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This paper explores teachers' knowledge for supporting students to transition between technologies, for example, moving between using dynamic digital technologies and using static environments for mathematics. The TPACK framework is used to explore such knowledge through an examination of one teacher's frustration with the 'rigidity' of angle definition and measurement in GeoGebra, expressed in a task-based interview on circle theorems, compared with the relative 'flexibility' of a static environment. The nature of the central TPCK construct is discussed and implications for teacher education are identified.

Introduction

This study investigates the nature and content of teachers' mathematical knowledge for teaching circle theorems using dynamic digital technologies, such as GeoGebra. The specific knowledge required for teaching mathematics with technology has been a long-term interest in TWG15 [START_REF] Clark-Wilson | Introduction to the papers of TWG15: Teaching mathematics with technology and other resources[END_REF]. Less commonly, research has focussed on teachers' knowledge for supporting students to bridge or transition [START_REF] Geraniou | Building bridges to algebra through a constructionist learning environment[END_REF]) between technologies, for example, moving between using dynamic digital technologies and using static environments for mathematics. Hence this study focuses on investigating what knowledge enables teachers to support transitions between dynamic and static environments in their teaching of circle theorems. The main research question is: what is the nature and content of teachers' mathematical knowledge for teaching circle theorems using dynamic digital technologies? The sub-question is: what knowledge enables teachers to support transitions between dynamic and static environments?

Theoretical background

Mathematical knowledge for teaching, as defined in this study, is when tacit knowledge-in-action [START_REF] Ruthven | Frameworks for analysing the expertise that underpins successful integration of digital technologies into everyday teaching practice[END_REF] is underpinned by and coincides with a teacher's articulated knowledge that provides for "a rational, reasoned approach to decision-making" (Rowland et al., 2005, p. 260). The Technological Pedagogical and Content Knowledge (TPACK) framework is suitable for this study because the framework enables a focus on teachers' mathematical knowledge for teaching situated in a technological context [START_REF] Mishra | Technological pedagogical content knowledge: A framework for teacher knowledge[END_REF]. In this study, the central TPCK construct is viewed as a new domain of synthesised knowledge, that is, a transformation [START_REF] Rowland | Elementary Teachers' Mathematics Subject Knowledge: the Knowledge Quartet and the case of Naomi[END_REF] of mathematical knowledge for the purpose of teaching using technology. This paper focuses on the dyadic construct TCK (technological content knowledge) as a means of exploring, by comparison, the nature and content of the central TPCK construct. [START_REF] Mishra | Technological pedagogical content knowledge: A framework for teacher knowledge[END_REF] define TCK as knowledge about how technology and content influence and constrain one another; that is, how the mathematical content can be changed by the application of particular technologies. For example, dynamic digital technologies, such as GeoGebra, embed mathematical rules in their design, constraining the user to obey these rules e.g. by imposing an explicit order in constructing geometric figures [START_REF] Jones | Providing a Foundation for Deductive Reasoning: students' interpretations when using dynamic geometry software[END_REF]. This mathematical rigidity may be fruitful in supporting the user to appreciate and explore the rules embedded. By contrast, a static environment, such as paper-and-pencil, is relatively flexible, allowing the user to draw mathematical 'sketches' without the necessity of obeying a specific set of mathematical rules. An appreciation of how different environments provide contrasting representations of mathematics exemplifies the TCK construct. An appreciation of how to capitalise on such contrasting representations for the purposes of teaching, e.g. to support pupils' transitions between environments, would exemplify the TPCK construct. [START_REF] Adler | The dilemma of transparency: Seeing and seeing through talk in the mathematics classroom[END_REF] dilemma of transparency provides a means of explaining why teachers' knowledge might enable them or not to support transitions between dynamic and static environments.

