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Abstract

To explain how perception processes are performed, under-
standing how continuous sensory streams are temporally seg-
mented into discrete units is central. This is particularly the
case in speech perception where temporal segmentation is key
for identifying linguistic units contained between consecutive
events in time. We propose an original probabilistic construct,
that we call “Bayesian gates”, to segment temporally continu-
ous streams of sensory stimuli into sequences of decoders. We
first define Bayesian gates mathematically and describe their
properties. We then illustrate their behavior in the context of a
model of word recognition in speech perception. We show that,
based on an event detection module, they sequentially parse the
acoustic stimulus, so that each syllable decoder only processes
a segment of the sensory signal.

Keywords: probabilistic modeling; temporal segmentation;
perceptual accumulation; syllabic onset; speech perception

Introduction

Sensory processes appear sometimes as being “mostly contin-
uous”, in the sense that, when a physical characteristic of the
input signal is measured by the system, the relation between
the external physical measurement and the internal percep-
tion may be described by a smoothly varying transfer func-
tion. Consider for instance loudness perception in the audi-
tory pathway, which does not feature evident discontinuities
(Stevens, 1955; Zwicker & Sharf, 1965; Schlittenlacher &
Ellermeier, 2021).

Speech perception appears to contrast with this. Speech
signals are produced from discrete linguistics units ordered
sequentially through time, at the sentence, phrase, word, syl-
labic and phonemic levels; although this last level is debat-
able (Cutler, Mehler, Norris, & Segui, 1987; Lotto & Holt,
2000). Therefore, a major component of speech perception
concerns processing a continuous speech signal into discrete
units. This contains two “discretization issues”. The first
one is to map variable realizations in the acoustic domain to
speech units that most likely yielded them: this is a recog-
nition (categorization) issue. The second one is to identify,
in the speech signal, temporal intervals and their boundaries,
that correspond to each linguistic unit in their realization or-
der: this is a temporal segmentation issue. These two dis-
cretization issues are, of course, not treated sequentially, nor
independently, and appear instead largely dependent on each
other.

A classical class of computational, probabilistic models for
speech processing relies on Hidden Markov Models (HMMs)2

(Rabiner, 1989; Gales & Young, 2008). In such models, a
state variable represents “decoding steps”, which may or may
not align with and correspond to linguistic units. To parse a
speech signal, HMMs start in a given initial state; the prob-
ability distribution over states, or over state sequences, then
evolves over time as the sensory signal is processed. After
termination, the probability distribution over state sequences
corresponds to the most likely interpretation of the input sig-
nal in terms of sequences of linguistic units. However, in
such models, the temporal segmentation of the input is not
explicit or directly interpretable. In other words, HMMs do
not necessarily yield a one-to-one mapping between linguis-
tic units and internal states: on the one hand, the HMM state
can vary during the processing of a single phoneme (for in-
stance, during a vowel, to separate the initial portion, “con-
taminated by the previous consonant”, from later portions,
that could be “contaminated by the upcoming consonant”);
on the other hand, a single HMM state can represent a por-
tion of the acoustic input that straddles a boundary between
linguistic units.

This is also true in most connectionist models. In the
classical TRACE model, for instance, temporal segmentation
is not explicit, nor necessarily aligned with linguistic units
(McClelland & Elman, 1986). In recent models based on
deep learning, latent representations are learned from data,
once again with no guarantee that they would align with lin-
guistic units, neither concerning their acoustic content, nor
concerning their temporal properties and boundaries (Girin et
al., 2021).

This contrasts with a new generation of speech perception
models informed by neuroanatomical constraints, in which
temporal segmentation of the input is a central, explicit con-
cern. For instance, see the TEMPO model (Ghitza, 2011), the
general architecture proposed by Giraud and Poeppel (2012),
or a number of computational models (Hyafil, Fontolan, Kab-
debon, Gutkin, & Giraud, 2015; Hovsepyan, Olasagasti, &
Giraud, 2020; ten Oever & Martin, 2021). In such models, it
is assumed that information channels at different timescales
support and implement the temporal segmentation of speech
signals. The main assumption concerns the theta range (4—
8 Hz) which appears well suited for syllabic segmentation.
The gamma range (25-50 Hz) is usually assumed to corre-
spond to a temporally finer-grained classification of the sig-
nal input into phonetic events (phones, that may or may not
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correspond to phonemic linguistic units per se). Such mod-
els feature sequences of decoders, at one or several linguistic
levels, that are fed with segments of the speech signal. These
models precisely describe processes in charge of opening and
closing, in sequence, these decoders.

