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Abstract

We construct Arnol’d cat map lattice field theories in phase space and configuration
space. In phase space we impose that the evolution operator of the linearly coupled maps
be an element of the symplectic group, in direct generalization of the case of one map. To
this end we exploit the correspondence between the cat map and the Fibonacci sequence.
The chaotic properties of these systems can be also understood from the equations of
motion in configuration space. These describe inverted harmonic oscillators, where the
runaway behavior of the potential compete with the toroidal compactification of the phase
space. We highlight the spatio-temporal chaotic properties of these systems using standard
benchmarks for probing deterministic chaos of dynamical systems, namely the complete
dense set of unstable periodic orbits, which, for long periods, lead to ergodicity and mixing.
The spectrum of the periods exhibits a strong dependence on the strength and the range
of the interaction.
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1 Introduction and overview

Low dimensional systems with few degrees of freedom have provided a fertile ground for the
development of the concepts and methods of deterministic chaos with their characteristic dis-
ordered behaviour at the classical and quantum level [1–4]. While the original focus of interest
centered around dissipative and Hamiltonian low dimensional systems, progress was quickly
followed by efforts to understand the complex dynamics of high dimensional systems consisting
of many coupled chaotic degrees of freedom [5–8]. They are spatially extended systems, which
can be driven away from equilibrium and exhibit spatio-temporal chaos (STC). They give rise
to diverse pattern formation [9, 10] as the result of their highly complex dynamical behavior.
STC models possess either continuous or discrete time dynamics (maps). The spatial degrees
of freedom are either discrete or continuous giving rise, respectively, to lattice dynamics or an
effective hydrodynamic description in terms of continuous fields. Such systems described are
described by their equations of motion: Partial differential equations, systems of coupled or-
dinary differential equations; or as coupled map lattices (CMLs) with continuous state spaces.
Another way is using cellular automata with discrete state spaces [11].

Indicators for chaos for spatiotemporal systems have been proposed–namely the finite am-
plitude Lyapunov exponents, covariant Lyapunov vector exponents [12], as well as benchmark
dynamical entropies, like the Kolmogorov-Sinai entropy [13,14].

While the approach to the problem of describing spatio-temporal chaos in coupled map
lattices is mostly numerical and a comprehensive understanding from the analytical side is, still,
lacking, there has been some activity recently in an effort to acquire an analytical understanding
of the dynamics of linear CMLs [15–18]. One aim of this program of research is to define
chaotic field theories made up of chaotic oscillator constituents, in an effort to provide a local
description of some of the coherent structures that emerge from the dynamics of continuous
fluid systems in the régime of weak turbulent flows [19]. However it isn’t clear, whether the
complexity of these structures is due to the known complex behavior of their constituents, the
result of the way they are coupled, or both. The reason is that the typical way for establishing
such a relation, namely the study of symmetries, has proven to be very difficult to follow for
these systems.

There are, however, cases where this approach is possible. Our present work focuses on the
systematic construction of a special class of CMLs, the lattice field theories of Arnol’d cat maps
in various dimensions, taking into account their symmetries in phase space–namely covariance
under symplectic transformations–and how these are related to the symmetries in configuration
space.

In the present paper we provide the classical framework for describing the dynamics of
chaotic oscillators via the dynamics of n, linearly coupled, Arnol’d cat maps (CACML), subject
to periodic boundary conditions. Their phase space is the torus T2n[Z]. and their dynamics is
represented by elements M of the symplectic group, Sp2n[Z]. This is the generalization for n
cat maps, of the symmetry properties of one cat map. Within this framework we can vary the
dimensionality of the lattice, the number of oscillators, the strength of their interactions as well
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as the range of the non-locality thereof.
We can therefore study in detail the classical chaotic properties of this system, since it’s

possible to obtain explicit expressions, that can be reliably evaluated. We focus, as an example,
on the classical spatio-temporal chaotic properties of CACML’s in one dimension, using a
benchmark of chaos of any chaotic system, namely, the set of all of its unstable periodic orbits [2,
20].

The periodic orbits of the CACMLs are classified by initial conditions, which have rational
coordinates in the toroidal phase space, with common denominator N. Upon varying N =
3, 5, 7, . . . , over the primes and, more, generally, the odd integers (even integers have subtle
issues, particularly in the quantum case [21, 22], so require special study) we obtain all the
periodic orbits (which are all unstable) [13]. For large N and for fixed size of the toroidal
phase space we can approach a scaling limit. For long periods the periodic trajectories lead to
ergodicity and strong mixing [13,14,23].

This limit can be subtle, already for one map [24].
In the case of translational invariant couplings we find explicitly: a) all the periodic orbits,

b) the Lyapunov spectra and c)the Kolmogorov–Sinai entropy of the CACMLs as a function of
the strength and the range of interactions. Armed with these analytic results we find that the
maximum Lyapunov exponent of these systems is an increasing function of both the coupling
constant and of the range of the interaction.

We provide also a method for determining the periods of the orbits based on the properties of
matrix Fibonacci polynomials. These periods are random functions of N and they have stronger
dependence on the coupling and the range of the interaction than in the non interacting case, i.e.
for the single cat map. We present several numerical examples in support of this observation.
The dependence of the periods on N provides information about the quantum spectra of these
systems, which deserve a study in their own right.

For the case of the single cat map, which corresponds to n = 1, a detailed study of the
periods, of their relation to the energy spectrum and its asymptotic properties for the quantum
system, can be found in ref. [25–28].

Now we would like to discuss our particular motivation for this study.
This derives from the realization that the physics of quantum black holes is a prime example

of a chaotic many-body system, when the microstates can be resolved. Therefore it has become
of topical interest to construct models for both the probes and for the near horizon geometry,
that is defined by the microstates. This is why a consistent description of chaotic field theories
has become a fascinating bridge that establishes novel relations between the subjects of interest
to the high energy community and the community of classical and quantum chaos. This can
be summarized as follows:

Black Holes (BH) are at present understood to be physical systems of finite entropy which,
for an observer at infinity, is described by the dynamics of the microstates of the black hole,
that live in the near horizon geometry. The chaotic dynamics of these microstates has new
features, such as fast scrambling and non-locality. Specifically it has been conjectured that
black holes are the fastest information scramblers in Nature [29–33], that exhibit unitary
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quantum evolution. This, in turn, motivated the search for models that can capture these
features. One class of such models builds upon the relation between the near horizon shock
wave geometries and of the so-called gravitational memory effects. In these models it seems,
indeed, possible–in principle–that the near horizon region of a black hole could form a chaotic
memory, i.e. a basin of purely geometrical data of all of its past and recent history, through the
’t Hooft mechanism of permanent space-time displacements caused by high energy scattering
events of infalling wave packets [34–41]. In the language of refs. [42–44] such data can be
identified with the soft hair of the BH, whose origin is the infinite number of conservation laws,
described by the BMS group. Proposals for a chaotic dynamics, within a discretized spacetime,
for the microscopic degrees of freedom of the stretched horizon have been discussed for quite
some time in the literature [45–50].

Our contribution to this quest started with the study of single particle probes, sent by
observers at infinity, in order to learn about the near horizon AdS2 geometries of black holes,
taken as discrete and nonlocal dynamical systems [51–53].

