Kostia Chardonnet

Alexis Saurin

Équipe Πr

Benoît Valiron

A Curry-Howard Correspondence for Linear, Reversible Computation

Keywords: 2012 ACM Subject Classification Theory of computation → Linear logic; Theory of computation → Equational logic and rewriting Reversible Computation, Linear Logic, Curry-Howard Digital Object Identifier 10 .CVIT.2016

In this paper, we present a linear and reversible programming language with inductives types and recursion. The semantics of the languages is based on pattern-matching; we show how ensuring syntactical exhaustivity and non-overlapping of clauses is enough to ensure reversibility. The language allows to represent any Primitive Recursive Function. We then give a Curry-Howard correspondence with the logic µMALL: linear logic extended with least xed points allowing inductive statements. The critical part of our work is to show how primitive recursion yields circular proofs that satisfy µMALL validity criterion and how the language simulates the cut-elimination procedure of µMALL.

Introduction

Computation and logic are two faces of the same coin. For instance, consider a proof s s A → B t

A B

Figure 1 Modus Ponens of A → B and a proof t of A. With the logical rule Modus Ponens one can construct a proof of B: Figure 1 features a graphical presentation of the corresponding proof. Horizontal lines stand for deduction steps -they separate conclusions (below) and hypotheses (above). These deduction steps can be stacked vertically up to axioms in order to describe complete proofs. In Figure 1 the proofs of A and A → B are symbolized with vertical ellipses. The ellipsis annotated with s indicates that s is a complete proof of A → B while t stands for a complete proof of A.

This connection is known as the Curry-Howard correspondence [START_REF] Curry | Functionality in combinatory logic[END_REF][START_REF] Howard | The formulae-as-types notion of construction. To HB Curry: essays on combinatory logic[END_REF]. In this general framework, types correspond to formulas and programs to proofs, while program evaluation is mirrored with proof simpli cation (the so-called cut-elimination). The Curry-Howard correspondence formalizes the fact that the proof s of A → B can be regarded as a function -parametrized by an argument of type A-that produces a proof of B whenever it is fed with a proof of A. Therefore, the computational interpretation of Modus Ponens corresponds to the application of an argument (i.e. t) of type A to a function (i.e. s) of type A → B. When computing the corresponding program, one substitutes the parameter of the function with t and get a result of type B. On the logical side, this corresponds to substituting every axiom introducing A in the proof s with the full proof t of A. This yields a direct proof of B without any invocation of the "lemma" A → B.

Paving the way toward the veri cation of critical softwares, the Curry-Howard correspondence provides a versatile framework. It has been used to mirror rst and second-order logics with dependent-type systems [START_REF] Bertot | Interactive Theorem Proving and Program Development -Coq'Art[END_REF][START_REF] Leroy | Formal veri cation of a realistic compiler[END_REF], separation logics with memory-aware type systems [START_REF] Reynolds | Separation logic: A logic for shared mutable data structures[END_REF][START_REF] Jung | RustBelt: securing the foundations of the Rust programming language[END_REF], resource-sensitive logics with di erential privacy [START_REF] Gaboardi | Linear dependent types for di erential privacy[END_REF], logics with monads with reasoning on side-e ects [START_REF] Kaarsgaard | Join Inverse Rig Categories for Reversible Functional Programming, and Beyond[END_REF][START_REF] Maillard | The next 700 relational program logics[END_REF], etc. Reversible computation is a paradigm of computation which emerged as an energy-preserving model of computation in which data is never erased [START_REF] Fredkin | Conservative logic[END_REF] that makes sure that, given some process f , there always exists an inverse process f -1 such that f • f -1 = Id = f -1 • f . Many aspects of reversible computation have been considered, such as the development of reversible Turing Machines [START_REF] Morita | A universal reversible Turing machine[END_REF], reversible programming languages [START_REF] James | Theseus: A High-Level Language for Reversible Computing[END_REF] and their semantics [START_REF] Chardonnet | Categorical Semantics of Reversible Pattern-Matching[END_REF]5]. However, the formal relationship between a logical system and a computational model have not been developed yet.

This paper aims at proposing a type system featuring inductive types for a purely linear and reversible language. We base our study on the approach presented in [START_REF] Sabry | From symmetric pattern-matching to quantum control[END_REF]. In this model, reversible computation is restricted to two main types: the tensor, written A ⊗ B and the co-product, written A ⊕ B. The former corresponds to the type of all pairs of elements of type A and elements of type B, while the latter represents the disjoint union of all elements of type A and elements of type B. For instance, a bit can be typed with 1 ⊕ 1, where 1 is a type with only one element. The language in [START_REF] Sabry | From symmetric pattern-matching to quantum control[END_REF] o ers the possibility to code isos -reversible maps-with pattern matching. An iso is for instance the swap operation, typed with A ⊗ B ↔ B ⊗ A. However, if [START_REF] Sabry | From symmetric pattern-matching to quantum control[END_REF] hints at an extension towards pure quantum computation, the type system is not formally connected to any logical system.

The problem of reversibility between nite type of same cardinality simply requires to check that the function is injective. That is no longer the case when we work with types of in nite cardinality such as natural numbers.

The main contribution of this work is a Curry-Howard correspondence for a purely reversible typed language in the style of [START_REF] Sabry | From symmetric pattern-matching to quantum control[END_REF], with added generalised inductive types and terminating recursion, enforced by the fact that recursive functions must be structurally recursive: each recursive call must be applied to a decreasing argument. We show how ensuring exhaustivity and non-overlapping of the clauses of the pattern-matching are enough to ensure reversibility and that the obtained language can encode any Primitive Recursive function [START_REF] Rogers | Theory of recursive functions and e ective computability[END_REF]. For the Curry-Howard part, we capitalize on the logic µMALL [START_REF] Baelde | Least and greatest xed points in linear logic[END_REF][START_REF] Baelde | In nitary proof theory: the multiplicative additive case[END_REF]: an extension of the additive and multiplicative fragment of linear logic with least and greatest xed points allowing inductive and coinductive statements. This logic contains both a tensor and a co-product, and its strict linearity makes it a good t for a reversible type system. In the litterature, multiple proofs systems have been considered for µMALL, some nitary proof system with explicit induction inferences à la Park [START_REF] Baelde | Least and greatest xed points in linear logic[END_REF] as well as non-well-founded proof systems which allow to build in nite derivation [START_REF] Baelde | In nitary proof theory: the multiplicative additive case[END_REF][START_REF] Baelde | Bouncing threads for circular and non-wellfounded proofs[END_REF]. The present paper focuses on the latter. In general, an in nite derivation is called a pre-proof and is not necessarily consistent. To solve this problem µMALL comes equiped with a validity criterion, telling us when an in nite derivation can be considered as a logical proof. We show how the syntactical constraints of being structurally recursive imply the validation of pre-proofs.

Organisation of the paper

The paper is organised as follows: in Section 2 we present the language, its syntax, typing rules and semantics and show that any function that can be encoded in our language represents an isomorphism. In Section 3 we show that our language can encode any Primitive Recursive Function [START_REF] Rogers | Theory of recursive functions and e ective computability[END_REF], this is shown by encoding the set of Recursive Primitive Permutations [START_REF] Paolini | A class of Recursive Permutations which is Primitive Recursive complete[END_REF] functions. Then in Section 4, we develop on the Curry-Howard Correspondence part: we show, given a well-typed term from our language, how to translate it into a circular derivation of the logic µMALL and show that the given derivation respects the validity condition and how our evaluation strategy simulates the cut-elimination procedure of the logic. More details on proofs can be found in the appendix.

First-order Isos

Our language is based on the one introcuded by Sabry et al [START_REF] Sabry | From symmetric pattern-matching to quantum control[END_REF] which de ne isomorphisms between various types, included the type of lists. We build on the reversible part of the paper by extending the language to support both a more general rewriting system and more general inductive types. The language is de ned by layers. Terms and types are presented in Table 1, while typing derivations, inspired from µMALL, can be found in Tables 2 and3. The language consists of the following pieces.

Basic type. They allow us to construct rst-order terms. The constructors inj l and inj r represent the choice between either the left or right-hand side of a type of the form A ⊕ B; the constructor , builds pairs of elements (with the corresponding type constructor ⊗); fold represents inductive structure of the types µX.A. A value can serve both as a result and as a pattern in the de ning clause of an iso. We write (x 1 , . . . , x n) for x 1 , . . . , x n or -→ x when n is non-ambiguous and

A 1 ⊗ • • • ⊗ A n for A 1 ⊗ (• • • ⊗ A n) and A n for A ⊗ • • • ⊗ A n times .
First-order isos. An iso of type A ↔ B acts on terms of base types. An iso is a function of type A ↔ B, de ned as a set of clauses of the form

{v 1 ↔ e 1 | . . . | v n ↔ e n }.
In the clauses, the tokens v i are open values and e i are expressions. In order to apply an iso to a term, the iso must be of type A ↔ B and the term of type A. In the typing rules of isos, the OD A ({v 1 , . . . , v n }) predicate (adapted from [START_REF] Sabry | From symmetric pattern-matching to quantum control[END_REF]) syntactically enforces the exhaustivity and non-overlapping conditions on a set of well-typed values v 1 , . . . , v n of type A. The typing conditions make sure that both the left-hand-side and right-hand-side of clauses satisfy this condition. Its formal de nition can be found in Table 4 where V al(e) is de ned as V al(let p = ω p in e) = V al(e), and V al(v) = v otherwise. These checks are crucial to make sure that our isos are indeed reversible. In the rule OD A⊗B , we de ne S 1 v and S 2 v respectively as {w | v, w ∈ S} and {w | w, v ∈ S} Exhaustivity for an iso {v 1 ↔ e 1 | . . . | v n ↔ e n } of type A ↔ B means that the expressions on the left (resp. on the right) of the clauses describe all possible values for the type A (resp. the type B). Non-overlapping means that two expressions cannot match the same value. For instance, the left and right injections inj l v and inj r v are non-overlapping while a variable x is always exhaustive. The construction fix g.ω represents the creation of a recursive function, rewritten as ω[g := fix g.ω] by the operational semantics. Each recursive function needs to satisfy a structural recursion criteria: making sure that one of the input arguments strictly decreases on each recursive call. Indeed, since isos can be non-terminating (due to recursion), we need a criterion that implies termination to ensure that we work with total functions. If ω is of type A ↔ B, we can build its inverse ω ⊥ : B ↔ A and show that their composition is the identity. In order to avoid con icts between variables we will always work up to α-conversion and use Barendregt's convention [7, p.26] which consists in keeping all bound and free variables names distinct, even when this remains implicit.