To the best of our knowledge, no model of how segmen-
tation cues can be used to parse a sensory stream into de-
coders, sequentially, has been proposed in the probabilis-
tic framework. In this paper, we propose original math-
ematical tools to address this issue. Based on coherence
variables (Gilet, Diard, & Bessi¢re, 2011; Bessi¢re, Mazer,
Ahuactzin, & Mekhnacha, 2013) and controlled coherence
variables (Ginestet, Phénix, Diard, & Valdois, 2019), we de-
fine probabilistic constructs (portions of models that we call
“Bayesian gates”), that use segmentation cues so as to parse
a temporally continuous stream of sensory input into a se-
quence of “decoders” (perceptual accumulators of sensory
evidence), so that each decoder only receives and analyzes
a portion of the sensory input.

For generality purposes, we first mathematically define
Bayesian gates in a small, abstract model (i.e., agnostic to
its application domain), and show how Bayesian inference
yields temporal segmentation of the sensory input. We then
show application of Bayesian gates in a larger-scale model
of speech perception (Nabé, Schwartz, & Diard, 2021), in
which a temporal submodel provides temporal cues concern-
ing syllable onsets, to be used by Bayesian gates to perform
segmentation of the acoustic signal, and feed it sequentially
into syllable decoders, to perform word recognition.

The rest of this paper is structured as follows. The next sec-
tion first introduces the mathematical definition of Bayesian
gates, in a simple and generic two-decoder case, and second,
illustrates how they are applied in a larger-scale model of
speech perception. Then, we present simulations and sim-
ulation results to illustrate how Bayesian gates perform the
temporal segmentation of acoustic signal into a sequences of
phone and syllable decoders, during speech perception.

Model
Controlled coherence variables for temporal gates

In the most simple case, we consider two decoders (noted
1 and 2 in subscripts in the following mathematical nota-
tions), each involving a representation of the sensory input
(variables S) connected to an accumulator of perceptual ev-
idence (variables P). Each decoder is connected to a mech-
anism built upon coherence variables (variables A, one per
decoder) and a control variable (G). This mechanism consti-
tutes the “Bayesian gate” per se. This is itself informed by
another submodel (variable C), in charge of controlling the
temporal segmentation.

Given this architecture, the overall mechanism underlying
Bayesian gates can be described as follows. The probability
distribution over variable C acts as an event detector of tem-
poral events from the sensory input (or predicting them from
some other source of information). This probability distribu-
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Figure 1: Graphical representation of the dependency struc-
ture of the probabilistic model for Bayesian gates. Nodes cor-
respond to variables in the models, and edges represent de-
pendencies, following the convention of notation of Bayesian
Networks (self-looping arrows represent temporal dependen-
cies between variable at time ¢ and the preceding time step
t —1). Colored boxes and text identify portions of the model
(see text for details).

tion then acts as a signal to trigger Bayesian gates: the prob-
ability distribution over variable G represents a reference to
the active Bayesian gate; when an event is detected, the cur-
rent Bayesian gate is closed and the next one opens. This
is performed mathematically by controlling coherence vari-
ables A, which modulate the information flow from sensory
input to the decoders, as if the architecture of the model were
changed on the fly. We now describe how this mechanism is
implemented mathematically.

We consider a fine-grained time step (e.g., one time step
for one millisecond), and note in superscripts time indices for
all variables. Let us assume a time range from time instants
0 to T, and use the shorthand X2 to denote the set of all
variables X', with ¢ € [t1;1,]. Therefore, the joint probability
distribution to define the model is:

PstE P AT 6 ) 0

To define the joint probability distribution of Eq. (1), we use
the dependency structure that is illustrated Figure 1. This de-
composes the joint probability distribution into:
Pt P A GV ) @
L[ P(C)P(G|C")
1 LTy [P(SHP(PE PP | S PG
Variables St and P!, whatever i and ¢, have the same, dis-
crete and finite arbitrary domain D, which is the representa-
tion space of the perceptual dimension of interest. The proba-
bility distribution P(S%) is the “sensory model” that feeds into
the Markov chain over variables P!'”, defined by the tempo-
ral model P(P! | P/~!) and prior distribution P(P?). Although
this is not necessary for defining the Bayesian gate mecha-
nism, in the following, the terms P(P! | P!~') are defined to
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only feature information leak, without any structure (contrary
to classical HMM based models, for instance). To do so, we
define:

1+leak : o f—1

— = if pf = p

P Pt . P{*l — —171\ __ 1+\D|leak i
([ i p] | [ i P ]) 1+‘I§§1|];€ak OtherWlSe,

3
with | D| the cardinal of domain 9 and leak a parameter con-
trolling information decay speed.

