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Abstract

A central component of the predictive coding theoretical
framework concerns the comparison between predictions and
sensory decoding. In the probabilistic setting, this takes the
form of assessing the similarity or distance between probabil-
ity distributions. However, such similarity or distance mea-
sures are not associated with explicit probabilistic models,
making their assumptions implicit. In this paper, we explore
an original variation on probabilistic coherence variables; we
define a probabilistic component, that we call a “Bayesian
comparator”, that mathematically yields a particular similarity
measure. A geometrical analogy suggests two variants of this
measure. We apply these similarity measures to simulate the
comparison of known, predicted patterns to patterns from sen-
sory decoding, first in a simple, illustrative model, and second,
in a previous model of visual word recognition. Experimen-
tal results suggest that the variant that is scaled by the norms
of both predicted and perceived probability distributions yields
better robustness and more desirable dynamics.

Keywords: probabilistic modeling; probabilistic similarity;
coherence variable; pattern matching; lexical decision

Introduction

In cognitive science, predictive coding has become a major
framework, offering an overall theoretical conception of cog-
nitive processes. In this framework, prediction and predic-
tion errors are cornerstones of cognitive architectures: high-
level representations would essentially generate predictions,
to be sent to lower-level representations in a top-down fash-
ion. Lower-level representations, in turn, would compare the
predictions they received with their input from sensory de-
coding (Rao & Ballard, 1999; Friston, Kilner, & Harrison,
2006). The result of this comparison (i.e., the error signal),
if any, would be propagated back to higher-level represen-
tations, in a bottom-up manner. Predictive coding provides
useful interpretations of information exchange in neuronal ar-
chitectures (Friston & Kiebel, 2009; Huang & Rao, 2011).

A central component of architectures based on predictive
coding, therefore, is comparing between prediction and sen-
sory decoding. In the deterministic setting, both prediction
and sensory decoding would be “point-like”, that is to say,
values in some representational space (e.g., a time-interval
is predicted to be 2 s long, whereas it is perceived as being
2.5 s). In this case, a straightforward candidate would be to
compute the difference, or the length of the difference vector,
in the multidimensional case, between prediction and sensory
decoding. For instance, such a measure is used throughout

artificial neural networks-based approaches, to compute error
signals during learning.

In the probabilistic framework, one would compare prob-
ability distributions instead. In the free-energy principle
framework, for instance, under some Gaussian assumptions
about noise, the prediction error would take the form of a
precision-weighted difference between prediction mean and
signal mean (Friston, 2010). In more general settings, a
widespread measure is based on the Kullback-Leibler (KL)
divergence (Bishop, 2006), or its symmetrized variant. In
some contexts, the KL divergence is “theoretically justified”.
For instance, in variational inference, it appears in mathe-
matical derivations for computing log-marginal likelihoods
(Neal & Hinton, 1998; Girin et al., 2021). However, this
does not imply that the precision-weighted differences be-
tween means, or the distance measure based on the KL di-
vergence, would be “theoretically evident” in all contexts.
Indeed, many distance measures between probability distri-
butions have been proposed (Cha, 2007), each with specific
properties (as is the case for distance measures in general).

To the best of our knowledge, the more common practice
seems to mainly focus on building probabilistic models to
compute probability distributions, both for encoding predic-
tions and sensory decoding, and then, select a distance mea-
sure, from the wide array of existing distance measures. In
that sense, selecting the distance measure “comes after the
fact”, and it is not part of the probabilistic model per se.
Therefore, possible assumptions that accompany the choice
of one measure over another are neither made explicit, nor
represented in the model itself.