More specifically we have shown how the so-called Arnol’d cat maps, acting in a AdS2

discrete near horizon geometry, can capture the properties of its single particle probes. We
constructed explicitly an exact discrete version of AdS2/CFT1 correspondence with chaotic and
mixing dynamics for Gaussian single-particle wave packets, that is shown to provide an example
of the so–called “Eigenstate Thermalization Hypothesis” [54]. Finally, we have demonstrated
that the model for their discrete and chaotic [55], near horizon geometry admits a continuum
limit [24], where the smooth classical geometry is recovered.

The long term objective of our recent work is to provide models of non-local chaotic quantum
dynamics of the tuneable rate of mixing(and its quantum avatar, scrambling) for the degrees of
the horizon itself by n−particle systems. Our conjecture is that this can be achieved through
the construction of the quantum CMLs of Arnol’d cat maps [56].

Therefore, while our previous work focused on the properties of single particle probes of
the near horizon geometry, in the present work, we construct many-body systems, that possess
the necessary features expected of the interacting black hole microstates themselves–namely,
non-locality, chaos and strong mixing (scrambling). Therefore these many-body systems can
be considered as effective models of the dynamics of the near horizon geometry itself.

Below we present the plan and summarize the results of the paper.
In section 2 we present the general setting of the dynamics of systems of n particles with

evolution maps that are integral toral automorphisms of the 2n dimensional phase space,T2n

i.e elements of the symplectic group Sp2n[Z], acting on points of the torus T2n of radius R ≡
1 mod 1.

The completely chaotic and mixing dynamics is described by the maximally hyperbolic
elements of this group i.e. whose eigenvalues are pairs of positive real numbers,(λ > 1, 1/λ < 1),
thus decomposing the phase space into symplectic planes with hyperbolic motion [3, 13,57].

In section 3 we discuss how to obtain elements of Sp2n[Z],which describe n coupled Arnold
cat maps that are maximally hyperbolic. Starting from the most general way for linearly
coupling Fibonacci integer sequences, we construct a family of coupled Arnold cat maps lattices

3



(CACML), in any dimension d = 1, 2, .. imposing symplectic interactions of tuneable non-
locality and we show that they are all maximally hyperbolic toral automorphisms.

In section 4 for the case of translation invariant couplings, in d = 1, we determine explicitly
all the orbits of the CACML (periodic and non periodic).

In section 5 we discuss further measures of STC, namely the Lyapunov spectra and the
Kolmogorov-Sinai entropy and find that the latter scales as the volume of the system. This
property is a significant check of the consistency of our calculations and shows that the CACML
defined in this way does have sensible thermodynamics. We observe also that the Kolmogorov-
Sinai entropy is a good proxy for the mixing time(scrambling) of the dynamical system: The
bigger the K-S entropy the faster the mixing time, so tuning the K-S entropy with the pa-
rameters of the system we can tune its mixing time. The corresponding property for the
quantum system pertains to the entanglement entropy of subsystems and its time evolution (cf.
also [58, 59]).

We discuss the dependence of the Lyapunov spectra on the dimensionality,the size of the
system, n, the strength G, and the range, l, of the interactions.

In section 6 we determine the periods of the periodic orbits.
To do that we discretize the toroidal phase space by considering all the initial condi-

tions, which are rational numbers with a common demoninator N. This new phase space we
call T2n[N ]. In this–discrete–phase space the toral automorphisms are elements of the group
Sp2n[ZN ]. The set of all periodic orbits of the corresponding dynamical systems on the contin-
uous phase space T2n[R], are given by the set of all different orbits of the CACML in T2n[N ]
mod N, by considering all possible values of N.

The spectra of the periods T [N ] of the CACML are the lengths of its orbits and they are
random functions of N. They are determined by properties of the matrix Fibonacci polynomials
mod N.

We study numerically the spectrum of the periods, for fixed values of the number n of
coupled Arnol’d cat maps, the modular integer N, the strength and the range of the interactions.
We observe, as might be expected, a random and stronger dependence on N for larger values
of n,as well for increasing values of the strength and the range of interactions.

In section 7 we present our conclusions, possible applications, as well as open problems.
In appendix A we review, for completeness, some useful properties of the Fibonacci polyno-

mials and their matrix generalizations and in, appendix B we determine and discuss possible
conserved quantities of the ACML systems, which can be expressed as quadratic functions
of the position and momenta of the system.The corresponding conservation laws restrict the
volume of the toroidal phase space available to the trajectories of the system and lead to the
vanishing of some of the Lyapunov exponents of the system (namely through eigenvectors of
the evolution operator with eigenvalue one).
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2 Dynamics of symplectic automorphisms of the toroidal

phase space T2n

In this section we provide a short review of the mathematical tools, that are necessary for
studying the dynamics of n particles, in a toroidal phase space, T2n = R2n/(Zn × Zn). The
discrete time evolution will be described by discrete time maps, M, that are elements of the
symplectic group, Sp2n[Z], that act on the toroidal phase space as

xm+1 ≡ xmMmod 1 (2.1)

at the m–th time step (m = 0, 1, 2, . . .), along with the initial condition xm=0 = x0 ∈ T2n. We
have taken the length of the sides of the torus equal to 1.

In this notation, xm = (qm,pm), where qm and pm are the positions and the momenta of
the n particles at time step m.

By definition any element M ∈ Sp2n[Z] preserves the (symplectic) inner product, 〈x′,x〉 of
any two vectors x and x′,

〈x′,x〉 =
n∑
I=1

(qIp
′
I − q′IpI) (2.2)

This inner product can be rewritten as

〈x′,x〉 = x′
T
Jx (2.3)

where J is the symplectic matrix

J =

(
0 −In×n

In×n 0

)
(2.4)

We can decompose M in blocks of n× n (integer) matrices

M =

(
A B
C D

)
(2.5)

The invariance of J under the action of any element M ∈ Sp2n[Z],

J = MTJM (2.6)

implies the constraints
ATD− CTB = In×n
ATC = CTA
BTD = DTB

(2.7)

The second and third constraints express that ATC and BTD are symmetric, integer–valued,
matrices.
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To visualize the motion, in the toroidal phase space, T2n, under the action of M, it is useful
to decompose it into “simpler” actions. For it is possible to show that any matrix M ∈ Sp2n[Z]
can be decomposed into the product of three, simpler, symplectic matrices, that generate the
symplectic group, namely

M =

(
In×n 0
SL In×n

)(
UT 0
0 U−1

)(
In×n SR

0 In×n

)
(2.8)

where SR,L are integer symmetric matrices and U an invertible, integer matrix, which can be
determined, given the matrices A,B,C,D, as follows:

U = AT

SL = CA−1

SR = A−1B
(2.9)

These relations hold, iff A is invertible, with integer entries. If this isn’t the case, it is possible
to redefine M so that A does have the desired properties.

This decomposition will be useful, also, for the study of the quantum mechanics of this
system, since the properties of the unitary evolution operator of the latter are, indeed, those of
the metaplectic representation of the symplectic group [51,60].

An explicit example is that of the single Arnol’d cat map (n = 1), which can be written as

M =

(
1 1
1 2

)
=

(
1 0
1 1

)
12×2

(
1 1
0 1

)
(2.10)

and the exercise we shall solve in the following sections is to find the generalization for n such
maps.

Let us now consider the initial condition, x0 = (k1/N, k2/N, . . . , kn/N, l1/N, l2/N, . . . , ln/N),
with 0 ≤ kI ≤ N, 0 ≤ lI ≤ N and kI , lI , N integers. Since the length of each side of the hy-
percube that defines T2n is taken equal to 1, the evolution equation (2.1) can be rewritten
as

(k, l)m+1 = (k, l)mMmodN (2.11)

The set of vectors (k, l) modN, defines the lattice ZnN × ZnN which can be identified with
T2n[N ]. Since the number of rational points of T2n, with fixed denominator N , is equal to N2n,
the matrix MmodN , which belongs to the finite group Sp2n[ZN ], has a finite period, T [N ],
where T [N ] is the smallest integer such that MT [N ] ≡ In×n modN .