The type system is split in two parts: one for terms (noted ∆; Ψ e t : A) and one for isos (noted Ψ ω ω : A ↔ B). In the typing rules, the contexts ∆ are sets of pairs that consist of a term-variable and a base type, where each variable can only occur once and Ψ is a singleton set of a pair of an iso-variable and an iso-type association.

Definition 1 (Structurally Recursive). Given an iso fix f.{v

1 ↔ e 1 | . . . | v n ↔ e n } : A 1 ⊗ • • • ⊗ A m ↔ C,
it is structurally recursive if there is 1 ≤ j ≤ m such that A j = µX.B and for all i ∈ {1, . . . , m} we have that v i is of the form (v 1 i , . . . , v m i) such that v j i is either:

C V I T
= 1 | A ⊕ B | A ⊗ B | µX.A (Isos, rst-order) α ::= A ↔ B (Values) v ::= () | x | inj l v | inj r v | v 1 , v 2 | fold v (Pattern) p ::= x | p 1 , p 2 (Expressions) e ::= v | let p 1 = ω p 2 in e (Isos) ω ::= {v 1 ↔ e 1 | . . . | v n ↔ e n } | fix f.ω | f (Terms) t ::= () | x | inj l t | inj r t | t 1 , t 2 | fold t | ω t | let p = t 1 in t 2
Ψ ω f : A ↔ B ∆; Ψ e t : A ∆; Ψ e f t : B ω ω : A ↔ B ∆; Ψ e t : A ∆; Ψ e ω t : B ∆ 1 ; Ψ e t 1 : A 1 ⊗ • • • ⊗ A n ∆ 2 , x 1 : A 1 , . . . , x n : A n ; Ψ e t 2 : B ∆ 1 , ∆ 2 ; Ψ e let (x 1 , . . . , x n) = t 1 in t 2 : B Table 2
Typing of terms and expressions A closed value, in which case e i does not contain the subterm f p Open, in which case for all subterm of the form f p in e i we have p = (x 1 , . . . , x m) and x j : µX.B is a strict subterm of v j i .

Given a clause v ↔ e, we call the value v j i (resp. the variable x j) the decreasing argument (resp. the focus) of the structurally recursive criterion.

Remark 2. As we are focused on a very basic notion of structurally recursive function, the typing rules of isos allow to have at most one iso-variable in the context, meaning that we cannot have intertwined recursive call.

Finally, our language is equipped with a rewriting system → on terms, de ned in De nition 5, that follows a deterministic call-by-value strategy: each argument of a function is fully evaluted before applying the substitution. This is done through the use of an evaluation context C[], which consists of a term with a hole (where C[t] is C where the hole has been lled with t). Due to the deterministic nature of the strategy we directly obtain the unicity of the normal form. The evaluation of an iso applied to a value relies on with pattern-matching : the argument is matched against the left-hand-side of each clause until one of them matches (written σ[v] = v), in which case the patternmatching, as de ned in De nition 5, returns a substitution σ that sends variables to values. Because we ensure exhaustivity and non-overlapping (Lemma 3), the pattern-matching can always occurs on well-typed terms. The support of a substitution σ is de ned as supp(σ Lemma 3 (OD A (A) ensures exhaustivity and non-overlapping.). Let OD A (S) and e v : A, then there exists a unique v ∈ S such that σ

) = {x | (x → v) ∈ σ}. ∆ 1
)}) Ψ ω {v 1 ↔ e 1 | . . . | v n ↔ e n } : A ↔ B. f : α ω f : α f : α ω ω : α fix f.ω is structurally recursive Ψ ω fix f.ω : α Table 3 Typing of isos OD A ({x}) OD 1 ({()}) OD A (S) OD B (T) OD A⊕B ({inj l v | v ∈ S} ∪ {inj r v | v ∈ T }) OD A[X←µX.A] (S) OD µX.A ({fold v | v ∈ S}) let X = {v 1 , . . . , v n } st OD A (X), ∀v ∈ X, OD B (S 1 v) or let Y = {v 1 , . . . , v n } st OD B (Y), ∀v ∈ Y, OD A (S 2 v) OD A⊗B (S = { v 1 , v 1 , . . . , v n , v n })
[v] = v.
Definition 4 (Substitution). Applying substitution σ on an expression t, written σ(t) is de ned, as :

σ(()) = (), σ(x) = v if {x → v} ⊆ σ, σ(inj r t) = inj r σ(t), σ(inj l t) = inj l σ(t), σ(t, t) = σ(t), σ(t) , σ(ω t) = ω σ(t) and σ(let p = t 1 in t 2) = (let p = σ(t 1) in σ(t 2)).
Definition 5 (Evaluation relation →). We de ne → the rewriting system of our language as follows:

t 1 → t 2 C[t 1] → C[t 2] Cong σ[p] = v let p = v in t → σ(t) LetE (fix f.ω) → ω[f := (fix f.ω)] IsoRec σ[v i] = v {v 1 ↔ e 1 | . . . | v n ↔ e n } v → σ(e i) IsoApp with C ::= [] | inj l C | inj r C | ω C | let p = C in t | C, v | v, C
As usual we note → * for the re exive transitive closure of →.

As mentioned above, from any iso ω : A ↔ B we can build its inverse ω ⊥ : B ↔ A, the inverse operation is de ned inductively on ω and is given in De nition 6.

Definition 6 (Inversion).

Given an iso ω, we de ne its dual ω ⊥ as :

f ⊥ = f, (fix f.ω) ⊥ = fix f.ω ⊥ , {(v i ↔ e i) i∈I } ⊥ = {((v i ↔ e i) ⊥
) i∈I } And the inverse of a clause as :

  v 1 ↔ let p 1 = ω 1 p 1 in • • • let p n = ω n p n in v 1   ⊥ :=   v 1 ↔ let p n = ω ⊥ n p n in • • • let p 1 = ω ⊥ 1 p 1 in v 1   .
We can show that the inverse is well-typed and behaves as excepted:

Lemma 7 (Inversion is well-typed). Given Ψ ω ω : A ↔ B, then Ψ ω ω ⊥ : B ↔ A. C V I T 2 0 1 6 σ[e] = e σ[inj l e] = inj l e σ[e] = e σ[inj r e] = inj r e σ = {x → e} σ[x] = e σ[e] = e σ[fold e] = fold e σ 2 [e 1] = e 1 σ 1 [e 2] = e 2 supp(σ 1) ∩ supp(σ 2) = ∅ σ = σ 1 ∪ σ 2 σ[e 1 , e 2] = e 1 , e 2 σ[()] = ()
ω : A ↔ B, e v : A, if (ω (ω ⊥ v)) → * v then v = v .
Example 9. We can de ne the iso of type :

A ⊕ (B ⊕ C) ↔ C ⊕ (A ⊕ B) as    inj l a ↔ inj r inj l a inj r inj l b ↔ inj r inj r b inj r inj r c ↔ inj l c    Example 10.
We give the encoding of the isomorphism map(ω) and its inverse: for any given iso ω : A ↔ B in our language, we can de ne map(ω)

: [A] ↔ [B] where [A] = µX.1 ⊕ (A ⊗ X)
is the type of lists of type A and [] is the empty list (fold (inj l ())) and h :: t is the list construction (fold (inj r h, t)). We also give its dual map(ω) ⊥ below, as given by De nition 6.

map(ω) = fix f.        [] ↔ [] h :: t ↔ let h = ω h in let t = f t in h :: t        : [A] ↔ [B] map(ω) ⊥ = fix f.        [] ↔ [] h :: t ↔ let t = f t in let h = ω ⊥ h in h :: t        : [B] ↔ [A]
Remark 11. In our two examples, the left and right-hand side of the ↔ on each function respect both the criteria of exhaustivity -every-value of each type is being covered by at least one expression-and non-overlapping -no two expressions cover the same value. Both isos are therefore bijections.

The language enjoys the standard properties of typed languages of progress and subject reduction:

Lemma 12 (Subject Reduction). If ∆; Ψ e t : A and t → t then ∆; Ψ e t : A.

Lemma 13 (Progress). If e t : A then, either t is a value, or t → t .