In this paper, we propose to establish a link between a
probabilistic model and a specific similarity measure be-
tween probability distributions. (Note that similarity and
distance measures are conceptually equivalent, and easily
linked mathematically, e.g., with a reciprocal, 1/x relation-
ship). More precisely, we explore a previously defined prob-
abilistic model, based on coherence variables (Gilet, Diard, &
Bessiere, 2011; Bessieére, Mazer, Ahuactzin, & Mekhnacha,
2013), that yields, thanks to Bayesian inference, a particu-
lar similarity measure between probability distributions. This
measure is thus theoretically derived from the probabilis-
tic model, from the rules of Bayesian inference. We call
“Bayesian comparator” the probabilistic model, when it is
used in such a fashion.
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Coherence variables can be used and interpreted as
“Bayesian switches”, that is to say, they allow explicitly con-
necting or disconnecting portions of models during inference
(Gilet et al., 2011), or reasoning with soft evidence (Bessiére
etal., 2013). In this paper, we explore the mathematical prop-
erties of coherence variables in a novel context, involving
probabilistic computations that were not considered before.

In the following, we first provide the mathematical defi-
nition of Bayesian comparators, and demonstrate that they
yield an inner product expression. Interpreting this geometri-
cally suggests variants, which we define. Then, we illustrate
Bayesian comparators on a small, abstract model, to evaluate
how a perceived pattern is similar to memorized patterns. Fi-
nally, we describe how Bayesian comparators have been ap-
plied in BRAID, a Bayesian word recognition model (Phénix,
2018; Ginestet, Phénix, Diard, & Valdois, 2019), to assess
stimulus familiarity, yielding novel models of lexical deci-
sion and of novelty detection in the context of orthographic
learning. We experimentally evaluate the properties of the
Bayesian comparator and its variants, in the context of grad-
ual accumulation of perceptual evidence.

Model

Here, we define the base case model of Bayesian compara-
tors. Let A and B be any two probabilistic variables, that
share the same discrete, finite domain . Variable A is said to
be a coherence variable (Bessicre et al., 2013) if it is binary
(domain {0,1}), and associated to a conditional probability
distribution defined by:

lifa=b
0 otherwise .

P(=1] 4 =d (8=~ { m
There are no constraints on the rest of the probabilistic model,
although it is simpler to examine the case where the probabil-
ity distributions over A and B are independent. Therefore, as
our base case, we consider the model:

P(AB)) = P(A)P(B)P(\|AB) . )

In previous works, coherence variables have been interpreted
as “Bayesian switches” (Gilet et al., 2011), that are either
“closed“ when assumed to be equal to 1 (i.e., computing
P(A | [A = 1]) involves P(B)), or “open” when their value is
left unspecified (i.e., computing P(A) does not involve P(B)).

Here instead, we consider computing the probability distri-
bution over the coherence variable A itself. In the base case
model of Eq. (2), computing P([A = 1]) yields:

P(A=1))=), ,PABL)
=Y, s PAPBIP(L=1]|AB)
= ZaEDP([A = a])P([B = (l]) .

The first line results from the marginalization rule, the second
rewrites the joint probability distribution according to Eq. (2)
and the third recognizes that, in the joint summation over the

domains of A and B, that is, over the square domain 9?2, only
the diagonal remains because P([A = 1] | A B) is 0 otherwise.

The last expression can be rewritten, using the notation of
the inner product between P(A) and P(B). We note this with
Piyner and obtain:

Pipner([A = 1]) = (P(A),P(B)) . (€)
Since A is a binary variable, we of course also have:
Pinner([}": OD =1- <P(A)7P(B)> .

