
HAL Id: hal-03747425
https://hal.science/hal-03747425

Preprint submitted on 8 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Curry-Howard Correspondence for Linear, Reversible
Computation

Kostia Chardonnet, Alexis Saurin, Benoît Valiron

To cite this version:
Kostia Chardonnet, Alexis Saurin, Benoît Valiron. A Curry-Howard Correspondence for Linear, Re-
versible Computation. 2022. �hal-03747425�

https://hal.science/hal-03747425
https://hal.archives-ouvertes.fr


A Curry-Howard Correspondence for
Linear, Reversible Computation
Kostia Chardonnet �Â

Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, 91190, Gif-sur-Yvette, France.
Équipe Quacs, Inria
Université Paris Cité, CNRS, IRIF, F-75006, Paris, France

Alexis Saurin �Â

Université Paris Cité, CNRS, IRIF, 75013, Paris, France.
Équipe πr2, Inria

Benoît Valiron �Â�

Université Paris-Saclay, CNRS, CentraleSupélec, ENS Paris-Saclay, LMF, 91190, Gif-sur-Yvette, France
Équipe Quacs, Inria

Abstract
In this paper, we present a linear and reversible programming language with inductives types and recursion.
The semantics of the languages is based on pattern-matching; we show how ensuring syntactical exhaustivity
and non-overlapping of clauses is enough to ensure reversibility. The language allows to represent any
Primitive Recursive Function. We then give a Curry-Howard correspondence with the logic µMALL: linear
logic extended with least �xed points allowing inductive statements. The critical part of our work is to show
how primitive recursion yields circular proofs that satisfy µMALL validity criterion and how the language
simulates the cut-elimination procedure of µMALL.
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1 Introduction

Computation and logic are two faces of the same coin. For instance, consider a proof s

s....
A→ B

t....
A

B

Figure 1 Modus Ponens

of A → B and a proof t of A. With the logical rule Modus Pon-
ens one can construct a proof of B: Figure 1 features a graphical
presentation of the corresponding proof. Horizontal lines stand
for deduction steps —they separate conclusions (below) and hy-
potheses (above). These deduction steps can be stacked vertically
up to axioms in order to describe complete proofs. In Figure 1 the
proofs of A and A→ B are symbolized with vertical ellipses. The
ellipsis annotated with s indicates that s is a complete proof ofA→ B while t stands for a complete
proof of A.

This connection is known as the Curry-Howard correspondence [12, 16]. In this general frame-
work, types correspond to formulas and programs to proofs, while program evaluation is mirrored
with proof simpli�cation (the so-called cut-elimination). The Curry-Howard correspondence form-
alizes the fact that the proof s of A → B can be regarded as a function —parametrized by an
argument of type A— that produces a proof of B whenever it is fed with a proof of A. Therefore,
the computational interpretation of Modus Ponens corresponds to the application of an argument
(i.e. t) of type A to a function (i.e. s) of type A→ B. When computing the corresponding program,
one substitutes the parameter of the function with t and get a result of type B. On the logical side,
this corresponds to substituting every axiom introducing A in the proof s with the full proof t of A.
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This yields a direct proof of B without any invocation of the “lemma” A→ B.
Paving the way toward the veri�cation of critical softwares, the Curry-Howard correspondence

provides a versatile framework. It has been used to mirror �rst and second-order logics with
dependent-type systems [11, 18], separation logics with memory-aware type systems [21, 17],
resource-sensitive logics with di�erential privacy [14], logics with monads with reasoning on
side-e�ects [25, 19], etc.
Reversible computation is a paradigm of computation which emerged as an energy-preserving model
of computation in which data is never erased [1] that makes sure that, given some process f , there
always exists an inverse process f−1 such that f ◦ f−1 = Id = f−1 ◦ f . Many aspects of reversible
computation have been considered, such as the development of reversible Turing Machines [3],
reversible programming languages [6] and their semantics [4, 5]. However, the formal relationship
between a logical system and a computational model have not been developed yet.

This paper aims at proposing a type system featuring inductive types for a purely linear and
reversible language. We base our study on the approach presented in [23]. In this model, reversible
computation is restricted to two main types: the tensor, written A⊗B and the co-product, written
A⊕B. The former corresponds to the type of all pairs of elements of type A and elements of type
B, while the latter represents the disjoint union of all elements of type A and elements of type
B. For instance, a bit can be typed with 1 ⊕ 1, where 1 is a type with only one element. The
language in [23] o�ers the possibility to code isos —reversible maps— with pattern matching. An
iso is for instance the swap operation, typed with A⊗B ↔ B ⊗A. However, if [23] hints at an
extension towards pure quantum computation, the type system is not formally connected to any
logical system.

The problem of reversibility between �nite type of same cardinality simply requires to check that
the function is injective. That is no longer the case when we work with types of in�nite cardinality
such as natural numbers.

The main contribution of this work is a Curry-Howard correspondence for a purely reversible
typed language in the style of [23], with added generalised inductive types and terminating recursion,
enforced by the fact that recursive functions must be structurally recursive: each recursive call must
be applied to a decreasing argument. We show how ensuring exhaustivity and non-overlapping of
the clauses of the pattern-matching are enough to ensure reversibility and that the obtained language
can encode any Primitive Recursive function [28]. For the Curry-Howard part, we capitalize on the
logic µMALL [10, 8]: an extension of the additive and multiplicative fragment of linear logic with
least and greatest �xed points allowing inductive and coinductive statements. This logic contains
both a tensor and a co-product, and its strict linearity makes it a good �t for a reversible type
system. In the litterature, multiple proofs systems have been considered for µMALL, some �nitary
proof system with explicit induction inferences à la Park [10] as well as non-well-founded proof
systems which allow to build in�nite derivation [8, 9]. The present paper focuses on the latter. In
general, an in�nite derivation is called a pre-proof and is not necessarily consistent. To solve this
problem µMALL comes equiped with a validity criterion, telling us when an in�nite derivation can
be considered as a logical proof. We show how the syntactical constraints of being structurally
recursive imply the validation of pre-proofs.

Organisation of the paper The paper is organised as follows: in Section 2 we present the
language, its syntax, typing rules and semantics and show that any function that can be encoded
in our language represents an isomorphism. In Section 3 we show that our language can encode
any Primitive Recursive Function [28], this is shown by encoding the set of Recursive Primitive
Permutations [27] functions. Then in Section 4, we develop on the Curry-Howard Correspondence
part: we show, given a well-typed term from our language, how to translate it into a circular
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derivation of the logic µMALL and show that the given derivation respects the validity condition
and how our evaluation strategy simulates the cut-elimination procedure of the logic. More details
on proofs can be found in the appendix.

2 First-order Isos

Our language is based on the one introcuded by Sabry et al [23] which de�ne isomorphisms between
various types, included the type of lists. We build on the reversible part of the paper by extending the
language to support both a more general rewriting system and more general inductive types. The
language is de�ned by layers. Terms and types are presented in Table 1, while typing derivations,
inspired from µMALL, can be found in Tables 2 and 3. The language consists of the following pieces.
Basic type. They allow us to construct �rst-order terms. The constructors injl and injr represent
the choice between either the left or right-hand side of a type of the formA⊕B; the constructor 〈, 〉
builds pairs of elements (with the corresponding type constructor ⊗); fold represents inductive
structure of the types µX.A. A value can serve both as a result and as a pattern in the de�ning
clause of an iso. We write (x1, . . . , xn) for 〈x1, 〈. . . , xn〉〉 or −→x when n is non-ambiguous and
A1 ⊗ · · · ⊗An for A1 ⊗ (· · · ⊗An) and An for A⊗ · · · ⊗A︸ ︷︷ ︸

n times

.

First-order isos. An iso of type A ↔ B acts on terms of base types. An iso is a function of type
A↔ B, de�ned as a set of clauses of the form {v1 ↔ e1 | . . . | vn ↔ en}. In the clauses, the
tokens vi are open values and ei are expressions. In order to apply an iso to a term, the iso must be
of type A↔ B and the term of type A. In the typing rules of isos, the ODA({v1, . . . , vn}) predicate
(adapted from [23]) syntactically enforces the exhaustivity and non-overlapping conditions on
a set of well-typed values v1, . . . , vn of type A. The typing conditions make sure that both the
left-hand-side and right-hand-side of clauses satisfy this condition. Its formal de�nition can be
found in Table 4 where V al(e) is de�ned as V al(let p = ω p′ in e) = V al(e), and V al(v) = v

otherwise. These checks are crucial to make sure that our isos are indeed reversible. In the rule
ODA⊗B , we de�ne S1

v and S2
v respectively as {w | 〈v, w〉 ∈ S} and {w | 〈w, v〉 ∈ S} Exhaustivity

for an iso {v1 ↔ e1 | . . . | vn ↔ en} of type A ↔ B means that the expressions on the
left (resp. on the right) of the clauses describe all possible values for the type A (resp. the type
B). Non-overlapping means that two expressions cannot match the same value. For instance,
the left and right injections injl v and injr v

′ are non-overlapping while a variable x is always
exhaustive. The construction fix g.ω represents the creation of a recursive function, rewritten as
ω[g := fix g.ω] by the operational semantics. Each recursive function needs to satisfy a structural
recursion criteria: making sure that one of the input arguments strictly decreases on each recursive
call. Indeed, since isos can be non-terminating (due to recursion), we need a criterion that implies
termination to ensure that we work with total functions. If ω is of type A↔ B, we can build its
inverse ω⊥ : B ↔ A and show that their composition is the identity. In order to avoid con�icts
between variables we will always work up to α-conversion and use Barendregt’s convention [7,
p.26] which consists in keeping all bound and free variables names distinct, even when this remains
implicit.

The type system is split in two parts: one for terms (noted ∆; Ψ `e t : A) and one for isos
(noted Ψ `ω ω : A ↔ B). In the typing rules, the contexts ∆ are sets of pairs that consist of a
term-variable and a base type, where each variable can only occur once and Ψ is a singleton set of a
pair of an iso-variable and an iso-type association.