Methodology

As part of a larger doctoral study [START_REF] Bretscher | Mathematical knowledge for teaching using technology[END_REF], four case study teachers were selected, as selfdescribed technology enthusiasts confident in the use of technology, to take part in semi-structured interviews based around a GeoGebra file on circle theorems. As enthusiasts, the case study teachers were likely to display mathematical knowledge for teaching using technology. The semi-structured interviews provided a common situation across which the case study teachers' mathematical knowledge for teaching using technology could be contrasted. Examples of TCK were identified where a teacher's articulated knowledge and knowledge-in-action coincided to place emphasis on technology and mathematical content when addressing a situation involving a synthesis of mathematical, pedagogical and technology knowledge. The case study teachers were prompted to show (knowledge-in-action) and discuss (articulated knowledge) how they would use diagram D1 presented in the GeoGebra file (see Figure 1) to demonstrate that the angle at the centre of the circle, subtended by an arc, is double the angle at the circumference subtended by the same arc. Diagram D1 was designed to be similar to resources found on a web-search. Circle theorems were chosen since it is a topic, in the English mathematics curriculum, which is commonly identified with the use of dynamic geometry software [START_REF] Ruthven | Constructions of dynamic geometry: A study of the interpretative flexibility of educational software in classroom practice[END_REF]. It was therefore reasonable to assume that the case study teachers would be familiar with technological resources similar to D1 and might even have previously used such resources in their own teaching. Thus, they would be likely to have some mathematical knowledge for teaching circle theorems using the GeoGebra file, even if they were unfamiliar with the particular software. In addition, the topic of circle theorems is at the apex of geometry in the compulsory English mathematics curriculum, hence it provided a potentially challenging context even for experienced teachers who were both mathematically and technologically confident.The semi-structuring of the interview allowed some flexibility to respond to events during the interview, whilst maintaining an overall structure that would allow for and facilitate comparison. Both the visual and audio aspects of the GeoGebra interviews were recorded and analysed. This paper focuses on one of these case study teachers, Edward, whose expression of frustration at the way angles are measured in GeoGebra provided a particularly illuminating example of TCK.

Defining angles in GeoGebra: Edward's dilemma

The analysis presented in this section focuses on an indicative example of TCK, from Edward's interview, as a means of exploring the nature of the central TPCK construct.

Edward was prompted to question how angles are defined for the purposes of measurement in GeoGebra by unexpected configurations of D1 appearing during dragging, displaying the 'incorrect' angle at the centre (see Figure 2). After experimenting by dragging points C and D, Edward concluded the angle measured at the centre was dependent on the relative position of points C and D. More specifically, in GeoGebra the angle measured at the centre in D1 is defined by specifying the ordered triad of points CAD and measured anticlockwise from the line segment AC to the line segment AD. Thus, when the relative positions of C and D are reversed, as in Figure 2, the angle appears to 'flip' between being less than 180 degrees and being reflex.

D1 had been designed so that, whilst the angle at the centre could become reflex, the angle measured at the circumference was constrained to be less than 180 degrees whatever the relative position of points C and D. Hence the 'correct' angle at the circumference in relation to the circle theorem was always displayed, however some configurations of D1 displayed the 'incorrect' angle at the centre. Edward's questioning of how the software defines and measures angles and his realisation of the angle at the centre's dependence on the relative positions of C and D is an example of TCK because it shows a developing understanding of how the GeoGebra software models geometric concepts and relations. For Edward, the software's definition and measurement of angles was a source of frustration, appearing idiosyncratic in the way D1 'flipped' between displaying the correct and the incorrect angle at the centre. He argued: E:

... this is sort of a function of how the software works isn't it, rather than a ... is that bringing out anything useful mathematically that ... that's just a bit annoying the way it does that, isn't it?

His frustration with angle definition in the software led him to suggest that, for proof, he would prefer a static environment: "I'd project this on the whiteboard […] and then mark on the angles that I want". Implicitly, Edward compared the difficulties he faced understanding how angles are defined in GeoGebra to the flexibility of being able to mark the angles that he wants in a static environment. Diagrams presented in software such as GeoGebra are constrained to follow the rules for defining angles that have been programmed into that piece of software. One of the affordances of drawing diagrams without digital technologies is that the relevant angles of the circle theorem may simply be marked on a diagram with a brief stroke of a pen or pencil, without needing to consider how they are defined precisely. It is not that a precise definition of the angles does not exist or is not necessary in a paper-and-pencil environment, of course, but that often it does not appear necessary to give it explicit consideration.

A case where it might be necessary to give explicit consideration to a precise definition of the angles, even in a static environment, would be when giving a full statement of the circle theorem, rather than a commonly-used, abbreviated form such as 'the angle at the centre is double the angle at the circumference'. For example, a full statement of the circle theorem is 'the angle subtended at the centre by an arc is double the angle subtended at the circumference by the same arc'. The difference between the abbreviated form and the full statement is in the specification that the two angles must be subtended from the same arc. More specifically, using the full statement of the theorem clarifies which is the 'correct' and 'incorrect' angle at the centre.

In his initial discussion of D1, Edward assumes the angles are defined as being subtended by the chord CD: E: ... so what it shows is the angle subtended at the circumference by chord CD is always twice the angle at the centre, irrespective of where B is.