This suggests a geometrical interpretation, in which we
consider probability distributions as vectors. Indeed, the set
of probability distributions defined on domain D, of cardi-
nal n € N, is defined by 2 = {p € R", Y| pi = 1}. In other
words, in the discrete case, probability distributions can be
seen as vectors of positive values, that are normalized in the
1-norm sense: ||p||; = ¥, pi = 1 (making the 1-norm explicit
here; everywhere else, || - || refers to the 2-norm). How-
ever, the 2-norm length of a probability distribution, seen
as a vector, is not constant. Consider for instance an ar-
bitrary probability distribution over variable X with binary
domain {0, 1}; it is entirely defined by a single parameter:
P([X =1]) = px, P([X =0]) =1 — px. Then, its 2-norm
length is ||P(X)|| = p% + (1 — px)* = 1 — 2px +2p%, that
is, a quadratic function of py. This expression behaves in a
manner similar to the entropy measure: it varies continuously
between its different extremum values, that are for the Dirac
Delta and Uniform distributions. (We apply loose terminol-
ogy and refer to the {0,1} and {1,0} distributions over binary
domains as Dirac Delta in the following.) In other words, the
2-norm and entropy are both measures that are sensitive to the
uncertainty of probability distributions.

In the usual Euclidean geometrical context, the inner prod-
uct between vectors is the product of the cosine of their an-
gle and of their lengths (in the 2-norm sense). This suggests
two variants of similarity measure Pj,;,.r. In the first variant,
called P,,y, the inner product P, is scaled by the product of
2-norm lengths of the considered distributions:

iy _(P(A),P(B))
Peos( =1 = 1o SPGB @

(We refrain from noting 2-norm lengths as inner products of
distributions with themselves to avoid confusion, and reserve
below the inner product notation for application between dif-
ferent probability distributions.) This equation can be inter-
preted as computing the “cosine of the angle between proba-
bility distributions P(A) and P(B)”.

In the second variant, called P,,,;, the inner product is only
scaled by the 2-norm of one of the distributions. Here, the
inspiration is the computation of the length of the projection
of one vector onto the other. This yields a measure related
to the “compatibility” of one vector with a reference vector:
projecting vector A onto B amounts to removing, from A, its
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(P(X), P(Y))

(PX), PO CIPOX) I*1PCY) )

(PX), POV | P(Y) | 0

Figure 1: Three variants of a similarity measure between probability distributions over binary domains, parametrized by px
(x-axis) and py (y-axis). Color coding is redundant with the value, on the z-axis, of the similarity measure. Left: similarity
measure Piy,e, of Eq. (3); Middle: similarity measure P,y of Eq. (4); Right: similarity measure P,,,; of Eq. (5).

portion that is orthogonal to B. When this “orthogonal com-
ponent” is small, the length of the projection of A onto B is
large. We define:

(P(A),P(B))

R

(&)

which can be interpreted as computing the “length of the pro-
jection of distribution P(A) onto distribution P(B)”.

The P,,,., measure is referred to as the cosine similar-
ity measure (Cha, 2007). It is commonly applied in natu-
ral language processing models, such as, for instance, in the
word2vec model of word semantics (Mikolov, Chen, Cor-
rado, & Dean, 2013); however here it cannot be negative,
since, in the probabilistic setting, probability values are posi-
tive. Additionally, in the context of decision theory, the Py,
measure is called the spherical scoring rule (Jose, 2009).

Figure 1 illustrates the three similarity measures, in the
probabilistic setting. We consider any two distributions P(X)
and P(Y) over binary variables, parametrized by px and py,
respectively, and compute and show Pier, Peos and Py in
the left, middle and right plots of Figure 1, respectively.

Eq. (3) and Py yield a saddle shape: Py, is minimal
and equal to 0 when comparing “opposite” Dirac Delta dis-
tributions (px = 0, py = 1 and vice versa); it is maximal and
equal to 1 when comparing identical Dirac Delta distributions
(px = py =1 and px = py = 0), and it is locally maximum
when comparing identical distributions (px = py).

In contrast, Eq. (4) and measure P, also yield a sad-
dle shape, but with a constant maximal value of 1 whenever
px = py. Indeed, thanks to the scaling by the norms of the
probability distributions, it is only sensitive to the angle be-
tween distributions, and thus it is maximal whenever they are
identical (their angle is O so that their cosine is 1). On the
contrary, the measure is 0 when they are maximally different
(they are orthogonal, their cosine is 0). Finally, we observe
that Eq. (5) and measure P,,,; also yield a saddle shape, with
a more complicated trajectory for its maximal manifold.