This period does not depend, generically, on the initial condition and, thus, defines the
length of the corresponding periodic orbit. It does depend “randomly” on N and, for large N ,
there exist “short” periodic orbits, for which T [N ] << N. It is known, for the case n = 1 [61]
and M the Arnol’d cat map, that the smallest period corresponds to N a Fibonacci integer, fq.
In this case, T [fq] = 2q.

What is significant about the period, T [N ], of the–hyperbolic–map, M, is that it controls
the rate of “spreading”, with time, of a localized distribution of initial conditions and, due
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to the compactness of the phase space, the rate of mixing [61]. Although, for finite N , there
isn’t any rigorous notion of ergodicity and of mixing, we can get important information, for
reasonably large values of N , about the mixing time, by considering evolution times equal to
half of the period. In the case of the Arnol’d cat map, for N a Fibonacci integer, the mixing
time, tmixing scales as log N .

It is this property that implies that the dynamics of the Arnol’d cat map is chaotic and
that it is possible to acquire information about the chaotic behavior by studying orbits whose
period takes “large” values. The reason is that it is known that chaotic orbits, whether for
Hamiltonian or non–Hamiltonian systems, essentially can be identified as unstable periodic
orbits of infinite period [2, 17]. For chaotic systems, described by the dynamics of symplectic
linear maps, i.e. elements of Sp2n[Z] and phase space T2n, these linear maps must be hyperbolic,
i.e. their eigenvalues must be real and positive.

One consequence of the above is that these eigenvalues come in pairs, (λ, 1/λ), with λ > 1.
These pairs define planes in the 2n−dimensional phase space, spanned by the corresponding
eigenvectors, where the flow expands along the eigenvector, corresponding to the eigenvalue λ
and contracts along the eigenvector, corresponding to the eigenvalue 1/λ.

Closing this section we recall, for completeness, properties of the finite group Sp2n[ZN ].
The mod N reduction of the symplectic group, Sp2n[Z], defines the finite symplectic group,

Sp2n[ZN ] as follows:
Sp2n[ZN ] = {MmodN,∀M ∈ Sp2n[Z]} (2.12)

The mod N reduction is a homomorphism from Sp2n[Z] to Sp2n[ZN ], with kernel the principal
congruent subgroup,

Γsp[N ] = {M ∈ Sp2n[Z] |M ≡ I2n×2n modN } (2.13)

We can describe the decomposition of the finite group Sp2n[ZN ] into the direct product of
finite groups of the form Sp2n[Zpk ], where p is a prime and k is a positive integer, corresponding
to the decomposition in prime factors of N

N =
L∏
l=1

pkll (2.14)

Indeed, using the Chinese Remainder Theorem [62], we can show that

Sp2n[ZN ] =
L⊗
l=1

Sp2n

[
Z
p
kl
l

]
(2.15)

This allows to obtain the order of the group, Sp2n[ZN ], since the order of each term of this
decomposition is known, namely [63],

ord
(
Sp2n[Zpk ]

)
= p(2k−1)n

2+(k−1)n
n∏
i=1

(
p2i − 1

)
(2.16)

.
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3 Interacting Arnol’d cat maps from symplectic cou-

plings of n, k−Fibonacci sequences
In the previous section we defined evolution operators Sp2n[Z] 3 M : T2n → T2n, that act on
the points of the 2n−torus. These evolution operators describe the dynamics in phase space of
n oscillators, each defined on a lattice of n sites. However this construction doesn’t show how
the oscillators are actually coupled. So we must show how it is possible to obtain the evolution
operator of n oscillators, in terms of the evolution operator of one oscillator, how the phase
space of one is embedded in the phase space of all.

This is the subject of the present section.
We shall show how to couple n Arnol’d cat maps. We know that the evolution operator for

each is an element of Sp2[Z], the set of rational points of a 2-torus, T2. The total phase space of
the system will be T2n, the 2n−dimensional torus and the proposed dynamics will be described
by appropriate elements of the symplectic group, Sp2n[Z].

The idea is to exploit the known correspondence between the Arnol’d cat map and the
Fibonacci sequence and describe the coupling between the Arnol’d cat maps by the coupling
between the sequences, so that the evolution operators of n coupled Arnol’d cat maps can be
understood as iteration matrices of n coupled generalized Fibonacci sequences.

Coupled Fibonacci sequences have been considered in the literature, for instance in [64–66].
However, in these papers the possible applications to Hamiltonian dynamics were not the topic
of interest and, moreover, the corresponding maps were not symplectic.

In the literature it has been a matter of debate, how to couple together Arnol’d cat maps.
What we propose in this paper is to define the coupling between Arnol’d cat maps, through
the coupling between generalized Fibonacci sequences, by requiring that the resulting map be
symplectic.

To understand how this works, let us show how this works for two maps.
We shall define the coupling between two n = 2 cat maps using the coupling between n = 2

generalized Fibonacci sequences, {fm} and {gm} (but we write the expressions in a way that
generalizes immediately to arbitrary n), as follows:

fm+1 = a1fm + b1fm−1 + c1gm + d1gm−1
gm+1 = a2gm + b2gm−1 + c2fm + d2fm−1

(3.1)

where the ai, bi, ci, di are integers, f0 = 0 = g0 and f1 = 1 = g1 are the initial conditions
and m = 1, 2, 3, . . .. A byproduct of our analysis will be how to define the coupling between
k−Fibonacci sequences (in particular the case k = 1, which corresponds to the case of two
Arnol’d cat maps).

Based on the properties of symplectic matrices, that we reviewed in the previous section,
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we write these equations in the following matrix form

Xm+1 ≡


fm
gm
fm+1

gm+1

 =


0 0 1 0
0 0 0 1
b1 d1 a1 c1
d2 b2 c2 a2




fm−1
gm−1
fm
gm


︸ ︷︷ ︸

Xm

(3.2)

In this expression we now focus on the 2×2 matrices

D ≡
(
b1 d1
d2 b2

)
C ≡

(
a1 c1
c2 a2

)
(3.3)

in terms of which the one–time–step evolution equation (3.2) can be written in block form as

Xm+1 =

(
0n×n In×n
D C

)
Xm (3.4)

In analogy with the case of a single Fibonacci sequence and its relation with the Arnol’d cat
map, we impose the constraint (cf. (A.3))(

0n×n In×n
D C

)T

J

(
0n×n In×n
D C

)
= −J (3.5)

This condition implies that
D = In×n C = CT (3.6)

Therefore a1 = k1, a2 = k2, c1 = c2 = c.
In terms of these parameters, the recursion relations take the form

fm+1 = k1fm + fm−1 + cgm
gm+1 = k2gm + gm−1 + cfm

(3.7)

and can be identified as describing a particular coupling between a k1− and a k2−Fibonacci
sequence (cf. appendix A). This particular coupling is determined by the condition that the
square of the evolution matrix is an element of Sp4[Z]:

A =

(
0 1
1 C

)
⇒ M = A2 =

(
1 C
C 1 + C2

)
(3.8)

The role of the coupling is played by the integer c. In components:
0 0 1 0
0 0 0 1
1 0 k1 c
0 1 c k2


2

=


1 0 k1 c
0 1 c k2
k1 c c2 + k21 + 1 c(k1 + k2)
c k2 c(k1 + k2) c2 + k22 + 1

 (3.9)
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and represents the discrete time evolution matrix for the coupling of two “generalized” Arnol’d
cat maps.

