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Context of the problem

Information about PV generation is
crucial for distribution system
operations:

* status estimation

* reconfiguration

* Vvoltage management

“Hidden” generation may Incur
additional uncertainty into the net
charge by impacting the net load
profile.
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Algorithm implementation
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Neural network
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Anomaly detection algorithm

B — baseline

P — measurement

H - time horizon

H3- sunshine hours (9 a.m. -

4 p.m.)

B — baseline for “sunshine
hours”

P® — measurement for “sunshine
hours”
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PV penetration, %

Results

The implemented solution, was tested across all the nodes of the simulated electrical grid and its
sensitivity was analyzed with regard to the level of PV penetration (PV,,,,/P.ons ) and time horizon H.

Number of correct detection results
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Conclusion

e Proposed method uses only the temperature and consumption data

e Neural network are very compact models that can be trained offline within
minutes and can then analyse any time period within seconds.

e A next step may consist in not only detecting PV installations, but also In
disaggregating the load and generation values for net load measurements
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