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Integrons are genetic elements that capture and express antimicrobial resistance genes

within arrays, facilitating horizontal spread of multiple drug resistance in a range of

bacterial species. The aim of this study was to estimate prevalence for class 1, 2, and 3

integrons in Scottish cattle and examine whether spatial, seasonal or herd management

factors influenced integron herd status. We used fecal samples collected from 108

Scottish cattle herds in a national, cross-sectional survey between 2014 and 2015,

and screened fecal DNA extracts by multiplex PCR for the integrase genes intI1, intI2,

and intI3. Herd-level prevalence was estimated [95% confidence interval (CI)] for intI1

as 76.9% (67.8–84.0%) and intI2 as 82.4% (73.9–88.6%). We did not detect intI3 in

any of the herd samples tested. A regional effect was observed for intI1, highest in the

North East (OR 11.5, 95% CI: 1.0–130.9, P = 0.05) and South East (OR 8.7, 95% CI:

1.1–20.9, P = 0.04), lowest in the Highlands. A generalized linear mixed model was

used to test for potential associations between herd status and cattle management, soil

type and regional livestock density variables. Within the final multivariable model, factors

associated with herd positivity for intI1 included spring season of the year (OR 6.3, 95%

CI: 1.1–36.4, P= 0.04) and watering cattle from a natural spring source (OR 4.4, 95% CI:

1.3–14.8, P = 0.017), and cattle being housed at the time of sampling for intI2 (OR 75.0,

95% CI: 10.4–540.5, P < 0.001). This study provides baseline estimates for integron

prevalence in Scottish cattle and identifies factors that may be associated with carriage

that warrant future investigation.
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INTRODUCTION

Antimicrobial resistance (AMR) is a serious global health
problem that prevents the effective treatment of bacterial
infections in humans and animals worldwide and requires a One
Health approach (1, 2). Widespread use of antimicrobial drugs
within clinical health settings and the livestock industry drive
resistance development, and both contribute to environmental
contamination with resistant bacterial populations (3, 4).
Antimicrobial resistance genes (ARG) are disseminated through
two main routes, the vertical transmission of chromosomally
encoded resistance genes to daughter cells and the horizontal
transfer of genes between bacterial cells facilitated by mobile
genetic elements, such as plasmids, transposons, and phage
DNA (5).

Integrons are genetic elements that function as gene capture
and expression systems, integrating single or multiple gene
cassettes at the attI recombination site by means of the integrase,
intI, gene (6, 7). Captured genes are expressed through a
single Pc promoter located within the 5′ conserved segment
of the integron. Carriage of several stacked gene cassettes
within integrons is common, enabling the linked dissemination
of multiple genes within arrays by a single element (6, 8).
Integrons lack a transposase gene and are therefore not self-
mobile, however their horizontal movement between genomes
is facilitated when integrons are hosted by transposons or
conjugative plasmids. There are several classes of integron found
inmany bacterial species worldwide, from diverse human, animal
and environmental origins, however only classes 1 to 3 are
thought to be of clinical relevance within human healthcare or
livestock settings (9).

Class 1 integrons are particularly associated with multiple

drug resistance within Enterobacteriaceae (10–13), due to their

ability to incorporate and stack a wide repertoire of gene cassettes

within arrays (14–16). For this reason, the intI1 integrase gene
has been proposed as a proxy measure for general surveillance
of ARGs within clinical settings (17), livestock populations and
environmental habitats (18–20). Monitoring intI1 prevalence
provides additional information on the potential for transmission
ofmultiple drug resistance traits, complementing the surveillance
of resistance to specific antimicrobial drug classes (21). In
contrast, class 2 integrons tend to carry only a limited
range of gene cassettes, generally those encoding resistance
to trimethoprim, streptothricin and streptomycin, due to the
presence of a defective mutation within the intI2 gene preventing
acquisition of further cassettes (22). Class 2 integrons have been
isolated from commensal and pathogenic intestinal bacteria of
humans and animals, but are less commonly detected in the
environment than class 1 (9, 15). Class 3 integrons are relatively
rare, with most reports relating to the identification of intI3 in
human clinical strains (23), or in bacteria isolated from hospital
waste effluents and sewage (24, 25).

Many integrons also carry genes conferring resistance to
quaternary ammonium compounds (QAC) (7, 8), such as
the qacE11 gene, found within the conserved 3′ region of
a subgroup termed “clinical” class 1 integrons (26). QACs
are present within a variety of detergents and disinfectants,

hence biocide use within human health and agricultural settings
may directly select for integron carriage (27–29). Further,
integrons are frequently linked with genes conferring resistance
to heavy metals, through their physical proximity within hosting
transposons and plasmids to genes associated with metal
resistance or metabolism (7, 30, 31). The presence of the
integrase intI1 gene within environmental bacterial populations
has therefore been proposed as an indicator for the level of
anthropogenic pollution within habitats (28, 32–34). Where
antimicrobial, biocide, and metal resistance genes co-occur, gene
linkage may facilitate acquisition and retention of ARGs within
populations in the absence of direct selection pressure (35,
36). This has implications for the reduction of ARGs within
livestock reservoirs by limiting therapeutic or prophylactic usage
of antimicrobials, since resistant bacterial populations may be
maintained irrespective of treatment practices.

The aim of this study was to estimate the prevalence and
spatial distribution of the intI1, intI2, and intI3 integron genes
by real-time PCR in Scottish cattle herds, using fecal samples
collected as part of a national, cross-sectional study of cattle in
Great Britain, the “British E. coli O157 in Cattle Study” (BECS)
(37). We sought to determine whether specific epidemiological
or herd management factors influenced carriage of integron
elements, as vehicles of dissemination, since this may provide
additional insight into how genes spread through or are retained
within livestock populations, irrespective of individual ARG
type. Using external datasets, we tested the hypotheses that soil
integron abundance in Scotland, land type or local livestock
density may be associated with herd integron status. The
estimation of integron carriage in Scottish cattle herds will
provide a baseline for prevalence in this sector, together with an
indication of the wider potential for ARG dissemination within
agricultural environments in Scotland. These data may inform
the existing knowledge base and action plans for the control of
AMR in livestock (2, 38).

MATERIALS AND METHODS

Study Population and Herd Demographics
A collection of frozen samples was used for this study, derived
from the Scottish survey component of the national, cross-
sectional British E. coli O157 Cattle Study (BECS) (37). Samples
were provided as 6 h fecal pat enrichment cultures in buffered
peptone water (BPW), preserved in 15% v/v glycerol and frozen
at −80◦C. In BECS, individual, fresh fecal pat samples were
collected from the cattle group nearest to slaughter, over a
thirteen-month period between September 2014 and September
2015. Samples were collected at random from intact, discrete pats
present on the ground of the pen or field in which the animals
were held. The overall number of herds included in the study and
the number of samples taken per herd were based on a previous
sampling framework for estimating E. coli O157 prevalence in
Scotland, designed to estimate prevalence with a sensitivity of
90% and confidence of 96% for an expected herd prevalence level
of 20.5% (37). For the current study reported here, the Scottish
dataset consisted of 108 herds from which 2,755 individual, fresh
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fecal pat samples were available (median fecal pat number per
herd of 23; range, 7–75).

Herd management data was obtained by questionnaire
completed through face-to-face interviews at the sampling visit.
Variables included herd and sampling group size, farm type,
management, cattle movements, water source, health status, any
veterinary medicines administered to the group in the preceding
3 months and the presence of other species on the farm. A
summary of the herd data demographics is outlined in Henry
et al. (37) and a copy of the questionnaire is available upon
request from the BECS study corresponding author.

DNA Preparation and Sample Pools
DNA was extracted from a 50 µl aliquot of each individual
fecal enrichment culture using InstaGeneTM matrix (Bio-Rad
Laboratories Ltd, Watford, UK), as previously described (39).
To confirm success of DNA extraction and the absence of
PCR inhibitors in each fecal extract, phocine herpes virus
(PhHv) glycoprotein B (40) (gifted by Dr Lesley Allison, Scottish
Escherichia coli Reference Laboratory, Edinburgh, Scotland) was
spiked into the InstaGeneTM matrix (Bio-Rad) as an internal
inhibition control and verified on an individual DNA extract
basis, as previously described (39).

We used a pooling methodology (41, 42) to determine herd
status for intI1, intI2, and intI3. In the current study, for each
herd, pools comprising five individual fecal DNA extracts were
mixed as 10 µl aliquots of each individual extract, to form a
50 µl pool, on ice. A minimum of two pools were tested for
every herd; if either pool was designated positive for the gene
target of interest, no further pools were assessed in that herd.
However, where the first two pools in a herd were designated
negative, subsequent pools comprising the next five fecal DNA
extracts were sequentially tested, until either a positive pool was
recorded, or all available fecal DNA extracts had been tested for
that herd. In cases where fewer than five fecal DNA extracts
remained within a herd for a pool, nuclease free water (Qiagen,
Crawley, UK) was used to make up the equivalent volume, so that
all individual DNA extracts were present as a 1:5 ratio within all
pools. It was beyond the scope of this study to test every possible
individual fecal DNA extract on a herd basis for intI1 and intI2,
or to determine intI3 herd status by testing every possible pool in
a herd, due to resource constraints.