Computational Content

In this section, we study the computational content of our language. We show that we can encode Recursive Primitive Permutations [START_REF] Paolini | A class of Recursive Permutations which is Primitive Recursive complete[END_REF] (RPP), which shows us that we can encode at least all Primitive Recursive Functions [START_REF] Rogers | Theory of recursive functions and e ective computability[END_REF].

We give a few reminders on the language RPP and its main results, then show how to encode it.

x S x + 1

x P x -1 x Sign -x x Id x x X y y x    x 1 y 1 . . . f ; g . . . x n y n    =    x 1 . . . f x n       y 1 g . . . y n               x 1 y 1 x k f || g y k x 1 y 1 x l y l            =    x 1 y 1 . . . f . . . x k y n       x 1 y 1 . . . g . . . x l y l         x 1 y 1 . . . If[f, g, h]
. . .

x n y n x x           =    f (x 1 , . . . , x n) if x > 0 g (x 1 , . . . , x n) if x = 0 h (x 1 , . . . , x n) if x < 0      x 1 y 1 . . . It[f] . . . x n y n x x           = (f ; . . . ; f) | x | (x 1 , . . . , x n) Figure 2 Generators of RPP

Reminder on RPP

RPP is a set of integer-valued functions of variable arity, we de ne it by arity as follows: we note RPP k for the set of functions in RPP from Z k to Z k , it is built inductively on k ∈ N by: the successor (S), the predecessor (P), the identity (ID) and the sign-change that are part of RPP 1 . The swap function (X) and the binary permutation X are part of RPP 2 and then, for any function f, g, h ∈ RPP k and j ∈ RPP l , we can build (i) the sequential composition f ;

g ∈ RPP k , (ii) the parallel composition f || j ∈ RPP k+l (iii) the iterator It[f] ∈ RPP k+1 and (iv) the selection If[f, g, h] ∈ RPP k+1 .
Finally, the set of all functions that form RPP is taken as the union for all k all of the RPP k :

RPP = ∪ k∈N RPP k
We present the semantics of each constructors of RPP under a graphical form, as in [START_REF] Paolini | A class of Recursive Permutations which is Primitive Recursive complete[END_REF], where the left-hand-side variables of the diagram represent the input of the function and the right-hand-side is the output of the function. The semantics of all those operators are given in Figure 2 Remark 14. In their paper [START_REF] Paolini | A class of Recursive Permutations which is Primitive Recursive complete[END_REF], the authors make use of two other constructors: generalised permutations over Z k and weakenings of functions, but those can actually be de ned from the other constructors so that in the following section we do not give their encoding.

Then, if f ∈ RPP k we can de ne an inverse f -1 : Definition 15 (Inversion). The inversion is de ned as follow :

Id -1 = Id S -1 = P P -1 = S Sign -1 = Sign X -1 = X (g; f) -1 = f -1 ; g -1 (f || g) -1 = f -1 || g -1 (It[f]) -1 = It[f -1] (If [f, g, h]) -1 = If [f -1 , g -1 , h -1]
Proposition 16 (Inversion defines an inverse [START_REF] Paolini | A class of Recursive Permutations which is Primitive Recursive complete[END_REF]).

Given f ∈ RPP k then f ; f -1 = Id = f -1 ; f C V I T 2 0

From RPP to Isos

We start by de ning the type of stricly positive natural numbers, npos, as npos = µX.1 ⊕ X. We de ne n, the encoding of a positive natural number into a value of type npos as 1 = fold inj l () and n + 1 = fold inj r n. Finally, we de ne the type of integers as Z = 1 ⊕ (npos ⊕ npos) along with z the encoding of any z ∈ Z into a value of type Z de ned as: 0 = inj l (), z = inj r inj l z for z positive, and z = inj r inj r -z for z negative. Given some function f ∈ RPP k , we will build an iso isos(f) : Z k ↔ Z k which simulates f . isos(f) is de ned by the size of the proof that f is in RPP k .

Definition 18 (Encoding of the primitives).

The Sign-change is

   inj r inj l x ↔ inj r inj r x inj r inj r x ↔ inj r inj l x inj l () ↔ inj l ()    : Z ↔ Z The identity is {x ↔ x} : Z ↔ Z The Swap is {(x, y) ↔ (y, x)} : Z 2 ↔ Z 2
The Predecessor is the inverse of the Successor

The Successor is

       inj l () ↔ inj r inj l fold inj l () inj r inj l x ↔ inj r inj l fold inj r x inj r inj r fold inj l () ↔ inj l () inj r inj r fold inj r x ↔ inj r inj r x        : Z ↔ Z Definition 19 (Encoding of Composition). Let f, g ∈ RPP j , ω f = isos(f)
and ω g = isos(g) the isos encoding f and g, we build isos(f ; g) of type Z j ↔ Z j as:

isos(f ; g) =    let (y 1 , . . . , y j) = ω f (x 1 , . . . , x j) in (x 1 , . . . , x j) ↔ let (z 1 , . . . , z j) = ω g (y 1 , . . . , y j) in (z 1 , . . . , z j)   
Definition 20 (Encoding of Parallel Composition). Let f ∈ RPP j and g ∈ RPP k , and ω f = isos(f) and ω g isos(g), we de ne isos(f || g) of type Z j+k ↔ Z j+k as:.

isos(f || g) =    let (x 1 , . . . , x j) = ω f (x 1 , . . . , x j) in (x 1 , . . . , x j , y 1 , . . . , y k) ↔ let (y 1 , . . . , y k) = ω g (y 1 , . . . , y k) in (x 1 , . . . , x j , y 1 , . . . , y k)    Definition 21 (Encoding of Finite Iteration). Let f ∈ RPP k ,
and ω f = isos(f), we encode thenite iteration It[f] ∈ RPP k+1 with the help of an auxiliary iso, ω aux , of type Z k ⊗ npos ↔ Z k ⊗ npos doing the nite iteration using npos, de ned as:

ω aux = fixg.                (- → x , fold inj l ()) ↔ let - → y = ω f - → x in (- → y , fold inj l ()) (- → x , fold inj r n) ↔ let (- → y) = ω f (- → x) in let (- → z , n) = g (- → y , n) in (- → z , fold inj r n)               
We can now properly de ne isos(It[f]) of type Z k+1 ↔ Z k+1 as:

isos(It[f]) =                  (- → x , inj l ()) ↔ (- → x , inj l ()) (- → x , inj r inj l z) ↔ let (- → y , z) = ω aux (- → x , z) in (- → y , inj r inj l z) (- → x , inj r inj r z) ↔ let (- → y , z) = ω aux (- → x , z) in (- → y , inj r inj r z)                  Definition 22 (Encoding of Selection). Let f, g, h ∈ RPP k and ω f = isos(f), ω g = isos(g), ω h = isos(h). We de ne isos(If[f, g, h]) of type Z k+1 ↔ Z k+1 as: isos(If[f, g, h]) =      (- → x , inj r inj l z) ↔ let - → x = ω f (- → x) in (- → x , inj r inj l z) (- → x , inj l ()) ↔ let - → x = ω g (- → x) in (- → x , inj l ()) (- → x , inj r inj r z) ↔ let - → x = ω h (- → x) in (- → x , inj r inj r z)      Theorem 23 (The encoding is well-typed). Let f ∈ RPP k , then ω isos(f) : Z k ↔ Z k . Theorem 24 (Simulation). Let f ∈ RPP k and n 1 , . . . , n k elements of Z such that f (n 1 , . . . , n k) = (m 1 , . . . , m k) then isos(f)(n 1 , . . . , n k) → * (m 1 , . . . , m k)
Remark 25. Notice that isos(f) ⊥ = isos(f -1), due to the fact that isos(f) ⊥ will inverse the order of the let constructions, which will not be the case for isos(f -1). They can nonetheless be considered equivalent up to a permutation of let constructions and renaming of variable.

Proof Theorical Content

We want to relate our langage of isos to proofs in a suitable logic. As mentioned earlier, an iso ω ω : A ↔ B corresponds to both a computation sending a value of type A to a result of type B and a computation sending a value of type B to a result of type A. Therefore we want to be able to translate an iso into a proof isomorphism : two proofs π and π ⊥ of respectively A B and B A such that their composition reduces through the cut-elimination to the identity either on A or on B depending on the way we make the cut between those proofs. Since we are working in a linear system with inductive types we will use an extension of Linear Logic called µMALL : linear logic with least and greatest xed points, which allows us to reason about inductive and coinductive statements. µMALL also allows us to consider in nite derivation trees, which is required as our isos can contain recursive variables. We need to be careful though: in nite derivations cannot always be considered as proofs, hence µMALL comes with a validity criterion on in nite derivations trees (called pre-proofs) that tells us whether such derivations are indeed proofs. We recall brie y the basic notions of µMALL, while more details can be found in [START_REF] Baelde | Bouncing threads for circular and non-wellfounded proofs[END_REF].

Background on µMALL

Given an in nite set of variables V = {X, Y, . . . }, we call the set of formula of µMALL the objects generated by A, B ::

= X | 1 | 0 | | ⊥ | A ⊗ B | A `B | A ⊕ B | A & B | µX.A | νX.
A where µ and ν bind the variable X in A. The negation on formula is de ned in the usual way:

X ⊥ = X, 0 ⊥ = , 1 ⊥ = , (A `B) ⊥ = A ⊥ ⊗ B ⊥ , (A ⊕ B) ⊥ = A ⊥ & B ⊥ , (νX.A) ⊥ = µX.A ⊥ having X ⊥ = X
is harmless since we only deal with close formlulas.