With such Markov chains over perceptual variables P, and
sensory models over sensory variables S, connecting them di-
rectly would yield straightforward decoders: when sensory
distributions P(S}) are informed (that is, they are different
from uniform distributions), they are fed at each time step
into the Markov chains, which thus operate as accumulators
of perceptual evidence, and the probability distribution over
variable P! gradually peaks, as a function of ¢, on the most
likely sensory hypothesis. On the contrary, when the sen-
sory distributions P(S%) are uniform, no perceptual evidence
is available (simulating the absence of stimulation), and the
Markov chains gradually decay back to uniform distributions.

We consider that sensory streams, S{:T and S;:T, are du-
plicates of the sensory input. In that case, the two decoders
would be fed with the same sensory information, and thus, the
probability distributions over variables PII‘T and P21:T would
also be identical. The purpose of Bayesian gates is exactly
to parse out the sensory streams, so that one portion is fed
into P/‘T, and another into Py, so that perceptual decoders
process different segments of the sensory streams.

To define Bayesian gates, we assume first that variable G,
for any ¢, has a discrete and finite domain that maps to the
number of decoders in the model. In our simple case, since
we consider two decoders, the domain of G’ would be {1,2}.
When G' = i, this means that the i-th decoder is “open” (it re-
ceives sensory information), and all others are “closed” (they
receive uniform distributions as input). To pilot the transfer
of information between sensory and perceptual variables, we
define the A variables as controlled coherence variables (Nabé
et al., 2021), that is to say, they are binary variables and:

P(;=1][[Si =5T[PF =P [G'=g)

1 ifs'=p'andg =i
= 0 ifs'#£p'andg =i 4
1/|D| ifg #i.

Finally, the Bayesian gate is connected to an external sub-
model, that provides cues about segmentation events. In the
general case, it can be arbitrarily complex, and rely on any
source of available information. Here, for simplicity, we rep-
resent this temporal control submodel with a single proba-
bility distribution, P(C"). We assume that C’, for any ¢, is a
Boolean variable, and that P([C" = True]) represent the prob-
ability that a segmentation event is detected. If such an event
is detected, the currently opened decoder should be closed,
and the next one should be opened: this is implemented with
probability distribution P(G' | C'), defined by a Dirac distri-
bution over G’. Recall that variable G' indexes decoders, so

that P(G' | C") assigns probability 1 to “the next decoder”
(i.e. decoder i+ 1, with i an internal parameter that tracks the
currently opened gate).

All terms featured in Eq. (2) are described, so that the
model is fully defined. We now show how the model pro-
vides the desired behavior for Bayesian gates. To do so, we
consider computing the probability distribution over percep-
tual variable P!, given event detection C I and sensory input
stream S };2 (and assuming, for technical reasons, that A vari-
ables are 1). We note this term:

0 =P(P|C" S5 M =1)). )

To compute Qf, applying Bayesian inference in the model
yields:

0l = P(BL|CV sl M = 1))
o [P(IG =] | C)P($)) + PG 1] | €')/|D]
< X [P B PE St s = 1))
Pr—l

To make this result readable, first, we note o; = P([G' =] |
C"), so that P([G" #i] | C") = 1 — o, second, we recognize
that the constant value 1/|9D| can be interpreted as the proba-
bility value of the uniform distribution over domain D, noted
Uy, and third, we recognize that the last factor under the sum
is the recurrence term, that is to say, the same computation
as O} but at the previous time step, so that it can be noted as
0!, We obtain:

0 < [aP(S}) + (1 —a)Up] ¥ [P(PF|PTHOT'T . (6)

t—1
Pi

We recognize here the usual form for Bayesian filtering in
the large class of temporal probabilistic models (Russell &
Norvig, 1995; Murphy, 2002, 2012): inside the sum, the re-
cursive term is multiplied by the temporal model; the sum
itself is then multiplied by a term, which takes here a partic-
ular form that merits attention. Indeed, o;P(S%) + (1 — o)) Up
is a weighted sum between the sensory model proper P(S}),
and a uniform distribution. Weights are a; = P([G' =i] | ("),
that is to say, the probability that decoder i is open at time ¢,
and 1 —o; = P([G' #i] | C"), that is, the probability that it is
closed. In other words, when decoder i is open, the Bayesian
gate between the temporal model and sensory distribution is
open, so that a; = 1, and the temporal model “sees as sen-
sory input” the distribution P(S%). On the other hand, when
decoder i is closed, o; = 0, so that the temporal model “sees
as sensory input” a uniform distribution. Multiplying by a
uniform distribution has no effect (the uniform distribution is
the neutral element of multiplication in the probabilistic set-
ting), so that o; = 0 is equivalent to having no sensory input
to process. This demonstrates that Bayesian gates, thanks to
Eq. (6), act as desired and parse the sensory stream P(S%) so
as to feed it only into the opened gate at time ¢.
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Figure 2: Graphical representation of the dependency struc-
ture of a simplified version of the COSMO-Onset model.
Same graphical convention as in Figure 1.

Application to the COSMO-Onset model

Bayesian gates have been applied in a model of speech per-
ception, COSMO-Onset (Nabé et al., 2021), that we briefly
describe. The overall architecture of a simplified version
of the COSMO-Onset model is graphically represented Fig-
ure 2. It is a hierarchical probabilistic model, and its overall
dependency architecture is organized around two main mod-
ules: the decoding module, and the temporal control module.

The architecture of the decoding module is inspired by the
classical interactive-activation models, such as the TRACE
model (McClelland & Elman, 1986), and it is similar to those
of recent models (Hovsepyan et al., 2020; Yildiz, von Krieg-
stein, & Kiebel, 2013). The decoding module is organized
hierarchically with alternating layers of perceptual accumula-
tion and lexical knowledge, from a pre-processing stage con-
sisting of acoustic feature extraction (phone sensory layer),
to syllable-to-phone knowledge and word-to-syllable knowl-
edge, through phone, syllable and word perceptual models.
Concerning temporal events and segmentation, the decoding
module assumes that a word is composed of a sequence of
syllables (in the experiments below, at most 3), each com-
posed of a sequence of phones (at most 4). For simplicity,
portions of the model involving phones are not represented
in Figure 2, so that the input of the decoding module, in this
simplified version, is considered at the syllabic level (vari-
ables SySi.;,). In other words, in the following, we simplify
the presentation of the model to consider that the sensory in-
put would already inform about syllable identity (whereas, in
the complete model, this involves an intermediary step to in-
fer syllable from phone sequences, with phones inferred by

an analysis of the acoustic content of the input signal).

The second module is the temporal control module, as in
the simple model presented above. In this paper, we con-
sider that the temporal control module builds a probability
distribution over variable C', using increases of the acous-
tic intensity in the speech signal (variable AL!, with L for
“loudness”), as likely candidate events for syllabic onsets,
and thus, salient time steps for speech segmentation. (Nabé
et al. (2021) considered lexical knowledge about syllable du-
ration, as top-down cues to complement the bottom-up cues
based on syllable onset detection from the signal; we only
consider bottom-up cues here.) This is the portion of the
COSMO-Onset model that contains the Bayesian gates that
we experimentally study below. However, we note that, in
the full COSMO-Onset model, once a Bayesian gate detects
a syllabic onset, not only does it close the current syllable de-
coder and open the next one, it also triggers a sequence of
four phone decoders. These are opened and closed on a fixed
schedule (every 50 time steps); however, it is entirely pos-
sible that this sequence is ended prematurely, whenever the
next syllabic onset is detected.