We remark that, if c = 0 and k1 = k2 = 1, we recover two, decoupled, Arnol’d cat maps;
if c 6= 0, and k1 = k2 = 1 we can, thereby, identify two “coupled” Arnol’d cat maps, while, if
k1 = k2 = k, the system decouples into two, independent, (k + c), resp. (k − c) cat maps, for
fm ± gm.

The generalization to n cat maps proceeds as follows: We choose two diagonal matrices, of
positive integers, KIJ = KIδIJ and GIJ = GIδIJ , with I, J = 1, 2, . . . , n. If KI = 1, the cat
maps are Arnol’d cat maps, with their coupling defined by the vector GI .

One way to write the coupling between the maps is, once more, to work with the (gen-
eralized) Fibonacci sequences. To this end, we define the translation operator, P and, for
n > 2, we can distinguish between a “closed” and an “open” chain, of maps, by defining
PI,J = δI−1,J modn for the former (and setting P1,n = 0 = Pn,1 for the latter). The periodicity
is expressed by the fact that Pn = In×n. Moreover, P is orthogonal, since PPT = In×n.

Now we can define the coupling matrix for n sequences as

C = K + PG + GPT (3.10)

The corresponding 2n× 2n evolution matrix, A is given by

A =

(
0n×n In×n
In×n C

)
(3.11)

and satisfies the relation ATJA = −J. Its square,

M = A2 =

(
In×n C
C In×n + C2

)
(3.12)

This satisfies the relation MTJM = J, showing that M ∈ Sp2n[Z].
Since A is symmetric, (from the property that C = CT), M is positive definite and its

eigenvalues come in pairs, (λ, 1/λ), with λ > 1. This property implies that, for all matrices K
and G this system of coupled maps is hyperbolic.

It is possible to decompose the classical evolution matrix M in terms of the generators of
the symplectic group (2.8)

M =

(
In×n 0n×n
C In×n

)(
In×n C
0n×n In×n

)
(3.13)

Moreover each factor generates, for any symmetric, integer, matrix C, an abelian subgroup of
Sp2n[Z]. These factors are called “left” (resp. “right”) translations.

Eq. (3.12) is, indeed, a key result of our paper, since it shows how the evolution operator of
n cat maps is defined from the evolution operator of the individual maps, in a way consistent
with symplectic covariance.
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If C = In×n, we have n decoupled Arnol’d cat maps, while the off-diagonal elements of C
describe their interaction. If C is diagonal, we have decoupled cat maps and the band structure
of C encodes the (non-)locality of the interactions. (This will become clearer when we shall
discuss the dynamics in configuration space.)

An important special case arises if we impose translation invariance along the chain of maps,
i.e. KI = K and GI = G for all I = 1, 2, . . . , n.

As an example of the translation invariant closed chain, we present below the matrix C, for
n = 3:

C =

 K G G
G K G
G G K

 (3.14)

The corresponding evolution map, A, that describes three, coupled, K−Arnol’d cat maps, is a
6× 6 matrix, given by the expression

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 K G G
0 1 0 G K G
0 0 1 G G K

 (3.15)

and the symplectic map, M = A2, of three, coupled K−Arnol’d cat maps, is given by the
expression

M =


1 0 0 K G G
0 1 0 G K G
0 0 1 G G K
K G G 2G2 +K2 + 1 G2 + 2GK G2 + 2GK
G K G G2 + 2GK 2G2 +K2 + 1 G2 + 2GK
G G K G2 + 2GK G2 + 2GK 2G2 +K2 + 1

 (3.16)

It is interesting that the coupling G appears, not only, in the off-diagonal 3 × 3 blocks, but,
also, in the diagonal elements of the lower block. On the other hand, setting G = 0 we recover
the case of three, decoupled “k−Arnol’d” cat maps.

Let us now consider the case of the open chain. The only change involves the operator P,
which, now, must be defined as PIJ = δI−1,J , for I, J = 1, 2, . . . , n. Due to the absence of the
mod n operation, the “far non–diagonal” (upper right and lower left) elements are, now, zero.
This express the property that the n−th Fibonacci is not coupled to the first one (and vice
versa).

For both, closed or open, chains, we observe certain algebraic properties of the evolution
matrix, A.

The k−Fibonacci sequence has the important property that the elements of the matrix
A(k)m are arranged in columns of consecutive pairs of the sequence. We shall show that this
property can be generalized for n interacting k−Fibonacci sequences as follows:
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Theorem 1. The m−th power of the evolution matrix, A (cf. eq. (3.11)) can be written as

Am =

(
Cm−1 Cm
Cm Cm+1

)
(3.17)

where C0 = 0n×n, C1 = In×n and Cm+1 = CCm + Cm−1, with m = 1, 2, 3, . . .. This matrix
recursion relation generalizes to matrices the k−Fibonacci sequence for numbers, holds for any
matrix, C and, in particular for the (symmetric, integer) matrix C, defined by eq. (3.10).

Proof. The proof is by induction. For m = 1 it is true, by definition. If we assume it holds
for m > 1, then, by the relation Am+1 = A · Am, we immediately establish that it holds for
m+ 1.

It is straightforward to generalize this construction, to take into account interactions between
next-to–nearest neighbors, and so on. For the case of the closed chain, the most general
construction is encoded in the matrix C. Its definition (3.10) can be written as

C = KIn×n +

[n/2]−1∑
l=1

(
PlGl + Gl

[
PT
]l)

(3.18)

The label l refers to the neighborhood: l = 1 labels the nearest neighbors, l = 2 the next-to-
nearest neighbors and so on. The farthest neighbors, on the closed chain, are [n/2] − 1 sites
apart.

The matrices Gl are all diagonal, with integer entries and represent the couplings between
the maps, at different sites of the lattice. By construction, the matrix C is symmetric, therefore
the evolution matrix M ∈ Sp2n[Z].

Imposing, once more, translation invariance, the matrices Gl = GlIn×n, therefore, C becomes

C = KIn×n +

[n/2]−1∑
l=1

Gl

(
Pl +

[
PT
]l)

(3.19)

The chaotic properties of the corresponding matrix M, depend strongly on how Gl depends on
l; namely, whether Gl decreases, is independent of, or increases with l.

As an illustration, we show the matrix C for n = 7, that can describe couplings up to third
nearest neighbors:

C =



K G1 G2 G3 G3 G2 G1

G1 K G1 G2 G3 G3 G2

G2 G1 K G1 G2 G3 G3

G3 G2 G1 K G1 G2 G3

G3 G3 G2 G1 K G1 G2

G2 G3 G3 G2 G1 K G1

G1 G2 G3 G3 G2 G1 K


(3.20)
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Here we have assumed translation invariance, K = KIn×n and we remark that all pairs of
symmetric diagonals contain identical elements, G1, G2, . . . , G[n/2]−1 = G3 (for n = 7).

Another direction involves considering higher dimensional lattices of coupled Arnol’d cat
maps.