We call occurrences, a word of the form α • w where α ∈ A fresh an in nite set of atomic addresses and its dual A ⊥ fresh = {α ⊥ | α ∈ A fresh } and w a word over {l, r, i} * (for left, right and inside) and formulas occurrences F, G, H, . . . as a pair of a formula and an occurrence, written A α . Finally we write Σ, Φ for formula contexts: sets of formulas occurrences. We write A α ≡ B β when A = B.

C V I T 2 0 1 6 F ≡ G F ⊥ , G id Σ, F Φ, F ⊥ Σ, Φ cut , Σ 1 1 F, G, Σ F `G, Σ ` F, Σ G, Φ F ⊗ G, Σ, Φ ⊗ F, Σ G, Σ F & G, Σ & Fi, Σ F1 ⊕ F2, Σ ⊕ i i ∈ {1, 2} Σ Σ, ⊥ ⊥ F [X ← µX.F], Σ µX.F, Σ µ F [X ← νX.F], Σ νX.F, Σ ν Figure 3 Rules for µMALL.
Negation is lifted to formulas with

(A α) ⊥ = A ⊥ α ⊥ where (α • w) ⊥ = α ⊥ • w and (α ⊥ • w) ⊥ = α • w.
In general, we write α, β for occurrences.

The connectives need then to be lifted to occurrences as well:

Given # ∈ {⊗, ⊕, `, &}, if F = A αl and G = B αr then (F #G) = (A#B) α Given # ∈ {µ, ν} if F = A αi then #X.F = (#X.A) α
Occurrences allow us to follow a subformula uniquely inside a derivation. Since in µMALL we only works with formula occurrences, we simply use the term formula.

The (possibly in nite) derivation trees of µMALL, called pre-proofs are coinductively generated by the rules given in Figure 3. We say that a formula is principal when it is the formula that the rule is being applied to.

Among the in nite derivations that µMALL o er we can look at the circular ones: an in nite derivation is circular if it has nitely many di erent subtrees. The circular derivation can therefore be represented in a more compact way with the help of back-edges: arrows in the derivation that represent a repetition of the derivation. Derivations with back-edge are represented with the addition of sequents marked by a back-edge label, noted f additional rule, Σ be(f) , which represent a back-edge pointing to the sequent f . We take the convention that from the root of the derivation from to rule be(f) there must be exactly one sequent annotated by f . Example 26. An in nite derivation and two di erent circular representations with back-edges. . . .

µ µX.X µ µX.X be(f) µX.X µ f µX.X be(f) µX.X µ µX.X µ f µX.X
While a circular proof has multiple nite representations (depending on where the back-edge is placed), they can all be mapped back to the same in nite derivation via an in nite unfolding of the back-edge and forgetting the back-edge labels: Definition 27 (Unfolding). We de ne the unfolding of a circular derivation P with a valuation v from back-edge labels to derivations by: U P :

P 1 , . . . , P n Σ r , v = U(P 1 , v), . . . , U(P n , v) Σ r U(be(f), v) = v(f) U P : P 1 , . . . , P n f Σ r = π = U(P 1 , v), . . . , U(P n , v) Σ r with v (g) = π if g = f else v(g).
µMALL comes with a validity criterion on pre-proofs that determines when a pre-proof can be considered as a proof: mainly, whether or not each in nite branch can be justi ed by a form of coinductive reasoning. The criterion also ensures that the cut-elimination procedure holds. For that, we can de ne a notion of thread [START_REF] Baelde | In nitary proof theory: the multiplicative additive case[END_REF][START_REF] Baelde | Bouncing threads for circular and non-wellfounded proofs[END_REF]: an in nite sequence of tuples of formulas, sequents and directions (either up or down). Intuitively, these threads follow some formula starting from the root of the derivation and start by going up. If the thread encounters an axiom rule, it will bounce back and start going down in the dual formula of the axiom rule. It may bounce back again, when going down on a cut rule, if it follows the cut-formula. A thread will be called valid when it is non stationnary (does not follow a formula that is never a principal formula of a rule), and when in the set of formulas appearing in nitely often, the minimum formula (according to the subformula ordering) is a ν formula. For the multiplicative fragment, we say that a pre-proof is valid if for all in nite branches, there exists a valid thread, while for the additive part, we require a notion of additive slices and persistent slices which we do not details here. More details can be found in [START_REF] Baelde | Bouncing threads for circular and non-wellfounded proofs[END_REF].

Translating isos into µMALL

We start by giving the translation from isos to pre-proofs, and then show that they are actually proofs, therefore obtaining a static correspondence between programs and proofs. We then show that our translation entails a dynamic correspondence between the evaluation procedure of our language and the cut-elimination procedure of µMALL. This will imply that the proofs we obtain are indeed isomorphisms, meaning that if we cut the aforementioned proofs π and π ⊥ , performing the cut-elimination procedure would give either the identity on A or the identity on B.

The derivation we obtain are circular and we therefore translate the isos directly into nite derivations with back-edge, written circ(ω). We can de ne another translation into in nite derivations as the composition of circ() with the unfolding: ω = U(circ(ω)).

Because we need to keep track of which formula is associated to which variable from the typing context, the translation uses a slightly modi ed version of µMALL in which contexts are split in two parts, written Υ; Θ, where Υ is a list of formulas and Θ is a set of formulas associated with a term-variable (written x : F). When starting the translation of an iso of type A ↔ B, we start in the context [A α]; ∅ (for some address α) and end in the context []; Θ. The additional information of the variable in Θ is here to make sure we know how to split the contexts accordingly when needed later during the translation, with respect to the way they are split in the typing derivation. We write Θ = {F | x : F ∈ Θ} and Θ = {x : A | x : A α ∈ Θ}. We also use another rule which allow to send the rst formula from Υ to Θ and a ecting it a variable :

Υ; x : F, Θ G F :: Υ; Θ G ex(x)
. Given a derivation ι in this system, we write ι for the function that sends ι into a derivation of µMALL where (i) we remove all occurrence of the exchange rule (ii) the contexts []; Θ becomes Θ.

Given an iso ω : A ↔ B and initial addresses α, β, its translation into a derivation of µMALL of A α B β is described with three separate phases: Iso Phase. The rst phase consists in travelling through the syntactical de nition of an iso, keeping as information the last encountered iso-variable bounded by a fix f.ω and calling the negative phase when encountering an iso of the form {v 1 ↔ e 1 | . . . | v n ↔ e n } and attaching to the formulas A and B two distinct addresses α and β and to the sequent as a label of name of the last encountered iso-variable. Later on during the translation, this phase will be recalled when

C V I T 2 0 1 6
encountering another iso in one of the e i , and, if said iso correspond to an iso-variable, we will create a back-edge pointing towards the corresponding sequents.

Negative Phase. Starting from some context [A α], Θ, the negative phase consists into decomposing the formula A according to the in which way the values of type A on the left-hand-side of ω are decomposed. The negative phase works as follows: we consider a set of (list of values, typing judgement), written (l, ξ) where each element of the set corresponds to one clause v ↔ e of the given iso and ξ is the typing judgment of e. The list of values corresponds to what is left to be decomposed in the left-hand-side of the clause (for instance if v is a pair v 1 , v 2 the list will have two elements to decompose). Each element of the list Υ will correspond to exactly one value in the list l. If the term that needs to be decomposed is a variable x, then we will apply the ex(x) rule, sending the formula to the context Θ. The negative phase ends when the list is empty and hence when Υ = []. When it is the case, we can start decomposing ξ and the positive phase start. The negative phase is de ned inductively on the rst element of the list of every sets, which are known by typing to have the same pre x, and is given in Table 4.

Positive phase. The translation of an expression is pretty straightforward: each let and iso-application is represented by two cut rules, as usual in Curry-Howard correspondence. Keeping the variableformula pair in the derivation is here to help us know how to split accordingly the context Θ when needed, while Υ is always empty and is therefore omitted. While the positive phase carry over the information of the last-seen iso-variable, it is not noted explicitly as it is only needed when calling the Iso Phase. The positive phase is given in Table 5.

Remark 28. While µMALL is presented in a one-sided way, we write Σ Φ for Σ ⊥ , Φ in order to stay closer to the formalism of the type system of isos.

Definition 29. circ(ω, S, α, β) = π takes a well-typed iso, a singleton set S of an iso-variable corresponding to the last iso-variable seen in the induction de nition of ω and two fresh addresses α, β and produces a circular derivation of the variant of µMALL described above with back-edges. circ(ω, S, α, β) is de ned inductively on ω:

circ(fix f.ω, S, α, β) = circ(ω, {f }, α, β) circ(f, {f }, α, β) = A α B β be(f) circ({(v i ↔ e i) i∈I } : A ↔ B, {f }, α, β) = Neg(([v i], ξ i) i∈I) A α f B β
where ξ i is the typing derivation of e i .

