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Abstract. In the age of big data, soil data are more available
and richer than ever, but – outside of a few large soil survey
resources – they remain largely unusable for informing soil
management and understanding Earth system processes be-
yond the original study. Data science has promised a fully
reusable research pipeline where data from past studies are
used to contextualize new findings and reanalyzed for new
insight. Yet synthesis projects encounter challenges at all

steps of the data reuse pipeline, including unavailable data,
labor-intensive transcription of datasets, incomplete meta-
data, and a lack of communication between collaborators.
Here, using insights from a diversity of soil, data, and cli-
mate scientists, we summarize current practices in soil data
synthesis across all stages of database creation: availability,
input, harmonization, curation, and publication. We then sug-
gest new soil-focused semantic tools to improve existing data
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pipelines, such as ontologies, vocabulary lists, and commu-
nity practices. Our goal is to provide the soil data community
with an overview of current practices in soil data and where
we need to go to fully leverage big data to solve soil problems
in the next century.

1 Introduction

Soils host a myriad of life forms, from viruses to macrofauna,
that govern important ecosystem functions, such as nutrient
cycling, water retention, pollutant remediation, and carbon
sequestration. Soils play a critical role in human existence,
both as a habitat and as a source of food, fuel, and fiber.
Additionally, soils contain the largest pool of actively cy-
cling carbon (Ciais et al., 2013) and can contribute to climate
change mitigation through soil carbon sequestration manage-
ment practices (Smith et al., 2020; Fuss et al., 2018). The
health of this critical resource is under threat from misman-
aged land-use changes, leading to reductions in soil organic
matter and changes in soil structure that have led to wind
and water erosion (Lehmann et al., 2020). Because of the
soil’s diverse role in food security, climate change, society,
and ecosystem functioning, soils have been the central focus
of many studies, resulting in a wealth of data.

Soil data are as diverse as soils themselves, reflecting inter-
actions of biological, chemical, hydrological, and biophysi-
cal processes. Soil data uses include a broad range of applica-
tions such as ecology, biogeochemistry (Iversen et al., 2017;
Wieder et al., 2021b), soil engineering, soil taxonomy and
classification, geochemistry (Nave et al., 2016; Hengl et al.,
2017; Lawrence et al., 2020), micrometeorology (Cheah
et al., 2018), agronomy (Lyons et al., 2020), and geomor-
phology. Datasets, defined as “a collection of scientific data
including primary data and metadata organized and format-
ted for a particular purpose” (Löffler et al., 2021), are assem-
bled by an equally diverse range of organizations. These or-
ganizations include government agencies, academic collab-
orations, nongovernmental organizations, and industry, re-
flecting a wide range of generators and users including farm-
ers, land managers, students, technicians, scientists, and pol-
icy makers. Recent efforts have summarized the availability
of soil data, database types, their strengths and weaknesses,
and how research and data networks can help solve key soil-
related research and societal problems (Harden et al., 2018;
Malhotra et al., 2019; Weintraub et al., 2019). These soil
databases are a key tool for a wide variety of users, such as
the scientific community, land managers, and policy makers.

The creation of multi-sourced data products requires uni-
fication of data, through the process of harmonization.
“Database”, for the purposes of this paper, is defined as a
synthetic collection of soil observations, including location,
physicochemical properties, units, and methods. Databases
can consist of data spanning multiple curation levels – from

raw, to processed, to gap-filled – and are often assem-
bled from different sources including collaborating inves-
tigators’ datasets, disparate intermediate datasets, or large
existing databases. Further, these databases are often cross-
referenced, for example, by integrating georeferenced me-
teorological data or remote sensing products like net pri-
mary production maps. “Harmonization” of data refers to
the integration process and can include activities like re-
structuring data tables. A number of databases have been
compiled in soils around specific themes or measurement
types including soil carbon and nitrogen (Worldwide soil
carbon and nitrogen data, Zinke et al., 1998, International
Soil Carbon Network database, Nave et al., 2016), field-
based soil respiration (Soil Respiration Data base, Bond-
Lamberty and Thomson, 2010), lab-based heterotrophic res-
piration (Soil Incubation Database, Schädel et al., 2020),
soil radiocarbon (International Soil Radiocarbon Database,
Lawrence et al., 2020), and coastal soils (Coastal Carbon
Research Coordination Network Database, Holmquist et al.,
2018–2021) (see Sect. A in the Appendix). The soil resources
and data products that make up the World Soil Informa-
tion Service (WoSIS) curated by the International Soil Ref-
erence and Information Centre (ISRIC) (Batjes et al., 2020)
are an example of how soil data feed into larger products.
After archival on ISRIC servers, datasets from individual
providers are incorporated in the World Soil Information
Servers workflow of mapping diverse data contributions into
a standard data model, harmonization, and distribution (in-
cluding both databases and derived data products, such as
SoilGrids, Hengl et al., 2017, 2014). Harmonized databases
can be a powerful validation tool for Earth system models
as well as other modeling and estimation efforts and to con-
struct these databases the underlying data should adhere to
best practices.

The FAIR (findable, accessible, interoperable, and
reusable) data principles have become a popular shorthand
for best practices in scientific data management and steward-
ship across scientific domains (Wilkinson et al., 2016). Much
of the previous work on FAIR principles has focused on data
access (though notable counterexamples include Goble et al.,
2020), which can be difficult if data rely on an “available on
request” note included at the end of publications (Savage and
Vickers, 2009; Vines et al., 2014). Indeed previous research
has identified challenges with educating and motivating data
providers to publish their datasets (Wolkovich et al., 2012).
It is important to note here that FAIR does not always mean
open, freely reusable data. Indeed the FAIR data motto makes
this difference: “as open as possible, as closed as necessary”,
and this becomes particularly important for data that have
possible economic impact (Luque, 2019). While data access
has improved as funding agencies require data management
plans that include public archiving, more widely available
data do not ensure that they are interoperable and reusable.
Many of the challenges and best practices we highlight be-
low address this latter half of FAIR data – interoperability
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and reusability – and reflect the diversity of soil data gen-
erators, users, and stakeholders. In this work, we hope to
guide prospective soil data providers, users, and synthesiz-
ers by highlighting both challenges and examples of working
toward FAIR data within the soil science community.