Experiments
Materials

In the experiments we present here, the model is configured
with a lexicon of known words comprised of 28 words, with
7 monosyllabic words, 14 bisyllabic words and 7 trisyllabic
words. Syllables are Consonant-Vowel (CV) syllables com-
posed of a plosive consonant followed by a vowel; the first
syllable of a word can be a single Vowel (V) syllable. The
considered consonants are /p/ and /t/, and the vowels are /a/,
/i/ and /u/. Some examples of words in the lexicon are “a”,
“pa”, “pi”, “apa”, “patu”, “apata”, “iputu”, “tapatu”; the com-
plete list is provided elsewhere (Nabé et al., 2021, Table 2).
For every word in the lexicon, a definition of their com-
position at the acoustic and phonetic level is given. These
correspond to synthetic, “toy-like” realization, in terms of du-
ration, spectral content and loudness profiles. Concerning du-
ration, every phone (consonant or vowel) lasts 50 time steps,
to correspond to 50 ms of physical time. In CV syllables, a
transitional phone (noted “@”) is inserted between the con-
sonant and vowel, that also lasts 50 time steps. V syllables
at the beginning of words last 100 time steps. Therefore, syl-
lable boundaries do not always occur at the same time step,
or on multiples of the duration of a CV syllable (150); fur-
thermore, the model is not given information about phone or
syllable duration, and detects syllabic onset events from the
signal, whenever they might occur. Therefore, setting 50 time
steps as the base duration for phones is merely a convenience,
to keep the toy lexicon simple, and not a limit of the model.
The spectral contents of vowels are defined by their charac-
terization in the (F1, F2) plane, around usual prototypical val-
ues (see Figure 3, left panel). Since we only consider the /p/
and /t/ stop consonants, they are also defined in the (F1, F2)
plane. Each phone consists in a repetition of a (F1, F2) point
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Figure 3: Spectral contents (top) and loudness profiles (bot-
tom) of synthetic stimuli used in the experiment. Top, left:
regions of the (F1, F2) plane (x- and y-axes, in Barks) for
each phone considered. Ellipses and clouds of points indicate
the possible variations of realizations for each phone. The in-
dicated time steps correspond to the complete trajectory for
word “apata”: in the “a” region between time step 0 and 100,
in the “p” region between time step 100 and 150, and so on.
Top, right: trajectories of F1 and F2 values (y-axis) as a func-
tion of time, for word “apata”. Bottom: Loudness values (y-
axis) as a function of time, for word “apata”.

for 50 iterations, with this point drawn in an ellipse around
prototypical values. Transition phones “@” are linear trajec-
tories in the formant space, between the preceding consonant
and following vowel.

Finally, the synthetic stimuli are also defined by loudness
profiles, to mimic the envelope of the speech signal. A scalar,
positive value is defined at each time step. It is constant (0.8)
“inside” phones, except for an energy rise (from 0 to 0.8) at
the beginning of words, an energy decrease (0.8 to 0) at the
end of words, and an energy dip at syllabic boundaries (from
0.8 to 0.5 towards the end of syllable 7, and from 0.5 to 0.8 at
the beginning of syllable i+ 1). Synthetic stimuli end with 50
time steps of “simulated silence”, noted “#”, with loudness
set to 0 (and formants set to (0,0) also, as a convention).

Figure 3 illustrates the spectral content and loudness profile
for the synthetic stimulus corresponding to word “apata”.

Methods

We have conducted an experiment to study the effect of
Bayesian gates and temporal segmentation during word
recognition. More precisely, we assessed the robustness of
the model to temporal misalignment, by performing a sim-

ulation experiment in which we manually inserted a delay
between onset detection and its use for opening and closing
Bayesian gates. In other words, the model would compute
onset detection in a normal fashion (term P(C' | AL")), but its
output would be temporally delayed before being transferred
to variable G’ (the term P(G' | C') becomes P(G'T4!y | C')).

We have performed word recognition on all words of the
lexicon, and varied the delay between -75 to +75 time steps
(steps of 5 iterations). For all words and all delays, we have
measured the probability assigned by the model to the input
word (i.e., correct recognition probability) at the final itera-
tion. The condition where the delay is O provides a base-case
performance for the model.

Results

To illustrate how Bayesian gates segment an acoustic signal
into a sequence of decoders in the COSMO-Onset model, we
first describe the behavior of the model on a typical exam-
ple. From the word recognition experiment, we consider the
stimulus signal corresponding to word “apata” (see Figure 3).
Figure 4 shows the evolution of word and syllable probabil-
ities, in each of the three syllable decoders, in the base-case
condition (delay is 0).