Example 30. The translation circ(ω, ∅, α, β) of the iso ω from Example 9 is, with

F = A αl , G = B αrl , H = C αrr and F = A βrl , G = B βrr , H = C βl : id F F ⊕ 1 F F ⊕ G ⊕ 2 F H ⊕ (F ⊕ G) id G G ⊕ 2 G F ⊕ G ⊕ 2 G H ⊕ (F ⊕ G) id H H ⊕ 1 H H ⊕ (F ⊕ G) & G ⊕ H H ⊕ (F ⊕ G) & F ⊕ (G ⊕ H) H ⊕ (F ⊕ G) Example 31. Considering the iso swap of type A ⊗ B ↔ B ⊗ A and its µMALL proof π S = A γl A γ r id B γr B γ l id A γl , B γr (B ⊗ A) γ ⊗ (A ⊗ B) γ (B ⊗ A) γ `
, following Example 10 we give its corresponding proof π m(S) where F = (A ⊗ B) αirl and G = (B ⊗ A) βirl , then [F] and [G] are respectively of address α and β:

1 1 ⊕ 1 1 ⊕ (G ⊗ [G]) µ [G] ⊥ 1 [G] id F F π S F G cut F G id [F] [F] π m(S) [F] [G] cut [F] [G] id G G id [G] [G] ⊗ G, [G] (G) ⊗ [G] ⊕ 2 G, [G] 1 ⊕ (G ⊗ [G]) µ G, [G] [G] G, [G] [G] cut G, [F] [G] cut F, [F] [G] F ⊗ [F] [G] & 1 ⊕ (F ⊗ [F]) [G] ν [F] [G]
We painted in blue the pre-thread that follows the focus of the structurally recursive criterion. During the negative phase which consists of the µ, &, `, ⊥ rules the pre-thread is going up, at each time going into the subformula corresponding to the focus. Then, during the positive phase the pre-thread is not active during the multiple cut rules until it reaches the id rule, where the pre-thread bounces and starts going down before bouncing back up again in the cut rule, into the in nite branch, where the behavior of the pre-thread will repeat itself.

Neg({(inj l v j :: l j , ξ j) j∈J } ∪ {(inj r v k :: l k , ξ k) k∈K }) = Neg({(v j :: l j , ξ j) j∈J }) F 1 :: Υ; Θ G Neg({(v k :: l k , ξ k) k∈K }) F 2 :: Υ; Θ G F 1 ⊕ F 2 :: Υ; Θ G & Neg({([], ξ)}) = Pos(ξ) []; Θ F Neg({(v 1 i , v 2 i :: l i , ξ i) i∈I }) = Neg({(v 1 i :: v 2 i :: l i , ξ i) i∈I }) F 1 , F 2 :: Υ; Θ G F 1 ⊗ F 2 :: Υ, Θ G `Neg({(() :: l, ξ)}) = Neg({l, ξ}) Υ; Θ F 1 :: Υ; Θ F Neg({(fold v i :: l i , ξ i) i∈I }) = Neg({(v i :: l i , ξ i) i∈I }) F [X ← µX.F] :: Υ; Θ G µX.F :: Υ; Θ G ν Neg({(x :: l, ξ)}) = Neg({l, ξ}) Υ; Θ, x : F G F :: Υ; Θ G ex(x)
Figure 4 Negative Phase Lemma 32. Given π = circ(ω), for each in nite branch of π, only a single iso-variable is visited in nitely often.

Proof. Since we have at most one iso-variable, we never end up in the case that between an annotated sequent f and a back-edge pointing to f we encounter another annotated sequent.

Among the terms that we translate, the translation of a value yields what we call a Purely Positive Proof : a nite derivation whose only rules have for active formula the sole formula on the right of the sequent. Any such derivation is trivially a valid pre-proof.

C V I T 2 0 1 6 Pos x : A e x : A = []; x : F F id Pos e () : A = []; ∅ 1 1 Pos   ξ Θ e t : A 1 Θ e inj l t : A 1 ⊕ A 2   = Pos(ξ) Θ F 1 []; Θ F 1 ⊕ F 2 ⊕ 1 Pos   ξ Θ e t : A 2 Θ e inj r t : A 1 ⊕ A 2   = Pos(ξ) []; Θ F 2 []; Θ F 1 ⊕ F 2 ⊕ 2 Pos   ξ 1 Θ 1 e t 1 ξ 2 Θ 2 e t 2 : A 2 Θ 1 , Θ 2 e t 1 , t 2 : A 1 ⊗ A 2   = Pos(ξ 1) []; Θ 1 F 1 Pos(ξ 2) []; Θ 2 F 2 []; Θ 1 , Θ 2 F 1 ⊗ F 2 ⊗ Pos   ξ Θ e t : A[X ← µX.A] Θ e fold t : µX.A   = Pos(ξ) []; Θ F [X ← µX.F] []; Θ µX.F µ Pos   ξ 1 Θ 1 e t 1 : (A i) i∈I ξ 2 Θ 2 , (x i : A i) i∈I e t 2 : B Θ 1 , Θ 2 e let (x i) i∈I = t 1 in t 2 : B   = Pos(ξ 1) []; Θ 1 F 1 ⊗ • • • ⊗ F n Neg(([(x i) i∈I], ξ 2)) [F 1 ⊗ • • • ⊗ F n]; Θ 2 G []; Θ 1 , Θ 2 B cut Pos   Ψ ω ω : A ↔ B ξ Θ e t : A Θ; Ψ e ω t : B   = Pos(ξ) []; Θ A circ(ω, {f }, α, β) [A α]; ∅ B β []; Θ B β cut Figure 5 Positive Phase
Definition 33 (Purely Positive Proof). A Purely Positive Proof is a nite, cut-free proof whose rules are only ⊕ i , ⊗, µ, 1, id for i ∈ {1, 2}.

Lemma 34 (Values are Purely Positive Proofs). Given x 1 : A 1 , . . . , x n :

A n v : A then v []; x 1 : A 1 α1 , . . . , x n : A n αn A α is a purely positive proof.
We can then de ne the notion of bouncing-cut and their origin:

Definition 35 (Bouncing-Cut). A Bouncing-cut is a cut of the form :

π Σ G G F be(f) Σ F cut
Due to the syntactical restrictions of the language we get the following:

Property 36 (Origin of Bouncing-Cut). Given a well-typed iso, every occurrence of a rule be(f) in circ(ω) is a premise of a bouncing-cut.

In particular, when following a thread going up into a bouncing-cut, it will always start from the left-hand-side of the sequent, before going back down on the right-hand-side of the sequent. It will also always bounce back up on the bouncing-cut to reach the back-edge.

Theorem 37 (Validity of proofs). If ω ω : A ↔ B and π = circ(ω, ∅, α, β) then π satis es µMALL validity criterion from [START_REF] Baelde | Bouncing threads for circular and non-wellfounded proofs[END_REF].

Proof Sketch. In order to show the validity of our derivation we need, for each in nite branch, to build a valid thread. From the previous lemmas and the syntactical constraints of the language, we get that any in nite branch is completly de ned by a single iso-variable, which allows us to reason entirely about a single recursive iso fix f.{v 1 ↔ e 1 | . . . | v n ↔ e n }. For each in nite branch, we will build a pre-thread that follows the focus of the primitive recursive criterion. We know that the focus is a strict subvariable of the argument that is called recursively, as a consequence we can split the constructed thread into two parts, p 0 and p 1 , corresponding respectively to the negative phase and the positive phase. We also know that, each argument of a recursive call gives us a purely positive proof which is made only of tensors. We can show that the size of p 0 is bigger than p 1 and also that p 1 is a pre x of p 0 , when ignoring the W weight. This allows us to make sure that our pre-thread is a thread where the visible part always encounters a ν formula. Finally, the inductive type is decomposed in the negative phase and not in the positive phase (as the right-hand side of a recursive call is purely made of tensors), we can show that (i) the thread is never stationnary and (ii) the thread has for minimal recurring formula that is visited in nitely often a ν formula, hence satisfying validity.

We can also show that the rewriting rules of the language simulate the cut-elimination procedure, as it is described in [START_REF] Baelde | Bouncing threads for circular and non-wellfounded proofs[END_REF]:

Theorem 38 (Simulation). Provided an iso ω ω : A ↔ B and values e v : A and e v : B, let

π = Pos(ω v) and π = Pos(v), if ω v → * v then π * π .
Proof sketch. The proof relies on the de nition of a novel explicit substitution rewriting system for the language, called → eβ . Explicit substitution are represented as a series of let constructs where the base case of the rewriting system is let x = v in x → eβ v. Each rewriting step of this system represents exactly one step of the cut-elimination procedure of µMALL. Then we only need to show

that if σ = { - → x → - → v } then let - → x = - → v in e → * eβ σ(e).

This leads to the following corollary:

Corollary 39 (Isomorphism of proofs.). If ω : A ↔ B then, given

F 1 = A α1 , F 2 = A α2 , G 1 = B β1 , G 2 = B β2
and the corresponding proofs π : F 1 G 1 and the proof π ⊥ : G 2 F 2 of ω ⊥ are isomorphic :

A α A α id π ⊥ G 2 F 2 π F 1 G 1 A α A α cut π F 1 G 1 π ⊥ G 2 F 2 B β B β cut B β B β id

Conclusion

Summary of the contribution. We presented a linear, reversible language with inductive types. We showed how ensuring non-overlapping and exhaustivity is enough to ensure the reversibility of the isos. The language comes with both an expressivity result that shows that any Primitive Recursive Functions can be encoded in this language as well as an interpretation of programs into µMALL proofs. The latter result rests on the fact that our isos are structurally recursive.

Future works. A rst extension to our work would be to relax this condition in order for the encoding of more functions and to see how a more relaxed criterion would be captured in terms of pre-proof validity. Along with this, allowing for coinductive statements and terms would allow for a truly general reversible language. This is a focus of our forthcoming research.