I Definition 1 (Structurally Recursive). Given an iso fix f.{v1 ↔ e1 | . . . | vn ↔ en} :
A1 ⊗ · · · ⊗Am ↔ C , it is structurally recursive if there is 1 ≤ j ≤ m such that Aj = µX.B and for
all i ∈ {1, . . . ,m} we have that vi is of the form (v1

i , . . . , v
m
i ) such that vji is either:

CVIT 2016
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(Base types) A,B ::= 1 | A⊕B | A⊗B | µX.A
(Isos, �rst-order) α ::= A↔ B

(Values) v ::= () | x | injl v | injr v | 〈v1, v2〉 | fold v

(Pattern) p ::= x | 〈p1, p2〉
(Expressions) e ::= v | let p1 = ω p2 in e

(Isos) ω ::= {v1 ↔ e1 | . . . | vn ↔ en} | fix f.ω | f
(Terms) t ::= () | x | injl t | injr t | 〈t1, t2〉 |

fold t | ω t | let p = t1 in t2

Table 1 Terms and types

∅; Ψ `e () : 1 x : A; Ψ `e x : A
∆; Ψ `e t : A

∆; Ψ `e injl t : A⊕B
∆; Ψ `e t : B

∆; Ψ `e injr t : A⊕B
∆1; Ψ `e t1 : A ∆2; Ψ `e t2 : B

∆1,∆2; Ψ `e 〈t1, t2〉 : A⊗B
∆; Ψ `e t : A[X ← µX.A]

∆; Ψ `e fold t : µX.A
Ψ `ω f : A↔ B ∆; Ψ `e t : A

∆; Ψ `e f t : B
`ω ω : A↔ B ∆; Ψ `e t : A

∆; Ψ `e ω t : B
∆1; Ψ `e t1 : A1 ⊗ · · · ⊗An ∆2, x1 : A1, . . . , xn : An; Ψ `e t2 : B

∆1,∆2; Ψ `e let (x1, . . . , xn) = t1 in t2 : B

Table 2 Typing of terms and expressions

A closed value, in which case ei does not contain the subterm f p

Open, in which case for all subterm of the form f p in ei we have p = (x1, . . . , xm) and xj : µX.B
is a strict subterm of vji .

Given a clause v ↔ e, we call the value vji (resp. the variable xj) the decreasing argument (resp. the
focus) of the structurally recursive criterion.

I Remark 2. As we are focused on a very basic notion of structurally recursive function, the typing
rules of isos allow to have at most one iso-variable in the context, meaning that we cannot have
intertwined recursive call.

Finally, our language is equipped with a rewriting system→ on terms, de�ned in De�nition 5,
that follows a deterministic call-by-value strategy: each argument of a function is fully evaluted
before applying the substitution. This is done through the use of an evaluation context C[], which
consists of a term with a hole (where C[t] is C where the hole has been �lled with t). Due to the
deterministic nature of the strategy we directly obtain the unicity of the normal form. The evaluation
of an iso applied to a value relies on with pattern-matching : the argument is matched against the
left-hand-side of each clause until one of them matches (written σ[v] = v′), in which case the pattern-
matching, as de�ned in De�nition 5, returns a substitution σ that sends variables to values. Because
we ensure exhaustivity and non-overlapping (Lemma 3), the pattern-matching can always occurs
on well-typed terms. The support of a substitution σ is de�ned as supp(σ) = {x | (x 7→ v) ∈ σ}.
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∆1 `e v1 : A . . . ∆n `e vn : A ODA({v1, . . . , vn})
∆1; Ψ `e e1 : B . . . ∆n; Ψ `e en : B ODB({V al(e1), . . . , V al(en)})

Ψ `ω {v1 ↔ e1 | . . . | vn ↔ en} : A↔ B.

f : α `ω f : α
f : α `ω ω : α fix f.ω is structurally recursive

Ψ `ω fix f.ω : α

Table 3 Typing of isos

ODA({x}) OD1({()})
ODA(S) ODB(T )

ODA⊕B({injl v | v ∈ S} ∪ {injr v | v ∈ T})

ODA[X←µX.A](S)
ODµX.A({fold v | v ∈ S})

let X = {v1, . . . , vn} st ODA(X),∀v ∈ X, ODB(S1
v)

or let Y = {v′1, . . . , v′n} st ODB(Y ),∀v ∈ Y, ODA(S2
v)

ODA⊗B(S = {〈v1, v
′
1〉, . . . , 〈vn, v′n〉})

Table 4 Exhaustivity and Non-Overlapping

I Lemma 3 (ODA(A) ensures exhaustivity and non-overlapping.). Let ODA(S) and `e v : A,
then there exists a unique v′ ∈ S such that σ[v′] = v.

IDefinition 4 (Substitution). Applying substitution σ on an expression t, written σ(t) is de�ned, as :
σ(()) = (), σ(x) = v if {x 7→ v} ⊆ σ, σ(injr t) = injr σ(t), σ(injl t) = injl σ(t), σ(〈t, t′〉) =
〈σ(t), σ(t′)〉, σ(ω t) = ω σ(t) and σ(let p = t1 in t2) = (let p = σ(t1) in σ(t2)).

I Definition 5 (Evaluation relation →). We de�ne → the rewriting system of our language as
follows:

t1 → t2
C[t1]→ C[t2]

Cong
σ[p] = v

let p = v in t→ σ(t) LetE (fix f.ω)→ ω[f := (fix f.ω)] IsoRec

σ[vi] = v′

{v1 ↔ e1 | . . . | vn ↔ en} v′ → σ(ei)
IsoApp

with C ::= [ ] | injl C | injr C | ω C | let p = C in t | 〈C, v〉 | 〈v, C〉
As usual we note→∗ for the re�exive transitive closure of→.

As mentioned above, from any iso ω : A↔ B we can build its inverse ω⊥ : B ↔ A, the inverse
operation is de�ned inductively on ω and is given in De�nition 6.

I Definition 6 (Inversion). Given an iso ω, we de�ne its dual ω⊥ as : f⊥ = f, (fix f.ω)⊥ =
fix f.ω⊥, {(vi ↔ ei)i∈I}⊥ = {((vi ↔ ei)⊥)i∈I} And the inverse of a clause as : v1 ↔ let p1 = ω1 p

′
1 in

· · ·
let pn = ωn p

′
n in v′1

⊥ :=

 v′1 ↔ let p′n= ω⊥n pn in
· · ·
let p′1 = ω⊥1 p1 in v1

 .

We can show that the inverse is well-typed and behaves as excepted:

I Lemma 7 (Inversion is well-typed). Given Ψ `ω ω : A↔ B, then Ψ `ω ω⊥ : B ↔ A.

CVIT 2016
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σ[e] = e′

σ[injl e] = injl e
′

σ[e] = e′

σ[injr e] = injr e
′
σ = {x 7→ e}
σ[x] = e

σ[e] = e′

σ[fold e] = fold e′

σ2[e1] = e′1 σ1[e2] = e′2 supp(σ1) ∩ supp(σ2) = ∅ σ = σ1 ∪ σ2

σ[〈e1, e2〉] = 〈e′1, e′2〉 σ[()] = ()

Table 5 Pattern-matching

I Theorem 8 (Isos are isomorphisms). For all `ω ω : A↔ B, `e v : A, if (ω (ω⊥ v))→∗ v′ then
v = v′.

I Example 9. We can de�ne the iso of type : A⊕ (B ⊕ C)↔ C ⊕ (A⊕B) as


injl a ↔ injr injl a
injr injl b ↔ injr injr b
injr injr c↔ injl c


I Example 10. We give the encoding of the isomorphism map(ω) and its inverse: for any given iso
` ω : A↔ B in our language, we can de�ne map(ω) : [A]↔ [B] where [A] = µX.1⊕ (A⊗X) is
the type of lists of type A and [ ] is the empty list (fold (injl ())) and h :: t is the list construction
(fold (injr 〈h, t〉)). We also give its dual map(ω)⊥ below, as given by De�nition 6.

map(ω) = fix f.


[ ] ↔ [ ]
h :: t↔ leth′ = ω h in

let t′ = f t in
h′ :: t′

 : [A]↔ [B]

map(ω)⊥ = fix f.


[ ] ↔ [ ]
h′ :: t′ ↔ let t = f t′ in

leth = ω⊥h′ in
h :: t

 : [B]↔ [A]

I Remark 11. In our two examples, the left and right-hand side of the ↔ on each function re-
spect both the criteria of exhaustivity —every-value of each type is being covered by at least one
expression— and non-overlapping —no two expressions cover the same value. Both isos are therefore
bijections.

The language enjoys the standard properties of typed languages of progress and subject reduc-
tion:

I Lemma 12 (Subject Reduction). If ∆; Ψ `e t : A and t→ t′ then ∆; Ψ `e t′ : A.

I Lemma 13 (Progress). If `e t : A then, either t is a value, or t→ t′.

3 Computational Content

In this section, we study the computational content of our language. We show that we can encode
Recursive Primitive Permutations [27] (RPP), which shows us that we can encode at least all Primitive
Recursive Functions [28].

We give a few reminders on the language RPP and its main results, then show how to encode it.
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[
x S x+ 1

] [
x P x− 1

] [
x Sign −x

] [
x Id x

] [
x
X

y

y x

]

x1 y1
... f ; g

...
xn yn

 =

x1
... f

xn


 y1

g
...
yn





x1 y1
...

...
xk f || g yk
x′1 y′1

...
...

x′l y′l


=

x1 y1
... f

...
xk yn


x′1 y′1
... g

...
xl y′l




x1 y1
... If[f, g, h]

...
xn yn
x x


 =


f (x1, . . . , xn) if x > 0
g (x1, . . . , xn) if x = 0
h (x1, . . . , xn) if x < 0


x1 y1

... It[f ]
...

xn yn
x x


 = (f ; . . . ; f)︸ ︷︷ ︸

| x |

(x1, . . . , xn)

Figure 2 Generators of RPP

3.1 Reminder on RPP

RPP is a set of integer-valued functions of variable arity, we de�ne it by arity as follows: we note
RPPk for the set of functions in RPP from Zk to Zk, it is built inductively on k ∈ N by: the
successor (S), the predecessor (P ), the identity (ID) and the sign-change that are part of RPP1.
The swap function (X ) and the binary permutation X are part of RPP2 and then, for any function
f, g, h ∈ RPPk and j ∈ RPPl, we can build (i) the sequential composition f ; g ∈ RPPk, (ii)
the parallel composition f || j ∈ RPPk+l (iii) the iterator It[f ] ∈ RPPk+1 and (iv) the selection
If[f, g, h] ∈ RPPk+1.

Finally, the set of all functions that form RPP is taken as the union for all k all of the RPPk:

RPP = ∪k∈N RPPk

We present the semantics of each constructors of RPP under a graphical form, as in [27], where
the left-hand-side variables of the diagram represent the input of the function and the right-hand-side
is the output of the function. The semantics of all those operators are given in Figure 2
I Remark 14. In their paper [27], the authors make use of two other constructors: generalised
permutations over Zk and weakenings of functions, but those can actually be de�ned from the other
constructors so that in the following section we do not give their encoding.

