data analytics tool (arrow notated 4 
in Fig. 2).

5. Feedback about rule statistics and performance indicators is 
shown to the manufacturing system Expert, who performs data 
analytics (arrow notated 5 in Fig. 2) to update thresholds and 
rules.

This cycle is repeated until a set of satisfactory thresholds and 
rules is obtained. 

3.5. AHP augmentation with expert rules 

AHP allows ranking a finite set of available dispatching control 
decisions according to multiple criteria and based on sets of pairwise 
comparisons. Fig. 3 shows in white color, the steps of the standard 
AHP procedure, which has some core limitations. It is worth noticing 
that the evaluations of preferences of criteria (cf. STEP30) are sub
jective, as they depend on the type of industry and the decision- 
maker expertise, while preferences of decisions (cf. STEP40) do not 
reflect time, state, dynamics and disturbance context of the manu
facturing system. They are set manually and permanently by deci
sion makers. Unfortunately, as manufacturing systems are dynamic, 
state and context are not static, which means that these evaluations 
need to be adapted before applying the ranking mechanisms. 
Adapting AHP parameters manually is time consuming and is not 
suitable to the dynamics of automated systems. If parameter cali
bration is kept manual, it would slow down the decision-making and 
reaction processes, with the risk that resulting decisions are not well 
tailored to disturbance context, and to system state and dynamics. 
These limitations inhibit the autonomy and reactivity of SPs to cope 
with different disturbances and may lead to deadlocks and poor 
performance. 

Therefore, Fig. 3 shows the new steps that were added in red 
color to obtain the suggested A-AHP mechanism. The following 
subsections provide a detailed description of each step. 

3.5.1. Notations 
This section introduces the set of notations that are used later 

and sorted alphabetically:  

• =A a( )n o N X N, : square N by N matrix of preferences between 
criteria, regardless of control decisions. 

3.1. A product-driven control 

Architecture is adopted to promote activeness of SPs with respect 
to decision-making and control processes, particularly to react to 
disturbances and maintain continuity of operations. A reactive ap-
proach is considered, where no prior knowledge is available or 
predicted on future arrivals of products. Instead, as soon as customer 
orders arrive, SPs are released into the manufacturing system ac-
cording to a pre-established allocation planning, which then needs 
to be adapted according to manufacturing system context and dis-
turbances. 

3.2. Machine learning 

Manufacturing system experts delegate dispatching control re-
sponsibilities to SPs. This delegation is achieved through the defi-
nition and provision of rules and thresholds that enable adapting 
preferences of control decisions. 

3.3. Multi-criteria decision-making 

In case of disturbances, each SP has to adapt its pre-established 
allocation planning by selecting a decision from a set of available 
control decisions. To achieve this selection, multi-criteria decision- 
making is used based on an AHP mechanism augmented with the 
expert rules. 

AHP is appealing to decision makers because it offers an intuitive 
hierarchical evaluation and weighting process, mainly based on 
iterative and sequential pairwise comparisons between a set of 
available alternatives (i.e. dispatching control decisions) (Saaty, 
1994), which contribute to a human-scale management of the 
complexity of the dispatching control problem. It is this human- 
scale management knowledge that will be delegated to SPs through 
AHP to enable PDC. Moreover, manufacturing experts are generally 
more comfortable and biased towards decision-making processes 
that are directly related to product performance, because it directly 
relates to customer satisfaction. Manufacturing experts are less 
comfortable with decisions and performance that are resource and 
queueing system oriented, which is the case of classical dispatching 
rules. This notice motivates providing SPs with MCDM capabilities to 
actively select the next resource that will provide the required ser-
vice in a way that is adaptive to the manufacturing system context, 
particularly in case of occurrence of disturbances and risks. 

In this article, Rules provide an explicit way to augment AHP and 
adapt it to the dispatching problem. The Augmented AHP (A-AHP) 
provides an explicit way to explain and trace how decisions were 
made. To the best of the authors’ knowledge, no other article in 
literature uses such combination to enable PDC. 

3.4. Supervised learning approach 



• =B b( )C m p C,n n: square M by M matrix of preferences of control 
decisions with respect to criterion Cn. 

• Cn: a set of N criteria to evaluate and rank control decisions, in
dexed by n N{1, .., }.  

• CR: consistency ratio.

• CSRL: average cost of staying in the reference loop.  

• Dm: set of M control decisions, indexed by m M{1, .., }. 

• F C _D _D_ n m p: function involving a set of indicators used to com
pare decision Dm to Dp with respect to criterion Cn.  

• FRRi: failure rate of resource Ri.  
• LC : logistic cost; when the product decides to go to an alternative 

resource, an additional logistic cost is added. 

• MinThreshold C_ n: minimum thresholds on scales of relative im
portance of criterion Cn. 

• MaxThreshold C_ n: maximum thresholds on scales of relative im
portance of criterion Cn.  

• Pl: set of L products, indexed by l L{1, .., }.  

• PTRi: processing time on resource Ri.  
• PCRi: production cost on resource Ri.  

• Ri: set of I resources, indexed by i I{1, .., }.  

• RPTRi : required time to achieve a service on resource Ri.  

• Sj: set of J services provided by resources, indexed by j J{1, .., }.  
• Thr_RPTRi: thresholds on the required time RPTRi.  

• Thr_TTFRi : thresholds on the time to failures of resource Ri.  
• TTFRi: time to failure of resource Ri.  
• TTRRi: time to repair of resource Ri.  

• Uk: set of K disturbances, indexed by k K{1, .., }.  

• wCn: weight vector of preferences with respect to criterion Cn.  

• wDmCn: weight vector of decision preferences with respect to 
criterion Cn.  

• wD: weight vector of decision preferences with respect to all 
criteria. 