Bacterial Control Strains
Positive control strains were gifted by Dr Olivier Barraud,
University of Limoges (Limoges, France) as follows: E. coli
DH5α for intI1 within plasmid pBAD18; E. coli JM109 for
intI2 within plasmid pGEM-T Easy and E. coli DH5α for
intI3 within plasmid pBAD18 (43). E.coli strain K12 MG1655
was used as a negative control. DNA was extracted from
the control strains using InstaGeneTM matrix (Bio-Rad) and
included on each reaction plate. In order to determine gene
copy number, plasmids were extracted using the Wizard R© Plus
SV miniprep DNA purification system (Promega, Southampton,
UK) following manufacturer’s instructions and DNA measured
on a NanoDropTM 1,000 Spectrophotometer (Thermo Fisher

Scientific, US). Integron gene copy number was calculated
according to Barraud et al. (43).

Real-Time PCR Herd-Level Screening for
Integron Genes
The presence of the class 1, 2, and 3 integrase genes intI1,
intI2, and intI3 was assessed by a multiplex real-time PCR
assay developed and validated by Barraud et al. (43, 44).
Genes were amplified with the primers and probes as described
in Supplementary Table 1. A no template control (NTC) of
nuclease-free water (Qiagen, Crawley, UK) and DNA extract of
the E. coli strain MG1655 were included as negative controls. All
samples were run in duplicate and reactions were conducted in
a 20 µl volume, consisting of 2 µl of DNA template (pool or
control), 10 µl of QuantiTect Multiplex PCR NoROX (Qiagen,
Crawley, UK), 0.4µM of each primer, 0.2µM of each probe,
with nuclease-free water (Qiagen) up to volume. The assay
was performed in a Bio-Rad CFX96 Real-Time System, C1000
TouchTM Thermal Cycler with an initial denaturation step of
10min at 95◦C, followed by 40 cycles of 95◦C for 30 s and 60◦C
for 1min, with a final extension step of 25◦C for 2min. Data
was captured using the Bio-Rad CFX Manager 3.1 programme
(Bio-Rad, US).

Thresholds were set so that the quantification cycle value
of the standard samples produced the least variability and was
applied across all plates at a relative fluorescence unit of 300
for FAM-intI1, 200 for Texas Red-intI2 and 150 for Cy5-intI3.
Pool sample cycle threshold (Ct) values were read at these values
and exported in.xlsx format for analysis within Excel (Microsoft,
US). For case definition, a pool sample was recorded positive
if the Ct value was less than or equal to the mean positive
control standard cut-off at a value equivalent to 50 gene copies
(intI1, Ct = 32.13; intI2, Ct = 34.36; intI3, Ct = 32.86). Repeat
assays were performed on a number of pools as standard and to
confirm negative herd status (Supplementary Table 2). A herd
was considered positive if at least one of the pools tested in the
herd was positive for the target gene of interest. The minimum
observed pool Ct values were recorded per herd and summarized
by the outcome variables found to be of significance in the risk
factor modeling.

Datasets for Land Type, Livestock
Densities and Soil Integron Abundance
Land Type
Herd holdings were classed according to the Macaulay Land
Capability for Agriculture in Scotland (LCA) classification,
a system developed to describe the agricultural potential of
land, based on the degree of limitation imposed by biophysical
properties (45). Classification is made according to climate,
soil properties (e.g., depth/stoniness), wetness, erosion risk and
slope, as well as variability and vegetation cover. The LCA is
a seven class system where class 1 represents land that has the
highest potential flexibility of use, whereas class seven land is of
very limited agricultural use. LCA and soil composition data in
the local region of the herd holding site, including presence of
mineral iron podzols, was obtained from the National Soil Map
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dataset (Version 1.4), James Hutton Institute (46) (https://www.
hutton.ac.uk/learning/natural-resource-datasets/soilshutton/
soils-maps-scotland/download).

Livestock and Holding Density
Potential associations between intI1 and intI2 herd status and
regional cattle, sheep and pig density and livestock holdings
density within the locality of the sampled herd holdings
were examined. Cattle and sheep density, as well as cattle
and sheep holdings density, were sourced from the 2011
Scottish agricultural census dataset via agcensus.edina.ac.uk (47).
Data for regional pig density and pig holdings density were
computed based on all pig holdings actively moving pigs in
both Scotland and the rest of Great Britain between January
2012 and December 2013, and recorded in movement datasets
from Scotland (ScotEID) and England and Wales (eAML2), as
detailed in Porphyre et al. (48). Of the 15 livestock and holding
density pairwise correlations, 12 were significantly correlated
(Pearson correlation, p < 0.05) (Supplementary Table 3). As
a result, a Principal Component Analysis was performed to
generate independent variables to use in the risk factor analysis
(Supplementary Figures 1–3).

Soil Integron Abundance
The abundance and spatial distribution of intI1 and intI2 genes
in Scottish soils was obtained from the dataset, “Antibiotic
resistance genes found in soils across the entire Scottish
landscape” by Knapp et al. (49). This dataset comprises ARG
abundance, including intI1 and intI2, within whole soil sample
DNA extracted from soils held by the National Soils Inventory
of Scotland archive (NSIS2). These soil samples were originally
collected between 2007 and 2010 from 183 locations across
Scotland, using a 20 km square grid sampling framework. Soil
intI1 abundance in the locality of the herds was included as a
variable to test for association with individual herd status, as
described below.

A kernel smoothing method (50) was used to model density
variations of overall cattle, sheep and pig numbers and holding
distributions, as well as soil intI1 abundance, and to interpolate
mean estimates between observation events. A weighted kernel
intensity ratio method, implemented in the btb package (51) of
the statistical software R (version 4.0.5) (52), was used to compute
smoothed maps of 5–10 km-wide square cells, implementing
an edge-correction for the Scotland/England border and along
the coastline. The bandwidth parameter for the kernel functions
used to control the degree of smoothing was fixed to 15 km
for cattle, sheep and pig densities and holding densities, and
to 50 km for soil intI1 abundance. The spatial distribution of
soil intI1 and intI2 abundance (Supplementary Figure 4) was
plotted using R software, with smoothed distribution for intI1
(Supplementary Figure 5).

Statistical and Epidemiological Analysis
Prevalence Estimates
Herd-level prevalence was estimated using a method similar
to Henry et al. (37). Briefly, a generalized linear mixed model
(GLMM) with a logit link fitted with a random herd effect
to model extra-binomial variability was performed using Proc

Glimmix (SAS version 9.4). Mean estimates and CIs were
generated by back transforming from the output on the logit
scale. Overall prevalence was estimated separately for each
integron (intI1 and intI2). Prevalence estimates were also
calculated for different spatial (Animal Health District, AHD)
and temporal (season) factors. Herds were categorized into the
following six Scottish Animal Health Districts (AHD) according
to geographic location: Highland (18 herds), North East (19
herds), Central (16 herds), South West (22 herds), South East
(17 herds), and Islands (16 herds). Season was defined as autumn
(September–November), winter (December–February), spring
(March–May) and summer (June–August).

Risk Factor Analysis
Risk factors for the presence of intI1 and intI2 in a herd
were analyzed using GLMM (Proc Glimmix). The unit of
analysis was herd level status (positive/negative). A herd was
considered positive if at least one of the pools tested in the
herd was positive for the target gene of interest. Generalized
linear models were initially carried out on a single variable
basis. All the potential risk factors (Supplementary Table 4,
n = 61) were examined. In order to control for confounding,
exploratory data analysis was performed before running the
model, including examination of correlations among all variables.
When two variables were highly correlated the variables with
the best Bayesian information criterion (BIC) was used in the
model, although these variables were replaced with correlated
variables as part of the model checking procedure. For the
livestock density variables we performed a Principal Component
Analysis to alleviate the correlations amongst the livestock
density data, as previously described. All variables with a P-
value of <0.25 were retained for the multiple variable analysis.
For the multivariable analysis, region (AHD) and season were
forced into the model as design factors. A backward elimination
approach with swapping (reassessment of previously included
or excluded variables) was used. The change in the BIC of the
model was monitored as an indicator of improved fit. Variables
were added and removed based on significant improvement
in the BIC after changes to the model. Two-way interactions
were also tested in this manner. Herd was fitted as the sole
random effect to the final model to help model the extra-
binomial variability. To check for multicollinearity between
factors in the final model, correlations were examined for
binary and nominal variables. In addition, the stability of
the model was checked by systematic removal of variables.
Diagnostics were performed and plots of residuals were
examined, confirming goodness of fit of the model. Odds ratios
and their associated 95% CI were estimated in the final model for
factors statistically significantly associated with the presence of
intI1 and intI2.