While it is not desirable or tenable to force all soil data
to adhere to a single data template, there are shared strate-
gies, semantic tools, community practices, and protocols for
data harmonization and integration efforts that would in-
crease transparency and decrease initialization effort of these
projects. We set out in this paper to summarize current prac-
tices in soil data management and database harmonization,
as well as suggest new semantic and community tools for the
future of soil harmonization. The approach and issues out-
lined in this paper are undoubtedly not unique to soils and
are relevant to a wide range of scientific data, particularly
environmental data. However we present this as a case study
of soil-specific database construction. We offer this summary
from the collective viewpoint of over two dozen researchers
across North America and Europe, working on a broad ar-
ray of funded and unfunded projects to construct independent
harmonized soil databases. With our perspective and defini-
tions for context, our specific objectives were to define com-
mon and aspirational practices in harmonized database de-
velopment and envision next steps to improve reproducibility
and transparency of harmonized database development for
soils.

2 Current database pipeline

A database pipeline is a series of steps that bring data from
an initial format to a harmonized database, with steps includ-
ing discovery, acquisition, input and harmonization, cura-
tion, gap-filling and pruning, and publication of the database
(Fig. 1). While these general steps are fairly easy to ar-
ticulate, their specific implementation varies and is often
time consuming. Discovery, access, and “wrangling” can ex-
ceed 80 % of the effort required for a new scientific discov-
ery (Lohr, 2014; Beno et al., 2017). The extension of this
pipeline to create a generalizable solution adds an additional
level of difficulty (Furche et al., 2016), but can be essential
to ensure that both the data and workflows are FAIR (Goble
et al., 2020). For brevity, we assume that datasets of inter-
est have already been identified. However, searchability of
data repositories is an active area of research (Pampel et al.,
2013; Löffler et al., 2021). We briefly review several common
approaches to data acquisition, harmonization, curation, and
publication.

2.1 Availability

Reproducible analysis is fundamental to robust science and
data analysis. Naively, a newcomer to the field of 21st cen-
tury science might be forgiven the assumption that a pub-
lished peer-reviewed journal article would, by default, also
be accompanied by a published dataset in a machine-readable
format. In the authors’ experiences, this is uncommon for a
number of reasons.

While some peer-reviewed journals and funding organiza-
tions require the data to be deposited in a trusted repository
that supports the FAIR principles (Fox et al., 2021), confirm-
ing that data meet these high standards is often overlooked
during the review process. Indeed, there is often confusion
in the field as to what exactly such “high standards” are and
who is responsible for ensuring these standards are met. To
complicate matters, key contextual data for one study may be
mostly irrelevant for a second. Anticipating these contextual
data needs is challenging and leads many data providers who
would otherwise support data sharing to become frustrated
with the existing guidance (Couture et al., 2018). This is not
to say that archiving data for the purpose of meeting funder
requirements or reproducing the associated analysis can not
be useful in and of itself; however this does not automatically
lend the data to integration in a database.

On the data aggregation side, many data aggregators are
challenged by unclear data documentation and metadata.
This ambiguity can lead to a range of interactions between
data providers and data aggregators that can vary from no
contact (e.g., left the field due to career changes, retirement,
death, or are unwilling to interact) to high contact (data
providers collaborate with data aggregators to fill out a har-
monized template). Intermediates along this gradient could
include reaching out to data providers to confirm variable
ranges, addressing possible errors, requesting specific un-
published measurements, or clarifying ambiguous descrip-
tions. Data providers have unique knowledge about their sys-
tems and can be instrumental in expanding or modifying the
scope of the resulting database analysis. Data-centered col-
laborations can lead to new communities of practice and bet-
ter science (see Future recommendations section).

In addition to these benefits there are also trade-offs with
contacting the original data providers. Acknowledgement
and level of visibility of original data contributions remain
an open question. Data providers may expect to be listed as
co-authors upon reuse of their data, in recognition of their
past effort collecting the data, despite having limited or no
engagement in the reuse project. This is often frustrating to
a data aggregator, who, in turn, is left with an ever expand-
ing list of coauthors with varying levels of involvement (see
Sect. 2.4). Differing expectations on acknowledgements can
lead to conflict and result in a lack of trust in the community
(Longo and Drazen, 2016).

Direct collaboration between data providers and data ag-
gregators is a critical relationship to nurture, but it exists in
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Figure 1. Database pipeline with pain points (indicated by “−”) and suggestions for improvement (indicated by “+”) to conform more
closely to FAIR data principles. Data sources can be diverse, including published (online repositories and scientific literature) and unpublished
sources (direct from principal investigator, PI). After these sources have been discovered, the data must be accessed and harmonized according
to a standard format or data model (internal to the project or a community-driven standard). The aggregated data must then be curated before
ultimately being published for reuse.

a broader context of good data stewardship practices. The
FAIR principles for good data practices have been thought-
fully extended via TRUST and CARE. The TRUST prin-
ciples (transparency, responsibility, user focus, sustainabil-
ity, technology) articulate key features for trustworthy digital
repositories, which are essential for preserving data access
and reuse over time (Lin et al., 2020). The CARE Principles
for Indigenous Data Governance (collective benefit, author-
ity to control, responsibility, ethics) position decisions re-
lated to data management and reuse in the context of Indige-

nous culture and knowledge systems, highlighting actions
that ultimately support community-based data sovereignty
(Carroll et al., 2020). As the community continues to dis-
cuss shared tenets of good data governance, it is becoming
increasingly clear that “just put it on a repositor” is only the
beginning.
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2.2 Data input and harmonization

Data formats typically reflect the purposes of the study; thus
examining data to address a different question or context of-
ten requires a different data format. Harmonizing one data
contribution with a broader collection entails merging or
breaking apart data tables, renaming columns, and occasion-
ally converting units of observation (see Sect. 2.3 below).
Translation of the data table structure (often called the data
model) is typically handled one of three ways: manual tem-
plate transcription, scripted template transcription, or keyed
translation. All three methods have justifications for use, and
data aggregators may choose to turn from one method to an-
other as a database grows. Regardless of which method is
used, one of the primary goals is to maintain data provenance
that allows each data point to be traced to an original study
or author.