Lexical
Layer

@@ D

| |

' ' ,
Bayesian

® @ Comparators

: :

| |
Perceptual
Layer

Figure 2: Graphical representation of the dependency struc-
ture of the pattern matching model. Nodes represent vari-
ables, and arrows dependencies between variables, following
the classical convention for graphical models.

Application for similarity evaluation between
memorized and perceived patterns

We first apply Bayesian comparators, in a very simple model,
illustrated Figure 2. We consider an arbitrary, discrete and
finite domain in which to represent perceived and predicted
patterns. We note D = {“a”,“b”,“c”,“d”} this domain. In
the perceptual layer of the model, we define three probabilis-
tic variables, Pf to Pg, to represent probability distributions
over perceived inputs of length 3. These distributions vary
over time: at time instant 0, they are uniform, and evolve so
that probability accumulates in favor of one value of domain
D. The probability of this value follows a sigmoid function
of time 7, to mimic what the mathematics of a temporal model
of perceptual accumulation of sensory evidence would yield
(Phénix, 2018). Therefore, in the perceptual layer, we can
simulate the model perceiving, from sensory input, any pat-
tern in D3 (e.g., “abc”, “abb”, etc.).

In the “lexical” layer of the model, we define predicted
patterns with a naive Bayes model (Russell & Norvig, 1995;
Norris, 2006). Variables L] to L have domain 9D, and vari-
able W' has a discrete, finite domain Dy to index known pat-
terns. We assume that prior distribution P(W') is uniform.
Probability distributions P(L! | [W' = w]) define the pattern
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for word w (i € {1,2,3}), by assigning a very high probabil-
ity (0.91) to a point of D (i.e., the correct letter for word w
at position i), and uniformly distributing probability on alter-
natives (0.03). In other words, P(L! | W') are “quasi-Dirac
Delta” distributions. For instance, if a known word wj is
“abe”, P([L} =“a”] | W' =w]) is 0.91, P([L| =“D"] | [W' =
wi]) is 0.03, and so on.

The perceptual and lexical layers of the model are con-
nected by three Bayesian comparators. Therefore, the whole
model is defined by:

3
PW' L3 N5 Pls) = H (L |[W")P(N; | LiP)P(F)

with Xl .3 referring to the set of three variables, X1 s X2 and Xg,
in other words the model is 3*3+1=10 dimensional.

In this model, pattern recognition, that is, computing the
probability distribution over known three-letter words given a
sensory input, can be performed by assuming that coherence
variables Af 5 are equal to 1 and computing P(W' | P|.; [M].; =
1]). Bayesian inference yields:

P(W' Pi5 M5 =1])
(Pf3 [7“[3:1])
ZLf W[ L )“t 1:3 = H Pi:3)

POWOT,, (P(L; | W), P(P)) .

In this derivation, the o symbol indicates equality up to a
proportional constant (indeed, the denominator can be con-
sidered a constant, and the result can be re-normalized after-
wards). In this computation, setting coherence variables to 1
can be interpreted as assuming that the perceived pattern cor-
responds to a known pattern. This allows collapsing the sum-
mation over all possible letters L.5: since coherence variables
are 1, the only non-zero value inside the sum is when the con-
sidered value for L] 5 is the same as for P} 5, which is a given
value. The resulting computation assigns highest probability
to the known pattern that most resembles the perceived input.

Bayesian comparators yield another inference, to assess
whether the assumption that the input pattern corresponds to
a known one is true. Indeed, following Eq. (3), we compute
the probability that the three coherence variables are 1:

PW'[Pis[M3=1]) =

R

R

Pinner(p‘ll:S = 1]) = Z ( WI H<P Ll | Wt) (P,)>> (6)
WI

Then, 1 — Piyer([N]5 = 1]) is the probability that all coher-
ence variables are not simultaneously equal to 1, meaning that
the input pattern does not correspond to any known pattern:
there is an error, in at least one position, between the per-
ceived pattern and any known pattern. Eq. (6) thus provides
the basis for models of familiarity assessment (or novelty de-
tection), in the probabilistic framework, based on similarity
computations given by Bayesian comparators.