Defining the two angles as subtended from the chord is unproblematic as long as the two angles remain in the same segment; however, when they are in opposing segments the theorem appears to break down (see Figure 3 a and b). The situation where the two angles appear in opposing segments occurred twice during Edward's GeoGebra interview. Firstly, as depicted in Figure 3 (a), it occurred where the 'incorrect' angle at the centre is shown, assuming the angles in the circle theorem are defined as being subtended from the same arc. He had anticipated this case to some extent. Thus, for Edward, this case was not unduly Instead, he called this case a "complication", suggests "ignoring" it at least initially with pupils, and refers to the 'correct' angle at the centre, measuring 252 degrees, as "the reflex angle". His treatment of the case in Figure 3 (a) as a sort of deviant example or extension of his statement of the circle theorem, where the angle at the centre is reflex, avoided a mathematical critique of his definition of the angles being subtended from the chord. However, the situation arose for a second time, similar to Figure 3 (b), where the 'correct' angle at the centre is shown, assuming the angles in the circle theorem are defined as being subtended from the same arc. This time, the situation was unexpected and troubling for Edward. In particular, it led him to question his previous definition of the central angle as being subtended by the chord CD. The following quote indicates his struggles as he attempted to find a correct mathematical interpretation of this configuration of D1, see Figure 4 for the numerical example he discusses at the start: E: Um ... so ... let's take an example ... so 94 doubled is 188, so it's still true that ... so that angle is twice that angle. But uh ... how do you know it was that angle ... so the computer is kind of showing you the right angle for what it's working for isn't it? But in words, how do you explain what that angle is, it's not really the angle that chord CD is subtending at the centre is it? Because it's that ... chord CD is subtending that angle at the centre, so suddenly you have to say it's the other angle, the reflex angle at the centre that's subtending. So... so CD is subtending 99 at the circumference and, ... er ... the reflex angle is 198 yeah. Uh ... which is not a very good explanation.

[E laughs]

At the end of this quote, Edward tries to re-state the theorem using a particular numerical example, taking into account his realisation that the 'correct' angle at the centre was not, as he previously assumed, the angle subtended by the chord CD. He struggles, eventually settling for "the reflex angle", whilst acknowledging this seemed inadequate. Returning to Edward's frustration at the apparently idiosyncratic way GeoGebra defined and measured the angles in D1, the discussion above shows that instead of being "just a bit annoying", the way GeoGebra defines and measures angles does bring out something mathematically useful. The variation in whether the 'correct' or 'incorrect' angle is displayed in D1 provides a means of discussing how angles are defined in other contexts and, in particular, how the angles referred to in the (abbreviated) 'angle at the centre is double the angle at the circumference' circle theorem are defined precisely in a full statement of the theorem. Articulating a strategy to use the way GeoGebra defines angles to raise these issues for the purposes of teaching circle theorems would be an example of TPCK. Such a strategy would not appear to depend on integrating pedagogic knowledge with TCK. Instead, it requires mathematical knowledge regarding the precise definition of the angles in a full statement of the angle at the centre circle theorem. Hence, TPCK appears to be mathematical knowledge, abstract in the sense that it generalises across particular technological contexts and mathematical topics. For example, a precise definition of the angles in a full statement of the angle at the centre circle theorem should hold both in the context of using GeoGebra or a paper-and-pencil environment.

However, TPCK also appears simultaneously to be mathematical knowledge situated in the context of teaching using technology. The issue of how angles are defined appears more salient and even surprisingfor Edward at leastin the context of GeoGebra. In addition, at the time, the high-stakes GCSE (General Certificate of Secondary Education) examinations in England only required pupils to state an abbreviated form of the circle theorems. As a result, it is possible that the case study teachers were unaware of a precise definition of the angles in a full statement of the angle at the centre circle theorem. Hence, an individual teacher's TPCK may also be seen as situated in the examination system and national curriculum of the country in that teacher is working. This argument suggests that TPCK is a synthesis of mathematical, pedagogical and technological knowledge, highlighting its situated nature as a transformation of mathematical knowledge for the purposes of teaching using technology.

In summary, the central TPCK construct is exemplified as having teaching strategies for exploiting the opportunities that arise from contrasting and complementing the affordances and constraints of different technologies, in this case, the mathematical rigidity of angle measurement in GeoGebra relative to the flexibility of paper-and-pencil environment. Using such teaching strategies and making affordances and constraints of technologies explicit to pupils should support them in transitioning between different technologies.

Discussion

In this section, I apply [START_REF] Adler | The dilemma of transparency: Seeing and seeing through talk in the mathematics classroom[END_REF] dilemma of transparency to explain Edward's frustration further and so identify implications for teacher education. [START_REF] Adler | The dilemma of transparency: Seeing and seeing through talk in the mathematics classroom[END_REF] uses [START_REF] Lave | Situated Learning: Legitimate Peripheral Participation[END_REF] notion of transparency to describe teachers' dilemmas in negotiating the dual visibility and invisibility of talk as a resource in the practice of school mathematics. In this paper, the notion of transparency is applied to the use of technology as a resource in the practice of school mathematics. [START_REF] Adler | The dilemma of transparency: Seeing and seeing through talk in the mathematics classroom[END_REF] describes Lave and Wenger's use of the metaphor of a window to explain their notion of transparency:

Lave and Wenger (1991) used the metaphor of a window to clarify their concept of transparency. A window's invisibility is what makes it a window. It is an object through which the outside world becomes visible. However, set in a wall, the window is simultaneously highly visible. In other words, that one can see through it is precisely what also makes it highly visible.