Manual transcription is the most common method and typ-
ically entails data taken from the original source and entered
into a common template by either the data provider or aggre-
gator (see Sects. A1 and A2). Asking the data provider to fill
out these data templates is often identified as a major hurdle
to contribution, yet data aggregators may be unfamiliar with
the data provided and thus capture an incomplete or incorrect
translation of the original data into the new format without
the help of the data provider. Regardless of who fills out the
template, manual transcription of data is error prone. In some
cases this is unavoidable when the data are not available in
a machine-readable format. There are a number of software
that allow for data extraction from figures (i.e., Web Plot
Digitizer, Rohatgi, 2021, Data Thief, Tummers, 2006, and
metaDigitise, Pick et al., 2018) and tables (pdftools, Ooms,
2021, tabula, Aristarán et al., 2012–2020), which can reduce
human error in transcribing these machine-hostile formats.
Despite its flaws, manual transcription is flexible and easy
to set up, making it a frequent choice for data aggregation
studies with a tight timeline.

An alternative approach to manual transcription is scripted
transcription. Scripted template transcription involves writ-
ing a computer program, customized to the specific data be-
ing ingested, to reformat the data tables and column names to
match a target data standard or template (see Sect. A3). This
approach requires familiarity with both soil science (to un-
derstand the measurements) and programming (to write the
scripts). In practice, the authors find such a skill combination
unusual for any individual researcher, necessitating the use
of interdisciplinary teams and adding organizational com-
plexity. The codebase can also become unwieldy if written
on a case-by-case basis for each input dataset. These costs
are countered by an increase in accuracy, transparency, and
reproducibility when compared with manual transcription.

Keyed translation is the most general approach and, as a
result, requires the most extensive informatics work. Keyed
translation is related to scripted transcription but uses a dic-
tionary to define relationships between the input data for-

mat and target data format, for example mapping Column
1 to Column A or Tables A to B. Keyed translation com-
bines metadata about each dataset with a generalized conver-
sion script to generate a harmonized database (see Sect. A4).
While this approach has the most explicit need for clear se-
mantic resources, these are also essential for creating ef-
fective manual transcription templates and protocols. Such
a generalized approach can be more easily extended to ex-
pand the number of data sources. However there is currently
no broadly agreed-upon annotation vocabulary in the field
of soil science, making it necessary to annotate each dataset
individually within each project. In addition, the computa-
tional expertise needed for this approach is the highest of the
three outlined here. While we feel this holds great promise
for future studies, this is an uncommon approach due to these
challenges.

2.3 Curation

Data that are in an integrated database often still need to be
curated to ensure accuracy, convert units, address missing
data or gaps, and reduce or aggregate data to derive relevant
data products. While scripts are often used extensively at this
phase, expert interpretation and review is a critical compo-
nent. Finally, reuse of databases often requires a repeat of
this curation phase – what may be appropriate for one ques-
tion or purpose may not be appropriate for another.

Scripting is heavily utilized to augment expert review with
quality control data. These scripts both automate and doc-
ument quality control criteria; however setting those crite-
ria often requires an extensive knowledge of the system and
measurement methods. For example, the ISRaD database has
an automated quality control protocol accessible via web
interface which ensures that values are within reasonable
ranges and checks that records and critical metadata are ap-
propriately linked across database tables (Lawrence et al.,
2020). Following this initial filter, a manual individual “ex-
pert review” is conducted by a trained ISRaD volunteer (see
Sect. A2). These extensive quality control procedures re-
quire time and diverse expertise, making them unattractive
for many open-source database projects without broad recog-
nition of service by the field.

Gap-filling expands data coverage and can include a num-
ber of strategies to fill in missing data at both the layer and
horizon level as well as the profile or site level. For exam-
ple, expanding the environmental context for a particular soil
sample location, such as extracting net primary productivity
and land use classification from satellite products, is one ex-
ample of gap-filling soil-relevant observations that may not
have been collected at the time of the soil sampling. Strate-
gies for gap-filling more broadly include linear interpola-
tion, pedotransfer functions, georeferenced data extraction,
or more sophisticated machine learning algorithms. Given
the wide variability in gap-filling practices and objectives,
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these methods must be extensively documented, clearly state
use case restrictions, and estimate uncertainties.

Finally, a common step is to remove unnecessary data
from the data product via pruning. Pruning removes sam-
ples based on location or type of measurement after database
compilation to cater to specific data user needs and reduce
the size of the data product. Both pruning and gap-filling
highlight the importance of maintaining an intermediary har-
monized database as well as the final data product to both
preserve the original contextual data and reuse those data for
alternative projects.

2.4 Publication, credit, and attributions

Authorship issues are common in data aggregation projects
due to unclear expectations and conflicting conventions
across what are often large teams of collaborators. Indeed
authorship issues are common in large collaborative projects
(Cooke and Hilton, 2015). This can be mitigated with an in-
clusive co-author list to include data providers, aggregators,
and re-analysis teams but requires significant project man-
agement and organizational overhead. As always with larger
team science, we highly recommend a formal authorship pol-
icy prior to beginning database compilation including what
the role of each contributor is and who are in lead paper po-
sitions, listed as co-authors, and listed in acknowledgements.
While it can be tempting in a data aggregation project to fall
back on what is accessible and legally entitled, we strongly
feel that more inclusive projects build trust within the sci-
entific community, leading to better data interpretation and
seeding future collaborations.

Related to issues of credit and co-authorship described
above are issues with data licenses. Similar to papers, data
are often released under a specific legal license with re-
quested reuse considerations, which may hinder the inclu-
sion of otherwise “public” data in a data synthesis. There is
a tension in choosing between an adequately restrictive li-
cense, which can help ensure that a specific project and data
providers are given credit, and a permissive license, which
can increase data reuse. The Creative Commons provides
a framework to examine these considerations, but there are
many other standard and custom licenses. The most permis-
sive is CC-0 or public domain license that puts no restriction
on data use. A “by-acknowledgment” (BY) rider requires that
the original data source be acknowledged in the derivative
product in some way (sometimes this acknowledgement is
specified, sometimes not). A “non-commercial use” clause
restricts the sale of the data for commercial purposes. Fi-
nally a “share-alike” or copy-left clause says that the data
may be reused if they are released under the same license.
A “CC-BY” license is probably the closest to the traditional
academic practice of research citation, and many scientific
repositories including the Environmental Data Initiative and
PANGAEA encourage data providers to select this option.