A second direction for future work is to consider quantum computation, by extending our language with linear combinations of terms. We plan to study purely quantum recursive types and generalized quantum loops: in [START_REF] Sabry | From symmetric pattern-matching to quantum control[END_REF], lists are the only recursive type which is captured and recursion is terminating. The logic µMALL would help in providing a ner understanding of termination and non-termination.

C V I T 2 0 1 6 A Proof of Section 2
Proof of Lemma 7. w.l.o.g consider ω = {v 1 ↔ e 1 | . . . | v n ↔ e n }, we look at one clause in particular and its dual:

  v 1 ↔ let p 1 = ω 1 p 1 in • • • let p n = ω n p n in v 1   ⊥ :=   v 1 ↔ let p n = ω ⊥ n p n in • • • let p 1 = ω ⊥ 1 p 1 in v 1   .
By Case OD A⊗B (S) : Assuming we are in the rst case of the disjonction in the premise of OD A⊗B , the other case being similar: Take

v 1 , v 2 , v 1 , v 2 ∈ S and v, v such that σ 1 [v 1 , v 2] = v, v and σ 2 [v 1 , v 2] = v, v .
By de nition of the pattern-matching we have:

σ 1 1 [v 1] = v 1 and σ 1 2 [v 1] = v 1 .
By induction hypothesis on X we get that v 1 = v 1 . We also get that v 2 , v 2 ∈ S 1 v1 = S 1 v2 and so by induction hypothesis we get that

v 2 = v 2 and hence v 1 , v 2 = v 1 , v 2 .
Lemma 43 (Exhaustivity). Let OD A (S) and v : A then there exists

v i ∈ S st σ[v i] = v Proof. By induction on OD A (S)
OD({x}) then the pattern-matching matches for any v. OD({()}) then the only possible value for v is () and σ[()] = ()

OD A⊕B ({inj l v | v ∈ S A } ∪ {inj r v | v ∈ S B }) let v = inj l v then by induction hypothesis on S A there exists v ∈ S A st σ[v] = v, hence σ[inj l v] = inj l v
Similar for the right case. Similar case for the fold.

Assuming we are in the rst case of the disjonction in the premise of OD A⊗B , the other case being similar: Take some v, v : A ⊗ B, by induction hypothesis we know that there exists some v i ∈ {v 1 , . . . , v n } such that σ[v i] = v and therefore that there exists some

v i ∈ S 1 v such that σ [v i] = v , therefore we get (σ ∪ σ)[v i , v i] = v, v .
Proof of Lemma 3. Direct implication of Lemma 42 and Lemma 43.

Lemma 44 (Commutativity of substitution). Let σ 1 , σ 2 and v, such that σ 1 ∪ σ 2 closes v and supp(σ

1) ∩ supp(σ 2) = ∅ Then σ 1 (σ 2 (v)) = σ 2 (σ 1 (v))
Proof. Direct as σ 1 and σ 2 have disjoint support.

Proof of Theorem 8. By induction hypothesis on the size of ω:

Case where ω = {v 1 ↔ v 1 | . . . | v n ↔ v n } then ω ⊥ (ω v 0)
, by non-overlapping and exhaustivity there exists a v i such that σ[v i] = v 0 and hence the terms reduces to ω

⊥ σ(v i). It is clear that σ[v i] = σ(v i)
and hence the terms reduces to σ(v i), but by the rst pattern-matching we know that σ(v i) = v 0 , which concludes the case.

Case where

ω = {v 1 ↔ e 1 | . . . | v n ↔ e n },
for simplicity of writing we write a single clause:

  v 1 ↔ let p 1 = ω 1 p 1 in • • • let p n = ω n p n in v 1   -1 :=   v 1 ↔ let p n = ω -1 n p n in • • • let p 1 = ω -1 1 p 1 in v 1   .
Take some closed value v 0 : A such that σ[v 1] = v 0 . By lineary, we can decompose σ into σ 1 , . . . , σ n , σ n+1 such that, after substitution we obtain Lemma 46 (Specialisation of the substitution on pairs). Let σ be a substitution that closes ∆ e t 1 , t 2 , then there exists σ 1 , σ 2 , such that σ(t 1 , t 2) = σ 1 (t 1), σ 2 (t 2) Where σ = σ 1 ∪ σ 2 .

Proof. By the linearity of the typing system we know that F V (t 1) ∪ F V (t 2) = ∅, so there always exists a decomposition of σ into σ 1 , σ 2 de ned as

σ i = {(x i → v i) | x i ∈ F V (t i)} for i ∈ {1, 2}.
Lemma 47 (Explicit substitution and substitution coincide). Let σ = {x i → v i } be a substitution that closes t, then let

x 1 = v 1 in . . . , let x n = v n in t → * eβ σ(t).
Proof. By induction on t.

x, then σ(x) = v and let

x = v in x → eβ v = σ(x). ()
• let x = v in inj l t → eβ inj l let x = v in t.
Then:

Pos(v) Θ 1 F Pos(t) F, Θ H F, Θ 2 H ⊕ G ⊕ 1 R Θ 1 , Θ 2 H ⊕ G cut Pos(v) Θ 1 F Pos(t) F, Θ 2 H Θ 1 , Θ 2 H cut Θ 1 , Θ 2 H ⊕ G ⊕ 1 R
• The same goes for let x = v in inj r t → eβ inj r let x = v in t and let x = v in fold t → eβ fold let x = v in t

• let x = v in t 1 , t 2 → eβ let x = v in t 1 , t 2 when x ∈ F V (t 1) Then: • Similar for the second rule on the pair.

Pos(v) Θ 1 F Pos(t 1) F, Θ 2 H Pos(t 2) Θ 3 G F, Θ 2 , Θ 3 H ⊗ G ⊗ R Θ 1 , Θ 2 , Θ 3 H ⊗ G cut C V I T
• let x = v in ω t → eβ ω (let x = v in t)

Then:

Pos(v) Θ 1 F Pos(t) F, Θ 2 G circ(ω) G H F, Θ 2 H cut Θ 1 , Θ 2 H cut Pos(v) Θ 1 F Pos(t) F, Θ 2 G Θ 1 , Θ 2 G cut circ(ω) G H Θ 1 , Θ 2 H cut
Neg({([v i], e i)}) H[X ← µX.H] G Θ G cut
Then by induction hypothesis.

Case OD A⊕B ({inj

l v i } ∪ {inj r v k }) with σ[inj l v j] = inj l v Then π = Pos(v) Θ H Θ H ⊕ F ⊕ 1 R Neg({[v i], e i }) H G Neg({[v k], e k }) F G H ⊕ F G ⊕ L

Θ G cut

Which reduces to Pos(v) Θ H

Neg({[v i], e}) H G Θ G cut

Then by induction hypothesis.

Case σ[inj r v j] = inj r v Similar to the previous case.

Case

OD A⊗B ({ v 1 i , v 2 i }) with σ[v 1 j , v 2 j] = v 1 , v 2 Then π = Pos(v 1) Θ 1 H Pos(v 2) Θ 2 F Θ 1 , Θ 2 H ⊗ F ⊗ R Neg({([v 1 , v 2 , i], e i) i∈I }) H, F G H ⊗ F G ⊗ L Θ 1 , Θ 2 G cut

C.2 Proof validity

Proof of Lemma 34. By induction on ∆ v : A

x : A x : A then the derivation is []; F F id , which is a purely primitive proofs () : 1 then the derivation is []; ∅ 1 1 , which is a purely primitive proofs

∆ 1 , ∆ 2 v 1 , v 2 : A⊗B then we get π 1 ∆ 1 A π 2 ∆ 2 B ∆ 1 , ∆ 2 A ⊗ B
⊗ and then by induction hypothesis on π 1 and π 2 .

∆ inj l v : A ⊕ B then the derivation is

π ∆ A ∆ A ⊕ B ⊕ 1
then by induction hypothesis on π Similar for inj r v and fold v.

C V I T 2 0 1 6

Lemma 49 .

 49 Let Γ v : A such and ∆ v : A st σ[v j] = v and σ = { -→ x j → -→ w j } then for any list l = [v 1 , . . . , v n] where (Γ i e v i) i∈I and such that OD A ({v, v 1 , . . . , v n }) and any set of derivations (Γ i e i : B) i∈I such that OD B (V al(e i)) and given Θ = {x :A α | x : A ∈ ∆} and G = B β we have: π = Pos(v) Θ H Neg({((v :: l) i , e i) i∈I }) H G Θ G cut * Neg({l, let -→ x i = -→ w i in e}) Θ G = πProof. By induction on OD A ()Case OD A ({x}) we get σ[x] = v then π = π . Case P E 1 ({1}) then σ[()] = () toPos(e) G = π as σ is empty.CaseP E µX.A ({fold v i }) st σ[fold v j] = fold v Then π = Pos(v) Θ H[X ← µX.H] µ R Θ µX.H Neg({[v i], e i }) H[X ← µX.H] G µ L µX.H G Θ G cut Reduces to Pos(v) Θ H[X ← µX.H]

Pos(v 2) Θ 2 F 1 , Θ 2 G 2 F 1 H

 221221 Neg({((v 1 :: v 2 :: l) i , e i) i∈I })H, F G cut Θ 2 , H G cut Θ Because the negative phase on [v 1 , v 2] only produces &, `, , ν rules, we get that Neg({(v1 :: v2 :: l, e)}) = Neg({(v2 :: v1 :: l, e)}) by the commutation of rules of Linear Logic. Therefore we can getPos(v 1) Θ 1 H Pos(v 2) Θ Neg({((v 2 :: v 1 :: l) i , e i) i∈I }) H, F G cut Θ 2 , H G cut Θ 1 , Θ 2 G which by induction hypothesis on v 2 reduces to Pos(v 1) Θ Neg({((v 1 :: l) i , let x j = w j in e i) i∈I }) H G cut Θ 1 , Θ 2 GAnd then we can imply our second induction hypothesis on v 1 .Theorem 50 (Iso-substitution cut-elim). Let{v 1 ↔ e 1 | . . . | v n ↔ e n } v → σ(e i) when σ[v i] = v then Pos({v 1 ↔ e 1 | . . . | v n ↔ e n } v) * Pos(let x j = v j in e i) *Pos(σ(e i)) when σ = {x j → v j } Proof. Direct by Lemma 49, Lemma 47 and Theorem 48.