Then, if f ∈ RPPk we can de�ne an inverse f−1:

I Definition 15 (Inversion). The inversion is de�ned as follow :
Id−1 = Id S−1 = P P−1 = S

Sign−1 = Sign X−1 = X (g; f)−1 = f−1; g−1

(f || g)−1 = f−1 || g−1 (It[f ])−1 = It[f−1] (If [f, g, h])−1 = If [f−1, g−1, h−1]

I Proposition 16 (Inversion defines an inverse [27]). Given f ∈ RPPk then f ; f−1 = Id = f−1; f

CVIT 2016
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I Theorem 17 (Soudness & Completness [27]). RPP is PRF-Complete and PRF-Sound: it can represent
any Primitive Recursive Function and every function in RPP can be represented in PRF.

3.2 From RPP to Isos

We start by de�ning the type of stricly positive natural numbers, npos, as npos = µX.1⊕X . We
de�ne n, the encoding of a positive natural number into a value of type npos as 1 = fold injl ()
and n+ 1 = fold injr n. Finally, we de�ne the type of integers as Z = 1⊕ (npos⊕npos) along
with z the encoding of any z ∈ Z into a value of type Z de�ned as: 0 = injl (), z = injr injl z
for z positive, and z = injr injr −z for z negative. Given some function f ∈ RPPk , we will build
an iso isos(f) : Zk ↔ Zk which simulates f . isos(f) is de�ned by the size of the proof that f is in
RPPk .

I Definition 18 (Encoding of the primitives).
The Sign-change is

injr injl x ↔ injr injr x
injr injr x ↔ injr injl x

injl () ↔ injl ()

 : Z ↔ Z

The identity is {x↔ x} : Z ↔ Z

The Swap is {(x, y)↔ (y, x)} : Z2 ↔ Z2

The Predecessor is the inverse of the Successor

The Successor is
injl () ↔ injr injl fold injl ()

injr injl x ↔ injr injl fold injr x
injr injr fold injl () ↔ injl ()
injr injr fold injr x ↔ injr injr x

 : Z ↔ Z

I Definition 19 (Encoding of Composition). Let f, g ∈ RPPj , ωf = isos(f) and ωg = isos(g)
the isos encoding f and g, we build isos(f ; g) of type Zj ↔ Zj as:

isos(f ; g) =


let (y1, . . . , yj) = ωf (x1, . . . , xj) in

(x1, . . . , xj) ↔ let (z1, . . . , zj) = ωg (y1, . . . , yj) in
(z1, . . . , zj)


I Definition 20 (Encoding of Parallel Composition). Let f ∈ RPPj and g ∈ RPPk, and ωf =
isos(f) and ωg isos(g), we de�ne isos(f || g) of type Zj+k ↔ Zj+k as:.

isos(f || g) =


let (x′1, . . . , x′j) = ωf (x1, . . . , xj) in

(x1, . . . , xj , y1, . . . , yk) ↔ let (y′1, . . . , y′k) = ωg (y1, . . . , yk) in
(x′1, . . . , x′j , y′1, . . . , y′k)


I Definition 21 (Encoding of Finite Iteration). Let f ∈ RPPk , and ωf = isos(f), we encode the �-
nite iteration It[f ] ∈ RPPk+1 with the help of an auxiliary iso, ωaux, of typeZk⊗ npos↔ Zk⊗ npos
doing the �nite iteration using npos, de�ned as:

ωaux = fixg.



(−→x , fold injl ()) ↔ let−→y = ωf
−→x in

(−→y , fold injl ())

(−→x , fold injr n) ↔ let (−→y ) = ωf (−→x ) in
let (−→z , n′) = g (−→y , n) in

(−→z , fold injr n
′)
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We can now properly de�ne isos(It[f ]) of type Zk+1 ↔ Zk+1 as:

isos(It[f ]) =



(−→x , injl ()) ↔ (−→x , injl ())

(−→x , injr injl z) ↔ let (−→y , z′) = ωaux(−→x , z) in
(−→y , injr injl z

′)

(−→x , injr injr z) ↔ let (−→y , z′) = ωaux(−→x , z) in
(−→y , injr injr z

′)


IDefinition 22 (Encoding of Selection). Let f, g, h ∈ RPPk andωf = isos(f), ωg = isos(g), ωh =
isos(h). We de�ne isos(If[f, g, h]) of type Zk+1 ↔ Zk+1 as:

isos(If[f, g, h]) =


(−→x , injr injl z) ↔ let

−→
x′ = ωf (−→x ) in (

−→
x′ , injr injl z)

(−→x , injl ()) ↔ let
−→
x′ = ωg(−→x ) in (

−→
x′ , injl ())

(−→x , injr injr z) ↔ let
−→
x′ = ωh(−→x ) in (

−→
x′ , injr injr z)


I Theorem 23 (The encoding is well-typed). Let f ∈ RPPk , then `ω isos(f) : Zk ↔ Zk .

ITheorem24 (Simulation). Let f ∈ RPPk and n1, . . . , nk elements of Z such that f(n1, . . . , nk) =
(m1, . . . ,mk) then isos(f)(n1, . . . , nk)→∗ (m1, . . . ,mk)

I Remark 25. Notice that isos(f)⊥ 6= isos(f−1), due to the fact that isos(f)⊥ will inverse the
order of the let constructions, which will not be the case for isos(f−1). They can nonetheless be
considered equivalent up to a permutation of let constructions and renaming of variable.

4 Proof Theorical Content

We want to relate our langage of isos to proofs in a suitable logic. As mentioned earlier, an iso
`ω ω : A↔ B corresponds to both a computation sending a value of type A to a result of type B
and a computation sending a value of type B to a result of type A. Therefore we want to be able to
translate an iso into a proof isomorphism : two proofs π and π⊥ of respectively A ` B and B ` A
such that their composition reduces through the cut-elimination to the identity either on A or on B
depending on the way we make the cut between those proofs.
Since we are working in a linear system with inductive types we will use an extension of Linear
Logic called µMALL : linear logic with least and greatest �xed points, which allows us to reason
about inductive and coinductive statements. µMALL also allows us to consider in�nite derivation
trees, which is required as our isos can contain recursive variables. We need to be careful though:
in�nite derivations cannot always be considered as proofs, hence µMALL comes with a validity
criterion on in�nite derivations trees (called pre-proofs) that tells us whether such derivations are
indeed proofs. We recall brie�y the basic notions of µMALL, while more details can be found in [9].

4.1 Background on µMALL

Given an in�nite set of variables V = {X,Y, . . . }, we call the set of formula of µMALL the objects
generated by A,B ::= X | 1 | 0 | > | ⊥ | A ⊗ B | A ` B | A ⊕ B | A & B | µX.A | νX.A
where µ and ν bind the variable X in A. The negation on formula is de�ned in the usual way:
X⊥ = X, 0⊥ = >,1⊥ = >, (A`B)⊥ = A⊥⊗B⊥, (A⊕B)⊥ = A⊥&B⊥, (νX.A)⊥ = µX.A⊥

having X⊥ = X is harmless since we only deal with close formlulas.
We call occurrences, a word of the form α ·w where α ∈ Afresh an in�nite set of atomic addresses

and its dual A⊥fresh = {α⊥ | α ∈ Afresh} and w a word over {l, r, i}∗ (for left, right and inside) and
formulas occurrences F,G,H, . . . as a pair of a formula and an occurrence, written Aα. Finally we
write Σ,Φ for formula contexts: sets of formulas occurrences. We write Aα ≡ Bβ when A = B.
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F ≡ G
` F⊥, G

id
` Σ, F ` Φ, F⊥

` Σ,Φ cut ` >,Σ >

` 1 1
` F,G,Σ
` F `G,Σ ` ` F,Σ ` G,Φ

` F ⊗G,Σ,Φ ⊗

` F,Σ ` G,Σ
` F &G,Σ &

` Fi,Σ
` F1 ⊕ F2,Σ

⊕i i ∈ {1, 2} Σ
` Σ,⊥ ⊥

` F [X ← µX.F ],Σ
` µX.F,Σ

µ
` F [X ← νX.F ],Σ
` νX.F,Σ

ν

Figure 3 Rules for µMALL.

Negation is lifted to formulas with (Aα)⊥ = A⊥α⊥ where (α ·w)⊥ = α⊥ ·w and (α⊥ ·w)⊥ = α ·w.
In general, we write α, β for occurrences.

The connectives need then to be lifted to occurrences as well:

Given # ∈ {⊗,⊕,`,&}, if F = Aαl and G = Bαr then (F#G) = (A#B)α
Given # ∈ {µ, ν} if F = Aαi then #X.F = (#X.A)α

Occurrences allow us to follow a subformula uniquely inside a derivation. Since in µMALL we
only works with formula occurrences, we simply use the term formula.

The (possibly in�nite) derivation trees of µMALL, called pre-proofs are coinductively generated
by the rules given in Figure 3. We say that a formula is principal when it is the formula that the rule
is being applied to.

Among the in�nite derivations that µMALL o�er we can look at the circular ones: an in�nite
derivation is circular if it has �nitely many di�erent subtrees. The circular derivation can therefore
be represented in a more compact way with the help of back-edges: arrows in the derivation that
represent a repetition of the derivation. Derivations with back-edge are represented with the

addition of sequents marked by a back-edge label, noted `f additional rule, ` Σ be(f), which
represent a back-edge pointing to the sequent `f . We take the convention that from the root of the
derivation from to rule be(f) there must be exactly one sequent annotated by f .

I Example 26. An in�nite derivation and two di�erent circular representations with back-edges.
...

µ
` µX.X

µ
` µX.X

be(f)
`µX.X

µ
`f µX.X

be(f)
`µX.X

µ
` µX.X

µ
`f µX.X

While a circular proof has multiple �nite representations (depending on where the back-edge is
placed), they can all be mapped back to the same in�nite derivation via an in�nite unfolding of the
back-edge and forgetting the back-edge labels:

I Definition 27 (Unfolding). We de�ne the unfolding of a circular derivation P with a valuation v
from back-edge labels to derivations by:

U
(
P :

P1, . . . , Pn
` Σ r

, v

)
=
U(P1, v), . . . ,U(Pn, v)

` Σ r
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U(be(f), v) = v(f)

U
(
P :

P1, . . . , Pn

`f Σ
r
)

=
(
π =
U(P1, v

′), . . . ,U(Pn, v′)
` Σ r

)
with v′(g) = π if g = f

else v(g).