In all cases database creation does not have to be a sin-
gle push but is ideally part of an ongoing synthesis effort,
leading to the need for database versioning. The COSORE
database is an example of such an approach (Bond-Lamberty
et al., 2020). After each major change (release) the database
receives a new DOI and is permanently archived on a repos-
itory. This allows maximal transparency, allowing data users
to reproduce an analysis from a given version and making it
easy to find the newest version of the database.

3 Future of soil data

The hope of big open data is to have any data collected at
any time anywhere in the world at the tip of your fingers (see
Sect. B). To reach this hope it is important to work with not
just large volumes of data but also diverse observations and
measurements in a way that is trusted. For soil science the
potential for long-term (multi-decadal) understanding is par-
ticularly exciting. Long temporal coverage of soil data could
lead to a better understanding of soil carbon sequestration po-
tential to mitigate climate change, or better management of
soils for crops. How do we attain these above futures, where
data reuse is equally as valued as data production?

We recommend implementing a core set of measurements
and processes to facilitate soil data reuse. The recommenda-
tions in Sect. 3.1 are aimed at researchers collecting soil data
who wish to ensure the long-term value and reusability of
their datasets. These recommendations are also relevant for
journals and peer reviewers of soil science research as a short
checklist of key details that should be reported or addressed.
Section 3.2 outlines recommendations for researchers who
wish to participate in the data harmonization process. These
recommendations encompass both technical and social con-
siderations for data harmonization efforts and focus on what
can be done right now to further soil data exchange.

3.1 What to measure and report?

Soils are inherently rooted in time and space, making high-
resolution spatial and temporal information (including sam-
pling date, latitude, longitude, geographic datum, and depth
of sample) critical for building context and data reuse. Data
providers will often ask “what should I measure?” to be rel-
evant to data aggregation efforts, and there are efforts to pro-
vide such guidance (Billings et al., 2021). We have chosen
instead to focus on critical spatiotemporal information to al-
low data to be expanded, contextualized, and annotated. The
issue is not that researchers do not know how to record this
information, but rather conflicting objectives may prevent its
recording.

Geospatial metadata may present a privacy concern, for
example when the soil measurements are tied to the eco-
nomic valuation of the land as in agricultural systems. For
data collected on privately owned land, such as on-farm re-
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search and observations, researchers may not be at liberty to
release detailed location information publicly in order to pro-
tect landowner privacy (Richardson et al., 2015). There are
efforts to bridge data sharing and data privacy. For example,
the platform under development by the International Agroin-
formatics Alliance will integrate secure data storage, granu-
lar data permissions, and options to register privately hosted
data to facilitate data discovery and sharing while protecting
privacy (Gustafson et al., 2017). Clearly this is an ongoing
discussion that will require more research and conversations
with stakeholders.

The advantages of high-precision geolocations are signifi-
cant, and regardless of the precision, the level of uncertainty
in the provided geolocation is critical and often missing in
archived datasets. Location information enables soil data to
be joined with the growing number of gridded global datasets
that can provide key contextual information for interpreta-
tion and modeling. While there are privacy concerns in some
locations, not reporting the location of a sample collection
should be the exception and not the rule, especially in pub-
licly funded research data.

In addition to location, sample depth is also critical due to
the variation in soil properties and processes with depth. Un-
fortunately over 60 % of studies fail to report measurements
of sample depth (i.e., layer defining upper and lower bounds)
associated with soil data (Yost and Hartemink, 2020). This is
particularly critical to advancing our understanding of deeper
soil properties and functions, but also relevant for the effects
of surface tillage and grazing on managed lands.

Soils are temporally dynamic, and time of collection can
provide key insights into decadal level changes in soils.
Soils change over time owing to pedogenesis, historical land
use, and, increasingly, global climate change (Tugel et al.,
2005; Richter et al., 2011; Ellis, 2011; Harden et al., 2018).
Recording the time of collection for modern datasets can pro-
duce valuable returns in future reanalysis, and depending on
the measurement the exact resolution will vary (for exam-
ple, parent material may just need the decade of collection
while soil respiration may need a minute resolution). Older
datasets, consisting of historic measurements and archived
samples, are increasingly valuable to track soil responses to
global change. Such datasets can provide a window into the
dynamics of how soil properties change and should be a high
priority for data rescue and documentation.

Long-term (decadal scale) soil records provide valuable
information for the study of global change and land manage-
ment, and therefore sites associated with older observations
should be prioritized for re-survey efforts (Hawkins et al.,
2013). Often referred to as data “rescuing”, there is a stagger-
ing potential of decadal-scale data sitting in labs across the
world, but best practices on how to use those data are lacking.
Decadal data are often associated with a particular researcher
or group and may represent an entire career of data collec-
tion that likely have been reformatted multiple times across
several generations of storage systems and lab staff and may

even be on analog storage and not digitized. Augmenting (or
extending) rescuing data from a single group is resurveying
older sites and conducting structured interviews of person-
nel to enrich metadata of prior observations (Karasti et al.,
2006). In the opinion of the authors, data rescue efforts are
an underutilized resource in the field.

By adopting these recommendations to record geoloca-
tion, depth of sample, and collection date, we can greatly
increase the value of soil data, extending the measurement
reusability for future analysis.

3.2 How to harmonize?

We touched on several common approaches to data harmo-
nization in this paper. Often driven by a single research ques-
tion or objective, data harmonization has historically been
a laborious process carried out by a single or small group
of researchers for a specific project. Based on our experi-
ences in various harmonization projects, we propose a more
community-centered approach moving forward, founded on
the principles of open and transparent science. Outputs from
these groups should include semantic tools like ontologies
and shared vocabulary lists with clear and transparent gover-
nance, as well as a new community-centered approach to the
practice of data harmonization and the resulting databases.