All statistics were performed using SAS (SAS Institute Inc.,
Cary, NC), unless otherwise specified. A P-value of 0.05 was
accepted as the level of significance.

RESULTS

Seventy seven percent of herds (83/108) were positive for the
intI1 gene and 82% of herds (89/108) were positive for the
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FIGURE 1 | Observed (raw) herd prevalence by Animal Health District region for the integron intI1 and intI2 genes in 108 Scottish cattle herds, by real-time PCR.

intI2 gene. Dual detection of both intI1 and intI2 in herds was
common, with 68% (73/108) of herds positive for both genes,
whereas only 8% (9/108) of herds were negative to both intI1 and
intI2. Ten herds were positive only to intI1 and sixteen herds were
positive only to intI2. The majority of herds designated positive
were identified as positive within the first two pool samples tested,
in 89% (74/83) and 92% (82/89) of positive herds for intI1 and
intI2, respectively; 99% of all positive herds were identified within
the first four pools tested for both intI1 (82/83 herds) and intI2
(88/89 herds). No response to the intI3 gene was detected in any
of the pools tested.

The observed (raw) prevalence for intI1 and intI2 in the
study herds was examined by Animal Health District (AHD)
to investigate possible geographical variation across Scotland
(Figure 1). Observed herd prevalence was highest for intI1 in the
North East and lowest in the Highlands, and for intI2was highest
on the Islands and lowest in the Central region. A generalized
linear mixed model was used to estimate the national cattle herd
prevalence for the intI1 and intI2 genes in Scotland. The mean

herd prevalence, with 95% confidence intervals (CI), was 76.9%
(67.8–84.0) for intI1 and 82.4 % (73.9–88.6) for intI2 (season and
region estimates, Supplementary Table 5).

The univariable analysis results for all 61 potential risk factors
for association with intI1 and intI2 herd level status are shown
in Supplementary Tables 6, 7 with odds ratios (OR) calculated
for variables where P < 0.25 (Tables 1, 2). At the univariable
level, a significant regional effect was observed between Highland
and North East regions for intI1 (P = 0.022) and trend toward
significance for Highland to South East (P = 0.052); no regional
variation was observed for intI2. A number of herd management
factors were associated with herd status. For intI1 the number of
cattle in the herd aged 12–30 months, farms allowing movement
of cattle into the herd, the use of water derived from a natural
spring source and cattle housed at time of sampling were all
significant factors associated with positive herd status, whilst
presence of geese on fields was associated with a negative status.
For intI2, being housed at the time of sampling, the presence
of sheep on the farm and spring season of the year were
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TABLE 1 | Region, season and herd management variable association with herd intI1 PCR status, by a univariable generalized linear mixed model, given as odds ratio

with corresponding 95% confidence intervals (CI), for variables where P < 0.25.

Variable Coeffa SEa P Odds ratio (95% CI)

Animal Health District

Central 0.88 0.77 0.261 2.40 (0.52–11.19)

Highland – – – –

Island 0.57 0.74 0.450 1.76 (0.40–7.79)

North East 2.67 1.15 0.022 14.40 (1.48–140.0)

South East 1.79 0.91 0.052 6.00 (0.99–36.50)

South West 1.00 0.72 0.168 2.72 (0.65–11.40)

Season

Autumn 1.09 0.67 0.103 2.99 (0.80–11.19)

Winter 0.06 0.63 0.919 1.07 (0.30–3.76)

Spring 1.16 0.71 0.103 3.20 (0.79–13.02)

Summer - - - -

Continuous variables

Number cattle 12–30 monthsb 0.85 0.34 0.014 2.35 (1.96–4.61)

Total number of cattleb 1.03 0.55 0.063 2.80 (0.94–8.30)

Pig Densityb 0.33 0.25 0.188 1.39 (0.09–2.26)

Cattle Densityc 0.30 0.12 0.013 1.35 (1.07–1.70)

Cattle Holding Densityc 0.40 0.20 0.042 1.50 (1.02–2.21)

Sheep Densityb 1.52 0.73 0.040 4.57 (1.07–19.50)

PC1d 0.30 0.14 0.029 1.35 (1.03–1.77)

Categorical variables

Poultry present 0.82 0.60 0.176 2.26 (0.69–7.43)

Cattle brought onto farm 1.28 0.52 0.016 3.59 (1.29–10.02)

Slurry spread 0.58 0.49 0.232 1.80 (0.69–4.70)

Wild geese present −1.04 0.48 0.032 0.35 (0.14–0.91)

Cattle spring water 1.47 0.52 0.006 4.34 (1.54–12.22)

Farmhouse private water 0.66 0.56 0.240 1.29 (0.64–5.81)

Group housed at sampling 1.11 0.50 0.032 3.02 (1.11–8.26)

Changed feed 0.97 0.67 0.148 2.65 (0.70–9.93)

Changed location 1.09 0.79 0.172 2.96 (0.62–14.16)

Brown soile 0.73 0.50 0.150 2.07 (0.77–5.59)

Mineral podzole −0.76 0.52 0.150 0.47 (0.17–1.32)

aCoeff: coefficient; SE: Standard error.
b (Log10) transformed.
cSquare root transformed.
dPC1 (Principle Component 1) is an index variable created by Principal Components Analysis (Minitab v.18). PC1 explains 52.7% of the variation in the data. Larger values of PC1
represent higher number of holdings and density of cattle, sheep, and pigs.
eLand defined as suitable for arable use within James Hutton Land Capability for Agriculture (LCA) classification code (https://www.hutton.ac.uk/learning/exploringscotland/land-
capability-agriculture-scotland).

significant risk factors within the univariable model. The herd
management questionnaire included data on health status and
any treatments administered to the sampled group within 3
months of sampling: no association was observed between these
variables and herd status for either intI1 or intI2. None of the land
or soil characteristics measured in the locality of a herd, including
the land classification (LCA), general soil type or specific soil
types were found to be significantly associated with intI1 or intI2
individual herd status (Supplementary Tables 6, 7).

The density of all cattle, sheep, and pigs, together with the
density of their holdings across Scotland, were found to be
significantly correlated (Supplementary Table 3) and therefore

a Principle Component Analysis (Supplementary Figures 1, 2)
was performed to compute independent variables for inclusion
in the univariable model. Higher cattle and sheep density,
higher cattle holding density, and the Principle Component
1 variable (PC1), which represented higher density and
holding densities for all three species, were significantly
associated with positive intI1 herd status within the univariable
model (Table 1, Supplementary Figure 3). Livestock density and
livestock holding density were not significantly associated with
intI2 herd status.

We did not observe any significant association between the
interpolated mean estimate for soil intI1 abundance within the

Frontiers in Veterinary Science | www.frontiersin.org 6 October 2021 | Volume 8 | Article 755833

https://www.hutton.ac.uk/learning/exploringscotland/land-capability-agriculture-scotland
https://www.hutton.ac.uk/learning/exploringscotland/land-capability-agriculture-scotland
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Fernández Rivas et al. Integrons in Scottish Cattle

TABLE 2 | Region, season and herd management variable association with herd intI2 PCR status, by a univariable generalized linear mixed model, given as odds ratio

with corresponding 95% confidence intervals (CI), for variables where P < 0.25.

Variable Coeffa SEa P Odds ratio (95% CI)

Animal Health District

Central – – – –

Highland −0.88 0.77 0.261 0.42 (0.09–1.94)

Island −0.31 0.81 0.705 0.73 (0.15–3.71)

North East 1.79 1.19 0.137 6.00 (0.56–64.06)

South East 0.92 0.97 0.346 2.50 (0.37–17.08)

South West 0.13 0.79 0.875 1.13 (0.24–5.46)

Season

Autumn 0.31 0.62 0.617 1.37 (0.39–4.75)

Winter 1.57 0.88 0.076 4.81 (0.84–27.44)

Spring 1.74 0.87 0.049 5.69 (1.01–32.13)

Summer - - - -

Continuous variables

Pig densityb −0.32 0.25 0.214 0.73 (0.44–1.20)

Pig holding densityc −0.56 0.32 0.082 0.57 (0.30–1.08)

PC1d −0.21 0.15 0.183 0.81 (0.60–1.10)

Categorical variables

Sheep present 1.20 0.53 0.024 3.33 (1.18–9.45)

Other animals present −0.63 0.51 0.220 0.53 (0.19–1.47)

Cattle brought onto farm 0.67 0.57 0.243 1.96 (0.63–6.08)

Other livestock brought on 0.83 0.53 0.116 2.30 (0.81–6.53)

Group housed at sampling 3.86 0.73 <0.001 47.40 (11.20–200.60)

Cattle health −1.38 0.83 0.102 0.25 (0.05–1.33)

Cattle treatment −0.88 0.52 0.091 0.41 (0.15–1.16)

Land type suitable for Arable usee −0.82 0.62 0.182 0.44 (0.13–1.49)

Land type suitable for mixed agriculturee 0.62 0.53 0.241 1.86 (0.65–5.31)

aCoeff, coefficient; SE, Standard error.
b (Log10) transformed.
cSquare root transformed.
dPC1 (Principle Component 1) is an index variable created by Principal Components Analysis (Minitab v.18). PC1 explains 52.7% of the variation in the data. Larger values of PC1
represent higher number of holdings and density of cattle, sheep, and pigs.
eLand defined as suitable for arable use within James Hutton Land Capability for Agriculture (LCA) classification code (https://www.hutton.ac.uk/learning/exploringscotland/land-
capability-agriculture-scotland).

locality of a herd, derived from the National Soils Inventory of
Scotland (NSIS2) soil intI1 abundance dataset (49), and intI1
status of that herd. However, by region, soil intI1 abundance
in the NSIS2 dataset was not uniformly distributed, with a
substantial hotspot observed for high intI1 abundance within
the North East AHD (Supplementary Figures 4, 5). For intI2,
only 3/183 soil locations yielded positive results and therefore
comparison with the cattle herd data was not possible.