We observe that the three syllable decoders are activated
sequentially, that each is fed portions of the acoustic input,
leading to correct syllable recognition. We also observe that
the third decoder, initially (around iterations 250 to 260), in-
creases probability of syllable “a”, erroneously. This is due
to a slight misalignment: onset detection triggered slightly
early, leading the third decoder to process a portion of the
acoustic signal of the end of the second syllable (the end por-
tion of the “pa” of “apata”). Later on, this is corrected, as
the input enters the “t” of “apata”, and the third decoder cor-
rectly assigns high probability that the third syllable would
be “ta” (red curve, bottom plot of Figure 4). We also observe
that the probability distribution over words, as time increases,
narrows down competing hypotheses, and also yields, at the
end, very high probability for the correct word “apata”. Over-
all, this simulation illustrates that the model and the Bayesian
gates mechanism behave as expected and yield correct syl-
lable segmentation and recognition, and thus, correct word
recognition on input “apata”. This illustrative example also
suggests that the model would be robust to a small misalign-
ment between temporal events in the acoustic signal and the
opening and closing of syllable decoders.

Experimental results for the whole experiment, in which
the manually-inserted delay is varied systematically, are
shown Figure 5. We observe an inverted-U shaped plot, with
the probability for the correct word maximal when the delay
is 0 or +5 iterations (probabilities differ at the third decimal),
and very close to maximal when the delay is +10 iterations.
For other delay values, we observe that performance sharply
decreases. We have analyzed results independently for mono-
syllabic, bisyllabic and trisyllabic words (not shown). Mono-
syllabic words are overall better recognized, and performance
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Figure 4: Simulation of word recognition in COSMO-Onset
on input “apata”. Top plot: evolution of probabilities of the
most likely word hypotheses (y-axis) as a function of sim-
ulated time (x-axis). The vertical black lines indicate time
steps when syllable onsets were detected. Top annotations
recall the contents of acoustic input. Bottom three plots: evo-
Iution of probabilities of syllables (y-axis) as a function of
simulated time (x-axis), in the three syllable decoders. Col-
ored intervals show when the Bayesian gate of each decoder
was open. (Some curves are partly superposed.)

is more robust; this, of course, is due to the fact that monosyl-
labic word recognition is only dependent on a single syllabic
onset detection. Result patterns for bisyllabic and trisyllabic
words are very similar to the global results of Figure 5.

Overall, our experimental results suggest that, when the
COSMO-Onset model processes our synthetic stimuli, there
is a small temporal tolerance, for which performance is pre-
served. However, performance is worse for large delays,
which confirms that a proper alignment of syllabic decoders
with the acoustic signal is central for word recognition.

—— Average word recognition

Figure 5: Average probability for the correct word (y-axis) in
COSMO-Onset simulating word recognition, over all words
of the lexicon, as a function of a manually-imposed delay be-
tween onset detection and their use for opening and closing
Bayesian gates (x-axis, in iterations).

Discussion

We have proposed a novel probabilistic construct, called
“Bayesian gates”, to segment a sensory stream so that each
decoder in a sequence of perceptual decoders is fed with a
portion of the sensory stream. We have defined Bayesian
gates and explored their mathematical properties in a simple
model. Then, we have shown how Bayesian gates have been
applied in a speech perception model. In this model, sylla-
ble onset detection is used as the signal controlling Bayesian
gates, to feed a sequence of syllable decoders. These per-
form syllable recognition, upon which word recognition re-
lies. On synthetic stimuli, we have experimentally shown that
Bayesian gates fulfill their role of temporal segmentation, and
that they are robust to slight temporal misalignment between
syllable onsets and the activation of syllable decoders.

In the current paper, we have defined P(G' | C") to be a
Dirac distribution, indexing in an all-or-nothing fashion the
syllabic decoder to be opened. This implies that, when word
recognition processing unfolds, at each time step, the states of
syllable decoders are known with certainty. In other words, a
single decoding trajectory is computing, with decoders either
“fully opened” or “fully closed”. Relaxing the Dirac assump-
tion would allow representing probability distributions with
uncertainty instead. In that case, gates would simultaneously
be opened and closed, in proportions quantified by probabili-
ties. In principle, this should allow, as in HMM-based decod-
ing, to compute simultaneously several decoding trajectories,
and, possibly, to correct past errors with future information
(decreasing probabilities of trajectories when they lead to less
likely decoding paths). Assessing the computational cost in-
duced by such a mechanism, its possible performance gain,
and its cognitive plausibility, is part of ongoing research.

Overall, we have described a segmentation mechanism,
suitable for syllabic parsing, based on sensory cues extracted
in a bottom-up manner from the acoustic stimulus. Current
work aims at exploring whether theta oscillations could im-
plement our mechanistic model, and whether other informa-
tion channels, maybe in the beta band, could implement com-
plementary, top-down, lexically driven prediction.
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