• WTQ Ri: average waiting time of products in the queue of re
source Ri.  

• WTRL : average waiting time of products in the reference loop. 

3.5.2. STEP00 – product and production system characteristics 
This step defines the manufacturing system specificities and 

flexibilities (e.g., main and alternative routings, equivalent re
sources), as well as the SP agents’ representation of their environ
ment, which enables them to interact with Enterprise Information 
Systems to get suitable updates about system parameters and data 
(e.g., arrival rates, failure rates, tolerable delays). Fig. 4 provides an 
abstract view of a manufacturing system. 

3.5.2.1. Resources and associated services. Resources are automated 
or semi-automated value-adding nodes, located around a routing 
network. According to the PDC approach, the resources are 
considered as passive entities that only provide services on 
request, without any decisional capabilities (Trentesaux and 
Thomas, 2013). A resource delivers a set of services with different 
service times. Some services can be delivered by several resources, 
considered as redundant. A waiting area is associated to each 
resource, assumed to be finite, with a FIFO rule. Resources have 
limited reliability and are subject to disturbances, which have direct 
impacts on the resources quality of service. 

3.5.2.2. Routing network. The routing network is modeled as a 
strongly connected directed graph able to connect the different 
resource nodes. A specific routing loop, called the reference loop, is 
used to loop products, such as those waiting for availability of a 
critical resource. On this reference loop are placed decisional nodes, 
where products must decide which resource to select to provide the 
next service in case of a disturbance. A transportation system is 
associated with the routing network to achieve internal logistics. It is 
assumed to be capacity limited (e.g., limited number of conveying 
systems) and reliable (e.g., fixed transportation times, no 
breakdowns, and no maintenance tasks that forbid the use of 
specific arcs). 

Fig. 2. Supervised learning approach.  



3.5.2.3. Products and associated control process. A set of products of 
different types are considered. A manufacturing order (i.e., a ranked 
set of services to obtain, service by service) is associated with each 
product. When a product reaches a decisional node, it acquires 
manufacturing context indicators to analyze the situation and detect 

potential anomalies. Based on this analysis, two operating modes are 
possible:  

• In case no anomaly is detected, the product continues to operate 
in “normal” mode: each product follows a pre-established allo
cation planning (i.e., a ranked list of resources to visit for ob
taining the set of services) elaborated by a centralized planning 
system.

• In case an anomaly is detected, the product relies on ontology 
automated reasoning to determine the type of disturbance. This 
aspect of ontology reasoning and inferencing to detect anomalies 
and determine disturbance types was investigated in a separate 
work (Bayar et al., 2016). The product then switches to a “dis
turbed” mode and must take control decisions to react to the 
disturbance. 

3.5.3. STEP10 – product responsibilities 
This step defines the decisional degrees of freedom allowed for 

SPs, i.e., decisions Dm m M( {1, .., }) that an SP can make, and its 
levels of responsibility/autonomy. This step sets the perimeter of 
product decision-making and defines the scope of human decision- 
maker/supervisor validation and/or intervention. 

3.5.4. STEP20 – evaluation criteria 
This step defines a set of criteria Cn n N( {1, .., }), metrics, and 

data acquisition schema with respect to which decisions are eval
uated and ranked. For example, in a manufacturing context, metrics 
related to time, cost, and quality of service all need to be considered 
when making control decisions. 

3.5.5. STEP30 – preferences with respect to criteria 
This step defines a scale of relative importance (as the one shown 

in Table 1, taken from (Saaty, 1994), and establishes criteria pre
ferences, regardless of decisions, based on a set of pairwise com
parisons. 

This pairwise comparison, carried out by a decision-maker, re
sults in a square preference matrix =A a( )n o N X N, , where elements 
an o, represent the scale of importance of a criterion Cn compared to 
criterion Co. The matrix is characterized as described in (1): 

=

=

a n N

a n N o N n o

1, {1, .., }

, {1, .., }, {1, .., },

n n

n o a

,

,
1

o n, (1)  

The matrix A is then normalized to obtain matrix =A a( )n o N X N,
as shown in (2): 

=a n N o N, {1, .., }, {1, .., }n o
a

a,
n o

n n o

,

, (2)  

Fig. 3. Augmented AHP (A-AHP) adapted from the standard AHP.  

Fig. 4. Manufacturing system modeling.  



Finally, the relative weight vector of criteria preferences, denoted 
= ( )w w ,C C n N{1,.., }n is computed as shown in (3): 

=w
a

N
n N, {1, .., }C

o n o,
n (3)  

A consistency test is carried out to check the values given in the 
comparison matrix (Saaty, 1994). 

3.5.6. STEP31 – definition of thresholds 
This step defines thresholds and levels of acceptability to provide 

intervals to better characterize elements of context that require 
decisions. These thresholds are used in the conditional part (IF 
statements) of the rules. Section 4.5 provides an example to better 
illustrate this. 

3.5.7. STEP32 – definition of expert rules 
This step defines the rules that will be used to dynamically up

date scales of preferences of control decisions during pairwise 
comparisons with respect to criteria (see Section 3.3 for more de
tails). 

3.5.8. STEP33 – acquisition of data 
When a SP detects a disturbance (as explained in Section 3.2.2.3), 

it collects indicator values for each criterion. This data acquisition 
allows considering the evolution of system state and context dy
namics. 

3.5.9. STEP34 – firing rules 
The rules, which IF statements are found true, are fired in order 

to adapt the scales of decision preferences with respect to criteria. 