µMALL comes with a validity criterion on pre-proofs that determines when a pre-proof can
be considered as a proof: mainly, whether or not each in�nite branch can be justi�ed by a form
of coinductive reasoning. The criterion also ensures that the cut-elimination procedure holds. For
that, we can de�ne a notion of thread [8, 9]: an in�nite sequence of tuples of formulas, sequents
and directions (either up or down). Intuitively, these threads follow some formula starting from the
root of the derivation and start by going up. If the thread encounters an axiom rule, it will bounce
back and start going down in the dual formula of the axiom rule. It may bounce back again, when
going down on a cut rule, if it follows the cut-formula. A thread will be called valid when it is non
stationnary (does not follow a formula that is never a principal formula of a rule), and when in
the set of formulas appearing in�nitely often, the minimum formula (according to the subformula
ordering) is a ν formula. For the multiplicative fragment, we say that a pre-proof is valid if for all
in�nite branches, there exists a valid thread, while for the additive part, we require a notion of
additive slices and persistent slices which we do not details here. More details can be found in [9].

4.2 Translating isos into µMALL

We start by giving the translation from isos to pre-proofs, and then show that they are actually
proofs, therefore obtaining a static correspondence between programs and proofs. We then show
that our translation entails a dynamic correspondence between the evaluation procedure of our
language and the cut-elimination procedure of µMALL. This will imply that the proofs we obtain
are indeed isomorphisms, meaning that if we cut the aforementioned proofs π and π⊥, performing
the cut-elimination procedure would give either the identity on A or the identity on B.

The derivation we obtain are circular and we therefore translate the isos directly into �nite de-
rivations with back-edge, written circ(ω). We can de�ne another translation into in�nite derivations
as the composition of circ() with the unfolding: JωK = U(circ(ω)).

Because we need to keep track of which formula is associated to which variable from the typing
context, the translation uses a slightly modi�ed version of µMALL in which contexts are split in
two parts, written Υ; Θ, where Υ is a list of formulas and Θ is a set of formulas associated with a
term-variable (written x : F ). When starting the translation of an iso of type A↔ B, we start in
the context [Aα]; ∅ (for some address α) and end in the context []; Θ. The additional information of
the variable in Θ is here to make sure we know how to split the contexts accordingly when needed
later during the translation, with respect to the way they are split in the typing derivation. We
write Θ = {F | x : F ∈ Θ} and Θ = {x : A | x : Aα ∈ Θ}. We also use another rule which allow

to send the �rst formula from Υ to Θ and a�ecting it a variable :
Υ;x : F,Θ ` G
F :: Υ; Θ ` G ex(x). Given a

derivation ι in this system, we write TιU for the function that sends ι into a derivation of µMALL
where (i) we remove all occurrence of the exchange rule (ii) the contexts []; Θ becomes Θ.

Given an iso ω : A↔ B and initial addresses α, β, its translation into a derivation of µMALL
of Aα ` Bβ is described with three separate phases:
Iso Phase. The �rst phase consists in travelling through the syntactical de�nition of an iso, keeping
as information the last encountered iso-variable bounded by a fix f.ω and calling the negative
phase when encountering an iso of the form {v1 ↔ e1 | . . . | vn ↔ en} and attaching to
the formulas A and B two distinct addresses α and β and to the sequent as a label of name of the
last encountered iso-variable. Later on during the translation, this phase will be recalled when
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encountering another iso in one of the ei, and, if said iso correspond to an iso-variable, we will
create a back-edge pointing towards the corresponding sequents.
Negative Phase. Starting from some context [Aα],Θ, the negative phase consists into decomposing
the formula A according to the in which way the values of type A on the left-hand-side of ω are
decomposed. The negative phase works as follows: we consider a set of (list of values, typing
judgement), written (l, ξ) where each element of the set corresponds to one clause v ↔ e of the
given iso and ξ is the typing judgment of e. The list of values corresponds to what is left to be
decomposed in the left-hand-side of the clause (for instance if v is a pair 〈v1, v2〉 the list will have
two elements to decompose). Each element of the list Υ will correspond to exactly one value in the
list l. If the term that needs to be decomposed is a variable x, then we will apply the ex(x) rule,
sending the formula to the context Θ. The negative phase ends when the list is empty and hence
when Υ = []. When it is the case, we can start decomposing ξ and the positive phase start. The
negative phase is de�ned inductively on the �rst element of the list of every sets, which are known
by typing to have the same pre�x, and is given in Table 4.
Positive phase. The translation of an expression is pretty straightforward: each let and iso-application
is represented by two cut rules, as usual in Curry-Howard correspondence. Keeping the variable-
formula pair in the derivation is here to help us know how to split accordingly the context Θ when
needed, while Υ is always empty and is therefore omitted. While the positive phase carry over the
information of the last-seen iso-variable, it is not noted explicitly as it is only needed when calling
the Iso Phase. The positive phase is given in Table 5.
I Remark 28. While µMALL is presented in a one-sided way, we write Σ ` Φ for ` Σ⊥,Φ in order
to stay closer to the formalism of the type system of isos.

I Definition 29. circ(ω, S, α, β) = π takes a well-typed iso, a singleton set S of an iso-variable
corresponding to the last iso-variable seen in the induction de�nition of ω and two fresh addresses
α, β and produces a circular derivation of the variant of µMALL described above with back-edges.
circ(ω, S, α, β) is de�ned inductively on ω:

circ(fix f.ω, S, α, β) = circ(ω, {f}, α, β)

circ(f, {f}, α, β) = Aα ` Bβ
be(f)

circ({(vi ↔ e′i)i∈I} : A ↔ B, {f}, α, β) = T
Neg(([vi], ξ′i)i∈I)

Aα `f Bβ
U where ξi is the typing

derivation of ei.

I Example 30. The translation Tcirc(ω, ∅, α, β)U of the iso ω from Example 9 is, with F =
Aαl, G = Bαrl, H = Cαrr and F ′ = Aβrl, G

′ = Bβrr, H
′ = Cβl:

id
F ` F ⊕1

F ` F ⊕G ⊕2

F ` H ⊕ (F ⊕G)

id
G ` G ⊕2

G ` F ⊕G ⊕2

G ` H ⊕ (F ⊕G)

id
H ` H ⊕1

H ` H ⊕ (F ⊕G)
&

G⊕H ` H ⊕ (F ⊕G)
&

F ⊕ (G⊕H) ` H ⊕ (F ⊕G)

I Example 31. Considering the iso swap of type A ⊗ B ↔ B ⊗ A and its µMALL proof πS =
Aγl ` Aγ′r

id
Bγr ` Bγ′l

id

Aγl, Bγr ` (B ⊗A)γ′
⊗

(A⊗B)γ ` (B ⊗A)γ′
` , following Example 10 we give its corresponding proof πm(S)

where F = (A⊗B)αirl and G = (B ⊗A)βirl, then [F ] and [G] are respectively of address α and
β:



K. Chardonnet and A. Saurin and B. Valiron XX:13

1
` 1 ⊕1

` 1⊕ (G⊗ [G])
µ

` [G]
⊥

1 ` [G]

id
F ` F

πS

F ` G cut
F ` G

id
[F ] ` [F ]

πm(S)

[F ] ` [G]
cut

[F ] ` [G]

id
G ` G

id
[G] ` [G]

⊗
G, [G] ` (G)⊗ [G]

⊕2

G, [G] ` 1⊕ (G⊗ [G])
µ

G, [G] ` [G]
G, [G] ` [G]

cut
G, [F ] ` [G]

cut
F, [F ] ` [G] `
F ⊗ [F ] ` [G]

&
1⊕ (F ⊗ [F ]) ` [G]

ν
[F ] ` [G]

We painted in blue the pre-thread that follows the focus of the structurally recursive criterion.
During the negative phase which consists of the µ,&,`,⊥ rules the pre-thread is going up, at
each time going into the subformula corresponding to the focus. Then, during the positive phase
the pre-thread is not active during the multiple cut rules until it reaches the id rule, where the
pre-thread bounces and starts going down before bouncing back up again in the cut rule, into the
in�nite branch, where the behavior of the pre-thread will repeat itself.

Neg({(injl vj :: lj , ξj)j∈J} ∪ {(injr vk :: lk, ξk)k∈K}) =

Neg({(vj :: lj , ξj)j∈J})
F1 :: Υ; Θ ` G

Neg({(vk :: lk, ξk)k∈K})
F2 :: Υ; Θ ` G

F1 ⊕ F2 :: Υ; Θ ` G &

Neg({([], ξ)}) =
Pos(ξ)

[]; Θ ` F

Neg({(〈v1
i , v

2
i 〉 :: li, ξi)i∈I}) =

Neg({(v1
i :: v2

i :: li, ξi)i∈I})
F1, F2 :: Υ; Θ ` G
F1 ⊗ F2 :: Υ,Θ ` G ` Neg({(() :: l, ξ)}) =

Neg({l, ξ})
Υ; Θ ` F

1 :: Υ; Θ ` F >

Neg({(fold vi :: li, ξi)i∈I}) =

Neg({(vi :: li, ξi)i∈I})
F [X ← µX.F ] :: Υ; Θ ` G

µX.F :: Υ; Θ ` G ν
Neg({(x :: l, ξ)}) =

Neg({l, ξ})
Υ; Θ, x : F ` G
F :: Υ; Θ ` G ex(x)

Figure 4 Negative Phase

I Lemma 32. Given π = circ(ω), for each in�nite branch of π, only a single iso-variable is visited
in�nitely often.