Pinner Pcos PPFDI

o

To w0 R w0 % T @ B w0 %o T e w0 @ %o
time step time step time step
Pinner Pcos Poroj
L L
To o w0 w0 %o R N
time step time step time step

Figure 3: Familiarity assessment simulation: probability (y-
axis) that the stimulus is a known pattern (blue curves), or not
a known pattern (red curves), as a function of simulated time
(x-axis). Top row: the perceived pattern is “abc”, which is
a known word. Bottom row: the perceived pattern is “abd”,
which is not a known word. Left (resp. middle, right) column
features the Pyer (1€sp., Peos, Pproj) measure.

Following Egs. (4) and (5), we further consider two vari-
ants, depending on whether inner products are scaled by the
norms of one, or both of the probabilities involved:

Pinner(p\'] 3 1})

Pcos([xrl:’j =1]) = ||P(Li | W) || * || P( {)” @

. Pinner([)\'t13 - 1])
W= e ®

PP"OI([}"ZI:S =

Therefore, in P,,,;, we consider the projection of the predicted
pattern onto the perceived pattern.

We simulate familiarity assessment in the model of Fig-
ure 2, with the three variants provided by Eqs. (6-8), first,
for the perceived pattern “abc” that corresponds to a known
word, then for the pattern “abd” that does not correspond to a
known word. Results are shown in Figure 3.

We observe that, for all similarity measures, familiarity
assessment based on Bayesian comparators performs as ex-
pected: the probability that the A variables are 1 is high when
the perceived pattern is a known one (Figure 3, top row), and
low when the perceived pattern is a novel one (Figure 3, bot-
tom row). In the case where the perceived pattern is a known
one, similarity measures “are wrong” during the first few time
steps, in the sense that they are in favor of the perceived pat-
tern being a novel one. This results from the comparison be-
tween a quasi-Dirac Delta predicted probability distribution
and an almost uniform perceived distribution. The three pro-
posed measures are affected differently, since they are math-
ematically scaled differently by the 2-norm of distributions.
The P.,s measure appears as the most robust in this regard
(Figure 3, top row, middle plot), at the cost of a slower con-
vergence for the opposite situation, in which the perceived
pattern is novel (Figure 3, bottom row, middle plot).
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Figure 4: Graphical representation of a portion of the BRAID
model. Graphical convention is the same as in Figure 2.
Dashed arrows indicate that P! variables connect to other lay-
ers (visuo-attentional and sensory) of the complete model.

Bayesian Comparators

»A,&

Application in the BRAID model

The BRAID model (Bayesian word Recognition with Atten-
tion, Interference and Dynamics) is a probabilistic and hier-
archical model to simulate word recognition and lexical deci-
sion (Phénix, 2018; Phénix, Valdois, & Diard, 2018; Ginestet
et al., 2019). The model’s architecture contains a letter per-
ceptual layer, where accumulation of sensory evidence about
letters in the visual stimulus occurs and a lexical knowledge
layer, where sequences of letters are associated with known
words. These two layers are connected by a layer of Bayesian
comparators. The dependency structure of this portion of
the BRAID model is shown Figure 4. The complete model
also features a letter sensory layer, where the stimulus letter-
sequence is processed, and a visuo-attentional layer, that con-
trols how much sensory information is transferred and ac-
cumulated in the perceptual layer (not shown in Figure 4).
These layers also represent gaze position, the spatial distribu-
tion of visual attention, and their effects on sensory process-
ing; this is beyond the scope of the current paper.