3.5.10. STEP40 – preferences with respect to decisions 
This step performs a pairwise comparison of decisions regarding 

each criterion. Each pairwise comparison aims to set a preference for 
one decision over another with respect to a given criterion (e.g., using 
the preference scale of Table 1, decision Dm is X times more important 
than decision Dp with respect to a given criterion Cn). Considering a 
given criterion Cn, each pairwise comparison results in a square, M by 
M, preference matrix =B b m p M( ) , ( , ) {1, .., }C m p C,n n , and is char
acterized as in (4): 

=

=

b m M

b m M p M m p

1, {1, .., }

{1, .., }, {1, .., },

m m

m p b

,

,
1

Cn

Cn p mCn,

(4)  

For each criterion, the matrix BCn is then normalized as in (5): 

=b m M p M{1, .., }, {1, .., }m p
b

b, Cn

m pCn

m m pCn

,

, (5)  

The relative weight vector of decision preferences regarding each 
criterion Cn, denoted =w w( )D D m M{1,.., }Cn mCn is computed as shown 
in (6): 

=w
b

M
m M, {1, .., }D

p m p,
mCn

Cn

(6)  

Finally, the weight vector wD of decision preferences with respect 
to all criteria is computed as in (7): 

=

= ×

( )w w where w

w w m M

,

, {1, .., }

D D m M D

n
D C

{1,.., }m m

mCn n
(7)  

3.5.11. STEP50 – ranking and decision selection 
This step ranks a decision considering all criteria based on the 

weight vector of decision preferences wD. The decision with the 
maximum value wDm is selected. 

3.6. Dynamic adaptation of preferences based on expert rules 

To overcome the limitations of the standard AHP procedure, 
Expert rules are introduced to adapt preferences dynamically to 
system state and disturbance context. The statements of rules can be 
abstracted according to the general statement shown in Fig. 5. 

For a given context, evaluated by an F_C D D_ _n m p function in
volving a set of indicators relative to the manufacturing system state 
and disturbance features, available decisions can be compared in 
pairs to determine preferences with respect to criterion Cn. The 
manufacturing system Expert should provide the expressions for 
context functions, and should provide a scale of the preference based 
on thresholds on criteria. An example is shown in Section 4.6 and in 
Appendices A2 to A4. The comparison functions are characterized as 
described in (8): 

=
=

F C D D m M

F C D D F C D D n N

m p M

_ _ _ 1, {1, .., }

_ _ _ _ _ _ , {1, .., },

{1, .., }

n m m

n m p n p m

(8)  

When a decision Dm is preferred to a decision Dp with respect to a 
criterion Cn, then the scale bm p, Cn

of the preference should be quan
tified, and the orientation of the preference should be shown using 
arrows, according to the notation shown in (9). This notation means 
that Decision Dm is preferred to Decision Dp with scale bm p, Cn

with 
respect to criterion Cn. The transpose notation is also set, according 
to the standard logic of pairwise comparison matrices. 

D Dm
Scale

p (9)  

Consequently, the problem of making SPs learn how to make 
decisions resumes to the problem of setting arrows and scales be
tween pairs of decisions, compared with respect to one criterion at a 
time, in order to consider a manufacturing system and disturbance 
context. This problem reformulation has the advantage to preserve 
the AHP ranking logic. The next section instantiates the Augmented 
AHP procedure on a case study. 

4. Case study: the S.MART platform

The suggested approach is instantied step by step on the S.MART 
platform, which is a flexible manufacturing system (FMS) serving 
research and educational purposes at Université Polytechnique des 
Hauts-de-France (Berdal et al., 2020; Trentesaux et al., 2013). 

4.1. STEP00: product and production system characteristics 

The S.MART platform, shown in Fig. 6, contains 6 workstations: a 
loading/unloading station (labelled R1), 3 robotized stations invol
ving STAUBLI robots (labelled R2, R3, and R4), an automated inspec
tion station (labelled R5), and a rework station (labelled R6) to deal 

Scale Numerical rating Reciprocal  

Equal importance 1 1 
Equal to moderate importance 2 1/2 
Moderate importance 3 1/3 
Moderate to strong importance 4 1/4 
Strong importance 5 1/5 
Strong to very strong importance 6 1/6 
Very strong importance 7 1/7 
Very strong to the extreme importance 8 1/8 
Extreme importance 9 1/9 

Table 1 
Scale of relative importance taken from (Saaty, 1994).     



with product defects. Transportation and internal logistics are 
achieved using a monorail conveying system that enables flexible 
routing, with 10 shuttles. The transfer from one track to another is 
performed using switches. Decisional nodes (yellow nodes in Fig. 6) 
are located on some switches of the reference loop and allow making 
decisions to adapt the routing towards robotized stations. The de
cisional node located at the exit of the automated inspection station 
enables products to decide whether to be unloaded (no defects de
tected and no rework needed) or to go to the rework station in case 
of a quality defect. 

The S.mart platform assembles 4 types of alphabetical letter- 
shaped products: “B”, “E”, “L”, and “T”. For this purpose, different 
services are provided to perform sub-assemblies of basic compo
nents on a plate as shown in Fig. 7: “Axis_comp”, “I_comp”, 
“L_comp”, “r_comp”, and “screw_comp”. 

Appendix A1 provides the ordered list of services to obtain, the 
pre-established allocation planning (i.e., the resource assigned to 
each service), as well as the time required to achieve each service. It 
also reports the alternative resource and service time that can be 
chosen for each service in case of disturbance. 

4.2. STEP10: product responsibilities 

In case of disturbance on a robotized station Ri ( =i 2, 3, 4), a SP 
must choose one control decision among three available decisions:  

• D1: Go to the assigned resource and wait in its queue until it is no 
longer busy.  

• D2: Go to an alternative resource and wait in its queue until it is 
no longer busy.  

• D3: Stay on the reference loop until at least one resource becomes 
available for the requested service. 