The uses of soil databases for research context are var-
ied (for example, Earth system model benchmarking, Collier
et al., 2018), but there are other private economic impacts
of having soil data available. Soil health metrics in public
databases could impact land fertility evaluation, and there is
increasing interest in soil carbon data by carbon markets for
offsetting CO2 emissions. As mentioned in Sect. 3.1, spe-
cific information on nutrient and water retention of a soil can
make it more or less valuable, leading to landowner reluc-
tance to release data. More recently an increasing interest
in generating carbon offsets by increasing soil carbon se-
questration has led to a proliferation of new venture corpo-
rations that either generate new or use available soil data in
order to define land management practices (e.g., IndigoAg,
CIBO Technologies, Seqana, Regrow, Nori, LoamBio). In-
dustry companies generally treat data that they collect or pro-
cess as part of their intellectual property, which is kept pri-
vate. While there is clearly scientific value in these data, it
is unclear how researchers, landholders, and private compa-
nies will negotiate the use and integration of these data into
research output. Nonetheless, privately held data would also
benefit from and contribute to connection with community
developed tools.

3.2.1 Community tools

There is an understandable tendency by many scientists to-
wards data model standards (for example Rüegg et al., 2014,
and as proposed for soil respiration data, Bond-Lamberty
et al., 2021). If all soil data adhered to a common template,
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or data model, with uniform tables and column names, then
it would be trivial to append the data from one study with
the data from a second. Unfortunately, due to the diversity of
soil types and methodologies, as well as ever evolving mea-
surement technologies, we feel that this is impractical for soil
research data, although several valiant efforts are underway
to do this (Nave et al., 2016; Lawrence et al., 2020). In prac-
tice, researchers will continue to develop their own data ta-
bles and internal conventions that make sense for their exper-
imental structure, location, and measurement type. However,
semantic tools and standards as well as software develop-
ment practices like versioning could improve interoperability
(Onerhime, 2021; Crystal-Ornelas et al., 2021).

Annotating datasets with a common vocabulary forms
the theoretical backbone of all data harmonization work.
Whether this is a manual copy–paste from a source data ta-
ble to a common data template or creating a thesaurus that
cross-references given data columns to some internal stan-
dard name, both processes rely on a vocabulary. This digital
vocabulary has roots in classical soil glossaries and lab man-
uals that have been printed as dictionary-style references.
This vocabulary could be a valuable community resource but
would require ongoing engagement with the research com-
munity to remain accessible, relevant, and up to date, in ad-
dition to addressing legacy copyright issues. Further extend-
ing this vocabulary into an ontology that captures the rela-
tionship between terms in addition to their definitions could
drive the next generation of data-driven machine learning.
Community-developed ontologies and vocabulary lists like
ENVO (Buttigieg et al., 2016), CSDMS (CSDMS, 2019),
GLOSIS (Palma et al., 2020), and CF (Hassell et al., 2017)
could provide reusable resources that are currently missing
and underutilized in the soil community. The soil research
community as a whole needs to engage with these broader re-
sources to ensure the informatics reflects new developments
in the understanding of soil science and measurements being
made.

3.2.2 Community practice

Before data can talk, the data community needs to talk. Based
on the experience of the authors, developing, adopting, and
maintaining semantic resources is beyond the scope of any
one lab or organization and requires a diverse community.
In the development phase, a diverse community with a range
of expertise, stakeholders, and career stages can ensure that
the broadest possible needs are being addressed. Adoption is
more likely if the resource addresses the needs of the com-
munity and that community has ownership over the resource.
Finally, maintaining semantic resources requires ongoing up-
dates and revisions as methods shift. All of this requires a
new type of community, one centered on data, and tools to
support the interoperability of those data.

Successful data-centered communities are open, transpar-
ent, diverse, and rewarding (Cooke and Hilton, 2015). They

are open in the sense that anyone can join or contribute
and are empowered through educational activities to par-
ticipate. Transparency ensures it is easy to contribute and
to understand decision-making processes. Diverse commu-
nities can draw on a wide range of skill sets, from experience
in soil processes to knowledge representation. Finally, they
are also rewarding, furthering members’ careers through cre-
ation of tangible products (for example citations or grant dol-
lars) and opportunities for scientific leadership and service.
While there are several approaches to achieve this, one pos-
sible workflow for the establishment of a new harmonized
database might look something like the following:

1. open application period and selection of team,

2. purpose setting and establishing a common vocabulary,

3. curation and use of data product.

A mix of backgrounds in software development, knowl-
edge engineering (the design of ontologies and knowl-
edge graphs), classical soil pedology, and specific measure-
ment methodology (e.g., microbial characterizations, physi-
cal chemistry, and vadose zone hydrology) is required for a
data harmonization project. It is often challenging to recruit
such an interdisciplinary team that requires such a high level
of diversity beyond traditional domain boundaries. A well-
advertised open application period is a critical first step and
may be supplemented with targeted solicitations. Teams rep-
resenting a range of perspectives, backgrounds, and career
stages are better able to envision a wider range of end uses
(and users) of soil data. These efforts are likely to result in
better outcomes – improving research products and advanc-
ing the careers of people previously excluded from existing
synthesis efforts, power structures, or established communi-
ties.

One of the first challenges with an interdisciplinary team
is establishing agreement on goals and methods. This re-
quires developing a shared understanding and vocabulary
(e.g., through educational activities on computational tools
or soil surveys and measurements). In an academic commu-
nity, short-term shared purpose is most easily motivated by a
synthesis paper or research question, but longer-term motiva-
tors are unclear. Data may provide a clear shared motivation,
but its uses and governance processes need to be clearly iden-
tified and revisited regularly.

Sustainable creation and curation of the harmonized
database is essential to create relevant data products to serve
a database’s specific purpose and enable future reuse to
address a variety of questions. Accessing, annotating, and
merging the datasets is a well-established technical process
once the community tools and community of practice are in
place. Curation of databases could be patterned after the pa-
per review process, where domain researchers review pro-
posed database additions to ensure the accuracy of new con-
tributions. This review process should keep the diverse needs
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and practices of the soil community in mind, including soil
surveyors, field and lab experimentalists, and land managers.
In the end, the synthesis of existing data is not the goal: it is
their application to scientific problems. In that regard, suc-
cessful product development from a database can encourage
growth and adoption of the data resource by others.

