

Model-free Detection of Solar Generation in Distribution Grids Based on Minimal Exogenous Information

Speaker:

Petrusev Aleksandr

Supervisors:

Vincent Debusschere, G2ELab, Université Grenoble Alpes Rémy Rigo-Mariani, G2ELab, Université Grenoble Alpes Patrick Reignier, LIG, Université Grenoble Alpes

19 May 2022, Nancy

Context of the problem

Information about PV generation is crucial for distribution system operations:

- status estimation
- reconfiguration
- voltage management

"Hidden" generation may incur additional uncertainty into the net charge by impacting the net load profile.

Simulated network

Objective:

• Discriminate the nodes with and without solar generation

Problem:

• Currently available tools typically require data that is difficult to access

Tasks:

- To reach the highest precision of detection
- Rely only on smart meter and temperature data

Network sinatlated simulated fonthe ar (with a gran V in red)

Algorithm implementation

Simulation environnement

Neural network

 S_e

 \mathbf{S}_{a}

W

F

- 24 features to determine at what hour of the day the hi $\mathbf{S}_{\mathbf{h}}$ simulation will be \mathbf{S}_{p} performed – hi, $i = 1 \dots 24$;
- 4 features to indicate the season – Sh (winter), Sp (spring), Se (summer), Sa (autumn);
- **3 features** : temperature (t°) , weekend (W) and holiday (F).

Algorithm implementation

Simulation environnement

Anomaly detection algorithm

- **B** baseline
- **P** measurement
- H time horizon
- H^S- sunshine hours (9 a.m. -
- 4 p.m.)
- **B**^S baseline for "sunshine hours"
- **P**^S measurement for "sunshine hours"
- E_{min}, L_1, L_2 thresholds

Results

The implemented solution, was tested across all the nodes of the simulated electrical grid and its sensitivity was analyzed with regard to the level of PV penetration (PV_{nom}/P_{cons}) and time horizon *H*.

⁸

Conclusion

- Proposed method uses only the temperature and consumption data
- Neural network are very compact models that can be trained offline within minutes and can then analyse any time period within seconds.
- A next step may consist in not only detecting PV installations, but also in disaggregating the load and generation values for net load measurements

Thank you for your attention!

Aleksandr.petrusev@grenoble-inp.fr

References

1. REFIT: Electrical Load Measurements (Cleaned)

URL: <u>https://pureportal.strath.ac.uk/en/datasets/refit-electrical-load-measurements-cleaned</u>

2. Iowa Distribution Test Systems

URL: http://wzy.ece.iastate.edu/Testsystem.html

3. Smart meters in London

URL: https://www.kaggle.com/jeanmidev/smart-meters-in-london/

4. Dark Sky API

URL: <u>https://darksky.net/dev</u>

5. PVWatts Calculator

URL: https://pvwatts.nrel.gov/index.php

6. Michaelangelo Tabone, Sila Kiliccote, and Emre Can Kara. "Disaggregating solar generation behind individual meters in real time". *In Proceedings of the 5th Conference on Systems for Built Environments*. ACM, 43–52, 2018.

Database

Consumption (May 1, 2013) of «Smart meters in London»