With respect to the automated inspection and quality control 
station R5, if the product quality is found acceptable, then the pro
duct is directed towards the unloading station R1. Otherwise, in case 
some defects are detected, the product is directed towards the re
work station R6 to fix the defects, then it is directed towards the 
unloading station R1. Consequently, the suggested A-AHP mechanism 
is mainly deployed and used on the decisional nodes of the main 
reference loop. 

Fig. 5. Abstract statement of rules.  



4.3. STEP20: evaluation criteria 

Indicators are defined to rank decisions with respect to Cost, 
Quality of Service (QoS), and Time criteria. As shown in Fig. 8, each 
decision is evaluated with respect to all indicators. Other criteria, 
such as environmental or sustainability criteria, are not considered 
in this paper but could be considered in future works. 

4.3.1. Cost criteria C1

This class includes metrics used to evaluate decisions according 
to economic concerns, and which are: PCRi, LC , CSRL. These indicators 
are explained in section 3.2.1 and are expressed in monetary units. 

4.3.2. QoS criteria C2

This class groups indicators that may influence the quality of 
service provided by resources (e.g., robots and their peripheral de
vices) to products. These indicators are related to the resource rea
liability and the performances of maintenance operations: TTFRi, 
TTRRi. These indicators are explained in section 3.2.1 and are ex
pressed in time units. Also, these indicators are calculated based on 
analytics of the historical records of the robotized stations. 

4.3.3. Time criteria C3

This class includes metrics used to evaluate decisions according 
to flow time and which are: PTRi, WTQ Ri, WTRL. These indicators are 
explained in section 3.2.1 and are expressed in time units. 

4.4. STEP30: preferences with respect to criteria 

Fig. 9 shows the pairwise comparisons between each couple of 
criteria using the scale of relative importance given in Table 1. For 
example, the scale of “5” appearing at the intersection of line 2 and 
column 1 in the matrix A of preferences between criteria as shown 
in Fig. 9, means that quality of service criteria C2 are strongly pre
ferred (strong importance) over cost criteria C1, whatever the deci
sion is. The matrix A is then normalized, and the vector of criteria 
weights is computed as shown in Fig. 9. 

To check the consistency of the values given in matrix A, a con
sistency ratio is calculated and shown in (10): 

=CR 4.67% (10)  

According to (Saaty, 1994), if the consistency ratio is less than 
10 %, then the evaluations of criteria preferences can be deemed 
coherent. 

Fig. 6. Production system and product decisions.  



Fig. 7. Components and products.  

Fig. 8. AHP hierarchal decision framework.  

Fig. 9. process of obtaining criteria weights.  



4.5. STEP31: define thresholds 

Manufacturing system Experts provide thresholds to describe 
intervals and levels of acceptability to characterize elements of 
context that require decisions. Three types of thresholds are defined 
as follows:  

• Thr_RPTRi : are thresholds on the required time ( )RPTRi to 
achieve a service on a robotized station =R i( 2, 3, 4i ) (see  
Table 2). Whenever this threshold is exceeded, a disturbance is 
likely to be occurring. The required time to achieve a service on a 
robotized station is expressed as in (11): 

= + + =RPT PT TTR WTQ i, 2, 3, 4R R R Ri i i i (11)   

• Thr_TTFRi: is a threshold on the time to failure of robotized station 
=R i( 2, 3, 4)i (see Table 2). Such thresholds can be used to 

consider the causal relation between resource reliability and the 
quality of service.  

• Thresholds on scales of relative importance (see Table 3) provide 
upper and lower bounds on evaluations of manufacturing system 
context when making pairwise comparisons between any two 
decisions with respect to a class of criteria. The lower bound is 
referred to as “MinThreshold_Cn”, whereas the upper bound is 
referred to as “MaxThreshold_Cn”. These thresholds are used in 
the definition of Expert rules (see Section 3.3), and will be illu
strated with an example in Section 4.6.

4.6. STEP32: define expert rules 

Rules are defined for each criterion based on the design pattern 
explained in Fig. 5. Appendices A2 to A4 provide the set of all Expert 
rules regarding Time, Cost and Quality criteria for this case study. 
The details of the expressions of context functions F_C D D_ _n m p as 
well as the adapted scales of preferences of decisions with respect to 
each criterion Cn are also provided. 

For example, let us consider a context function “F_C D D_ _3 1 2” 
related to the Time criterion C3. F_C D D_ _3 1 2 compares the required 
processing times of available resources (suggested by the decisions 

to be compared, namely D1 and D2 in this example) with respect to 
the defined time thresholds according to the formula given in (12). 

=F C D D RPT RPT_ _ _ Resource of D Resource of D3 1 2 2 1 (12)  

As shown in Table 4, a preference of D1 compared to D2 is given a 
scale of 5 if the evaluation of F_C D D_ _3 1 2 is found within the in
terval MinThreshold_C MaxThreshold_C[ , ]3 3 . 

At this point in the presentation of the case study, the two first 
steps in the suggested supervised learning approach described in  
Section 3.1 are finished. The set of experimentation scenarios pro
vided by the decision maker will be described in Section 5. Mean
while, to continue with tracing the execution of the suggested 
control mechanism, step 3 in the suggested supervised learning 
approach (see Section 3.1) is described next, in which simulation is 
started and products are active to make decisions. 

4.7. STEP33: data acquisition 

To illustrate product-embedded decision-making, let us consider 
as an example a “B”-shaped product, which is first loaded through 
station R1, then has to go to R2 for axis mounting, according to its pre- 
established allocation planning shown in Appendix A1. At the deci
sional node located before R2 shown in Fig. 6, the product collects 
indicators on the status of the manufacturing system to detect dis
turbances and to initiate decision-making. An example of such col
lected indictors is shown in Table 5. 