Proof. Since we have at most one iso-variable, we never end up in the case that between an
annotated sequent `f and a back-edge pointing to f we encounter another annotated sequent. J

Among the terms that we translate, the translation of a value yields what we call a Purely Positive
Proof : a �nite derivation whose only rules have for active formula the sole formula on the right of
the sequent. Any such derivation is trivially a valid pre-proof.
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Pos
(
x : A `e x : A

)
= [];x : F ` F id

Pos
(
`e () : A

)
= []; ∅ ` 1 1

Pos

 ξ

Θ `e t : A1
Θ `e injl t : A1 ⊕A2

 =

Pos(ξ)
Θ ` F1

[]; Θ ` F1 ⊕ F2
⊕1

Pos

 ξ

Θ `e t : A2
Θ `e injr t : A1 ⊕A2

 =

Pos(ξ)
[]; Θ ` F2

[]; Θ ` F1 ⊕ F2
⊕2

Pos

 ξ1
Θ1 `e t1

ξ2
Θ2 `e t2 : A2

Θ1,Θ2 `e 〈t1, t2〉 : A1 ⊗A2

 =

Pos(ξ1)
[]; Θ1 ` F1

Pos(ξ2)
[]; Θ2 ` F2

[]; Θ1,Θ2 ` F1 ⊗ F2
⊗

Pos

 ξ

Θ `e t : A[X ← µX.A]
Θ `e fold t : µX.A

 =

Pos(ξ)
[]; Θ ` F [X ← µX.F ]

[]; Θ ` µX.F
µ

Pos

 ξ1

Θ1 `e t1 : (Ai)i∈I
ξ2

Θ2, (xi : Ai)i∈I `e t2 : B
Θ1,Θ2 `e let (xi)i∈I = t1 in t2 : B

 =

Pos(ξ1)
[]; Θ1 ` F1 ⊗ · · · ⊗ Fn

Neg(([(xi)i∈I ], ξ2))
[F1 ⊗ · · · ⊗ Fn]; Θ2 ` G

[]; Θ1,Θ2 ` B
cut

Pos

 Ψ `ω ω : A↔ B

ξ

Θ `e t : A
Θ; Ψ `e ω t : B

 =

Pos(ξ)
[]; Θ ` A

circ(ω, {f}, α, β)
[Aα]; ∅ ` Bβ

[]; Θ ` Bβ
cut

Figure 5 Positive Phase

IDefinition 33 (Purely Positive Proof). A Purely Positive Proof is a �nite, cut-free proof whose rules
are only ⊕i,⊗, µ,1, id for i ∈ {1, 2}.

I Lemma 34 (Values are Purely Positive Proofs). Given x1 : A1, . . . , xn : An ` v : A then
JvK

[];x1 : A1
α1
, . . . , xn : Anαn

` Aα is a purely positive proof.

We can then de�ne the notion of bouncing-cut and their origin:

I Definition 35 (Bouncing-Cut). A Bouncing-cut is a cut of the form :

π
Σ ` G G ` F be(f)

Σ ` F cut

Due to the syntactical restrictions of the language we get the following:

I Property 36 (Origin of Bouncing-Cut). Given a well-typed iso, every occurrence of a rule be(f) in
Tcirc(ω)U is a premise of a bouncing-cut.

In particular, when following a thread going up into a bouncing-cut, it will always start from the
left-hand-side of the sequent, before going back down on the right-hand-side of the sequent. It will
also always bounce back up on the bouncing-cut to reach the back-edge.

I Theorem 37 (Validity of proofs). If `ω ω : A↔ B and π = Tcirc(ω, ∅, α, β)U then π satis�es
µMALL validity criterion from [9].

Proof Sketch. In order to show the validity of our derivation we need, for each in�nite branch, to
build a valid thread. From the previous lemmas and the syntactical constraints of the language, we
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get that any in�nite branch is completly de�ned by a single iso-variable, which allows us to reason
entirely about a single recursive iso fix f.{v1 ↔ e1 | . . . | vn ↔ en}. For each in�nite branch,
we will build a pre-thread that follows the focus of the primitive recursive criterion. We know that
the focus is a strict subvariable of the argument that is called recursively, as a consequence we can
split the constructed thread into two parts, p0 and p1, corresponding respectively to the negative
phase and the positive phase. We also know that, each argument of a recursive call gives us a purely
positive proof which is made only of tensors. We can show that the size of p0 is bigger than p1 and
also that p1 is a pre�x of p0, when ignoring theW weight. This allows us to make sure that our
pre-thread is a thread where the visible part always encounters a ν formula. Finally, the inductive
type is decomposed in the negative phase and not in the positive phase (as the right-hand side of a
recursive call is purely made of tensors), we can show that (i) the thread is never stationnary and
(ii) the thread has for minimal recurring formula that is visited in�nitely often a ν formula, hence
satisfying validity. J

We can also show that the rewriting rules of the language simulate the cut-elimination procedure,
as it is described in [9]:

I Theorem 38 (Simulation). Provided an iso `ω ω : A↔ B and values `e v : A and `e v′ : B, let
π = Pos(ω v) and π′ = Pos(v), if ω v →∗ v′ then π  ∗ π′.

Proof sketch. The proof relies on the de�nition of a novel explicit substitution rewriting system
for the language, called→eβ . Explicit substitution are represented as a series of let constructs where
the base case of the rewriting system is letx = v in x→eβ v. Each rewriting step of this system
represents exactly one step of the cut-elimination procedure of µMALL. Then we only need to show
that if σ = {−→x 7→ −→v } then let−→x = −→v in e→∗eβ σ(e). J

This leads to the following corollary:

I Corollary 39 (Isomorphism of proofs.). If ` ω : A↔ B then, given F1 = Aα1 , F2 = Aα2 , G1 =
Bβ1 , G2 = Bβ2 and the corresponding proofs π : F1 ` G1 and the proof π⊥ : G2 ` F2 of ω⊥ are
isomorphic :

Aα ` Aα′
id  

π⊥

G2 ` F2

π
F1 ` G1

Aα ` Aα′
cut

π
F1 ` G1

π⊥

G2 ` F2
Bβ ` Bβ′

cut
 Bβ ` Bβ′

id

5 Conclusion

Summary of the contribution. We presented a linear, reversible language with inductive types.
We showed how ensuring non-overlapping and exhaustivity is enough to ensure the reversibility
of the isos. The language comes with both an expressivity result that shows that any Primitive
Recursive Functions can be encoded in this language as well as an interpretation of programs into
µMALL proofs. The latter result rests on the fact that our isos are structurally recursive.

Future works. A �rst extension to our work would be to relax this condition in order for the
encoding of more functions and to see how a more relaxed criterion would be captured in terms of
pre-proof validity. Along with this, allowing for coinductive statements and terms would allow for
a truly general reversible language. This is a focus of our forthcoming research.

A second direction for future work is to consider quantum computation, by extending our
language with linear combinations of terms. We plan to study purely quantum recursive types and
generalized quantum loops: in [23], lists are the only recursive type which is captured and recursion
is terminating. The logic µMALL would help in providing a �ner understanding of termination and
non-termination.
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A Proof of Section 2

Proof of Lemma 7. w.l.o.g consider ω = {v1 ↔ e1 | . . . | vn ↔ en}, we look at one clause
in particular and its dual: v1 ↔ let p1 = ω1 p

′
1 in

· · ·
let pn = ωn p

′
n in v′1

⊥ :=

 v′1 ↔ let p′n= ω⊥n pn in
· · ·
let p′1 = ω⊥1 p1 in v1

 .

By typing we know that ∆ `e v1 : A and ∆; Ψ `e let p1 = ω1 p
′
1 in . . . v′1 : B

∆ can be split into ∆1, . . . ,∆n,∆n+1 and for all 1 ≤ i ≤ n we get that the typing judgment of
the expression let pi = ωi p

′
i in . . . generates the new typing judgement Γi+1

i , . . . ,Γn+1
i . For all i

we get that ∆i

⋃i−1
j=1 Γij `e ω p′i, �nally v′1 is typed by ∆n+1

⋃n
i=1 Γn+1

i .
When typing the dual clause, we start with contexts ∆n+1

⋃n
i=1 Γn+1

i . We have from hypothesis
that:

Each ω⊥i pi is typed by
⋃n
j=i+1 Γnj , which is possible by our typing hypothesis.

Each p′i generates the contexts ∆i,
⋃i
j=1 Γij .

At the end we end up with ∆1, . . . ,∆n,∆n+1 `e v1 which is typable by our hypothesis.
J

I Lemma 40 (Substitution Lemma Of Variables). Let

∀ ∆1 `e v1 : A1, . . . ,∆n `e vn : An
∀ Γ, x1 : A1, . . . , xn : An ` t : B

Let σ = {x1 7→ v1, . . . , xn 7→ vn} then
Γ,∆1, . . . ,∆n ` σ(t) : B

Proof. By induction on t.

Case x, then Γ = ∅ and we have σ = {x 7→ v} for some v of type B under some context ∆,
then we get ∆ ` σ(x) : B which leads to ∆ ` v : B which is typable by our hypothesis.
Case (), nothing to do.
Case injl t

′, by substitution we have σ(injl t
′) = injl σ(t′) and by typing we get

Γ,∆1, . . . ,∆n ` σ(t′)
Γ,∆1, . . . ,∆n ` injl σ(t′) which is typable by induction hypothesis on t′.
Case injr t

′, fold t′, ω t′ are similar.
Case 〈t1, t2〉, by typing we get that we can split Γ into Γ1,Γ2 and the variables x1, . . . , xn are
split into two parts for typing both t1 or t2 depending on whenever or not a variable occurs
freely in t1 or t2, w.l.o.g say that x1, . . . , xl are free in t1 and xl+1, . . . , xn are free in t2 then
we get:
Γ1, x1 : A1, . . . , xl : Al ` t1 : B1 Γ2, xl+1 : Al+1, . . . , xn : An ` t2 : B2

Γ1,Γ2, x1 : A1, . . . , xl : Al, xl+1 : Al+1, . . . , xn : An ` 〈t1, t2〉 : B1 ⊗B2
By substitution we get that σ(〈t1, t2〉) = 〈σ(t1), σ(t2)〉 so we get the following typing derivation
which is completed by induction hypothesis on the subterms:
Γ1,∆1, . . . ,∆l ` t1 : B1 Γ2,∆l+1, . . . ,∆n ` t2 : B2

Γ1,Γ2,∆1, . . . ,∆l,∆l+1, . . . ,∆n ` 〈t1, t2〉 : B1 ⊗B2
Case let p = t1 in t2 Similar to the case of the tensor.

J
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I Lemma 41 (Substitution Lemma Of Isos). If :

∆; f : α ` t : A
g : β ` ω : α

Then ∆; g : β ` t[f := ω] : A
And if :

f : α ` ω1 : β
h : γ ` ω2 : α

Then h : γ ` ω1[f := ω2] : β

Proof. We prove those two propositions by mutual induction on t and ω1.
Terms, by induction on t.

If t = x or t = () then there is nothing to do.
If t = injl t

′ or injr t
′ or fold t′ or 〈t1, t2〉 or let p = t1 in t2, then similarly to the proof of

Lemma 40 the substitution goes to the subterms and we can apply the induction hypothesis.
If t = ω′ t′. In that case, the substitution goes to both subterms: (ω′[f := ω]) (t′[f := ω]) and
by induction hypothesis on t′ and by the mutually recursive proof.