4 Conclusions

Soils are the foundation for our food and fiber system as well
as a significant component of the global carbon cycle. As
such, information and measurements of the soil system, from
hydrological conductivity to soil carbon stocks to changes in
nutrient content, are a key public good for a varied group of
users. However, this valuable scientific resource is currently
under-utilized due to many of the issues outlined above. We
suggest data use and reuse could be facilitated by addressing
issues along the database construction pipeline.

We outlined database creation as a common set of steps:
availability, input, harmonization, curation, and publication.
While this pipeline can look different depending on the skill
sets, timeline, and funding structure of the researchers in-
volved, we summarized common pain points throughout this
process, which can reduce the accuracy and usability of a
database. Data collection, synthesis, and use are inherently
human endeavors, and as such, breaks in this pipeline are of-
ten driven by lack of community awareness and practices.

We put forth recommendations ranging from measurement
prioritization to data harmonization decisions that can help
move forward community practices around soil data. We rec-
ommend that contextual information like geolocation, depth
of sample, observation time, and management history all be
reported with soil measurements. Soil data harmonization re-
quires the development of new semantic tools like vocabu-
lary lists and ontologies that are co-produced by data and
soil scientists. Building the capacity to create and maintain
these tools requires communities of practice including open
application periods to recruit diverse participants, established
goals, and clear outcomes. The creation of such communities
is not an easy task but a needed one.

Ultimately, soil data are an invaluable resource generated
and used by a diversity of groups. Given this value, we hope
that the work of advancing soil information systems will in-
creasingly be recognized and rewarded as a critical compo-
nent of the research process. To achieve this, we need not
only new tools and practices but also shifts in the broader
incentive structure for conducting this kind of work. Our re-
view provides a path forward to enhance community practice
around soil data so that we can begin to tackle the vast array
of research and management problems, and their solutions,
that lay beneath our feet.

Appendix A: Current soil projects

Below are a series of snapshots compiled to represent the
range of approaches groups currently take to aggregating
soil databases. These four snapshots include a manually
compiled database of field-warming experiments (Sect. A1:
Crowther et al., 2016), a database using manual transcription
combined with scripted curating of soil radiocarbon mea-
surements (Sect. A2 – Lawrence et al., 2020), a manually
scripted combination of coastal soils (Sect. A3 – Holmquist,
2021), and a keyed translation database of long-term obser-
vation (Sect. A4 – Wieder et al., 2021b). Finally we also in-
clude a broader list of soil data collections to illustrate more
generally how the field approaches these projects (Sect. A5).

A1 Field-warmed soils

The template-driven approach to data harmonization is ex-
emplified by Crowther et al. (2016). In this study, individual
researchers who collected data of interest (in this case soil
field-warming manipulations) were contacted directly and in-
vited to collaborate in a meta-analysis. A post-doc was tasked
with creating a data template and working with those col-
laborators to capture a representation of their study. These
data were then appended into an integrated set of data ta-
bles and analyzed. By working with researchers directly, this
approach captured both published and unpublished data and
ensured a nuanced interpretation of the study results. This
careful one-on-one approach combined with co-authorship
on a high-profile journal ensured that researchers were com-
fortable sharing data that they might have otherwise withheld
from a joint publication.

One challenge with this approach is patchy secondary
data. Secondary data like climate and soil physical chemical
characteristics may not be critical to a small study at a single
site but become fundamental to a larger cross-site analysis.
Crowther et al. (2016) addressed this by extracting site-level
environmental covariates from gridded geospatial files gen-
erated from global modeled predictions covering an array of
climate (e.g., WorldClim, Fick and Hijmans, 2017) and soil
physiochemical characteristics (e.g., SoilGrids, Hengl et al.,
2017). Although these global predictions can be character-
ized by considerable uncertainty – especially at the local
scale – these global products at least ensure a full set of stan-
dardized meta-data from every single location.

A2 ISRaD

The International Soil Radiocarbon Database (ISRaD) con-
sists of an open-source database of soil and soil-related ra-
diocarbon data. Additionally, ISRaD provides a continually
developing library of tools for data access and manipula-
tion based in R (Lawrence et al., 2020). Radiocarbon data
production is an expensive and time-consuming process but
provides unique information on longer-timescale in situ pro-
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cesses. In addition, a global pulse in atmospheric radiocarbon
content in the 1960s provides unique analytical power for
data collected in the intervening decades to constrain mod-
els.

Initial funding was provided by the USGS Powell Cen-
ter and the USDA NIFA FACT program. Currently, the Max
Planck Institute for Biogeochemistry provides both ongoing
funding and staffing. Since 2015, over 300 studies have been
compiled, though the data collection process is active and
ongoing, and user-submitted data are also welcomed.

The project utilizes a standardized Excel template (based
on templates designed in the International Soil Carbon Net-
work, Nave et al., 2016) for data ingestion which each con-
tributor fills out and submits to a designated ISRaD coordi-
nator. The core unit of a data entry is the “profile”, which
is a unique spatial and temporal identifier. All data must be
matched to a profile, which is in turn matched to a “site”
and the uppermost level of “entry”, which identifies the pub-
lication from which the data originate. Such hierarchy is
best preserved through vetting with both an automated and
human-led QA/QC process. Therefore, prior to ingestion,
data undergo both automated quality check and expert re-
view for metadata consistency and data quality. All database
and data handling tools are built in the open-access R com-
putational language, and an official ISRaD code library is
available through the R library repository, CRAN. All code
and data are available in an open Git repository (Beem-Miller
et al., 2021). New functions and explanatory vignettes can
be submitted by users for inclusion in the R package. The
project website contains information, links, guides, and up-
dates on the project (ISRaD, 2018–2021).