4.8. STEP34: rule firing 

For the considered example of the “B”-shaped product, let as
sume that a failure on R2 (the product default allocated resource) is 
detected. Next, the product has to evaluate context functions 
F_C D D_ _n m p, and to compare the outcomes of the evaluations to the 
thresholds on scales of relative importance introduced in Section 4.5. 
Those rules which “IF statements” evaluate to true are fired, and 
their “THEN statements” are applied to update decision preferences 
with respect to each criterion. For example, Fig. 10 shows three rules 
for the Time criterion C3 , which “IF statements” evaluate to true 
based on the data acquired in Table 5. Accordingly, pairwise com
parisons between decisions regarding the Time criterion C3 are 
performed, and Matrix =BCn 3 is obtained. 

The same process shown in Fig. 10 is applied to fire rules and 
update decision preferences with respect to the other criteria 
C1 and C2 . 

Robotized station Thr_TTFRi Thr_RPTRi

R2 s500 s250
R3 s500 s250
R4 s500 s250

Table 3 
Thresholds on scales of relative importance.     

Criteria MinThreshold_Cn MaxThreshold_Cn

C1 $0.5 $2.5
C2 s1000 s10000
C3 s60 s500

Table 4 
Example of Expert rule.     

RuleId IF Condition THEN Statement  

R C 2_ _3 MinThreshold_C ,3 <  F_C D D_ _3 1 2

<  MaxThreshold_C3 D D D D1
5

2 2

1
5

1

Table 5 
Example of a set of collected indicators.        

Cost: criterion C1

Resources PCRi LC CSRL

R2 $1 $0 $2
R3 $1.2 $1.5

Quality of Service: criterion C2

Resources TTFRi TTRRi

R2 s24338 s336.24
R3 s28800 s0

Time: criterion C3

Resources PTRi WTQ Ri
WTRL

R2 s5 s0 s50
R3 s5 s0

Table 2 
Thresholds to describe occurences of disturbances.     



4.9. STEP40: preferences with respect to decisions 

The obtained results, shown in Fig. 11, correspond to the vectors 
wDmCn of weights of decision preferences with respect to each cri
terion Cn. 

4.10. STEP50: ranking and decision selection 

Finally, the matrix of weights of decisions is multiplied by the 
vector of weights of criteria to obtain the ranking of decisions con
sidering all criteria. In the example under study; the product chooses 
the decision with the maximum value in the vector of weights of 
decisions wD, and which is D2 : Go to the alternative resource (see  
Fig. 12). 

The next part relates the performed experimentations and ana
lyzes the obtained results. 

5. Experimentation and results

In order to assess its performance, the A-AHP is implemented on 
AnyLogic 8.7.10 University Edition using a multi-agent system si
mulation of the S.MART platform described previously. 

5.1. Multi-agent system description 

Product agents interact with resource agents to get their status 
and local performance indicators. A system agent provides indicators 
on overall system performance, and allows interfacing enterprise 

Fig. 10. Example of rule activation and pairwise comparison of decisions according to Time criterion.  

Fig. 11. Pairwise comparisons of decisions, for each criterion.  



information systems and manufacturing Experts (Attajer et al., 
2021). The product and resource agents are described in the fol
lowing sections. 

5.1.1. Product agents 
Fig. 13 provides an AnyLogic Finite State Machine representation 

of the behavior of a product agent. 
When a product is released into the simulation model of the 

platform (according to an arrival distribution that will be described 
in Section 5.2), a product agent is associated and enters an “opera
tional state”, where it requests the system agent to acquire the pre- 
established allocation planning from Enterprise Information Sys
tems. In the operational state, the product agent monitors the pro
gress of the realization of the services, as well as the occurrence of 
disturbances. If no disturbance is detected, the product agent follows 
the pre-established planning step by step until all services are ob
tained. If a disturbance is detected, the product agent enters a 
“disturbed state”, in which it applies A-AHP to react to the dis
turbance. As soon as a decision is selected, it is applied. Local per
formance is then evaluated and stored. The product agent then 
resumes back to the operational state to continue the realization of 
the remaining services in its pre-established allocation planning. 
When all services are realized, and in case disturbances occurred, 
the set of indicators related to the performance of the product, as 
well as global manufacturing system performance indicators are 
evaluated and stored to enable analytics about the reaction to dis
turbances. 

Fig. 12. Decisions’ relative weights with respect to all criteria.  

Fig. 13. AnyLogic Finite State Machine of product agents.  

Fig. 14. AnyLogic Finite State Machine of robotized station agents.  

Table 6 
Criteria pairwise comparison and weights of the standard AHP.        

Pairwise comparison matrix Consistency ratio Criteria weights   

Cost Quality Time 4 %  
Cost 1 0.33 0,20 0,11 
Quality 3 1 0,33 0,26 
Time 5 3 1 0.63 



5.1.2. Resource agents 
A resource agent is associated with each resource. Fig. 14 pro

vides an AnyLogic Finite State Machine representation of the beha
vior of agents associated with robotized stations. 

A robotized station can be in working state, in failure (meaning 
that it is waiting for corrective maintenance), or under repair. 

5.2. Experimental protocol 

Objectives: three sets of experiments, referred as Experiment #1, 
#2 and #3, highlight the advantages of the A-AHP strategy compared 
to two other control strategies:  

• Inflexible Strategy (IS), in which each product follows its pre- 
established allocation planning even in case of disturbances. The 
product does not take advantage of system flexibility. Instead, it 
waits in the queue of the resource providing the next service 
until the resource becomes available. The comparison to such a 
strategy is interesting because it shows the consequences of 
disturbances in case of no reaction decision is made. 

• Standard AHP (Std-AHP) as described before. The pairwise com
parison of the criteria and their weights are reported in Table 6. 

Inputs: To stress the benefits and limits of each strategy, the 
variation of the following input parameters are considered for each 
experiment:  

• The disturbances affecting the robotized resources, defined
through the failure rates and the times to repair (i.e. the failure
duration).