For example the case of the square lattice (with periodic boundary conditions) can be
described in the following way:

Let f
(I,J)
m be the family of sequences, at timestep m, where I, J = 0, 1, 2, . . . , n−1. Therefore

we have n2 Fibonacci sequences. The neighbors of the site (I, J) are taken as (I ± 1, J)
and (I, J ± 1). The translation operators, that connect any site with its neighbors, are P ⊗
In×n, P

T ⊗ In×n, In×n ⊗ P and In×n ⊗ PT. It is easy to convince oneself that these translation
operators determine the order of the n2 Fibonacci sequences along a vector of length n2. More
explicitly, the ordering is the “lexicographic” ordering. The second index, J , of f

(I,J)
n is the

“fast” index, while the index I is the “slow” index. In row form the ordering is the following:
(f

(0,0)
m , f

(0,1)
m , . . . , f

(0,n−1)
m , f

(1,0)
m , f

(1,1)
m , . . . , f

(1,n−1)
m , . . . , f

(n−1,0)
m , f

(n−1,1)
m , . . . , f

(n−1,n−1)
m ).

The corresponding matrix C, which encodes the couplings between nearest neighbors, con-
tains two, diagonal, n2×n2, matrices, one of which is K, just as for the case of the chain, along
with another matrix G, which contains all the nearest–neighbor couplings.

Schematically,

C = K + (P ⊗ I + I ⊗ P )G + G
(
PT ⊗ I + I ⊗ PT

)
(3.21)

In analogy with the one–dimensional case, interactions involving larger neighborhoods can be
described by replacing P, respectively PT, by P l, respectively [PT]l.

Higher dimensional (hypercubic) lattices of Arnol’d cat maps can be described in the same
way.

In summary we have constructed the evolution operator for n Arnol’d cat maps in a way
that is consistent with its action as an element of Sp2n[Z] on the torus T2n and have shown how
it is built up from the evolution operator of the individual maps.

If the coordinates of the initial condition are rational, then, as we have explained, the mod
1 operation, which expresses the fact that the action takes place on the torus, is replaced
by the mod N operation, where N is the least common multiple of the denominators of the
coordinates. These symplectic maps are all elements of Sp2n[Z], since the matrices K and Gl
are all integer–valued. Applying the restriction of the mod N operation, these maps belong to
the group Sp2n[ZN ] and act on the toroidal lattice T2n[N ]. As noted before, all the orbits will
be periodic, with period T [N ] of the corresponding map M (3.12).

The next step in the study of the dynamics of the map, M, entails computing its spectrum–
from which we can deduce the Lyapunov exponents and hence the Kolmogorov–Sinai entropy–
and its eigenvectors. This calculation is facilitated by studying the equations of motion in
configuration space, where, indeed, locality makes more sense than in phase space.

In the next section, therefore, we shall construct, explicitly, starting from Hamilton’s equa-
tions, the corresponding Newton’s equations, which describe the discrete time evolution of the
position variables, as well as their solutions. For the case of translation invariant couplings, i.e.

13



K and G constant (first, for nearest–neighbor interactions, and, subsequently, for any range
1 < L ≤ [n/2] − 1), they take into account the degree of locality of the interactions through
their dependence on L, the number of interacting neighbors. L = 1 means nearest-neighbor
interactions and so on. A particularly striking property of the equations in configuration space
is that these n coupled maps, describe a system of n coupled inverted harmonic oscillators that
don’t exhibit runaway behavior, since this is “cured” by the compactness of the phase space.
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4 From Hamilton’s to Newton’s discrete time equations

The classical equations of motion
xm+1 = xmM (4.1)

where m is the iteration timestep of the map, can be written in terms of positions, qm and
momenta, pm as

(qm+1,pm+1) = (qm,pm)

(
1 C
C 1 + C2

)
qm+1 = qm + pmC
pm+1 = qmC + pm

(
1 + C2

) (4.2)

Since C is symmetric, we can unclutter notation considerably by omitting the “transpose”
symbol. Henceforth the row vectors are written without it:

We may solve the first of the last two equations for pm,

pm = qm+1C
−1 − qmC

−1 ⇔ pm+1 = qm+2C
−1 − qm+1C

−1 (4.3)

and insert the result in the second, in order to obtain a recursion relation for qm only–i.e.
Newton’s equations of motion:

qm+1 − 2qm + qm−1 = qmC
2 (4.4)

This equation describes the discrete time evolution of n coupled Arnol’d cat maps, using only
the coordinates in position space. It highlights that the locality properties of the system are
encoded in the band structure of the symmetric matrix C.

This procedure assumes that C is invertible; which fails to hold when C has a zeromode, that
corresponds to a conserved quantity. In this case, the evolution matrix, M, has an eigenvalue
equal to 1 (for each zeromode). This, in turn, implies that, if we choose as initial conditions
the zeromode itself, this will not evolve in time.

However we do not need to assume that C is invertible, in order to obtain eqs. (4.4).
In the following, we shall consider the case of the non–zero modes and discuss the zeromodes

separately.
In the subspace of the non-zero modes, the matrix C2 is, by construction, positive definite

and eq. (4.4) describes coupled inverted harmonic oscillators–the coupling is repulsive. The
interest for this system stems from the fact that the phase space of each of these particles is a
two–dimensional torus, so the motion is strongly chaotic and mixing (cf. also [59]).

We now decouple the modes of Newton’s equations and diagonalize C by (finite) Fourier
transform, F†CF ≡ D where FIJ = e2πiIJ/n/

√
n ≡ ωIJn /

√
n. We define the mode variable rm by

qm ≡ rmF. The mode variable rm satisfies Newton’s equation of motion in the form:

rm+1 − 2rm + rm−1 = rmD
2 (4.5)

where DIJ = δIJDJ , with

DJ = K + 2G cos
2πJ

n
(4.6)
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for the case of nearest–neighbor interactions. We note here that, if n is even, then the mode
J0 = n/2 has zero eigenvalue, when K = 2G. If n is odd, on the other hand, a zeromode cannot
exist, because K and G are positive integers.

It is possible to include the case of couplings beyond nearest–neighbors, i.e. Gl, with
1 < l ≤ (n− 1)/2, as follows:

DJ = K + 2

n−1
2∑
l=1

(
Gl cos

2πlJ

n

)
(4.7)

We shall now determine the discrete time evolution of the normal modes of the chain, by
setting (rm)I = rI,m ≡ δIJρ

m
I aJ (where I, J = 1, 2, . . . , n). We duly find a quadratic equation

for ρI :

ρ2I − (2 + D2
I)ρI + 1 = 0⇔ ρ±,I =

2 + D2
I

2
± |DI |

2

√
D2
I + 4 (4.8)

Thus the general solution, for rm can be written as

rm = a+ρ
m
+ + a−ρ

m
− (4.9)

and the solution, in terms of qm, is
qm = rmF (4.10)

The initial conditions are (q0,p0) = (q0, q1C
−1 − q0C

−1) or, equivalently, (q0, q1).
We can express the coefficients, a±, in terms of the modes, r0 and r1 (where ρ± are the

diagonal matrices, with elements ρI,±)

r0 = a+ + a−
r1 = a+ρ+ + a−ρ−

⇔ a+ = (r1 − r0ρ−) (ρ+ − ρ−)−1

a− = (r0ρ+ − r1) (ρ+ − ρ−)−1
(4.11)

These equations, of course, only hold for the non-zero mode sector, since they degenerate for
the zeromodes.

For the zeromodes (rm)I = (r0)I and, similarly, for the corresponding zeromodes of the
momenta.

By defining ν± ≡ F†ρ±F, we obtain the exact solution of eq. (4.4), for the discrete time
evolution of the positions, qm in the form

qm =
[
(q0ν+ − q1) ν

m
+ + (q1 − q0ν+) νm−

]
(ν+ − ν−) (4.12)

We notice here that, for initial conditions, (q0, q1) integer vectors, qm will be integer, also, for
all times.