Isos, by induction on ω1.

If ω1 = f , then we get h : γ ` f [f ← ω2] : β which is typable by hypothesis.
Ifω1 = g 6= f is impossible by our typing hypothesis.
If ω1 = fix g.ω, then by typing f does not occur in ω1 so nothing happens.
If ω1 = {v1 ↔ e1 | . . . | vn ↔ en}, then, by de�nition of the substitution we have that
{v1 ↔ e1 | . . . | vn ↔ en}[f := ω2] = {v1 ↔ e1[f := ω2] | . . . | vn[f := ω2] ↔
en[f := ω2]} in which case we apply the substitution lemma of isos on terms.

J

Proof of Lemma 12. By induction on t→ t′ and direct by Lemma 40 and Lemma 41 J

Proof of Lemma 13. Direct by induction on `e t : A. The two possible reduction cases, ω v and
let p = v in t always reduces by typing, pattern-matching and by Lemma 3. J

I Lemma 42 (Non-Overlapping). Let ODA(S) then ∀ `e v : A, if there exists v1, v2 ∈ S such that
σ1[v1] = v and σ2[v2] = v then v1 = v2

Proof. By induction on ODA(S).

Case {()} or {x} is direct.
Case ODA⊕B({injl v | v ∈ S1} ∪ {injr v | v ∈ S2}), with ODA(S1) and ODB(S2)
By pattern-matching, both v1 and v2 are either in S1 or S2.
Take v = injl v

′, then for all injl v1, injl v2 ∈ S1, by pattern matching we know that
σ1[v1] = v′ and σ2[v2] = v′. By Induction hypothesis v1 = v2 hence injl v1 = injl v2.
The same goes for S2.
The case is similar for ODµX.A(S).

CVIT 2016
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Case ODA⊗B(S) : Assuming we are in the �rst case of the disjonction in the premise of ODA⊗B ,
the other case being similar:
Take 〈v1, v2〉, 〈v′1, v′2〉 ∈ S and 〈v, v′〉 such that σ1[〈v1, v2〉] = 〈v, v′〉 and σ2[〈v′1, v′2〉] = 〈v, v′〉.
By de�nition of the pattern-matching we have: σ1

1 [v1] = v1 and σ1
2 [v′1] = v1. By induction

hypothesis on X we get that v1 = v′1. We also get that v2, v
′
2 ∈ S1

v1
= S1

v2
and so by induction

hypothesis we get that v2 = v′2 and hence 〈v1, v2〉 = 〈v′1, v′2〉.

J

I Lemma 43 (Exhaustivity). Let ODA(S) and ` v : A then there exists vi ∈ S st σ[vi] = v

Proof. By induction on ODA(S)

OD({x}) then the pattern-matching matches for any v.
OD({()}) then the only possible value for v is () and σ[()] = ()
ODA⊕B({injl v | v ∈ SA} ∪ {injr v | v ∈ SB}) let v = injl v then by induction
hypothesis on SA there exists v ∈ SA st σ[v] = v, hence σ[injl v] = injl v
Similar for the right case.
Similar case for the fold.

Assuming we are in the �rst case of the disjonction in the premise of ODA⊗B , the other case
being similar:
Take some 〈v, v′〉 : A ⊗ B, by induction hypothesis we know that there exists some vi ∈
{v1, . . . , vn} such that σ[vi] = v and therefore that there exists some v′i ∈ S1

v such that
σ′[v′i] = v′, therefore we get (σ ∪ σ′)[〈vi, v′i〉] = 〈v, v′〉.

J

Proof of Lemma 3. Direct implication of Lemma 42 and Lemma 43. J

I Lemma 44 (Commutativity of substitution). Let σ1, σ2 and v, such that σ1 ∪ σ2 closes v and
supp(σ1) ∩ supp(σ2) = ∅

Then σ1(σ2(v)) = σ2(σ1(v))

Proof. Direct as σ1 and σ2 have disjoint support.
J

Proof of Theorem 8. By induction hypothesis on the size of ω:

Case where ω = {v1 ↔ v1 | . . . | vn ↔ v′n} then ω⊥(ω v0), by non-overlapping and
exhaustivity there exists a vi such that σ[vi] = v0 and hence the terms reduces to ω⊥σ(v′i). It is
clear that σ[v′i] = σ(vi) and hence the terms reduces to σ(vi), but by the �rst pattern-matching
we know that σ(vi) = v0, which concludes the case.
Case where ω = {v1 ↔ e1 | . . . | vn ↔ en},
for simplicity of writing we write a single clause:

 v1 ↔ let p1 = ω1 p
′
1 in

· · ·
let pn = ωn p

′
n in v′1

−1

:=

 v′1 ↔ let p′n= ω−1
n pn in

· · ·
let p′1 = ω−1

1 p1 in v1

 .

Take some closed value ` v0 : A such that σ[v1] = v0.
By lineary, we can decompose σ into σ1, . . . , σn, σn+1 such that, after substitution we obtain
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let p1 = ω1 σ1(p′1) in
. . .

let pn = ωn σn(p′n) in
σn+1(v′1)

By Lemma 13, each let construction will reduce, and by the rewriting strategy we get:

let p1 = ω1 σ1(p′1) in
. . .

let pn = ωn σn(p′n) in
σn+1(v′1)

→

let p1 = v1 in
. . .

let pn = ωn σn(p′n) in
σn+1(v′1)

→

let p2 = ω2 γ
2
1(σ1(p′1)) in

. . .

let pn = ωn γ
n
1 (σn(p′n)) in

σn+1(v′1)

The �nal term reduces to γnn(. . . (γn1 (σn+1(v′1))) . . . )
and creates a new substitution γi, the term will hence reduce to γn(. . . (γ1(σn+1(v′1))) . . . ). Let
δ = ∪iγi ∪ σn+1
We now want to evaluates

 v′1 ↔ let p′n= ω−1
n pn in

· · ·
let p′1 = ω−1

1 p1 in v1

 δ(v′1)

We get δ[v′1] = δ(v′1).
We know that each γi closes only pi, we can therefore substitute the term as:

let p′n = ω1 γn(pn) in
. . .

let p′1 = ω1 γ1(p1) in
σn+1(v′1)

By induction hypothesis, Each let clause will re-create the substitution σi, we know this as the
fact that the initial let construction, let pi = ωi σi(p′i) in . . .
reduces to let pi = vi in . . .
While the new one, let p′i = ω⊥γi(pi) in . . ., is, by de�nition of the substitution the same as
let p′i = ω⊥vi in . . .
Then, since we know that vi is the result of ω σi(p′i), we get by induction hypothesis σ(p′i) as
the result of the evaluation.
Therefore, after rewriting we obtain:
σn(. . . (σ1(σn+1(v′1))) . . . ), by commutativity its the same asσ1(. . . (σn(σn+1(v′1))) . . . ) which
is equal to v.

J

I Theorem 45 (Termination). Every well-typed terms s terminates.

Proof. Given ω′ = fix f.ω, the only possible source of non termination is that if when evaluating
ω′ (v1, . . . , vn) we evaluate in�nitely often a term of the form s (v′1, . . . , v′n), but since we are
structurally recursive, we know one of the v′i is small than vi and we hence have a decreasing
argument at each recursive call. J
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B Proof of Section 3

Proof of Theorem 23. By direction induction on f . J

Proof of Theorem 24. By induction on f .

Direction for the identity, swap and sign-change.
For the Successor:

ω =


injl () ↔ injr injl fold injl ()

injr injl x ↔ injr injl fold injr x
injr injr fold injl () ↔ injl ()
injr injr fold injr x ↔ injr injr x


we do it by case analysis on the sole input n.
n = 0 then 0̄ = injl () and ω injl ()→ injr (injl (fold (injl ()))) = 1̄
n = −1 then −̄1 = injr (injr (fold (injl ()))), so the term reduces to injl () = 0̄
Case n < −1, we have n̄ = injr (injr (fold (injr n

′))) with n′ = n+ 1, by pattern
matching we get injr injr x which is n̄′
Case n > 1 is similar.

The Predecessor is the dual of the Successor.
Composition & Parallel composition: Direct by induction hypothesis on ωf and ωg .
Finite Iteration: It[f ].
We need the following lemma: ωaux(x̄1, . . . , x̄n, z) →∗ (z̄1, . . . , z̄n, z) where z is a non-zero
integer and (z1, . . . , zn) = f |z|(x1, . . . , xn) which can be shown by induction on | z |: the case
z = 1 and z̄ = fold injl () is direct by induction hypothesis on ωf . Then if z = n+ 1 we get
it directly by induction hypothesis on both ωf and our lemma.
Then, for isos(It[f ]) we do it by case analysis on the last argument: when it is 0̄ then we simply
return the result, if it is z̄ for z (no matter if stricly positive or stricly negative) then we enter
ωaux, and apply the previous lemma.
Conditional: If [f, g, h]. Direct by case analysis of the last value and by induction hypothesis
on ωf , ωg, ωh.

J

C Proofs of Section 4

C.1 Simulation of the cut-elimination procedure

To make the relation with the logic µMALL and its cut-elimination procedure simpler, we consider
a new rewriting system based on explicit substitution, represented with let.

letx = v in x→eβ v

let 〈x1, p〉 = 〈t1, t2〉 in t→eβ letx1 = t1 in let p = t2 in t

letx = v in 〈t1, t2〉 →eβ 〈letx = v in t1, t2〉 when x ∈ FV (t1)
letx = v in 〈t1, t2〉 →eβ 〈t1, letx = v in t2〉 when x ∈ FV (t2)
letx = v in injl t→eβ injl letx = v in t

letx = v in injr t→eβ injr letx = v in t

letx = v in fold t→eβ fold letx = v in t

letx = v in ω t→eβ ω letx = v in t
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I Lemma 46 (Specialisation of the substitution on pairs). Let σ be a substitution that closes
∆ `e 〈t1, t2〉, then there exists σ1, σ2, such that σ(〈t1, t2〉) = 〈σ1(t1), σ2(t2)〉Where σ = σ1 ∪ σ2.

Proof. By the linearity of the typing system we know that FV (t1) ∪ FV (t2) = ∅, so there
always exists a decomposition of σ into σ1, σ2 de�ned as σi = {(xi 7→ vi) | xi ∈ FV (ti)} for
i ∈ {1, 2}. J

I Lemma 47 (Explicit substitution and substitution coincide). Let σ = {xi 7→ vi} be a substitution
that closes t, then letx1 = v1 in . . . , letxn = vn in t→∗eβ σ(t).