After the backward selection process, the variables that were
retained in the most parsimonious multivariable model for intI1
included cattle watered from a natural spring source (P = 0.017;
OR 4.40, 95% CI: 1.31–14.78) (Figure 2A), the North East and
South East AHD, and Spring season of the year (Table 3). The
only variable significantly associated with the detection of the
intI2 gene within the multivariable model was being housed at
the time of sampling (P< 0.001; OR 75.01, 95%CI: 10.41–540.50)
(Table 3, Figure 2B).

DISCUSSION

In this study we investigated the presence of the class 1 and 2
integron genes, intI1 and intI2, in fecal samples from a national,
cross-sectional survey of Scottish cattle herds. The prevalence
of herds that tested positive by PCR for intI1 and intI2 genes
was high, and co-occurrence of both genes within individual
herds was common. These results provide a preliminary baseline
for integron prevalence in Scottish cattle and for comparison
with data from other farmed species, environmental or human
settings. The ARG cassette structure of integrons enables
dissemination of multiple antimicrobial resistance, therefore
high prevalence of these elements has consequent implications
for national policies to reduce antimicrobial resistance within
agricultural settings. This is of particular relevance where ARG
carriage may persist in the absence of direct selection pressures
through linkage with other genes, such that restricting individual
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FIGURE 2 | Prevalence of herds positive for intI1 and/or intI2 by (A) whether cattle are watered from a natural spring source, or not and (B) whether cattle are

housed/not housed i.e., grazed, at the time of sampling.
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TABLE 3 | Results of the multivariable generalized linear mixed model, showing region, season and herd management variables for herd intI1 and intI2 PCR-positive

status, given as odds ratio with 95% confidence interval (CI).

Response Variable Estimate SE P Odds ratio (95% CI)

intI1 Animal Health District

Central 1.24 0.88 0.165 3.45 (0.59–20.09)

Islands 0.52 0.84 0.543 1.68 (0.30–9.06)

North East 2.44 1.23 0.049 11.51 (1.01–130.89)

South East 2.16 1.04 0.04 8.69 (1.11–20.88)

South West 1.34 0.85 0.119 3.82 (0.70–20.88)

Highland – – – –

Season

Autumn 1.28 0.81 0.12 3.86 (0.71 – 18.09)

Winter 0.11 0.74 0.883 1.12 (0.25 – 4.91)

Spring 1.84 0.88 0.04 6.31 (1.10 – 36.37)

Summer – – – –

Natural spring water source

Yes 1.48 0.61 0.017 4.40 (1.31-14.78)

No – – – –

intI2 Animal Health District

Central 0.46 1.58 0.773 1.58 (0.07 – 37.27)

Islands 1.71 1.91 0.377 5.54 (0.11 – 269.40)

North East −0.96 1.32 0.467 0.38 (0.03 – 5.34)

South East 0.38 1.43 0.793 1.46 (0.08 – 26.57)

South West 1.03 1.34 0.449 2.79 (0.18 – 42.59)

Highland – – – –

Season

Autumn 1.42 1.07 0.193 4.12 (0.47 – 35.81)

Winter 1.36 1.26 0.288 3.88 (0.31 – 48.85)

Spring 1.66 1.47 0.263 5.25 (0.28 – 98.10)

Summer – – – –

Group housed at sampling

Yes 4.32 0.99 <0.001 75.01 (10.41 – 540.5)

No – – – –

antimicrobial usage may not lead to a comparable reduction in
resistance prevalence within livestock reservoirs.

To our knowledge, there are relatively few reports on the
occurrence of integrase genes within agricultural settings in
Scotland. For example, a previous longitudinal study identified
intI1-positive commensal E. coli strains on a single organic
cattle farm (53), as well as class 1 and 2 integrons in non-
O157 E.coli from two conventional beef herds (54), however
national cross-sectional data has so far been lacking. To date
there have been relatively few culture-independent surveys to
ascertain integron prevalence in livestock, although Barlow et al.
(55) observed a similarly high PCR prevalence of class 1 and
2 integrons in cattle presenting at Australian abattoirs, and
high prevalence has also recently been reported in cattle from
France (44). Screening individual bacterial isolates from varied
source populations and clinical collections is more common, and
has highlighted the extensive distribution of class 1 integrons
in diverse animal populations worldwide (56–58). Carriage of
intI1 and intI2 by bovine intestinal bacteria therefore appears

common, indicative of a substantial reservoir for these elements
within cattle populations. We did not detect the class 3 integrase
gene in any of the pool samples tested, which is consistent with
cattle data from France (44). This was not unexpected: class 3
integrons have so far been reported in only a restricted range of
bacterial species, within limited settings (9, 24, 25).

We observed evidence suggestive of a differential spatial
distribution for intI1-positive herds across Scotland, with a
significantly higher prevalence observed in the North East and
South East, compared to the lowest prevalence region, the
Highlands. Data on soil integron abundance (49) from the 2007–
2010 survey of soil samples in Scotland also demonstrated a
marked hotspot for intI1 gene abundance in the North East
region of Scotland (Supplementary Figure 5). This region also
hosts the highest pig population and pig farm holding density in
Scotland (59), as well as cattle holding density (60), and together
with Central and South Eastern Scotland is an area with a higher
proportion of land set to arable agricultural use. Within the
univariable analysis, higher overall cattle, sheep and pig densities
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and livestock-holding densities, represented by PC1, were
significantly associated with positive intI1 herd status, suggesting
that overall livestock density in an area may influence integron
carriage. The inclusion of the interpolated and smoothed local
soil inti1 abundance estimates in the model did not highlight any
direct association with positive herd integron status. However,
the concurrence observed in the higher North East prevalence
for intI1 in the two differing sample datasets, cattle in this study
and soil from the NSIS2 archive, albeit collected and assayed
at different time periods using distinct methodologies, may not
be due to chance alone and warrants further investigation. In
contrast, no apparent spatial variation was observed in intI2 herd
status, with prevalence high in all regions. Compared to intI1,
intI2 was detected in only three locations in the NSIS2 dataset
(Supplementary Figure 4), from regions where cattle prevalence
was highest. This was not unexpected, since class 2 integrons are
less commonly isolated from natural environments, with most
reports relating to manure-enriched agricultural soils, or where
land is contaminated with human-derived effluents (15).

Particular herd management factors were associated with an
increased risk of both intI1 and intI2 positive status. For intI1,
being housed at sampling, cattle movements into the herd, the
number of cattle in a herd aged 12–30 months and a spring
water source were all risk factors within the univariable model,
although only cattle watered from a natural spring source was
retained as a significant variable within themultivariable analysis.
Cattle movement provides importation andmixing opportunities
for bacteria and ARG within a herd; this variable was also
found to be significantly associated with isolation of β-lactam
and AmpC resistant Enterobacteriacea from a 20 herd subset
within the Scottish BECS survey (61). These two complementary
studies, the current culture-independent survey of 108 herds and
the smaller, culture-based analysis by Velasova et al. (61), both
suggest animal movements may correlate with ARG carriage
within the BECS survey population. Lastly, cattle aged 12–30
months are typically finisher animals and the number of these
animals in a herd may act simply by increasing the diversity and
abundance of the local reservoir, providing a greater number
of host compartment systems through which bacteria passage
and multiply.

Watering cattle from natural spring water sources was
retained as a significant factor for positive intI1 herd status within
the final multivariable model. Spring-sourced water in Scotland
may be influenced by local geochemical factors such as rock
composition, and subject to contamination through groundwater
with environmental bacteria, pollutants and fertilizer. Cropland
augmentation with manure or slurry increases the abundance of
class 1 integrons in soils (62–65), as well as the overall level and
diversity of ARGs (66). Whilst we did not observe any direct
link between manure or slurry spreading and integron status
on individual herd holdings in this study, our methodology was
not able to capture local area information on waste-spreading
practices. Effluent run-off from neighboring holdings, or wider
dispersal of effluents into water-courses after heavy rainfall and
through river flooding of land can influence the distribution and
overall levels of agricultural pollutants, bacteria and ARGs in
natural water supplies (67, 68). Integron abundance has also been

shown to increase in river and spring water systems following
rainfall events (69, 70) and has been detected at higher levels
in agricultural watershed, than in the receiving waterbodies into
which they discharge (71).