The BRAID model we consider in Figure 4 is similar to
the “simple” model of Figure 2, with a few differences. First,
in BRAID, possible letters are the 26 letters of the Latin al-
phabet, and letter sequences and words are of length N (so
that variables are indexed from position 1 to N in subscript).
Second, an explicit model of “known similarity patterns” is
expressed with binary variables Cp) to Cp) and Boolean
variable D': when D' is True, all variables Cpf.y are ex-
pected to be 1 (Bayesian comparators match in all positions),
whereas when D' is False, one of the variables Cp/.y is ex-
pected to be O (one of the Bayesian comparators does not
match). These “similarity patterns” are then connected to
the Bayesian comparators, to perform familiarity assessment
and novel detection proper. Finally, variables W' and D' of
BRAID are integrated in a Markov chain-like model, to per-

Pinner Peos Poroj
0.75 ' 0.75 ’
0.50 0.50

750 1000 250 500 750 1000 250 500 750 1000

0 250 500

time step time step time step
1 Pinper . Peos 1 Poroj
0.75 0.75 0.75
050 050 050
0.25 0.25 \ 0.25 \
0. 0.00 0.00
250 500 750 1000 250 500 750 1000 250 500 750 1000
time step time step time step

Figure 5: Familiarity assessment simulation in the BRAID
model: evolution of probability (y-axis) that the stimulus is a
known pattern, as a function of simulated time (x-axis). Each
blue curve corresponds to one stimulus, and the red curve is
the median curve across all stimuli. (The probability curves
that the input would not be a word are not shown; they would
be “1 minus the blue curves”.) Top row: stimuli are known
words. Bottom row: stimuli are non-words. Left (resp. mid-
dle, right) column: familiarity assessment according to the
Pinner (resp-’ Pcosa Pproj) measure.

form temporal integration of perceptual evidence: this yields
dynamically evolving probability of words in P(W'), to sim-
ulate word recognition, and dynamically evolving probabil-
ity that the stimulus is a known word in P(D"), to simulate
both the lexical decision task (i.e., deciding whether the input
is a known word or not) and orthographic learning (i.e., cre-
ate and update orthographic representations in the word space
Dy ; (Ginestet, Valdois, & Diard, 2022)).

In the BRAID model, we simulated familiarity assessment
on a set of 5-letter words and non-words. All model pa-
rameters were set to their default values; notably, gaze and
the focus of visual attention were positioned on the central
letter, and the lexical knowledge layer was configured with
the 79,673 English words from the British Lexicon Project
(BLP) (Keuleers, Lacey, Rastle, & Brysbaert, 2012). We ran-
domly selected 100 5-letter words from the BLP to serve as
word stimuli. From another set of 100 5-letter words ran-
domly drawn from the BLP, word-like non-words were gen-
erated using Wuggy (Keuleers & Brysbaert, 2010). Example
words are “sheet”, “clock”, “brush”; example non-words are
“ropat”, “loors”, “squay”. Simulations were carried out for
1,000 time steps.

Experimental results are shown Figure 5. We first observe
that all variants, almost always, successfully perform famil-
iarity assessment: when the stimulus is a known word, the
model assigns to the fact that it is a word a probability larger
than .5. This is the case except for less than 10 words for
the P, variant. The Pj,,., measure also yields, for the first
time steps, dynamics that are worth noting: at time step 0,
P(DO) is uniform, but, right from time step 1, the probabil-
ity that the input is a known word becomes very low. This
yields very fast convergence in the case where the stimulus is
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Figure 6: Familiarity assessment simulation in the BRAID
model, for “perfectly known” words (top row), “not very-well
known words” (middle row) and non-words (bottom row). In-
formation is graphically represented in the same manner as in
Figure 5, please refer to its caption.

novel (Figure 5, bottom left plot); however, this slows down,
and possibly terminally impairs, recognition that the stimulus
is known when indeed it is a word (Figure 5, top left plot).
This initial behavior is not observed for the other two vari-
ants, P.,s and Py, which rapidly and successfully recognize,
for all stimuli, whether they are known or not. Overall, these
variants appear to have more stable dynamics, especially for
the initial portion where the distributions on perceived letter
are still close to uniform. This is mathematically clear, since
they both are scaled by the 2-norms of probability distribu-
tions on perceived letters.