Proof. By induction on t.

x, then σ(x) = v and letx = v in x→eβ v = σ(x).
() then σ is empty and no substitution apply.
〈t1, t2〉, then by Lemma 46 σ(〈t1, t2〉) = 〈σ1(t1), σ2(t2)〉. By→eβ , each let construction will
enter either t1 or t2, then by induction hypothesis.
let p = t1 in t2 is similar to the product case.
injl t, injr t, fold t, ω t. All case are treated the same: by de�nition of→eβ , each let will
enter into the subterm t, as with the substitution σ, then by induction hypothesis.

J

I Theorem 48 (Simulation). Let Θ ` t be a well-typed closed term:
If t→eβ t

′ then TPos(t)U TPos(t′)U.

Proof. By induction on→eβ .

• letx = v in x→eβ v.
TPos(v)U

Θ ` G G ` G id

Θ ` G cut
 

TPos(v)U
Θ ` G

• let 〈x1, p〉 = 〈t1, t2〉 in t→eβ letx1 = t1 in let p = t2 in t

Then :

TPos(t1)U
Θ1 ` G

TPos(t2)U
Θ2 ` F

Θ1,Θ2 ` G⊗ F
⊗

TNeg({[p], t})U
Θ3, G, F ` H

Θ3, G⊗ F ` F
`

Θ1,Θ2,Θ3 ` H
cut
 

TPos(t1)U
Θ1 ` G

TPos(t2)U
Θ2 ` F

TNeg({[p], t})U
Θ3, G, F ` H

Θ2,Θ3, G ` H
cut

Θ1,Θ2,Θ3 ` H
cut

• letx = v in injl t→eβ injl letx = v in t.

Then:

TPos(v)U
Θ1 ` F

TPos(t)U
F,Θ ` H

F,Θ2 ` H ⊕G
⊕1
R

Θ1,Θ2 ` H ⊕G
cut
 

TPos(v)U
Θ1 ` F

TPos(t)U
F,Θ2 ` H

Θ1,Θ2 ` H
cut

Θ1,Θ2 ` H ⊕G
⊕1
R

• The same goes for letx = v in injr t→eβ injr letx = v in t and letx = v in fold t→eβ

fold letx = v in t

• letx = v in 〈t1, t2〉 →eβ 〈letx = v in t1, t2〉 when x ∈ FV (t1)
Then:

TPos(v)U
Θ1 ` F

TPos(t1)U
F,Θ2 ` H

TPos(t2)U
Θ3 ` G

F,Θ2,Θ3 ` H ⊗G
⊗R

Θ1,Θ2,Θ3 ` H ⊗G
cut
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TPos(v)U
Θ1 ` F

TPos(t1)U
F,Θ2 ` H

Θ1,Θ2 ` H
cut

TPos(t2)U
Θ3 ` G

Θ1,Θ2,Θ3 ` H ⊗G
⊗R

• Similar for the second rule on the pair.
• letx = v in ω t→eβ ω (letx = v in t)

Then:

TPos(v)U
Θ1 ` F

TPos(t)U
F,Θ2 ` G

Tcirc(ω)U
G ` H

F,Θ2 ` H
cut

Θ1,Θ2 ` H
cut

 

TPos(v)U
Θ1 ` F

TPos(t)U
F,Θ2 ` G

Θ1,Θ2 ` G
cut

Tcirc(ω)U
G ` H

Θ1,Θ2 ` H
cut

J

I Lemma 49. Let Γ ` v : A such and ∆ ` v′ : A st σ[vj ] = v′ and σ = {−→xj 7→ −→wj} then for
any list l = [v1, . . . , vn] where (Γi `e vi)i∈I and such that ODA({v, v1, . . . , vn}) and any set of
derivations (Γi ` ei : B)i∈I such that ODB(V al(ei)) and given Θ = {x : Aα | x : A ∈ ∆} and
G = Bβ we have:

π =

TPos(v′)U
Θ ` H

TNeg({((v :: l)i, ei)i∈I})U
H ` G

Θ ` G cut
 ∗

TNeg({l, let−→xi = −→wi in e})U
Θ ` G = π′

Proof. By induction on ODA()

Case ODA({x}) we get σ[x] = v then π = π′.

Case PE1({1}) then σ[()] = ()

π =
` 1 1R

TPos(e)U
` G
1 ` G 1L

` G cut which reduces to
TPos(e)U
` G = π′ as σ is empty.

Case PEµX.A({fold vi}) st σ[fold vj ] = fold v′

Then π =

TPos(v′)U
Θ ` H[X ← µX.H]

µR

Θ ` µX.H

TNeg({[vi], ei})U
H[X ← µX.H] ` G

µL

µX.H ` G
Θ ` G cut

Reduces to
TPos(v′)U

Θ ` H[X ← µX.H]
TNeg({([vi], ei)})U
H[X ← µX.H] ` G

Θ ` G cut

Then by induction hypothesis.

Case ODA⊕B({injl vi} ∪ {injr vk}) with σ[injl vj ] = injl v
′

Then π =

TPos(v′)U
Θ ` H

Θ ` H ⊕ F ⊕
1
R

TNeg({[vi], ei})U
H ` G

TNeg({[vk], ek})U
F ` G

H ⊕ F ` G ⊕L

Θ ` G cut

Which reduces to
TPos(v′)U

Θ ` H
TNeg({[vi], e})U

H ` G
Θ ` G cut

Then by induction hypothesis.
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Case σ[injr vj ] = injr v
′ Similar to the previous case.

Case ODA⊗B({〈v1
i , v

2
i 〉}) with σ[〈v1

j , v
2
j 〉] = 〈v′1, v′2〉

Then π =

TPos(v′1)U
Θ1 ` H

TPos(v′2)U
Θ2 ` F

Θ1,Θ2 ` H ⊗ F
⊗R

TNeg({([〈v1, v2,〉 i], ei)i∈I})U
H,F ` G
H ⊗ F ` G ⊗L

Θ1,Θ2 ` G
cut

Which reduces to

TPos(v′1)U
Θ1 ` H

TPos(v′2)U
Θ2 ` F

TNeg({((v1 :: v2 :: l)i, ei)i∈I})U
H,F ` G

cut
Θ2, H ` G cut

Θ1,Θ2 ` G
Because the negative phase on [v1, v2] only produces &,`,>, ν rules, we get that Neg({(v1 ::
v2 :: l, e)}) = Neg({(v2 :: v1 :: l, e)}) by the commutation of rules of Linear Logic. Therefore
we can get

TPos(v′1)U
Θ1 ` H

TPos(v′2)U
Θ2 ` F

TNeg({((v2 :: v1 :: l)i, ei)i∈I})U
H,F ` G

cut
Θ2, H ` G cut

Θ1,Θ2 ` G
which by induction hypothesis on v2 reduces to

TPos(v′1)U
Θ1 ` H

TNeg({((v1 :: l)i, letxj = wj in ei)i∈I})U
H ` G cut

Θ1,Θ2 ` G
And then we can imply our second induction hypothesis on v1.

J

I Theorem 50 (Iso-substitution cut-elim). Let {v1 ↔ e1 | . . . | vn ↔ en} v → σ(ei) when
σ[vi] = v then TPos({v1 ↔ e1 | . . . | vn ↔ en} v)U  ∗ TPos(letxj = vj in ei)U  ∗
TPos(σ(ei))U when σ = {xj 7→ vj}

Proof. Direct by Lemma 49, Lemma 47 and Theorem 48. J

C.2 Proof validity

Proof of Lemma 34. By induction on ∆ ` v : A

x : A ` x : A then the derivation is [];F ` F id, which is a purely primitive proofs
` () : 1 then the derivation is []; ∅ ` 1 1, which is a purely primitive proofs

∆1,∆2 ` 〈v1, v2〉 : A⊗B then we get

π1
∆1 ` A

π2
∆2 ` B

∆1,∆2 ` A⊗B
⊗ and then by induction hypothesis

on π1 and π2.

∆ ` injl v : A⊕B then the derivation is

π
∆ ` A

∆ ` A⊕B ⊕
1

then by induction hypothesis on π
Similar for injr v and fold v.

J
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We de�ne a notion of term occurrence and show that it matches the addresses obtained from
the negative phases:

I Definition 51 (Term Occurrence). We note by Occ(v) the set of Occurrence in the value v de�ned
inductively on v by:

Occ(v) = {ε} if v = x or v = ()
Occ(〈v1, v2〉) = {ε} ∪ l ·Occ(v1) ∪ r ·Occ(v2)
Occ(injl v) = {ε} ∪ l ·Occ(v)
Occ(injr v) = {ε} ∪ r ·Occ(v)
Occ(fold v) = {ε} ∪ i ·Occ(v)

Where x · S = {xα | α ∈ S} for x ∈ {l, r, i}
Given α ∈ Occ(v) we write v@α for the subterm of v at position α
We write ξ(v) = {α ∈ Occ(v) | v@α = x} for the set of position of variables in v and ξ(x, v)

for the position of x in v.

I Theorem 52. Given a sequence of sequents S0, . . . , Sn, with S0 = Aα ` Bβ and Sn = Σ ` Bβ
and the only rules applied are >,&,`, ν.

There exists a unique value v and context ∆ such that ∆ `e v : A and such that for all expression e
such that ∆ `e e : B, for all iso ω : A↔ B such that v ↔ e is a clause of ω, consider π = Tcirc(ω)U
then S0, . . . , Sn is a branch of π and for all formula Aα ∈ Σ, there exists a unique variable x such
that ξ(x, v) is a su�x of α.

Proof. By induction on n.

Case 0, then take ∆ = x : A and v = x, obviously ∆ `e x : A. We also get that ω = {x↔ e}

and Tcirc(ω)U =
TPos(e)U
Aα ` Bβ so the empty sequence is a branch and ξ(v, v) = ε which is a su�x

of α.
Case n + 1. By induction hypothesis, the sequence S0, . . . , Sn with Sn sequent of Σn ` Bβ
gives us ∆n ` vn : A. De�ne the values contexts as V = [] | 〈V[], v〉 | 〈v,V[]〉 | injl V[] |
injr V[] | fold V[].
Then, by case analysis on the rule of Sn+1.