This is obvious, since the coupling matrix, C, appearing in eq. (4.4) is integer–valued.
Studying the periodic trajectories, we restricted the initial conditions to be integer vectors–

mod N. In order to find, at any time step, m, the position qm inside the torus T2n[ZN ] we have
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to realize mod N reduction in eq. (4.12). The modes are coupled, in position space, through
the matrices ν±. In components, these read

(ν±)IJ = F†IM (ρ±)MK FKJ =
1

n
ω(J−I)K
n (ρ±)K (4.13)

since ρ± are diagonal.
We remark that ν± are real, symmetric and positive definite matrices since (ρ±)K = (ρ±)n−K ,

for K = 0, 1, 2, . . . , n− 1 and their product ν+ν− = In×n , since ρ+ρ− = In×n.
Having determined explicitly all the periodic orbits of the system, we shall now study the

spectrum of the Lyapunov exponents.
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5 Tuneable non-locality, Lyapunov spectra and K-S en-

tropy

In this section we shall obtain analytic expressions for the Lyapunov spectra and the Kolmogorov–
Sinai entropy, based on the calculations of the previous sections and we shall discuss their
significance for the mixing (scrambling) properties of the ACML chaotic systems.

Let us start with the spectrum of the Lyapunov exponents, λI , I = 0, 1, 2, . . . , n− 1, which
characterize the spatio-temporal chaotic properties of the chain.

We shall consider two cases:

1. The case of nearest neighbor (nn) interactions, viz. when Gl = G for l = 1 and 0 for
l > 1.

2. The case of longer range interactions, viz. when Gl = 0, for l > L,L = 2, 3, .., [(n− 1)/2].

In both cases, the Lyapunov exponents are defined by cf. (4.8),

λ±,I = log ρ±,I = log

{
2 + D2

I

2
± |DI |

2

√
D2
I + 4

}
(5.1)

In general, the DJ are given by the expression

DJ = K + 2

[n−1
2

]∑
l=1

(
Gl cos

2πlJ

n

)
(5.2)

In the first case, typical density plots for the spectra are shown in fig. 1.
In the second case, we shall consider uniform couplings, viz. Gl = G, for l = 1 to l = L <

(n− 1)/2 and Gl = 0 for l > L.
This particular choice is interesting for two reasons: First, we can compute the sum explic-

itly, viz.

D
(L)
J = K + 2G

sin(JLπ/n)

sin(Jπ/n)
cos(π(L+ 1)J/n) (5.3)

for J = 1, 2, . . . , n − 1 (and 1 ≤ L ≤ (n − 1)/2). The case J = 0 must be treated separately,

since D
(L)
0 = K+2GL. A typical example for the density plot of the spectrum of the Lyapunov

exponents in this case, is shown in fig. 2.
An important consistency check of our calculations is that the sum of the positive Lyapunov

exponents, for large values of n, is a linear function of n. Indeed this sum can be identified with
the rate of entropy production, which is known as the Kolmogorov–Sinai entropy [67,68].

SKS =
n−1∑
I=0

λ+,I (5.4)

18



Figure 1: Histogram of the sorted Lyapunov spectra, of λ
(K)
+,I vs. I = 0, 1, 2, . . . , n − 1, for

n = 100, G = 1, nearest-neighbor interactions–L = 1–and K = 1, 2, 3.

Figure 2: Histogram of the sorted Lyapunov spectra, λ
(L)
+,I , vs. I = 0, 1, 2, . . . , n−1, for uniform

couplings, namely, K = 3, Gl = G = 1, n = 101 and L = 1, 2, 3.
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Figure 3: The Kolmogorov–Sinai entropy, SKS, of eq. (5.4) as a function of the chain length,
n = 5 − 101, for K = 1, 2, 3 and G = 1. We remark deviations from linear behavior at small
chain lengths, that become negligible at larger lengths.
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We plot it, for the same values of K and G as above, for nearest–neighbor interactions, L = 1,
as a function of the length of the chain, from n = 3 to n = 100, in fig. 3. We remark that, for
small sizes, there are deviations from linear behavior, that takes over at large sizes. We observe
that the slope of the K-S entropy, is an increasing function of K.

For longer-range, uniform interactions, L = 5, the corresponding K-S entropy is displayed
in fig. 4.

Figure 4: Kolmogorov–Sinai entropy, for n = 5 − 101 Arnol’d cat maps, K = 3, G = 1 with
ranges L = 1 and L = 5.

Let us discuss now the importance of the above typical behavior of the Lyapunov spectra and
the K-S entropy. In the examples we considered above we notice the following four properties
of the ACML systems.

First the increase of the average magnitude of the Lyapunov exponents as functions of the
size of the system ,n,the coupling constant G and the constant K which plays a role for the
mass of the coupled chaotic units, i.e.the Arnold cat maps.

Second the shape(curvature) of the Lyapunov spectra is tuneable, i.e we may control if we
have many large or many small Lyapunov exponents or a flat region in the middle.

Third the increase of the slope of the K-S entropy as a function of K of the system, for
fixed G and nearest-neighbor interactions.

Fourth–somewhat surprisingly–the long range interactions, generically, do not increase the
average magnitude of the Lyapunov exponents and consequently the K-S entropy–this can be
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understood as a result of the oscillations in the spectra of the Lyapunov exponents.
All these four properties are important for the tuneability of the mixing properties of the

system.
This system of n−coupled chaotic units (ACM) can be proven by general theorems that it

is mixing, because it is ergodic and it has a compact-bounded phase space, the 2n dimensional
torus. The mixing time of the system is defined as the logarithm of the deviation from the
uniform distribution in time T for an initially chosen probability distribution in the phase
space,divided by the time T, in the large T limit.

The problem of the calculation of the mixing time is an interesting exercise, whose solution,
for the present system, will be described in detail in a future publication [69]. For the case of
n = 1 it is equal to the 1/logarithm of the golden ratio [70]. For n > 1 it is expected to be
proportional to 1/SK−S.

In general we would expect that the mixing time is faster, the greater the K-S entropy, but
there are known counterexamples depending on the choice of the initial probability distribu-
tion [71].

For quantum systems there is the conjecture, as we discussed in the introduction, that the
black holes are the fastest scramblers of the universe and their scrambling time is proportional
to the logarithm of their entropy. However, whether this scrambling time can be identified with
the mixing time of the quantum dynamical system is an open question and different scenaria
have been proposed [72].
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6 The spectra of periods of ACML systems

In this section we study the problem of finding the spectrum of the periods of the evolution
operator M of n coupled Arnol’d cat maps mod N . They are expected to be a random function
of N ; however, for special values of N, a thorough along the lines of Falk and Dyson [61], which
has been done only for single cat map–n = 1–can only lead to bounds and, only in some cases,
to exact expressions.

In this section we shall present an algorithm for finding the period of the evolution operator
of n cat maps, using properties of the matrix Fibonacci polynomials.

Since the dynamics is that of a system of coupled, “inverted” harmonic oscillators–that are,
however, constrained to a (compact) toroidal phase space, T2n[N ]–we expect that this system
describes maximally chaotic and mixing motion.