Housing was a strong predictor for positive intI2 status;
this effect was notably greater than observed with intI1 in
the univariable analysis and was maintained as a significant
risk factor in the multivariable model. A “housed” effect has
previously been reported for intI2 in Australian beef cattle (72),
in which higher intI2 prevalence was observed by both PCR and
culture-isolation in feces from grain-fed housed, compared to
grazed animals. No difference in intI1 prevalence was observed
between housed and grazed cattle in the Australian data, with
prevalence high in both groups. Given in our study we used
a multiplex PCR system, we would anticipate that any direct
influence from diet on fecal composition, such as the presence
of differing fecal PCR inhibitors, would have also shown an
equivalent effect on intI1. However, we observed no substantial
difference in the minimum recorded Ct for intI1 between housed
and grazed herds, in marked contrast to the intI2 response (see
Supplementary Figure 6, Supplementary Table 8). Housing
may influence bacterial colonization and ARG carriage through
higher stocking density, with the proximity and build-up of
manure and slurry providing more frequent opportunities
for mixing and genetic exchange of mobile elements within
bacterial populations (73). Agga et al. (74) demonstrated a spatial
gradient decline in integron gene abundance based on linear
distance from housing areas through to pasture-land in feedlot
beef cattle, an effect that was maintained for 2 years following
stock removal. Housed cattle typically receive grain-based feed,
and it is possible that such diets may preferentially support
colonization by bacteria hosting the intI2 gene. Further, grain-
based proprietary feeds are often formulated with additional
trace metal elements such as copper, zinc, manganese, cobalt
and selenium, or livestock may be supplemented with separate
mineral formulations (75, 76). Copper, in particular, is often
widely used within agricultural settings as fungicide, disinfectant
and fertilizer. Evidence from recent studies suggests a possible
role for agricultural copper in co-selection for antimicrobial
resistance traits (77, 78), for example through linkage with
copper-specific efflux pumps and the plasmid-borne copper
resistance system (35). Bioinformatic analyses have also
highlighted the close physical proximity and correlation between
integrons and metal resistance genes in bacterial genomes
(31, 79), as seen with the metal efflux pump gene czcA (7, 80)
and the mer genes conferring resistance to mercury (81). The
possibility that integron carriage may be influenced by exposure
to heavy metals through diet or topical administration, as well as
biocide use when stock are housed, merits further exploration.

We used pooled fecal DNA extracts, since testing every
individual pat sample in a herd was beyond the scope of this
study. Pooling is recognized as an efficient and cost-effective
method when screening cattle herds for pathogens (41, 42, 82).
Where identification of carriage by individual animals or samples
is not required in a first screen, pooling can maintain sensitivity
at the herd level, dependant on the expected prevalence (42, 83).
In this study we identified the majority of herds positive for
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intI1 and intI2 within the first two pools screened per herd, and
therefore suggest herd pool screening as a useful tool that could
be employed for large scale surveillance of common ARGs within
livestock populations.

In conclusion, we have demonstrated widespread and high
prevalence of the integrase intI1 and intI2 genes in Scottish
cattle herds. This data suggest that integrons are ubiquitous
within cattle populations across Scotland. Statistically significant
associations with positive herd status were observed, including
the North East region and natural spring water source for intI1,
and housed status for intI2. These associations are plausible,
within the context of existing knowledge. The results of this study
may direct future, more detailed investigations into carriage of
integrons and other individual resistance genes, with hypotheses
based upon those variables found to be of significance, such as
location, housing status, and water source. The role of integrons
as vehicles for facilitating horizontal transmission and retention
of ARGs within livestock reservoirs, together with factors that
may influence their carriage, require further exploration.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

CFR and DH: conceptualization, design and funding acquisition,
and wrote the original draft manuscript. DH: supervision and
project administration. CFR, DH, OB, NS, and CC: contributed
resources. CFR, DH, and OB: methodology. CFR and HW:
performed the laboratory analyses. CFR, HW, DH, MC-T, ST,
TP, DE, and CK: data acquisition and/or curation. TP and MC-
T: performed the formal statistical analyses and visualization.
CFR, TP, MC-T, CK, HW, OB, ST, NS, CC, DE, and DH:
writing—review and editing. All authors contributed to read and
approved the submitted version.

FUNDING

CFR was funded by an Erasmus+: ErasmusMundus Scholarship
from the European Union [EU Grant Agreement: 2016–2071],
with additional salary support to CFR and HW provided
through an Institute Strategic Programme grant from the
Biotechnology & Biological Sciences Research Council
[BBS/E/D/20002173]. DH was funded through a personal
fellowship from the Wellcome Trust [105832/Z/14/Z].
TP thanks the French National Research Agency and
Boehringer Ingelheim Animal Health France for support
through the IDEXLYON project (ANR-16-IDEX-0005) and
the Industrial Chair in Veterinary Public Health, Lyon,
France. The collection of the original cattle samples used in
this study was funded by Food Standards Scotland and the
Food Standards Agency [Project number FS101055: E. coli
O157 super-shedding in cattle and the mitigation of human
risk]. This research was funded in part by the Wellcome
Trust [105832/Z/14/Z].

ACKNOWLEDGMENTS

We would like to thank Jo Stevens for laboratory guidance and
Darren Shaw for provision of the Scotland map shape file. The
authors gratefully acknowledge the contribution of the BECS
project team members from SRUC and ADAS (RSK ADAS
Ltd) in the acquisition of samples and questionnaire data, and
laboratory staff at SRUC for fecal enrichment preparation. The
authors also thank those livestock keepers who gave permission
for the additional use of their data and samples from their
holdings for further research.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fvets.
2021.755833/full#supplementary-material

REFERENCES

1. European Centre for Disease Prevention and Control (ECDC), European

Food Safety Authority (EFSA), European Medicines Agency (EMA).

ECDC/EFSA/EMA second joint report on the integrated analysis of the

consumption of antimicrobial agents and occurrence of antimicrobial

resistance in bacteria from humans and food-producing animals: joint

interagency antimicrobial consumption and resistance analysis (JIACRA)

report. EFSA J. (2017) 15:e04872. doi: 10.2903/j.efsa.2017.4872

2. World Health Organization. Global Action Plan on Antimicrobial Resistance.

(2015). Available online at: https://www.who.int/publications/i/item/

9789241509763 (accessed June 13, 2021).

3. Food Agricultural Organization and World Health Organization. Joint

FAO/WHO Expert Meeting in collaboration with OIE on Foodborne

Antimicrobial Resistance: Role of the Environment, Crops and Biocides –

Meeting report. Microbiological Risk Assessment Series no.34. Rome (2019).

Available online at: https://www.who.int/publications/i/item/9789241516907

(accessed June 13, 2021).

4. Bennani H,Mateus A,Mays N, Eastmure E, Stark KDC, Hasler B. Overview of

evidence of antimicrobial use and antimicrobial resistance in the food chain.

Antibiotics. (2020) 9:2. doi: 10.3390/antibiotics9020049

5. Boerlin P, Reid-Smith RJ. Antimicrobial resistance: its emergence

and transmission. Anim Health Res Rev. (2008) 9:115–26.

doi: 10.1017/S146625230800159X

6. Mazel D. Integrons: agents of bacterial evolution. Nat Rev Microbiol. (2006)

4:608–20. doi: 10.1038/nrmicro1462

7. Gillings M, Boucher Y, Labbate M, Holmes A, Krishnan S, Holley M, et al. The

evolution of class 1 integrons and the rise of antibiotic resistance. J Bacteriol.

(2008) 190:5095–100. doi: 10.1128/JB.00152-08

8. Partridge SR, Tsafnat G, Coiera E, Iredell JR. Gene cassettes and cassette

arrays in mobile resistance integrons. FEMS Microbiol Rev. (2009) 33:757–84.

doi: 10.1111/j.1574-6976.2009.00175.x

9. Kaushik M, Kumar S, Kapoor RK, Virdi JS, Gulati P. Integrons in

Enterobacteriaceae: diversity, distribution and epidemiology. Int J

Antimicrob Agents. (2018) 51:167–76. doi: 10.1016/j.ijantimicag.2017.