However, P.,; and Py, also differ by whether or not they
involve the 2-norms of the probability distributions of the
known words. To explore this, we have conducted an addi-
tional experiment, in which we manipulated the quality lexi-
cal representations. In the previous experiments, words were
either known, with quasi-Dirac Delta distributions, or un-
known (not in Dy). Here, we add a set of “not very-well
known” words, that is to say, with more uncertain lexical rep-
resentations (P(L: | W') is 0.48 for the correct letter, and 0.02
for all 26 alternatives). Two new sets of 5-letter words were
randomly selected from the BLP, providing 100 “perfectly
known” words and 100 “not very-well known” words; non-
words were the same as in the previous experiment.

Simulation results are shown Figure 6. Overall, we ob-
serve that the P, variant has difficulty recognizing words
associated with uncertain distributions as being words (Fig-
ure 6, middle row, left plot). Indeed, at the end of simulation,
when an input pattern is very well perceived, and thus of very
low uncertainty, it is considered as not matching the predicted
pattern for the corresponding word, since this is of higher un-
certainty (even though they match with respect to the letters

indexed by the peaks of probability distributions). Measures
that instead correct for the uncertainty of compared distribu-
tions do not feature this issue, with P,.,s being the more robust
in this regard (Figure 6, middle plot).

In this experiment, the behaviors of the P.,; and P, vari-
ants are different. The P, variant appears as the more robust,
recognizing almost equally well words, independently of the
quality of their probabilistic representations in the lexicon.

Discussion

In this paper, we have proposed an original use of coherence
variables, that we call “Bayesian comparators”, to define a
new class of similarity operators in the probabilistic frame-
work. We have shown how this yields a model of familiar-
ity assessment based on the similarity between perceived and
predicted probability distributions. This model has also been
applied in a model of word recognition, where Bayesian com-
parators assess familiarity to detect whether a stimulus corre-
sponds to a known word or not. Experimental results suggest
that all proposed variants perform successfully; however, the
P.,s measure appears to yield the more desirable dynamics
and performance for familiarity assessment, overall.

Throughout this paper, we have defined and experimentally
illustrated three variants of the similarity measure provided
by Bayesian comparators. Our main goal was to anchor sim-
ilarity measures in probabilistic models, in order to make ex-
plicit assumptions that could underlie the measures. We have
shown that the inner product based similarity measure Piyer,
and thus familiarity assessment, could be interpreted as eval-
uating the probability that coherence variable A was equal to
1. An open issue remains, to anchor the two variants P,
and P, theoretically, in the same manner. Another issue
concerns the relation between the similarity measure and its
use in the predictive coding framework. Indeed, predictive
coding assumes a precise temporal organization between pre-
dictions, error computation and error propagation, whereas in
this paper, we have assumed that all these components would
happen at all time steps. This makes our model compatible
with predictive coding at an algorithmic level, although it is
not an implementation level model of predictive coding.

The probabilistic similarity measures that we have defined
suggest intriguing relations with other domains. We observe
that they only differ for non-Dirac Delta distributions. Indeed,
Figure 1 shows that they all consider that identical Dirac
Delta distributions are maximally similar, and different Dirac
Delta distributions are maximally different. In other words,
our similarity measures can be seen as probabilistic exten-
sions of the logical XNOR operator (the exclusive NOR, True
if and only if its two inputs are both True or both False). This
suggests that coherence variables implicitly involve a proba-
bilistic extension of one of the core logical operators. Indeed,
their definition, in Eq. (1), involves an equality constraint be-
tween the values of the variables they connect. Whether other
probabilistic constructs, or variations on coherence variables,
extend other logical operators is an open issue.
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