Thus, technology as a teaching resource for mathematics needs to be simultaneously both visible, so that it can be noticed and used in the practice of school mathematics, and invisible so that attention is focused on the subject matter of mathematics and not solely on the technicalities of the environment. The particularities of using a specific technology to teach mathematics influences the mathematics that can be taught. For example, sketch diagrams in paper-and-pencil environments are relatively flexible in that they do not have to obey fixed rules in relation to defining and measuring angles. The flexibility of the paper-and-pencil environment affords the user the freedom to imagine they are working in an ideal mathematical world, where relationships embedded in figures can be imagined without being weighed down by rigid rules of construction and where perfect circles, exact angle measurement, circle theorems and proof 'exist'. Diagrams in GeoGebra appear more mathematically rigid in this respect, hence Edward's irritation with the software. However, this rigidity can be useful in forcing attention to mathematical details, such as defining angles, which the sketch diagram in a paper-and-pencil environment allows the user to elide. Similarly, the window frame, its shape and positioning on the wall, influences which part of the outside world can be seen. Thus, teachers need to understand the significance of the particular technology for the mathematics they are teaching: the technology requires teachers' explicit attention, it needs to be visible. In this sense, mathematical knowledge for teaching using technology is always situated, since the technological context in which it is being applied is central to its meaning. Simultaneously, technology should enable the teaching of mathematics, in this case the GeoGebra software should enable the teaching of circle theorems and should thus be invisible. It is the window through which mathematical knowledge can be seen: the GeoGebra software is a means of controlling numerical and geometric variation so that pupils are exposed systematically to examples of the circle theorem.

Here, mathematical knowledge for teaching using technology appears more abstract, allowing teachers to make mathematical connections across technological contexts.

Adler's description of a dilemma of transparency where the teacher manages talk as a classroom resource, so that it is neither too visible for pupils, obscuring the mathematical subject matter, nor too invisible so that they are unable to access it, has some explanatory value for this study. However, here, the dilemma is managing technology so that it does not become too visible for teachers, obscuring mathematical knowledge for teaching using technology, nor too invisible, so that teachers assume that technology can be used unproblematically for teaching mathematics. For example, on the one hand, Edward's irritation with the definition and measurement of angles in GeoGebra indicated that the software was too visible for him. In this case the GeoGebra software obscured his access to mathematical knowledge for teaching using technology, leading him towards rejection or restriction of technology use. On the other hand, the case study teachers' lack of awareness of how dragging imposes a particular order on how different configurations of the circle theorem arise (reported elsewhere, e.g. in [START_REF] Bretscher | Mathematical knowledge for teaching using technology[END_REF] provide an instance where technology seems too invisible. Here, the unintentional pedagogic structuring of mathematics suggests that the technology has become too invisible, with an assumption that technology provides unproblematic access to mathematical knowledge for teaching. The implication for teacher education is that they need to help teachers manage the dilemma of transparency. That is, just as teachers need to making affordances and constraints of technologies explicit to pupils, teacher educators need to make affordances and constraints of technologies explicit or 'visible' to teachers. In addition, teacher educators need to support teachers in identifying teaching strategies that exploit the contrasts and complementarities of different technologies, such as dynamic digital technologies and static paper-and-pencil environments, so that the technology becomes 'invisible' and just another resource for teaching mathematics.
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 1 Figure 1: Diagram D1 in the GeoGebra interview file on circle theorems
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 2 Figure 2: Angle measurement and reversing the relative positions of C and D
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 3 Figure 3: Angles in the opposite segments with (a) the 'incorrect' angle at the centre displayed and (b) the 'correct' angle at the centre displayed.
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 4 Figure 4: Edward's angle definition dilemma

  problematic and did not disrupt his statement of the circle theorem defining the angles as subtended from the chord CD, as the quote below suggests: E: And then if you drag B this side [onto the minor arc CD], then suddenly it goes from 54 to 126. So ... uh ... what's happening there? So ... uh ... what's happening there is the angle on the other side of the 108 is now double the angle at the centre, the angle at the circumference ... but it's not showing on the diagram, the computer's not showing that other angle ... but you can calculate it as 360 -108, so 252. And 252 is double 126. Yeah.