10.004

Frontiers in Veterinary Science | www.frontiersin.org 11 October 2021 | Volume 8 | Article 755833

https://www.frontiersin.org/articles/10.3389/fvets.2021.755833/full#supplementary-material
https://doi.org/10.2903/j.efsa.2017.4872
https://www.who.int/publications/i/item/9789241509763
https://www.who.int/publications/i/item/9789241509763
https://www.who.int/publications/i/item/9789241516907
https://doi.org/10.3390/antibiotics9020049
https://doi.org/10.1017/S146625230800159X
https://doi.org/10.1038/nrmicro1462
https://doi.org/10.1128/JB.00152-08
https://doi.org/10.1111/j.1574-6976.2009.00175.x
https://doi.org/10.1016/j.ijantimicag.2017.10.004
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Fernández Rivas et al. Integrons in Scottish Cattle

10. Martinez-Freijo P, Fluit AC, Schmitz FJ, Grek VS, Verhoef J, Jones ME. Class

I integrons in gram-negative isolates from different European hospitals and

association with decreased susceptibility to multiple antibiotic compounds. J

Antimicrob Chemother. (1998) 2:689–96. doi: 10.1093/jac/42.6.689

11. Leverstein-van Hall MA, Blok HEM, Donders ART, Paauw A, Fluit AC,

Verhoef J. Multidrug resistance among Enterobacteriaceae is strongly

associated with the presence of integrons and is independent of

species or isolate origin. J Infect Dis. (2003) 187:251–9. doi: 10.1086/3

45880

12. Goswami C, Fox S, Holden MTG, Connor M, Leanord A, Evans TJ. Origin,

maintenance and spread of antibiotic resistance genes within plasmids and

chromosomes of bloodstream isolates of Escherichia coli. Microb Genom.

(2020) 6:e000353. doi: 10.1099/mgen.0.000353

13. Johnson TA, Stedtfeld RD, Wang Q, Cole JR, Hashsham SA, Looft T,

et al. Clusters of antibiotic resistance genes enriched together stay together

in swine agriculture. mBio. (2016) 7:e02214–15. doi: 10.1128/mBio.02

214-15

14. Holmes JA, Gillings MR, Nield BS, Mabbutt BC, Nevalainen KMH,

Stokes HW. The gene cassette metagenome is a basic resource for

bacterial genome evolution. Environ Microbiol. (2003) 5:383–94.

doi: 10.1046/j.1462-2920.2003.00429.x

15. Stalder T, Barraud O, Casellas M, Dagot C, Ploy MC. Integron involvement in

environmental spread of antibiotic resistance. Front Microbiol. (2012) 3:119.

doi: 10.3389/fmicb.2012.00119

16. Ghaly TM, Geoghegan JL, Alroy J, Gillings MR. High diversity and rapid

spatial turnover of integron gene cassettes in soil. Environ Microbiol. (2019)

21:1567–74. doi: 10.1111/1462-2920.14551

17. Barraud O, Francois B, Chainier D, Vignaud J, Ploy MC. Value of

integron detection for predicting antibiotic resistance in patients with

gram-negative septicaemia. Int J Antimicrob Agents. (2014) 44:351–3.

doi: 10.1016/j.ijantimicag.2014.06.008

18. Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F,

et al. Tackling antibiotic resistance: the environmental framework. Nat Rev

Microbiol. (2015) 13:310–7. doi: 10.1038/nrmicro3439

19. Gillings MR. Class 1 integrons as invasive species. Curr

Opin Microbiol. (2017) 38:10–5. doi: 10.1016/j.mib.2017.

03.002

20. Lucassen R, Rehberg L, Heyden M, Bockmuhl D. Strong correlation of total

phenotypic resistance of samples from household environments and the

prevalence of class 1 integrons suggests for the use of the relative prevalence of

inti1 as a screening tool for multi-resistance. PLoS ONE. (2019) 14:e0218277.

doi: 10.1371/journal.pone.0218277

21. Stedtfeld RD, Williams MR, Fakher U, Johnson TA, Stedtfeld TM, Wang

F, et al. Antimicrobial resistance dashboard application for mapping

environmental occurrence and resistant pathogens. FEMS Microbiol Ecol.

(2016) 92:fiw020. doi: 10.1093/femsec/fiw020

22. Hansson K, Sundstrom L, Pelletier A, Roy PH. IntI2 integron integrase in Tn7.

J Bacteriol. (2002) 184:1712–21. doi: 10.1128/JB.184.6.1712-1721.2002

23. Deng Y, Bao X, Ji L, Chen L, Liu J, Miao J, et al. Resistance integrons:

class 1, 2 and 3 integrons. Ann Clin Microbiol Antimicrob. (2015) 14:45.

doi: 10.1186/s12941-015-0100-6

24. Stalder T, Barraud O, Jove T, Casellas M, Gaschet M, Dagot C, et al.

Quantitative and qualitative impact of hospital effluent on dissemination

of the integron pool. ISME J. (2014) 8:768–77. doi: 10.1038/ismej.20

13.189

25. Simo Tchuinte PL, Stalder T, Venditti S, Ngandjio A, Dagot C, Ploy MC,

et al. Characterisation of class 3 integrons with oxacillinase gene cassettes

in hospital sewage and sludge samples from France and Luxembourg.

Int J Antimicrob Agents. (2016) 48:431–4. doi: 10.1016/j.ijantimicag.2016.

06.018

26. Paulsen IT, Littlejohn TG, Radstrom P, Sundstrom L, Skold O, Swedberg

G, et al. The 3’ conserved segment of integrons contains a gene associated

with multidrug resistance to antiseptics and disinfectants. Antimicrob Agents

Chemother. (1993) 37:761–8. doi: 10.1128/AAC.37.4.761

27. Gaze WH, Abdouslam N, Hawkey PM, Wellington EMH. Incidence

of class 1 integrons in a quaternary ammonium compound-polluted

environment. Antimicrob Agents Chemother. (2005) 49:1802–7.

doi: 10.1128/AAC.49.5.1802-1807.2005

28. Gaze WH, Zhang L, Abdouslam NA, Hawkey PM, Calvo-Bado L, Royle J,

et al. Impacts of anthropogenic activity on the ecology of class 1 integrons

and integron-associated genes in the environment. ISME J. (2011) 5:1253–61.

doi: 10.1038/ismej.2011.15

29. Amos GCA, Ploumakis S, Zhang L, Hawkey PM, Gaze WH, Wellington

EMH. The widespread dissemination of integrons throughout

bacterial communities in a riverine system. ISME J. (2018) 12:681–91.

doi: 10.1038/s41396-017-0030-8

30. Rosewarne CP, Pettigrove V, Stokes HW, Parsons YM. Class 1

integrons in benthic bacterial communities: abundance, association

with Tn402-like transposition modules and evidence for coselection

with heavy-metal resistance. FEMS Microbiol Ecol. (2010) 72:35–46.

doi: 10.1111/j.1574-6941.2009.00823.x

31. Li LG, Xia Y, Zhang T. Co-occurrence of antibiotic and metal resistance

genes revealed in complete genome collection. ISME J. (2017) 11:651–62.

doi: 10.1038/ismej.2016.155

32. Gillings MR, Gaze WH, Pruden A, Smalla K, Tiedje JM, Zhu YG. Using the

class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME

J. (2015) 9:1269–79. doi: 10.1038/ismej.2014.226

33. Agramont J, Gutierrez-Cortez S, Joffre E, Sjoling A, Calderon

Toledo C. Fecal pollution drives antibiotic resistance and class 1

integron abundance in aquatic environments of the Bolivian Andes

impacted by mining and wastewater. Microorganisms. (2020) 8:1122.

doi: 10.3390/microorganisms8081122

34. Zheng W, Huyan J, Tian Z, Zhang Y, Wen X. Clinical class 1 integron-

integrase gene - a promising indicator to monitor the abundance

and elimination of antibiotic resistance genes in an urban wastewater

treatment plant. Environ Int. (2020) 135:105372. doi: 10.1016/j.envint.2019.1

05372

35. Hobman JL, Crossman LC. Bacterial antimicrobial metal ion resistance. J Med

Microbiol. (2015) 64:471–97. doi: 10.1099/jmm.0.023036-0

36. Ghaly TM, Chow L, Asher AJ, Waldron LS, Gillings MR. Evolution of class

1 integrons: mobilization and dispersal via food-borne bacteria. PLoS ONE.

(2017) 12:e0179169. doi: 10.1371/journal.pone.0179169

37. Henry MK, Tongue SC, Evans J, Webster C, Mc KI, Morgan M, et al.

British Escherichia coli O157 in cattle study (BECS): to determine the

prevalence of E. coli O157 in herds with cattle destined for the food

chain. Epidemiol Infect. (2017) 145:3168–79. doi: 10.1017/S09502688170

02151

38. HMGovernment UK.Global and Public Health Group. Tackling antimicrobial

resistance, 2019–2024. (2019). Available online at: https://assets.publishing.

service.gov.uk/government/uploads/system/uploads/attachment_data/file/

784894/UK_AMR_5_year_national_action_plan.pdf (accessed June 13,

2021).