Table 1

 1 Terms and types ∆ 1 ; Ψ e t 1 : A ∆ 2 ; Ψ e t 2 : B ∆ 1 , ∆ 2 ; Ψ e t 1 , t 2 : A ⊗ B

		∆; Ψ e t : A	∆; Ψ e t : B
	∅; Ψ e () : 1 x : A; Ψ e x : A	∆; Ψ e inj l t : A ⊕ B	∆; Ψ e inj r t : A ⊕ B
		∆; Ψ e t : A[X ← µX.A]
		∆; Ψ	

e fold t : µX.A

 e v 1 : A . . . ∆ n e v n : A OD A ({v 1 , . . . , v n }) ∆ 1 ; Ψ e e 1 : B . . . ∆ n ; Ψ e e n : B OD B ({V al(e 1), . . . , V al(e n

Table 4

 4 Exhaustivity and Non-Overlapping

Table 5

 5 Pattern-matchingTheorem 8 (Isos are isomorphisms). For all ω

 Soudness & Completness[START_REF] Paolini | A class of Recursive Permutations which is Primitive Recursive complete[END_REF]). RPP is PRF-Complete and PRF-Sound: it can represent any Primitive Recursive Function and every function in RPP can be represented in PRF.

	XX:8	A Curry-Howard Correspondence for	Linear, Reversible Computation
		Theorem 17 (
			1 6

 typing we know that ∆ e v 1 : A and ∆; Ψ e let p 1 = ω 1 p 1 in . . . v 1 : B ∆ can be split into ∆ 1 , . . . , ∆ n , ∆ n+1 and for all 1 ≤ i ≤ n we get that the typing judgment of the expression let p i = ω i p i in . . . generates the new typing judgement Γ i+1

	we get that ∆ i	i-1 j=1 Γ i j e ω p i , nally v 1 is typed by ∆ n+1	n i=1 Γ n+1 i	.	i	, . . . , Γ n+1 i	. For all i
	When typing the dual clause, we start with contexts ∆ n+1	n i=1 Γ n+1 i	. We have from hypothesis
	that:						
	Each ω ⊥ i p i is typed by	n j=i+1 Γ n j , which is possible by our typing hypothesis.
	Each p i generates the contexts ∆ i ,	i j=1 Γ i j .			

At the end we end up with ∆ 1 , . . . , ∆ n , ∆ n+1 e v 1 which is typable by our hypothesis.

Lemma 40 (Substitution Lemma Of Variables). Let

∀ ∆ 1 e v 1 : A 1 , . . . , ∆ n e v n : A n ∀ Γ, x 1 : A 1 , . . . , x n : A n t : B Let σ = {x 1 → v 1 , . . . , x n → v n } then Γ, ∆ 1 , . . . , ∆ n σ(t) : B Proof. By induction on t.

Case x, then Γ = ∅ and we have σ = {x → v} for some v of type B under some context ∆, then we get ∆ σ(x) : B which leads to ∆ v : B which is typable by our hypothesis. Case (), nothing to do. Case inj l t , by substitution we have σ(inj l t) = inj l σ(t) and by typing we get Γ, ∆ 1 , . . . , ∆ n σ(t)

 then σ is empty and no substitution apply. t 1 , t 2 , then by Lemma 46 σ(t 1 , t 2) = σ 1 (t 1), σ 2 (t 2) . By → eβ , each let construction will enter either t 1 or t 2 , then by induction hypothesis. let p = t 1 in t 2 is similar to the product case. inj l t, inj r t, fold t, ω t. All case are treated the same: by de nition of → eβ , each let will enter into the subterm t, as with the substitution σ, then by induction hypothesis. • let x 1 , p = t 1 , t 2 in t → eβ let x 1 = t 1 in let p = t 2 in t

	Pos(v) Θ G Θ G	G G	id cut	Pos(v) Θ G
		Pos(t 1)	Pos(t 2)		Neg({[p], t})	Pos(t 2)	Neg({[p], t})
	Then :	Θ 1 G Θ 1 , Θ 2 G ⊗ F Θ 2 F , Θ 2 , Θ 3 H ⊗	Θ 3 , G, F H Θ 3 , G ⊗ F F	Θ1 Pos(t 1) Θ 1 G Θ 2 F Θ 2 , Θ 3 , G H Θ 3 , G, F H cut Θ	cut

Theorem 48 (Simulation). Let Θ t be a well-typed closed term: If t → eβ t then Pos(t) Pos(t) .

Proof. By induction on → eβ .

• let x = v in x → eβ v. 1 , Θ 2 , Θ 3 H cut

 Pos(t 1) F, Θ 2 H Θ 1 , Θ 2 H cut Pos(t 2) Θ 3 G Θ 1 , Θ 2 , Θ 3 H ⊗ G ⊗ R

	XX:24 A Curry-Howard Correspondence for	Linear, Reversible Computation
	Pos(v)	
	Θ 1 F	
		2 0 1 6

Γ, ∆ 1 , . . . , ∆ n inj l σ(t) which is typable by induction hypothesis on t . Case inj r t , fold t , ω t are similar. Case t 1 , t 2 , by typing we get that we can split Γ into Γ 1 , Γ 2 and the variables x 1 , . . . , x n are split into two parts for typing both t 1 or t 2 depending on whenever or not a variable occurs freely in t 1 or t 2 , w.l.o.g say that x 1 , . . . , x l are free in t 1 and x l+1 , . . . , x n are free in t 2 then we get:Γ 1 , x 1 : A 1 , . . . , x l : A l t 1 : B 1 Γ 2 , x l+1 : A l+1 , . . . , x n : A n t 2 : B 2 Γ 1 , Γ 2 , x 1 : A 1 , . . . , x l : A l , x l+1 : A l+1 , . . . , x n : A n t 1 , t 2 : B 1 ⊗ B 2By substitution we get that σ(t 1 , t 2) = σ(t 1), σ(t 2) so we get the following typing derivation which is completed by induction hypothesis on the subterms:Γ 1 , ∆ 1 , . . . , ∆ l t 1 : B 1 Γ 2 , ∆ l+1 , . . . , ∆ n t 2 : B 2 Γ 1 , Γ 2 , ∆ 1 , . . . , ∆ l , ∆ l+1 , . . . ,∆ n t 1 , t 2 : B 1 ⊗ B 2 Case let p = t 1 in t 2 Similar to the case of the tensor.

XX:19

Lemma 41 (Substitution Lemma Of Isos). If : ∆; f : α t : A g : β ω : α Then ∆; g : β t[f := ω] : A And if :

Proof. We prove those two propositions by mutual induction on t and ω 1 .

Terms, by induction on t.

If t = x or t = () then there is nothing to do. If t = inj l t or inj r t or fold t or t 1 , t 2 or let p = t 1 in t 2 , then similarly to the proof of Lemma 40 the substitution goes to the subterms and we can apply the induction hypothesis. If t = ω t . In that case, the substitution goes to both subterms: (ω [f := ω]) (t [f := ω]) and by induction hypothesis on t and by the mutually recursive proof.

Isos, by induction on ω 1 .

If ω 1 = f , then we get h : γ f [f ← ω 2] : β which is typable by hypothesis.

If ω 1 = g = f is impossible by our typing hypothesis.

If ω 1 = fix g.ω, then by typing f does not occur in ω 1 so nothing happens.

If Lemma 42 (Non-Overlapping).

By pattern-matching, both v 1 and v 2 are either in S 1 or S 2 . Take v = inj l v , then for all inj l v 1 , inj l v 2 ∈ S 1 , by pattern matching we know that σ

The same goes for S 2 . The case is similar for OD µX.A (S).

By Lemma 13, each let construction will reduce, and by the rewriting strategy we get:

The nal term reduces to γ n n (. . . (γ n 1 (σ n+1 (v 1))) . . .) and creates a new substitution γ i , the term will hence reduce to γ n (. . .

We know that each γ i closes only p i , we can therefore substitute the term as:

By induction hypothesis, Each let clause will re-create the substitution σ i , we know this as the fact that the initial let construction, let Direction for the identity, swap and sign-change.

For the Successor:

we do it by case analysis on the sole input n.

The Predecessor is the dual of the Successor.