• The product arrival rates. 

Outputs: five performance indicators are considered in the ex
perimentations: 

• Avg_TT: average throughput time (in seconds), which corre
sponds to the average time taken to realize all services required 
by products. 

• Avg_Cost: average production cost in monetary units to manu
facture a product.

• Avg_TP: average throughput of products, which corresponds to
the average number of products manufactured per hour.

• Avg_WT_R: average waiting time for products in the queue of
resources (in seconds).

• Avg_WT_Loop: average waiting time for products in the reference 
loop (in seconds). 

General considerations: The experimentations consider a one- 
month simulation and 100 replications for each scenario. Products 
are released according to an arrival exponential distribution with an 
arrival rate (number of products per hour). The failure function of 
robotized stations is an exponential distribution with the parameter 
failure rate FRRi (number of failures per day). The time to repair 
follows a triangular distribution. 

5.3. Experimentation and results 

The following sections relate the different experimentations and 
the obtained results. 

5.3.1. Experiment #1: impact study of the failure rate of the robotized 
stations 

For this experiment, the fixed parameters are presented in  
Table 7. 

Three scenarios as summarized in Table 8. In these scenarios, the 
mean time to repair is fixed and only the failure rate of robotized 
resources is varied as follow:  

• Scenario (E#1,1): all robotized resources have a low failure rate.

Product type “B” arrival rate (per hour) Product type “E” arrival rate (per hour) Product type “L” arrival rate (per hour) Product type “T” arrival rate (per hour)  

10/h 10/h 10/h 10/h 

Table 8 
Model parameters of considered scenarios.      

Failure rates (FRRi) of 

Robotized resources 
(per day) 

Mean time to repair 
(MTTR) of Robotized 
resources (seconds)  

Scenario (E#1,1) =FRR2 1/d 180 s 

=FRR3 1/d 

=FRR4 1/d 

Scenario (E#1,2) =FRR2 7/d 180 s 

=FRR3 1/d 

=FRR4 1/d 

Scenario (E#1,3) =FRR2 7/d 180 s 

=FRR3 7/d 

=FRR4 7/d 

Fig. 15. Results of simulation for Experiment#1.  

Table 7 
Global parameters for considered scenarios.      



• Scenario (E#1,2): The resource R2 has a high failure rate, This 
resource is chosen because it is the most used and so represents a 
critical resource (see the pre-established allocation planning 
Appendix A1).  

• Scenario (E#1,3): all robotized resources have a high failure rate. 

As for the impact of failure rate on the system’s performance,
Fig. 15 and Table 9 show the following results:  

• Avg_TT, Avg_TP, and Avg_WT_R values are highly sensible to 
failure rate for all strategies under study as the unavailability of 
resources increases. Accordingly, with a high failure rate, 

congestion in conveyors and queues, long lead times and low 
throughput are observed.  

• In the first scenario (E#1,1) with low failure rates for all robotized
resources, A-AHP outperforms the other control strategies re
garding Avg_TT, Avg_TP and Avg_WT_R. On the other hand, the 
Avg_Cost value is higher as there are additional logistical costs to 
be considered. Also, Avg_WT_Loop for IS and Std-AHP are null 
because products do not go and stay in the reference loop. 
However, the Avg_WT_Loop value for A-AHP is not null since 
products can stay in the reference loop instead of waiting in the 
queue of resources.  

• In the second scenario (E#1,2), in which the failure rate of the
most used resource R2 is high, a drop in the performance of the 
system for all applied control strategies is observed. However, A- 
AHP always outperforms the other strategies regarding all KPIs 
except Avg_Cost and Avg_WT_Loop.  

• In the third scenario (E#1,3), in which all robotized resources 
have a high failure rate, the system’s performance drops con
siderably. All KPIs values are downgraded. However, A-AHP’s KPIs 
degradation is not as drastic as the degradation of performance in 
other strategies, given its dynamic characteristics that take full 
advantage of the flexibility of the system. 

5.3.2. Experiment #2: impact study of the time to repair of the 
robotized resources 

As for the previous experiment, the fixed parameters are de
scribed in Table 6. 

Table 9 
Average of KPIs compared to IS in % for Experiment#1.      

Scenario KPI Std-AHP A-AHP

Scenario (E#1,1) Reduction of Avg_TT compared to IS 4,09 % 5,15 % 
Reduction of Avg_Cost compared to IS -5,19 % -9,09 % 
Reduction of Avg_TP compared to IS -0,55 % -1,10 % 
Reduction of Avg_WT_R compared to IS 13,50 % 23,62 % 
Reduction of Avg_WT_Loop compared to IS – – 

Scenario (E#1,2) Reduction of Avg_TT compared to IS 11,99 % 20,33 % 
Reduction of Avg_Cost compared to IS -6,17 % -9,88 % 
Reduction of Avg_TP compared to IS -2,74 % -5,85 % 
Reduction of Avg_WT_R compared to IS 27,33 % 36,44 % 
Reduction of Avg_WT_Loop compared to IS – – 

Scenario (E#1,3) Reduction of Avg_TT compared to IS 23,70 % 35,17 % 
Reduction of Avg_Cost compared to IS -7,23 % -13,25 % 
Reduction of Avg_TP compared to IS -8,00 % -19,15 % 
Reduction of Avg_WT_R compared to IS 34,39 % 43,26 % 
Reduction of Avg_WT_Loop compared to IS – –    

Table 10 
Model parameters of considered scenarios.      