39. Hoyle DV, Keith M, Williamson H, Macleod K, Mathie H, Handel I, et al.

Prevalence and epidemiology of non-O157 Escherichia coli serogroups O26,

O103, O111, O145 and Shiga toxin gene carriage in Scottish cattle, 2014–

2015. Appl Environ Microbiol. (2021) 87:e03142–20. doi: 10.1128/AEM.03

142-20

40. Niesters HG. Quantitation of viral load using real-time amplification

techniques. Methods. (2001) 25:419–29. doi: 10.1006/meth.200

1.1264

41. Adaska JM, Ekong PS, Clothier KA, Williams DR, Rossitto PV, Lehenbauer

TW, et al. Bayesian estimation of diagnostic accuracy of fecal culture and PCR-

based tests for the detection of Salmonella enterica in California cull dairy

cattle. Peer J. (2020) 8:8310. doi: 10.7717/peerj.8310

42. Ly A, Sergeant ESG, Plain KM, Marsh I, Dhand NK. Simulation

modelling to estimate the herd-sensitivity of various pool

sizes to test beef herds for Johne’s disease in Australia. Prev

Vet Med. (2021) 189:105294. doi: 10.1016/j.prevetmed.2021.1

05294

43. Barraud O, Baclet MC, Denis F, Ploy MC. Quantitative multiplex real-time

PCR for detecting class 1, 2 and 3 integrons. J Antimicrob Chemother. (2010)

65:1642–5. doi: 10.1093/jac/dkq167

44. Chainier D, Barraud O, Masson G, Couve-Deacon E, Francois B, Couquet

CY, et al. Integron digestive carriage in human and cattle: a “One

Health” cultivation-independent approach. Front Microbiol. (2017) 8:1891.

doi: 10.3389/fmicb.2017.01891

Frontiers in Veterinary Science | www.frontiersin.org 12 October 2021 | Volume 8 | Article 755833

https://doi.org/10.1093/jac/42.6.689
https://doi.org/10.1086/345880
https://doi.org/10.1099/mgen.0.000353
https://doi.org/10.1128/mBio.02214-15
https://doi.org/10.1046/j.1462-2920.2003.00429.x
https://doi.org/10.3389/fmicb.2012.00119
https://doi.org/10.1111/1462-2920.14551
https://doi.org/10.1016/j.ijantimicag.2014.06.008
https://doi.org/10.1038/nrmicro3439
https://doi.org/10.1016/j.mib.2017.03.002
https://doi.org/10.1371/journal.pone.0218277
https://doi.org/10.1093/femsec/fiw020
https://doi.org/10.1128/JB.184.6.1712-1721.2002
https://doi.org/10.1186/s12941-015-0100-6
https://doi.org/10.1038/ismej.2013.189
https://doi.org/10.1016/j.ijantimicag.2016.06.018
https://doi.org/10.1128/AAC.37.4.761
https://doi.org/10.1128/AAC.49.5.1802-1807.2005
https://doi.org/10.1038/ismej.2011.15
https://doi.org/10.1038/s41396-017-0030-8
https://doi.org/10.1111/j.1574-6941.2009.00823.x
https://doi.org/10.1038/ismej.2016.155
https://doi.org/10.1038/ismej.2014.226
https://doi.org/10.3390/microorganisms8081122
https://doi.org/10.1016/j.envint.2019.105372
https://doi.org/10.1099/jmm.0.023036-0
https://doi.org/10.1371/journal.pone.0179169
https://doi.org/10.1017/S0950268817002151
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/784894/UK_AMR_5_year_national_action_plan.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/784894/UK_AMR_5_year_national_action_plan.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/784894/UK_AMR_5_year_national_action_plan.pdf
https://doi.org/10.1128/AEM.03142-20
https://doi.org/10.1006/meth.2001.1264
https://doi.org/10.7717/peerj.8310
https://doi.org/10.1016/j.prevetmed.2021.105294
https://doi.org/10.1093/jac/dkq167
https://doi.org/10.3389/fmicb.2017.01891
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Fernández Rivas et al. Integrons in Scottish Cattle

45. Bibby JS, Douglas HA, Thomasson AJ, Roberston JS. Land Capability

Classification for Agriculture. Aberdeen, UK: MLURI (1991). Available online

at: https://www.hutton.ac.uk/sites/default/files/files/soils.

46. National Soil Map dataset (Version 1.4), James Hutton Institute. Available

online at: https://www.hutton.ac.uk/learning/natural-resource-datasets/

soilshutton/soils-maps-scotland/download (accessed June 13, 2021).

47. EDINA. Agricultural census data (2011). Database: EDINA agcensus. Available

online at: http://agcensus.edina.ac.uk/ (accessed July 27, 2021).

48. Porphyre T, Correia-Gomes C, Chase-Topping ME, Gamado K, Auty

HK, Hutchinson I, et al. Vulnerability of the British swine industry

to classical swine fever. Sci Rep. (2017) 7:42992. doi: 10.1038/srep

42992

49. Knapp CW, Graham DW, Freitag T, Pagaling E, Hough R, Avery L, et al.

Data from: Antibiotic resistance genes found in soils across the entire

Scottish landscape (2007–10).NERC Environmental Information Data Centre.

(2019). doi: 10.5285/d3498e93-4ac5-4eab-bc1a-eb2328771d24 (accessed April

5, 2021).

50. Diggle. Statistical Analysis of Spatial and Spatio-Temporal Point Patterns.

Boca Raton: Chapman and Hall/CRC (2013). p.300. doi: 10.1201/b

15326

51. Dos Santos A, Semecurbe F, Renaud A, Faivre C, Cornely T, Marouchi F. btb:

Beyond the Border - Kernel Density Estimation for Urban Geography. R package

version 0.1.30.3 (2020). Available online at: https://rdrr.io/cran/btb.

52. Team RC. R: a language and environment for statistical computing. Vienna,

Austria: R Foundation for Statistical Computing (2020). Available online

at: https://www.R-project.org.

53. Hoyle DV, Davison HC, Knight HI, Yates CM, Dobay O, Gunn GJ,

et al. Molecular characterisation of bovine faecal Escherichia coli shows

persistence of defined ampicillin resistant strains and the presence of

class 1 integrons on an organic beef farm. Vet Mic. (2006) 115:250–7.

doi: 10.1016/j.vetmic.2006.01.006

54. Vali L, Hamouda A, Hoyle DV, Pearce MC, Whitaker LH, Jenkins C, et al.

Antibiotic resistance and molecular epidemiology of Escherichia coli O26,

O103 and O145 shed by two cohorts of Scottish beef cattle. J Antimicrob

Chemother. (2007) 59:403–10. doi: 10.1093/jac/dkl491

55. Barlow RS, Pemberton JM, Desmarchelier PM, Gobius KS. Isolation

and characterization of integron-containing bacteria without

antibiotic selection. Antimicrob Agents Chemother. (2004) 48:838–42.

doi: 10.1128/AAC.48.3.838-842.2004

56. Yang X, Zou W, Zeng J, Xie S, An T, Luo X, et al. Prevalence of antimicrobial

resistance and integron gene cassettes in Escherichia coli isolated from yaks

(Poephagus grunniens) in Aba Tibetan Autonomous Prefecture, China.Microb

Pathog. (2017) 111:274–9. doi: 10.1016/j.micpath.2017.09.008

57. Weiss D, Wallace RM, Rwego IB, Gillespie TR, Chapman CA, Singer RS, et al.

Antibiotic-resistant Escherichia coli and class 1 integrons in humans, domestic

animals, and wild primates in rural Uganda. Appl Environ Microbiol. (2018)

84:e01632–18. doi: 10.1128/AEM.01632-18

58. Rehman MU, Zhang H, Huang S, Iqbal MK, Mehmood K, Luo H,

et al. Characteristics of integrons and associated gene cassettes in

antibiotic-resistant Escherichia coli isolated from free-ranging food

animals in China. J Food Sci. (2017) 82:1902–7. doi: 10.1111/1750-3841.

13795

59. Livestock Demographic Data Group, Animal and Plant Heath Agency.

Pig population report (2017). Available online at: http://apha.defra.gov.

uk/documents/surveillance/disease/lddg-pop-report-pig1117.pdf (accessed

August 3, 2021).

60. Livestock Demographic Data Group, Animal and Plant Heath Agency.

Cattle population report. (2017). Available online at: http://apha.defra.gov.

uk/documents/surveillance/diseaselddg-pop-report-cattle1117.pdf (accessed

August 3, 2021).