Composition & Parallel composition: Direct by induction hypothesis on ω f and ω g . Finite Iteration:

We need the following lemma: ω aux (x1 , . . . , xn , z) → * (z1 , . . . , zn , z) where z is a non-zero integer and (z 1 , . . . , z n) = f |z| (x 1 , . . . , x n) which can be shown by induction on | z |: the case z = 1 and z = fold inj l () is direct by induction hypothesis on ω f . Then if z = n + 1 we get it directly by induction hypothesis on both ω f and our lemma. Then, for isos(It[f]) we do it by case analysis on the last argument: when it is 0 then we simply return the result, if it is z for z (no matter if stricly positive or stricly negative) then we enter ω aux , and apply the previous lemma.

Direct by case analysis of the last value and by induction hypothesis on ω f , ω g , ω h .

C Proofs of Section 4 C.1 Simulation of the cut-elimination procedure

To make the relation with the logic µMALL and its cut-elimination procedure simpler, we consider a new rewriting system based on explicit substitution, represented with let.

We de ne a notion of term occurrence and show that it matches the addresses obtained from the negative phases: Definition 51 (Term Occurrence). We note by Occ(v) the set of Occurrence in the value v de ned inductively on v by: There exists a unique value v and context ∆ such that ∆ e v : A and such that for all expression e such that ∆ e e : B, for all iso ω : A ↔ B such that v ↔ e is a clause of ω, consider π = circ(ω) then S 0 , . . . , S n is a branch of π and for all formula A α ∈ Σ, there exists a unique variable x such that ξ(x, v) is a su x of α.

Proof. By induction on n.

Case 0, then take ∆ = x : A and v = x, obviously ∆ e x : A. We also get that ω = {x ↔ e} and circ(ω) =

Pos(e)

A α B β so the empty sequence is a branch and ξ(v, v) = which is a su x of α.

Case n + 1. By induction hypothesis, the sequence S 0 , . . . , S n with S n sequent of Σ n B β gives us ∆ n v n : A. De ne the values contexts as

Then, by case analysis on the rule of S n+1 .

`: then we can write

We get that ∆ n+1 e v n+1 , then for any iso ω such that V[x k] ↔ e is a clause, we can build replace the clause by V[y, z] ↔ e[x ← y, z] in order to build ω , and if S 0 , . . . , S n was a branch in circ(ω) then so is S 0 , . . . , S n , S n+1 in ω . We know that ξ(x, v) = γ is a su xe of α k , then after applying the `rule we have that C 1 have address α l k and C 2 have address α r k . Therefore ξ(y, v n+1) = γ l and ξ(z, v n+1) = γ r which are respectively su xes of α l k and α r k . &. Assuming that S n+1 goes to the left branch of the & rule. We then have

For any iso ω where v n ↔ e was a clause, we can consider the isos ω where the clause v n ↔ e has been replaced by two clauses V[inj l y] and V[inj r r] with e[x ← y] and e[x ← z]. S 0 , . . . , S n , S n+1 is obviously a branch in circ(ω) by de nition if the negative phase. Also since ξ(x, v) = γ is a su xe of α k , after applying the & rule, on the left branch we get C 1 with address α l k . And ξ(y, v n+1) = γ l is a su x of α l k . The other side of the & is similar and so is the ν rule.

. In which case we have Σ n = 1 α , A 1 α1 . . . , A n αn with ∆ n = x : 1, x 1 : A 1 , . . . , x n : A n with v n = V[x], build v n+1 as V[()] and ∆ n+1 = x 1 : A 1 , . . . , x n : A n . Then after the rule we get Γ n+1 = A 1 α1 , . . . , A n αn so the property holds by our induction hypothesis.

Given an iso ω = fix f.{v 1 ↔ e 1 | . . . | v n ↔ e n }, we want to show that for any in nite branch there exists a valid thread that inhabit it. As given by Lemma 32, a in nite branch is uniquely de ned by a single iso-variable.

Given the value v j i that is the decreasing argument structurally recursive criterion, we want to build a pre-thread that follow the variable x j : µX.B in v j i : µX.B that is the focus of the criterion.

Definition 53 (Pre-Thread of the negative phase). Given a well typed iso ω = fix f.{v 1 ↔ e 1 | . . . | v n ↔ e n } and a clause v i ↔ e i such that f p ⊂ e i and the variable x p that is the focus of the primitive recursive criterion, and considering π = circ(ω) we build the nite pre-thread P T n (x p) that follows the formula µX.A corresponding to x p . This is done by induction on Neg({([v i], e i) i∈I }).

Case Neg({([], e)}) is impossible as we follow a variable. Case Neg({((() :: l, e))}) then we built P T n (Neg({(l, e)}))

Case Neg({((y ::

Lemma 54. Weight of the Pre-thread for the negative phase w(P T (Neg({(l, e)}))) is a word over {l, r, i, W}.

Proof. By case analysis of De nition 53:

If the variable x p is not a subterm of the rst value from the list l then the thread has the form:(A; C, ∆ B, ↑), (A; C , ∆ B, ↑) and the weight is W . If the variable x p is a subterm of the rst value of the list l then by direct case analysis on the rst value.

C V I T 2 0 1 6 XX:28 A Curry-Howard Correspondence for

Linear, Reversible Computation

A similar analysis can be done for the positive phase:

Definition 55 (Pre-thread for Pos(e)). Given the formula x p : νX.F , we describe the pre-thread following this formula, P T p as: (νX.F ; s; ↑) • (νX.F ; s ; ↑) when x p : νX.F is on the left-hand-side of the sequent. ((νX.A) α ; (νX.A) α (νX.A) β ; ↑) • ((νX.A) β ; (νX.A) α (νX.A) β ; ↓) (F ; s; ↓) • (F ; s ; ↓) when going down on a right-rule where F is principal and s is a premise of s . (F ; s; ↓) • (F ; s ; ↑) when going down on a bouncing-cut where s is the left-premise of the bouncing cut and s is the conclusion of the back-edge.

When bouncing back on an axiome, F necessarily comes from the left-hand-side of the sequent, and therefore when going down on a purely positive proofs, we follow the only formula on the right-hand-side of the sequent.

Lemma 56 (Form of Pre-Thread for Pos(e)). We have P T p (Pos(e)) is of the form W * A{l, r, W} * C Proof. Direction by case analysis on Pos(e). As the thread only goes up by encountering cut-rules or right-rules, we get W * , and the thread goes up all the way to an axiome rule, corresponding to the formula x p : νX.F , which add the A. Finally the thread goes down on the purely positive proof, generating {l, r, W} * until reaching the cut-rule from the bouncing cut.

We can then consider the in nite pre-thread as the concatenation of both P T n and P T p .

Lemma 57. Form of the Pre-Thread Given the pre-thread t following x p we have that w(t) = p 0 (Σ i≤n p i W * i Aq i C) ω With p 0 is any pre x. p i ∈ {l, r, i, W} * q i ∈ {l, r, W} * With, ∀i ≤ n, q i p i and | p i |>| q i | without counting the W. Where p q is q is a pre x of p. First, we show that | p i |>| q i | modulo the W.

Since p i is generated by the negative phase, we have that, modulo W, p i = {r} * l + {l, r, i} * , this is due by de nition of being primitive recursive and because we are looking for the right variable. By de nition of being primitive recursive the input type of the iso is

Then {l, r, i} is the decomposition of the primitive recursive value, as described in Theorem 52.

As q i correspond to the Purely Positive Proof, we know that the Purely Positive Proof is the encoding of a pattern p = x 1 , . . . , x n . Hence q i can be decomposed as {l + r * } By the fact that we the iso is primitive recursive we know that the variable in p is a strict subterm of the primitive recursive value, hence

The fact that q i p i is direct as the Nice Proof reconstruct the type A 1 ⊗ • • • ⊗ A n without modifying the A i while p i start by seraching for the corresponding type A i , so its only composed of {l, r} * , which will be the same as q i XX:29 Theorem 58. The Pre-thread generated is a thread We want to nd a decomposition of the pre-thread such that it can uniquely decomposed into (H

We recall that, with x ∈ {l, r, i} :

Proof. We set H 0 as the empty pre-thread. (so w(H 0) =) We set V 0 as the maximal possible sequence such that w(V 0) ∈ {l, r, i, W} * , i.e the sequence that end with (A; A A; ↑). Then, for all i ≥ 1 we set H i start at (A; A A; ↑) just before the axiome rule so that the rst element of w(H i) is A. Then H i is compose of All of the pre-thread going down on the Purely Positive Proof after the axiome, accumulating a word over {l, r, i, W} * . Going back up into the cut-rule of the bouncing cut, making a C Going up to compensate every x seen in the Purely Positive Proof while going down. This is possible as shown in Lemma 57 V i is the maximal possible sequence such that w(V i) ∈ {l, r, i, W} * , i.e the sequence that end with (A; A A; ↑).

Theorem 59. Thread Validity The generated thread is valid.

Proof. By Theorem 58 we know that we have a thread.

We also know by Theorem 58 that the visible part is not stationnary. Finally, by Lemma 57 and Theorem 58 we know that the visible part will see in nitly often the subformulas of the formula µX.B that is the focus of the primitive recursive criterion. This is due to the di erent in size in the part of the thread from the negative and from the positive phase and the fact that the positive phase does not encounter a µ formula when going down on a purely positive proof.

By constraints on the syntax of our isos, all the possible slices are necessarily persistent. Therefore the smallest formula we will encounter is µX.B which is a µ formula so and the thread is on the left so the thread is valid.