Failure rate (FR) of 
Robotized resources 
(per day) 

Mean time to repair (MTTRRi) of 

Robotized resources 
(seconds)  

Scenario (E#2,1) 2/d =MTTR s90R2

=MTTR s90R3

=MTTR s90R4
Scenario 

(E#2,2) 
2/d =MTTR s600R2

=MTTR s90R3

=MTTR s90R4
Scenario 

(E#2,3) 
2/d =MTTR s600R2

=MTTR s600R3

=MTTR s600R4

Fig. 16. Results of simulation for Experiment#2.  



Three scenarios are reported in Table 10. In these scenarios, the 
failure rate is fixed and the mean time to repair of robotized re
sources is varied as follow:  

• Scenario (E#2,1): all robotized resources have a low mean time to 
repair.

• Scenario (E#2,2): the resource R2 has a high mean time to 
repair.

• Scenario (E#2,3): all robotized resources have a high mean time 
to repair. 

As for the impact of mean time to repair on the system’s per
formance, Fig. 16 and Table 11 show the following results:  

• Avg_TT, Avg_TP, and Avg_WT_R values are highly sensitive to
mean time to repair value for IS, as products stack in the queue 
waiting for their assigned resource to be repaired. In contrast, for 
Std-AHP and A-AHP, the degradation of these KPIs is less no
ticeable, since they take advantage of the flexibility of the system.

• It can be concluded that in the case of lower frequency and 
higher duration of disturbances, A-AHP outperforms the other 
strategies, as it takes fully advantage of system’s flexibility. 

5.3.3. Experiment #3: impact study of the products arrival rate 
For this experiment, the fixed parameters are presented in  

Table 12. 
Three scenarios are reported in Table 13. The resources failure 

rates and mean time to repair are fixed. In these scenarios, the arrival 
rate of each product type is varied as follow:  

• Scenario (E#3,1): all product types have a low arrival rate.

• Scenario (E#3,2): quantity mix-on-demand is considered: low
arrival rate for product type “B”, medium arrival rate for product 
type “E” and “L”, and high arrival for product type “T”.

• Scenario (E#3,3): all product types have a high arrival rate. 

Table 11 
Average of KPIs compared to IS in % for Experiment#2.      

Scenario KPI Std-AHP A-AHP

Scenario (E#1,1) Reduction of Avg_TT compared to IS 5,22 % 6,26 %  
Reduction of Avg_Cost compared to IS -5,19 % -9,09 %
Reduction of Avg_TP compared to IS -0,53 % -1,60 %
Reduction of Avg_WT_R compared to IS 14,38 % 25,16 %
Reduction of Avg_WT_Loop compared to IS – – 

Scenario (E#1,2) Reduction of Avg_TT compared to IS 10,95 % 20,33 %  
Reduction of Avg_Cost compared to IS -6,17 % -9,88 %
Reduction of Avg_TP compared to IS -5,68 % -10,21 %
Reduction of Avg_WT_R compared to IS 26,93 % 36,64 %
Reduction of Avg_WT_Loop compared to IS – – 

Scenario (E#1,3) Reduction of Avg_TT compared to IS 23,70 % 35,93 %  
Reduction of Avg_Cost compared to IS -7,23 % -13,25 %
Reduction of Avg_TP compared to IS -7,34 % -18,44 %
Reduction of Avg_WT_R compared to IS 32,78 % 45,42 %
Reduction of Avg_WT_Loop compared to IS – – 

Table 12 
Global parameters for considered scenarios.    

Failure rate (FR) of Robotized 
resources (per day) 

Mean time to repair (MTTR) of 
Robotized resources (seconds)  

2/d 180 s 

Table 13 
Model parameters of considered scenarios.        

Product type “B” arrival rate Product type “E” arrival rate Product type “L” arrival rate Product type “T” arrival rate  
(per hour) (per hour) (per hour) (per hour)  

Scenario (E#3,1) 5/h 5/h 5/h 5/h 
Scenario (E#3,2) 5/h 10/h 10/h 20/h 
Scenario (E#3,3) 20/h 20/h 20/h 20/h 

Fig. 17. Results of simulation for Experiment#3.  



As for the impact of arrival rate of product on the system’s per
formance, Fig. 17 and Table 14 show the following results:  

• In scenarios (E#3,1) and (E#3,2); with lower arrival rate and 
medium mix-on-demand quantity respectivaly, A-AHP outper
forms the other strategies as it takes full advantage of system’s 
flexibility.

• However, it becomes less competitive with a higher arrival rate in 
scenario (E#3,1), because a large number of products requiring 
different services and thus all the resources of the system are 
solicited. Accordingly, conveyors and queues become more con
gested with long lead times and throughput of the system. 

6. Conclusion and future research 

The main contribution of this article is to promote activeness of 
Smart Products (SPs) with respect to decision-making and control 
processes to react to disturbances at operational stage. This is 
achieved through a hierarchical framework, where manufacturing 
system Experts delegate dispatching control responsibilities to SPs 
through the definition of rules, which are then used by SPs to adapt 
preferences among dispatching control decisions. Once preferences 
are adapted, SPs rely on an Augmented Analytic Hierarchy Process 
(A-AHP) to select the next resource that will provide the next re
quired service by selecting a control decision from a set of available 
control decisions. Through A-AHP, SPs are enabled to select the next 
resource that will deliver the next required service, unlike the phi
losophy of dispatching rules, where products are usually passive and 
undergo dispatching decisions, made by smart resources or other 
scheduling systems. Expert rules offer an explicit way to provide 
knowledge about scales and preferences between control decisions 
with respect to specific disturbed contexts and feedback on perfor
mance. The so Augmented AHP (AHP) offers a white-box, explicit 
mechanism that enables explaining the decisions made by SPs. To 
validate performance, the suggested approach is implemented using 
a multi-agent discrete event simulation of a real assembly CPMS. 
Experimentations and results highlight that A-AHP outperforms the 
standard AHP and inflexible strategies as it takes full advantage of 
the CPMS flexibility. However, it becomes less competitive with a 
higher frequency of disturbances and higher arrival rate of products. 