61. Velasova M, Smith RP, Lemma F, Horton RA, Duggett NA, Evans J,

et al. Detection of extended-spectrum beta-lactam, AmpC and carbapenem

resistance in Enterobacteriaceae in beef cattle in Great Britain in 2015. J Appl

Microbiol. (2019) 126:1081–95. doi: 10.1111/jam.14211

62. Dungan RS, McKinney CW, Leytem AB. Tracking antibiotic resistance genes

in soil irrigated with dairy wastewater. Sci Total Environ. (2018) 635:1477–83.

doi: 10.1016/j.scitotenv.2018.04.020

63. McKinney CW, Dungan RS, Moore A, Leytem AB. Occurrence and

abundance of antibiotic resistance genes in agricultural soil receiving

dairy manure. FEMS Microbiol Ecol. (2018) 94. doi: 10.1093/femsec/f

iy010

64. Dungan RS, Strausbaugh CA, Leytem AB. Survey of selected antibiotic

resistance genes in agricultural and non-agricultural soils in south-

central Idaho. FEMS Microbiol Ecol. (2019) 95:fiz071. doi: 10.1093/femsec/f

iz071

65. Sandberg KD, LaPara TM. The fate of antibiotic resistance genes and class 1

integrons following the application of swine and dairy manure to soils. FEMS

Microbiol Ecol. (2016) 92:fiw001. doi: 10.1093/femsec/fiw001

66. Hu HW, Han XM, Shi XZ,Wang JT, Han LL, Chen D, et al. Temporal changes

of antibiotic-resistance genes and bacterial communities in two contrasting

soils treated with cattle manure. FEMS Microbiol Ecol. (2016) 92:fiv169.

doi: 10.1093/femsec/fiv169

67. Di Cesare A, Eckert EM, Rogora M, Corno G. Rainfall increases the

abundance of antibiotic resistance genes within a riverine microbial

community. Environ Pollut. (2017) 226:473–8. doi: 10.1016/j.envpol.2017.

04.036

68. Stange C, Tiehm A. Occurrence of antibiotic resistance genes and microbial

source tracking markers in the water of a karst spring in Germany.

Sci Total Environ. (2020) 742:140529. doi: 10.1016/j.scitotenv.2020.1

40529

69. Ribeiro AF, Laroche E, Hanin G, Fournier M, Quillet L, Dupont JP, et al.

Antibiotic-resistant Escherichia coli in karstic systems: a biological indicator

of the origin of fecal contamination? FEMS Microbiol Ecol. (2012) 81:267–80.

doi: 10.1111/j.1574-6941.2012.01382.x

70. Amos GC, Gozzard E, Carter CE, Mead A, Bowes MJ, Hawkey PM, et al.

Validated predictive modelling of the environmental resistome. ISME J. (2015)

9:1467–76. doi: 10.1038/ismej.2014.237

71. Dungan RS, Bjorneberg DL. Antibiotic resistance genes, class 1 integrons,

and IncP-1/IncQ-1 plasmids in irrigation return flows. Environ Pollut. (2020)

257:113568. doi: 10.1016/j.envpol.2019.113568

72. Barlow RS, Fegan N, Gobius KS. A comparison of antibiotic resistance

integrons in cattle from separate beef meat production systems at

slaughter. J Appl Microbiol. (2008) 104:651–8. doi: 10.1111/j.1365-2672.2007.0

3572.x

73. Lima T, Domingues S, Da Silva GJ.Manure as a potential hotspot for antibiotic

resistance dissemination by horizontal gene transfer events. Vet Sci. (2020)

7:110. doi: 10.3390/vetsci7030110

74. Agga GE, Cook KL, Netthisinghe AMP, Gilfillen RA, Woosley PB, Sistani

KR. Persistence of antibiotic resistance genes in beef cattle backgrounding

environment over two years after cessation of operation. PLoS ONE. (2019)

14:e0212510. doi: 10.1371/journal.pone.0212510

75. Lopez-Alonso M. Trace minerals and livestock: not too much not

too little. ISRN Vet Sci. (2012) 2012:704825. doi: 10.5402/2012/7

04825

76. Seiler C, Berendonk TU. Heavy metal driven co-selection of antibiotic

resistance in soil and water bodies impacted by agriculture and

aquaculture. Front Microbiol. (2012) 3:399. doi: 10.3389/fmicb.2012.

00399

77. Zhu YG, Johnson TA, Su JQ, Qiao M, Guo GX, Stedtfeld RD, et al.

Diverse and abundant antibiotic resistance genes in Chinese swine farms.

Proc Natl Acad Sci USA. (2013) 110:3435–40. doi: 10.1073/pnas.12227

43110

78. Amachawadi RG, Scott HM, Aperce C, Vinasco J, Drouillard JS, Nagaraja

TG. Effects of in-feed copper and tylosin supplementations on copper and

antimicrobial resistance in faecal enterococci of feedlot cattle. J ApplMicrobiol.

(2015) 118:1287–97. doi: 10.1111/jam.12790

79. Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DG. Co-occurrence

of resistance genes to antibiotics, biocides and metals reveals novel

insights into their co-selection potential. BMC Genomics. (2015) 16:964.

doi: 10.1186/s12864-015-2153-5

80. Stokes HW, Nesbo CL, Holley M, Bahl MI, Gillings MR, Boucher Y. Class 1

integrons potentially predating the association with tn402-like transposition

genes are present in a sediment microbial community. J Bacteriol. (2006)

188:5722–30. doi: 10.1128/JB.01950-05

Frontiers in Veterinary Science | www.frontiersin.org 13 October 2021 | Volume 8 | Article 755833

https://www.hutton.ac.uk/sites/default/files/files/soils
https://www.hutton.ac.uk/learning/natural-resource-datasets/soilshutton/soils-maps-scotland/download
https://www.hutton.ac.uk/learning/natural-resource-datasets/soilshutton/soils-maps-scotland/download
http://agcensus.edina.ac.uk/
https://doi.org/10.1038/srep42992
https://doi.org/10.5285/d3498e93-4ac5-4eab-bc1a-eb2328771d24
https://doi.org/10.1201/b15326
https://rdrr.io/cran/btb
https://www.R-project.org
https://doi.org/10.1016/j.vetmic.2006.01.006
https://doi.org/10.1093/jac/dkl491
https://doi.org/10.1128/AAC.48.3.838-842.2004
https://doi.org/10.1016/j.micpath.2017.09.008
https://doi.org/10.1128/AEM.01632-18
https://doi.org/10.1111/1750-3841.13795
http://apha.defra.gov.uk/documents/surveillance/disease/lddg-pop-report-pig1117.pdf
http://apha.defra.gov.uk/documents/surveillance/disease/lddg-pop-report-pig1117.pdf
http://apha.defra.gov.uk/documents/surveillance/diseaselddg-pop-report-cattle1117.pdf
http://apha.defra.gov.uk/documents/surveillance/diseaselddg-pop-report-cattle1117.pdf
https://doi.org/10.1111/jam.14211
https://doi.org/10.1016/j.scitotenv.2018.04.020
https://doi.org/10.1093/femsec/fiy010
https://doi.org/10.1093/femsec/fiz071
https://doi.org/10.1093/femsec/fiw001
https://doi.org/10.1093/femsec/fiv169
https://doi.org/10.1016/j.envpol.2017.04.036
https://doi.org/10.1016/j.scitotenv.2020.140529
https://doi.org/10.1111/j.1574-6941.2012.01382.x
https://doi.org/10.1038/ismej.2014.237
https://doi.org/10.1016/j.envpol.2019.113568
https://doi.org/10.1111/j.1365-2672.2007.03572.x
https://doi.org/10.3390/vetsci7030110
https://doi.org/10.1371/journal.pone.0212510
https://doi.org/10.5402/2012/704825
https://doi.org/10.3389/fmicb.2012.00399
https://doi.org/10.1073/pnas.1222743110
https://doi.org/10.1111/jam.12790
https://doi.org/10.1186/s12864-015-2153-5
https://doi.org/10.1128/JB.01950-05
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Fernández Rivas et al. Integrons in Scottish Cattle

81. Liebert CA, Hall RM, Summers AO. Transposon Tn21, flagship

of the floating genome. Microbiol Mol Biol Rev. (1999) 63:507–22.

doi: 10.1128/MMBR.63.3.507-522.1999

82. Pardon B, Callens J, Maris J, Allais L, Van Praet W, Deprez P,

et al. Pathogen-specific risk factors in acute outbreaks of respiratory

disease in calves. J Dairy Sci. (2020) 103:2556–66. doi: 10.3168/jds.2019-

17486

83. Muniesa A, Ferreira C, Fuertes H, Halaihel N, de Blas I.

Estimation of the relative sensitivity of qPCR analysis using pooled

samples. PLoS ONE. (2014) 9:e93491. doi: 10.1371/journal.pone.00

93491

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Fernández Rivas, Porphyre, Chase-Topping, Knapp, Williamson,

Barraud, Tongue, Silva, Currie, Elsby and Hoyle. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Veterinary Science | www.frontiersin.org 14 October 2021 | Volume 8 | Article 755833

https://doi.org/10.1128/MMBR.63.3.507-522.1999
https://doi.org/10.3168/jds.2019-17486
https://doi.org/10.1371/journal.pone.0093491
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles

	High Prevalence and Factors Associated With the Distribution of the Integron intI1 and intI2 Genes in Scottish Cattle Herds
	Introduction
	Materials and Methods
	Study Population and Herd Demographics
	DNA Preparation and Sample Pools
	Bacterial Control Strains
	Real-Time PCR Herd-Level Screening for Integron Genes
	Datasets for Land Type, Livestock Densities and Soil Integron Abundance
	Land Type
	Livestock and Holding Density
	Soil Integron Abundance

	Statistical and Epidemiological Analysis
	Prevalence Estimates
	Risk Factor Analysis


	Results
	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