`: then we can write Σn as A1
α1
, . . . , (C1 ⊗ C2)kαk

, . . . , Anαn
` Bβ then we know that

∆n = x1 : A1, . . . , xk : C1 . . . C2, . . . , xn : An then v can be written as V[xk].
Build vn+1 = V[〈y, z〉] and ∆n+1 = ∆\{xk : C1 ⊗ C2} ∪ {y : C1, z : C2}.
We get that ∆n+1 `e vn+1, then for any iso ω such that V[xk]↔ e is a clause, we can build
replace the clause by V[〈y, z〉]↔ e[x← 〈y, z〉] in order to build ω′, and if S0, . . . , Sn was a
branch in Tcirc(ω)U then so is S0, . . . , Sn, Sn+1 in ω′.
We know that ξ(x, v) = γ is a su�xe of αk , then after applying the ` rule we have that C1
have addressα lk andC2 have addressα rk . Therefore ξ(y, vn+1) = γ l and ξ(z, vn+1) = γ r

which are respectively su�xes of α lk and α rk .
&. Assuming that Sn+1 goes to the left branch of the & rule.
We then have Σn = A1

α1
, . . . , (C1 ⊕ C2)kαk

, . . . , Anαn
` Bβ and ∆n = x1 : A1, . . . , xk :

C1 ⊕ C2, . . . , xn : An with v = V[xk].
Consider vn+1 = V[injl y] and ∆n+1.
For any iso ω where vn ↔ e was a clause, we can consider the isos ω′ where the clause
vn ↔ e has been replaced by two clauses V[injl y] and V[injr r] with e[x ← y] and
e[x← z]. S0, . . . , Sn, Sn+1 is obviously a branch in Tcirc(ω)U by de�nition if the negative
phase.
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Also since ξ(x, v) = γ is a su�xe of αk , after applying the & rule, on the left branch we get
C1 with address α lk . And ξ(y, vn+1) = γ l is a su�x of α lk .
The other side of the & is similar and so is the ν rule.
>. In which case we have Σn = 1α, A

1
α1
. . . , Anαn

with ∆n = x : 1, x1 : A1, . . . , xn : An
with vn = V[x], build vn+1 as V[()] and ∆n+1 = x1 : A1, . . . , xn : An. Then after the >
rule we get Γn+1 = A1

α1
, . . . , Anαn

so the property holds by our induction hypothesis.

J

Given an iso ω = fix f.{v1 ↔ e1 | . . . | vn ↔ en}, we want to show that for any in�nite
branch there exists a valid thread that inhabit it. As given by Lemma 32, a in�nite branch is uniquely
de�ned by a single iso-variable.

Given the value vji that is the decreasing argument structurally recursive criterion, we want to
build a pre-thread that follow the variable xj : µX.B in vji : µX.B that is the focus of the criterion.

I Definition 53 (Pre-Thread of the negative phase). Given a well typed iso
ω = fix f.{v1 ↔ e1 | . . . | vn ↔ en} and a clause vi ↔ ei such that f p ⊂ ei and the variable
xp that is the focus of the primitive recursive criterion, and considering π = circ(ω) we build the �nite
pre-thread PTn(xp) that follows the formula µX.A corresponding to xp.

This is done by induction on Neg({([vi], ei)i∈I}).

Case Neg({([], e)}) is impossible as we follow a variable.
Case Neg({((() :: l, e))}) then we built PTn(Neg({(l, e)}))

Case Neg({((y :: l, e))}) =
{
ε if y = xp

PTn(Neg({(l, e)})) otherwise
Case Neg({(injl vi :: li, ei)i∈I} ∪ {(injl vj :: lj , ej)j∈J})

=



(A⊕ C;A⊕ C,∆ ` B) · (A;A,∆ ` B) · PTn(Neg({(vi :: li, ei)i∈I}))
if xp ⊆ vi

(C ⊕A;C ⊕A,∆ ` B) · (A;A,∆ ` B) · PTn(Neg({(vj :: lj , ej)j∈J}))
if xp ⊆ vj

(µX.D;A1 ⊕A2,∆ ` B) · (µX.D,Ak,∆ ` B) · PTn(Neg({(vl :: ll, el)l∈L}))
for L ∈ {I, J}, k ∈ {1, 2} and if xp ⊂ lL

Case Neg({(v1
i , v

2
i :: li, ei)i∈I})

=


(A1 ⊗A2;A1 ⊗A2,∆ ` B) · (Ak;A1, A2,∆ ` B) · PTn(Neg({(v1

i , v
2
i :: li, ei)i∈I}))

for k ∈ {1, 2} if xp ⊂ vk
(µX.D;A1 ⊗A2,∆ ` B) · (µX.D;A1, A2,∆ ` B) · PTn(Neg({(v1

i , v
2
i :: li, ei)i∈I}))

if xp ⊆ l
Case Neg({(fold vi :: li, ei)i∈I})

=
{

(µX.A;µX.A,∆ ` B) · (A[X ← µX.A];A[X ← µX.A],∆ ` B) if xp ⊂ vi
(µX.D;µX.A,∆ ` B) · (µX.D;A[X ← µX.A],∆ ` B) if xp ⊂ li

I Lemma 54. Weight of the Pre-thread for the negative phase w(PT (Neg({(l, e)}))) is a word over
{l, r, i,W}.

Proof. By case analysis of De�nition 53:

If the variable xp is not a subterm of the �rst value from the list l then the thread has the
form:(A;C,∆ ` B, ↑), (A;C ′,∆ ` B, ↑) and the weight is W .
If the variable xp is a subterm of the �rst value of the list l then by direct case analysis on the
�rst value.
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J

A similar analysis can be done for the positive phase:

I Definition 55 (Pre-thread for Pos(e)). Given the formula xp : νX.F , we describe the pre-thread
following this formula, PTp as:

(νX.F ; s; ↑) · (νX.F ; s′; ↑) when xp : νX.F is on the left-hand-side of the sequent.
((νX.A)α; (νX.A)α ` (νX.A)β ; ↑) · ((νX.A)β ; (νX.A)α ` (νX.A)β ; ↓)
(F ; s; ↓) · (F ′; s′; ↓) when going down on a right-rule where F is principal and s is a premise of s′.
(F ; s; ↓) · (F ; s′; ↑) when going down on a bouncing-cut where s is the left-premise of the bouncing
cut and s′ is the conclusion of the back-edge.

When bouncing back on an axiome, F necessarily comes from the left-hand-side of the sequent,
and therefore when going down on a purely positive proofs, we follow the only formula on the
right-hand-side of the sequent.

ILemma56 (Form of Pre-Thread for Pos(e)). WehavePTp(Pos(e)) is of the formW∗A{l, r,W}∗C

Proof. Direction by case analysis on Pos(e). As the thread only goes up by encountering cut-rules
or right-rules, we getW∗, and the thread goes up all the way to an axiome rule, corresponding
to the formula xp : νX.F , which add the A. Finally the thread goes down on the purely positive
proof, generating {l, r,W}∗ until reaching the cut-rule from the bouncing cut. J

We can then consider the in�nite pre-thread as the concatenation of both PTn and PTp.

I Lemma 57. Form of the Pre-Thread
Given the pre-thread t following xp we have that w(t) = p0(Σi≤npiW∗i AqiC)ω With

p0 is any pre�x.
pi ∈ {l, r, i,W}∗
qi ∈ {l, r,W}∗

With, ∀i ≤ n, qi @ pi and | pi |>| qi | without counting theW . Where p @ q is q is a pre�x of p.
With xp = xp if x ∈ {l, r, i}, xp = xp if x ∈ {l, r, i} andWp = p

Proof. pi is generated from De�nition 53 while the rest up to the C (included) is generated from
De�nition 55.

First, we show that | pi |>| qi | modulo theW .
Since pi is generated by the negative phase, we have that, moduloW , pi = {r}∗l+{l, r, i}∗, this

is due by de�nition of being primitive recursive and because we are looking for the right variable.
By de�nition of being primitive recursive the input type of the iso is A1 ⊗ · · · ⊗An, hence {r}∗l+
is for searching for the good Ai.

Then {l, r, i} is the decomposition of the primitive recursive value, as described in Theorem 52.
As qi correspond to the Purely Positive Proof, we know that the Purely Positive Proof is the

encoding of a pattern p = 〈x1, 〈. . . , xn〉〉. Hence qi can be decomposed as {l+r∗}
By the fact that we the iso is primitive recursive we know that the variable in p is a strict subterm

of the primitive recursive value, hence | pi |>| qi |
The fact that qi @ pi is direct as the Nice Proof reconstruct the type A1 ⊗ · · · ⊗ An without

modifying the Ai while pi start by seraching for the corresponding type Ai, so its only composed
of {l, r}∗, which will be the same as qi

J
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I Theorem 58. The Pre-thread generated is a thread We want to �nd a decomposition of the
pre-thread such that it can uniquely decomposed into

⊙
(Hi � Vi) with

w(Vi) ∈ {l, r, i,W}∞ and non empty if i 6= λ

w(Hi) ∈ H

We recall that, with x ∈ {l, r, i} :

B ::= C | BW∗AW∗B | xW∗BW∗x

H ::= ε | AW∗B

Proof. We set H0 as the empty pre-thread. (so w(H0) = ε) We set V0 as the maximal possible
sequence such that w(V0) ∈ {l, r, i,W}∗, i.e the sequence that end with (A;A ` A; ↑). Then, for
all i ≥ 1 we set

Hi start at (A;A ` A; ↑) just before the axiome rule so that the �rst element of w(Hi) is A.
Then Hi is compose of

All of the pre-thread going down on the Purely Positive Proof after the axiome, accumulating
a word over {l, r, i,W}∗.
Going back up into the cut-rule of the bouncing cut, making a C
Going up to compensate every x seen in the Purely Positive Proof while going down. This is
possible as shown in Lemma 57

Vi is the maximal possible sequence such that w(Vi) ∈ {l, r, i,W}∗, i.e the sequence that end
with (A;A ` A; ↑).

J

I Theorem 59. Thread Validity The generated thread is valid.

Proof. By Theorem 58 we know that we have a thread.
We also know by Theorem 58 that the visible part is not stationnary.
Finally, by Lemma 57 and Theorem 58 we know that the visible part will see in�nitly often

the subformulas of the formula µX.B that is the focus of the primitive recursive criterion. This is
due to the di�erent in size in the part of the thread from the negative and from the positive phase
and the fact that the positive phase does not encounter a µ formula when going down on a purely
positive proof.

By constraints on the syntax of our isos, all the possible slices are necessarily persistent.
Therefore the smallest formula we will encounter is µX.B which is a µ formula so and the

thread is on the left so the thread is valid. J
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