A3 Coastal Carbon Research Coordination Network

The Coastal Carbon Research Coordination Network
(CCRCN) was formed to accelerate the pace of discovery
in coastal wetland carbon science by providing the commu-
nity with access to data, analysis tools, and synthesis oppor-
tunities. Funded by a National Science Foundation Research
Coordination Network, the project’s primary staff includes
a funded research scientist as well as several part-time data
technicians. Besides organizing topical working groups and
community events, one of the primary engagements of the
CCRCN is the development and maintenance of a database
of carbon stock and sequestration in coastal marshes, man-
groves, swamps, scrub/shrub, and seagrass.

Both the database and its software are hosted on GitHub
(Holmquist et al., 2018–2021), and its structure and nam-
ing conventions (Holmquist, 2018) were based upon a se-
ries of iterative conversations with a range of experts. In-
tegration of new datasets into the database is via scripted
transcription, by which curation to CCRCN standards is per-
formed in a unique “hook” script tailored for each dataset.
A suite of helper tools aids unit conversion, quality con-
trol, and spatiotemporal processing specific to soil carbon

data. Datasets are joined together to construct the multi-level
database, partitioned primarily by scale of observation (depth
series, core/plot, site, and method levels). An automatically
generated bibliography tracks primary citations of data con-
tributors alongside the secondary citation of the database it-
self. A post-synthesis QA/QC script identifies possible du-
plicate plot-level entries between datasets. Internally facing
visuals and reports are generated via Markdown implemen-
tation to track database growth as well as geographic/bio-
physical gaps in the database. Finally, the online version of
the database feeds into the back end of its primary public in-
terface, the Coastal Carbon Atlas (Holmquist, 2021). This R
Shiny App allows anyone to explore global representation,
as well as query according to a variety of environmental and
methodological parameters, and then download the data and
(importantly) the corresponding citations.

Parallel to synthesizing the database has been a concerted
effort to generate data releases, each with its own DOI, as
a service to data submitters as well as the coastal carbon
community. This has included dedicated staff time towards
outreach, formatting of datasets, generating metadata (based
upon the Ecological Metadata Language standards) and as-
signing DOIs to datasets, which has so far resulted in the pub-
lic release of 22 datasets in the Smithsonian Figshare reposi-
tory.

A4 SoDaH

The Soils Data Harmonization (SoDaH) and synthesis
project features a tool suite for harmonizing soil organic mat-
ter data from disparate sources into a common data model
and a database of harmonized soil organic matter data and
related variables that, as of this writing, includes data from
over 70 unique studies (Wieder et al., 2021b). The product of
a Long-Term Ecological Research (LTER) synthesis work-
ing group (LTER Soil Orgnaic matter Working Group, 2019),
the project brought together soil scientists with diverse back-
grounds and affiliations with scientific research networks to
refine and evaluate theories of soil organic matter dynamics
and to produce a soil organic matter dataset that spans a wide
range of environmental and experimental conditions.

SoDaH employs a keyed-translation approach using meta-
data about the data combined with conversion scripts to
translate contributed data tables into the common data model.
Metadata are organized at multiple levels, including around
the study (e.g., study location, data provider) and data vari-
ables, which are subdivided into profile, layer, and fraction
categories and based off of templates designed in the Inter-
national Soil Carbon Network (Nave et al., 2016). Additional
metadata fields facilitate the identification of experiment de-
tails and study design, allowing users to, for example, query
data associated only with specific manipulations or control
conditions. The harmonization script (LTER Soil Orgnaic
matter Working Group, 2018) maps user-provided metadata
and data, resulting in new flat file(s) in which the variable
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names and units, if relevant, are standardized in the output
along with appropriate quality control. All output conforms
to the specifications of the SoDaH data model, thereby en-
abling the aggregation of output data from disparate studies
into a single data file.

A5 Data collection list

This appendix is meant to be representative, not exhaustive.

1. SOils DAta Harmonization (SoDaH) & Synthesis
(Wieder et al., 2021b). Data are available at https:
//lter.github.io/som-website/database.html (last access:
27 June 2022, Wieder et al., 2021a). See Sect. A4.

– Personnel – five people over 4 years.

– Description – layer-level soil data include time se-
ries and experimental data.

– Pipeline – aggregation of data from broad-scale
research networks. After level-0 data were con-
tributed (both raw data and metadata template), So-
DaH supplied a script. First harmonization of raw
data into a common format takes place, and then
they are aggregated into a flat csv file.

– Size – 303.6 MB.

2. Soil-warming meta-analysis (Crowther et al., 2016).
Data are available on request. See Sect. A1.

– Personnel – two data aggregators with multitude of
contributors and coauthors over 4 years.

– Description – soil C in ambient and warmed soils.
Field soil-warming experiments.

– Pipeline – used a template approach. The data tem-
plate only asked for a brief description of the site
location (latitude, longitude, etc.), the measurement
they are looking for in their project, and how the
author collected that measurement. This very re-
stricted data model is then much easier (and more
satisfying) to collaborate with data products to fill
out.

– Size – 114 KB.

3. Field-experiment meta-analysis – field treatments are
from van Gestel et al., 2018. Data are available in sup-
plementary information, and raw data are available on
request.

– Personnel – two over 3 years.

– Description – soil C in ambient and warmed soils.
Field treatments and soil warming.

– Pipeline – Excel was used as the repository for raw
data (no unit conversion, no gap-filling, etc.), with
different sheets comprised of different aspects of

the C cycle (soil C, plant C, etc.) and one sheet
including meta-data. All computations, harmoniza-
tion, QA/QC, etc. are done in R.

– Size – 1 MB.

4. World Soil Information Service (WoSIS) (Batjes et al.,
2020). Data are available at https://www.isric.org/
explore/wosis (last access: 27 June 2022, Batjes and
Calisto, 2021).

– Personnel – institutional, 20 years and ongoing.

– Description – focuses on bulk soil characteristics.
To serve the user with a selection of standardized
and harmonized soil profile data. These quality-
assessed data may be used to underpin digital soil
mapping and a range of global assessments.

– Pipeline – submitted data are first preserved in the
ISRIC WDC-Soils Data Repository. They are then
quality-assessed, standardized, and imported into
the WoSIS data model itself. They are harmonized
where possible using consistent procedures.

– Size – varies based on portion of database.