To be concrete consider the action of the evolution operator M (cf. eq. (3.12) ), for the
system of n coupled Arnol’d cat maps, on the discrete phase space T2n[N ]. According to
Theorem 3.17 the m−th power of M is given by the expression

Mm = A2m =

(
C2m−1 C2m

C2m C2m+1

)
(6.1)

where C0 = 0, C1 = In×n and Cm+1 = CCm + Cm−1, with m = 1, 2, 3, . . ..
Since M ∈ Sp2n[Z], its mod N reduction belongs to Sp2n[ZN ]. The order of the latter–finite–

group can be determined using the relations (2.15) and (2.16). These imply that the order of
the evolution matrix M mod N , T (N), must be a divisor of the order of Sp2n[ZN ].

In order to determine T (N) we make use of Theorem 3.17 as follows:
Since MT (N) = I2n×2n modN , it is obvious that C2T (N)−1 ≡ In×n modN and C2T (N) ≡

0 modN, which reduces the problem of finding the period to finding the least value ofm = T (N),
for which these two relations hold simultaneously.

The period of MmodN is the smallest integer, T (N), such that

MT (N) ≡ I2n×2n modN (6.2)

This implies that

MT (N) =

(
C2T (N)−1 C2T (N)

C2T (N) C2T (N)+1

)
modN ≡

(
In×n 0n×n
0n×n In×n

)
modN (6.3)

Therefore C2T (N) ≡ 0 modN , C2T (N)−1 ≡ In×n modN and C2T (N)+1 = C · C2T (N) + C2T (N)−1 ≡
In×n modN . From these relations it is easy to show that 2T (N) is the period of the sequence
of matrices {Cm modN}:

Proof. The starting point is the property that

C2T (N)−1 ≡ In×n modN
C2T (N) ≡ 0n×n modN

(6.4)
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This implies that

C2T (N)+1 = C · C2T (N) + C2T (N)−1 ≡ In×n = C1 modN
C2T (N)+2 = C · In×n ≡ C = C2 modN
C2T (N)+3 = C · C2T (N)+2 + C2T (N)+1 ≡ In×n + C2 = C3 modN

(6.5)

Now the key observation is that Cm is a polynomial in the matrix C, with positive integer
coefficients and its degree is equal to m− 1, which is even for m odd and odd for m even.

In fact these polynomials turn out to be nothing else but the so-called Fibonacci polynomials–
now defined over the space of integer matrices mod N.

The Fibonacci polynomials are defined by the recursion relation [73]

Fm+1(x) = xFm(x) + Fm−1(x) (6.6)

with x a formal variable and initial conditions F0(x) = 0 and F1(x) = 1.
The Fibonacci polynomials have been extensively studied, for x ∈ R; what we note here

is that they can be defined for x = C, i.e. matrices; and many of their remarkable properties
carry over to this case. In order, therefore, to find the periods modN we must find, for a given
evolution matrix C, the values of m, for which the matrix Fibonacci polynomial F2T (N)(x = C),
vanishes and, simultaneously, F2T (N)−1(x = C) = In×n(modN).

Using that Cm = Fm(C) and their explicit formula we readily find that

Fm(C) =

[m−1
2 ]∑
j=0

(
−j +m− 1

j

)
C−2j+m−1, (6.7)

where [·] denotes the integer part of the argument.
The reason these polynomials are particularly useful here is that the evolution in phase

space is described by the recursion relation

(qm,pm) = (qm−1,pm−1) ·M = (q0,p0) ·Mm = (q0,p0)

(
F2m−1(C) F2m(C)
F2m(C) F2m+1(C)

)
(6.8)

and we realize that the coefficients in the last expression are the Fibonacci polynomials for
matrices–which allow us to write the evolution in phase space in closed form:

qm = q0F2m−1(C) + p0F2m(C)
pm = q0F2m(C) + p0F2m+1(C)

(6.9)

These equations highlight that at step m = T (N), which is defined by eqs. (6.4), qT (N) = q0

and pT (N) = p0, consistent with T (N) being the period of motion.
Our framework provides a lot of freedom for choosing the dynamics:
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1. The number of maps, n.

2. The positive integer, K, from the K−Fibonacci sequence.

3. The range of the non-locality, l; l = 1 is for nearest neighbor interactions, l = 2 for
next–to–nearest neighbor interactions, and so on; l ≤ lmax = integer part(n− 1)/2.

4. The couplings, Gl, for l = 1, 2, . . . , lmax, that are, also, positive integers.

To simplify matters, we shall provide numerical examples for the periods, T [N ], by choosing all
the couplings, Gl ≡ G and for a given range of non–locality. Moreover we shall choose N = p
a prime and n = 2 − 5 (so up to five maps). (The case n = 1, of the one cat map, has been
thoroughly studied in the past [28, 53].)

For these choices, the expression for the order of the group simplifies considerably:

ord (Sp2n[Zp]) = pn
2

n∏
i=1

(
p2i − 1

)
(6.10)

To conclude this section we report on the results of the numerical investigations for T (N)
for selected values of N and K = G = 1 (cf. fig. 5)
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Figure 5: Period T (N) for N = p11 = 31 (the eleventh prime) to p31 = 113, (the thirty-first
prime) for l = 1, n = 1 and 2. We remark the dramatic change from n = 1, one map, to n = 2,
two coupled maps. This reflects the dramatic increase in size of the order of the group.
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7 Conclusions and outlook

The study of classical and quantum chaotic field theories has received considerable attention
recently, inspired by work in turbulence, the problem of statististical n−body thermalization
(the so-called Eigenstate Thermalization Hypothesis), as well as from the motivation to describe
the quantum dynamics of black holes. To this end we started by setting forth the description
of the classical n−body lattice field theories, whose fundamental constituents are Arnol’d cat
maps. The underlying quantum dynamics will be the subject of future work.

More specifically, in this work, we have presented the consistent Hamiltonian dynamics of
coupled map lattices of n classical chaotic oscillators–Arnol’d cat maps (ACM)–in phase space
and in cofinguration space–with guiding principle the symplectic invariance of the phase space
of the n−body system.

In configuration space, each ACM is located on a single site of the lattice and acts on a
two-dimensional toroidal phase space in a way that is hyperbolic and exhibits maximal mixing.

Our method is based on the representation of the Arnol’d cat map in terms of Fibonacci
sequences with the n−body coupled ACM generalization being realized through the coupling
of n k−Fibonacci sequences.

The n−body system is thus defined on a 2n−dimensional toroidal phase space, by the action
of elements of the symplectic group Sp2n[Z], which is maximally hyperbolic and mixing, thanks
to the periodic boundary conditions.

The corresponding equations of motion in configuration space are those of n, linearly cou-
pled, inverted harmonic oscillators. It is interesting to stress that it is the boundary conditions
in the phase space that ensure that the system doesn’t have runaway behavior. This is an
example of how mechanical systems, with unbounded potentials, can be understood as chaotic
systems, upon imposing periodic boundary conditions–in phase space.

The chaotic properties of the system as a whole are quite intricate, despite the simplicity
of the couplings. They depend, indeed, on the possibility of tuning their locality and strength
and can be understood through their periods, Lyapunov spectra and Kolmogorov-Sinai en-
tropies. An interesting point, which will be the subject of future work is the discrete conformal
symmetry, that emerges, when the range of the couplings becomes maximal.