The contributions of this work can be discussed and extended in 
many ways. Three categories of improvements can be considered. 
The first category is related to optimization, flexibility and reactivity. 
Being based on distributed control, the main goal of the suggested 
approach is to take full advantage of CPMS flexibility in order to 
improve reactivity and responsiveness to disturbances and risks 
through decentralization of dispatching control decisions on SPs. 
More investigation is required to quantify the performance of the 

suggested approach with respect to global versus local optimization. 
It is worth noticing that the suggested architecture shown in Fig. 2 
enables such investigation through data analytics. As SPs make de
cisions to react to disturbances, it is possible to capitalize on this 
knowledge within a Case-Based Reasoning architecture. Similarity 
reasoning can be used to improve thresholds, rules and decision- 
making processes, both off-line (through comparison to scheduling 
optimization algorithms), and on-line (through using CBR to react to 
similar occurrences of disturbances using optimized reference 
schedules and reaction strategies). 

The second category is related to AHP core processes. For ex
ample, the hierarchical A-AHP decision framework can be enriched 
with more criteria and indicators, particularly related to sustain
ability and energy efficiency. Also, group decision-making mechan
isms can be considered to aggregate the opinions and preferences of 
several Experts, thus alleviating the subjectivity of the set-ups pro
vided by only one Expert. Fuzzy logic can be used as an alternative 
representation of numerical values of thresholds to consider un
certainties, ambiguities, and different appreciations of numerical 
values, especially when many Experts are involved. These enrich
ments can easily be integrated, without questioning the downstream 
decision mechanisms, which shows one kind of genericity of the 
suggested approach. 

The third category is related to the adaptability, scalability and 
evolution of decision mechanisms with respect to the evolution of 
the characteristics of the manufacturing system. For example, Ripple 
Down Rules (RDR) mechanisms can be considered to improve the 
rule-based adaptation of preferences (Compton and Kang, 2021). The 
above mentioned CBR framework would enable an automatic gen
eration of rules from the captured knowledge, and therefore bring 
additional support to manufacturing system experts in defining and 
refining rules, while preserving their position at the heart of the 
decision-making loop and control processes. Finally, Reinforcement 
Learning can be considered to automate and fine tune the scaling of 
preferences between decisions. 
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Table 14 
Average of KPIs compared to IS in % for Experiment#3.      

Scenario KPI Std-AHP A-AHP

Scenario (E#1,1) Reduction of Avg_TT compared to IS 3,12 % 5,52 % 
Reduction of Avg_Cost compared to IS -5,15 % -9,01 % 
Reduction of Avg_TP compared to IS -0,59 % -1,71 % 
Reduction of Avg_WT_R compared to IS 14,51 % 26,08 % 
Reduction of Avg_WT_Loop compared to IS – – 

Scenario (E#1,2) Reduction of Avg_TT compared to IS 16,31 % 19,47 % 
Reduction of Avg_Cost compared to IS -6,17 % -9,88 % 
Reduction of Avg_TP compared to IS -3,56 % -10,21 % 
Reduction of Avg_WT_R compared to IS 16,18 % 28,46 % 
Reduction of Avg_WT_Loop compared to IS – – 

Scenario (E#1,3) Reduction of Avg_TT compared to IS 6,90 % 15,81 % 
Reduction of Avg_Cost compared to IS -7,23 % -13,25 % 
Reduction of Avg_TP compared to IS -2,29 % -5,43 % 
Reduction of Avg_WT_R compared to IS 20,77 % 33,08 % 
Reduction of Avg_WT_Loop compared to IS – – 
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Appendix A1. Pre-established routings and allocation of the services on resources

“B” product “E” product “L” product “T” product   

Service Ass. Res. 
(ST) 

Alt. Res. 
(ST) 

Service Ass. Res. 
(ST) 

Alt. Res. 
(ST) 

Service Ass. Res. (ST) Alt. Res. 
(ST) 

Service Ass. Res. (ST) Alt. Res. 
(ST) 

1 Loading R1 (15) _ Loading R1 (15) _ Loading R1 (15) _ Loading R1 (15) _ 
2 Axis mounting R2 (5) R3 (5) Axis 

mounting 
R2 (5) R3 (5) Axis 

mounting 
R2 (5) R3 (5) Axis mounting R2 (5) R3 (5) 

3 r_comp mounting R3 (5) R2 (5) r_comp 
mounting 

R3 (5) R2 (5) I_comp 
mounting 

R4 (5) R2 (5) r_comp 
mounting 

R3 (5) R2 (5) 

4 I_comp mounting R4 (5) R2 (5) L_comp 
mounting 

R4 (5) R2 (5) Screw_comp 
mounting 

R2 (5) R4 (5) L_comp 
mounting 

R4 (5) R2 (5) 

5 Screw_comp 
mounting 

R2 (5) R4 (5) Inspection R5 (20) _ Inspection R5 (20) _ Inspection R5 (20) _ 

6 Inspection R5 (20) _ Unloading R1 (15) _ Unloading R1 (15) _ Unloading R1 (15) _ 
7 Unloading R1 (15) _          

Legend: 
Ass. Res. (ST): Assigned resource and Service Time (ST) in seconds 
Alt. Res. (ST): Alternative resources and Service Time (ST) in seconds  

Appendix A2. Set of expert rules regarding cost criterion C1

Embassy in Morocco and the Moroccan Ministry of National 
Education, Professional Training, Higher Education and Scientific 
Research, project award number Toubkal/20/98-Campus France: 
43660VC. 



Appendix A3. Set of expert rules regarding quality of service criterion C2

Appendix A4. Set of expert rules regarding time criterion C3
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