A further topic is the construction of quantum Arnol’d cat map lattices, along with their
continuum (scaling) limit as field theories. It is here that the issues of closed subsystem ther-
malization dynamics, the Eigenstate Thermalization Hypothesis, as well as the saturation of
the fast scrambling bound, for many-body systems, can be framed and consistently treated. A
useful diagnostic for this is the set of so-called “out of time-order correlation functions” [74,75].
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A The Fibonacci polynomials and their basic properties

The Fibonacci sequence is one of the integer sequences, which has been studied, for a long time
and there are journals dedicated to its properties and their applications. One generalization is
provided by the sequence of polynomials, fm(x), defined by

f0(x) = 0; f1(x) = 1
fm+1(x) = xfm(x) + fm−1(x)

(A.1)

which can be written in matrix form(
fm(x)
fm+1(x)

)
=

(
0 1
1 x

)
︸ ︷︷ ︸

A(x)

(
fm−1(x)
fm(x)

)
(A.2)

The matrix A(x) is not a symplectic matrix, but it satisfies

A(x)TJA(x) = −J (A.3)

where J is the symplectic matrix (2.4), for n = 1.
The integer Fibonacci sequence, fm = fm(x = 1) and the integer k−Fibonacci sequence

corresponds to fm(x = k) with k = 2, 3, . . .
These sequences are related to the “golden” and “silver ratios” by

lim
m→∞

fm+1(x)

fm(x)
= γ(x) =

x+
√
x2 + 4

2
(A.4)

for x = 1 and 2 respectively.
The Fibonacci polynomials are given explicitly by the relation

fm(x) =

[m−1
2 ]∑
j=0

(
−j +m− 1

j

)
x−2j+m−1, (A.5)

where [·] denotes the integer part of the argument.
The Fibonacci polynomials are generated by powers of the matrix A(x) viz.

A(x)m =

(
fm−1(x) fm(x)
fm(x) fm+1(x)

)
(A.6)

This relation is the origin, in fact, of the properties of the Fibonacci polynomials:

detAm(x) = fm−1(x)fm+1(x)− fm(x)2 = (−)m

Apq(x) = [Ap(x)]q = [Aq(x)]p

Ap(x)Aq(x) = Ap+q(x)
(A.7)
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These imply that(
fpq−1(x) fpq(x)
fpq(x) fpq+1(x)

)
=

(
fp−1(x) fp(x)
fp(x) fp+1(x)

)q
=

(
fq−1(x) fq(x)
fq(x) fq+1(x)

)p
(A.8)

For future reference, we call A2, ACM1, to indicate that it describes the motion of a single
particle. Below we shall study the dynamics of n particles.

Since the matrix A(x) doesn’t depend on m, we can solve the recursion relation in closed
form, by setting fm ≡ Cρ(x)m and find the equation, satisfied by ρ(x)

ρ(x)m+1 = xρ(x)m + ρ(x)m−1 ⇔ ρ(x)2 − xρ(x)− 1 = 0⇔ ρ(x) ≡ ρ(x)± =
x±
√
x2 + 4

2

Therefore, we may express fm(x) as a linear combination of ρm+ (x) and ρm− (x) = (−)mρ−m+ (x):

fm(x) = A+ρ
m
+ (x) + A−ρ

m
− (x)⇔

{
f0 = A+ + A− = 0
f1 = A+ρ(x)+ + A−ρ(x)− = 1

(A.9)

whence we find that

A+ = −A− =
1

ρ+(x)− ρ−(x)
=

1√
x2 + 4

therefore,

fm(x) =
ρ(x)m+ − (−)mρ(x)−m+√

x2 + 4
(A.10)

It’s quite fascinating that the LHS of this expression is a polynomial in x that, moreover, takes
integer values for integer values of x!
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B The conservation laws of ACML systems

In this section we study the conservation laws of the discrete evolution equations,

qm+1 − 2qm + qm−1 = qmC
2 (B.1)

where C is the symmetric, integer-valued matrix, given by the expression (3.19), i.e.

C = KIn×n +

[n/2]−1∑
l=1

Gl

(
Pl +

[
PT
]l)

(B.2)

In this equation q ∈ Tn, whose compactness ensures mixing and implies that in eq. (B.1) there
is an implicit “mod 1”, to ensure that qm ∈ Tn for all timesteps.

A conservation law is related to, either, to the existence of an eigenvalue equal to 1 of the
evolution operator, M, or to a degeneracy of eigenvalues of M. These, in turn, can be recast
in terms of properties of the matrix C.The first case corresponds to a zero eigenvalue of C.
The corresponding eigenvector, a ∈ Tn, allows us to identify the symmetry as the translation
qm → qm + a. In this case, there exists a solution of Newton’s equations, which is linear in
time, viz.

qm = ma (B.3)

This means that the corresponding Lyapunov exponent vanishes.
For the matrix C defined by eq. (B.2), when Gl = G for l = 1 and Gl = 0 for l > 1,

(i.e. nearest-neighbor interactions) we can verify that such an eigenvector always exists, when
K = 2G, and n is even and is given by the expression

aI =
1√
n

(−)I (B.4)

where I = 1, 2, . . . , n.
When couplings beyond those between nearest-neighbors are non-zero, n must, still, be even

and the condition on the couplings, for the existence of a zeromode, becomes

K + 2
L∑
l=1

Gl(−)l = 0 (B.5)

Let us now consider the case, when the spectrum of the matrix C shows degeneracies, which,
in turn, correspond to degeneracies in the spectrum of the Lyapunov exponents.

We observe that translation invariance in the target space, q → q + a, corresponds to a
symmetry that is an inhomogeneous transformation, which is the hallmark of zeromodes, while
degeneracies correspond to symmetries given by homogeneous transformations.

To look for such transformations we work as follows:
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Since the target space is a torus, there exists a group of transformations, beyond the trans-
lations mod 1, namely the orthogonal group over the integers, On[Z]. By definition, an element
R ∈ On[Z] satisfies the condition RRT = In×n.

Applying such a transformation to the equation of motion, we find that the condition

RTCR = C (B.6)

guarantees that these rotations are symmetries of the equations of motion.
All such transformations define a subgroup of On[Z], that is, therefore the invariance group

of the ACML. In this case, the existence of a zeromode a leads to the existence of additional
zeromodes, given by aR. This defines a linear subspace of zeromodes, labeled by all such
matrices R.

That this group isn’t empty follows from the particular form of the matrix C, which com-
mutes with the matrix P. The matrix P belongs to On[Z] and represents, by a shift along the
lattice, a rotation in the target space!

This particular symmetry is the reason for the degeneracy in the spectrum, DI , I = 1, 2, . . . , n
namely

DI = Dn−I (B.7)

So, finally, degeneracies of the spectrum of C, are explained by the existence of rotations
R ∈ On[Z], which commute with P.

The above transformations describe discrete spatial translations as well as rotations in
the target space; however, there exists a further, important, symmetry, of the equations of
motion (B.1), namely that of discrete translations in time, m→ m+ 1.

An immediate consequence of this symmetry is that, from the block form for M,

M =

(
A B
C D

)
(B.8)

we find that the quadratic form, Q(x), given by the expression

Q(x) = qTBTq + qT
(
DT − A

)
p− pTCTp (B.9)

is conserved in time:
Q(xm+1) = Q(xm) (B.10)

where xm = (qm,pm).
For the particular case of the CACML, A = In×n, B = C and D = 1 + C2, we find the

expression
Q(x) = qTCq + qTC2p− pTCp (B.11)

since C is symmetric.
Of course what is significant is that the global sign is arbitrary, therefore, we can write it

in a more “conventional” form as

Q(x) = pTCp− qTCq − qTC2p (B.12)
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where the mod 1 operation is implicit.
This, particular, solution will play a significant role in the construction of the quantum, uni-

tary, evolution operator U(M) for the corresponding quantum mechanical system of n coupled
Arnol’d cat maps.
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