5. SoilHealthDB (Jian et al., 2020a). Data are available at
https://github.com/jinshijian/SoilHealthDB (last access:
27 June 2022, Jian et al., 2020b).

– Personnel – three people, initial publication 2020
with ongoing data contributions.

– Description – 42 soil health indicators and 45 back-
ground indicators. The primary goal is to enable
the research community to perform comprehensive
analyses of soil health changes related to cropland
conservation management.

– Pipeline – data extracted to Excel template, basic
scripted QA/QC scripts, no unit conversion or har-
monization (leaves this to future users), and the
database and code area available on GitHub.

– Size – 64 MB including metadata and documenta-
tion.

6. International Soil Carbon Network 3 (ISCN3). Data are
available at https://iscn.fluxdata.org/data/ (last access:
27 June 2022, ISC, 2020).

– Personnel – five leads over 4 years to first publica-
tion and ongoing.

– Description – soil C stocks and associated site
and bulk soil characteristics. To provide a science-
based network that facilitates data sharing, assem-
bles databases, identifies gaps in data coverage, and
enables spatially explicit assessments of soil carbon
in context of landscape, climate, land use, and bi-
otic variables.
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– Pipeline – SQL-based ingest of Excel templates or
access tables, hybrid scripted-manual QA/QC, and
rule-based computation of soil C stocks.

– Size – 300 MB.

7. Soil Incubation Database (SIDb) (Schädel et al., 2020).
Data are available at https://soilbgc-datashare.github.io/
sidb/ (last access: 27 June 2022, Sierra, 2018).

– Personnel – eight people over 4 years to first publi-
cation and ongoing.

– Description – soil incubated CO2 and CO2 isotope
data along with ancillary variables. Time series data
of soil incubations and soil respiration.

– Pipeline – templates for data in csv format and
metadata in ymal format. The data are processed
by an R package that checks for consistency be-
tween data and metadata. The R package also pro-
vides functions to access and manipulate data.

– Size – 1 MB.

8. Coastal Carbon Research Coordination Net-
work (CC-RCN). Data are available at https:
//serc.si.edu/coastalcarbon/about (last access:
27 June 2022,Holmquist, 2018). See Sect. A3.

– Personnel – three PIs, five steering group members,
two staff over 5 years.

– Description – tidal wetland soil C stocks and an-
cillary information. Provide access to data, analysis
tools, and synthesis products to accelerate the pace
of discovery in coastal wetland C science.

– Pipeline – once the data are attained, the techni-
cian codes out the method metadata and then does
an initial data inspection by going through one or
two drafts of a data release and finally uploads it
to Figshare. Custom R functions and hook scripts
are used for preparing the actual data releases. They
do things like take quick looks at the range of
the datasets to make sure that everything is how it
should be. When preparing data releases, they pre-
pare EML-style metadata.

– Size – 14.3 MB.

9. International Soil Radiocarbon Database (ISRaD)
(Lawrence et al., 2020). Data are available at https:
//soilradiocarbon.org/ (last access: 27 June 2022, Beem-
Miller et al., 2021). See Sect. A2.

– Personnel – 30+ people, 6 years to first publication
and ongoing.

– Description – soil physicochemical data, isotopic
data, fractionation data, and incubation data. Ag-
gregation and harmonization of radiocarbon and
fraction data from previously published work.

– Pipeline – standardized Excel template, scripted
QA/QC, and GitHub repository.

– Size – 31 MB.

10. SoilTemp (Lembrechts et al., 2020). Data are avail-
able at https://soiltemp.weebly.com/ (last access:
27 June 2022, Soi, 2020).

– Personnel – core team of 5–10 developers and 100 s
of data contributors, 5 years and ongoing.

– Description – in situ soil temperature and other
microclimate time series and soil surface vegeta-
tion characteristics. Building a global database of
soil and near-surface temperatures and associated
species occurrence data for use in ecological mod-
eling.

– Pipeline – provides a CSV-format template to data
users and tools in development to facilitate submis-
sion via an R package. Some curation and harmo-
nization are performed via a scripted approach, al-
though the workflow is in active development.

– Size – 30 GB.

Appendix B: Future dream

It is often difficult to envision how inter-connected soil data
could impact science. Here we have taken the liberty of a bit
of creative writing to envision what the future of soil science
could be in a data-connected world.

B1 A new data-savvy world

In the late 21st century, soil data are effortlessly collected and
collated. There are still divisions between groups on what ex-
actly the correct way to fill in certain missing data is, but in
general most instruments come with their own connection
interfaces that ensure interoperability between sensor data.
It took the field scientists a little longer to get behind stan-
dardized digital records, but most researchers now collabo-
rate with their data libraries and archivists to adhere to estab-
lished data standards.

Occasionally a researcher will design a completely novel
method or experimental treatment that will require addi-
tions or modifications to soil semantic tools. These cases are
highly sought after by informaticians, and extending an ex-
isting international standard has been known to launch the
careers of young researchers. More often, researchers will
review new data archives to vet their annotations and report
this as they do in paper reviews. Researchers of course com-
plain about this additional workload but recognize that if they
are going to generate data, then there is an obligation to re-
view their colleagues’ data. Once or twice in their career a
researcher will serve as a domain expert on a relevant on-
tology board, providing updates and revisions to these key
international resources.
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Digital data archives are now entirely annotated and the
idea of putting data online without reference to an inter-
national ontology is considered irresponsible. Data are an-
notated with one or more ontologies from different sub-
domains, and there are a range of AI/ML tools that can lever-
age these annotations to create an integrated database. Model
development and meta-analysis studies now spend the bulk
of their time honing hypotheses instead of cleaning data.

The great data rescue projects of decades past are sadly
mostly done now. An entire generation of researchers cut
their teeth combing through old paper archives and fighting
with optical recognition characters. New researchers lament
that this highly fruitful line of “new” research data is now
mostly spent. Designing a new sensor processing pipeline
just is not as romantic as speculating on the nature of that
old coffee-stained field journal.

Contrary to popular belief, the “traditional” skills of soil
observation (hand texturing soils, matching horizon colors)
are more in demand than ever. The ongoing climate crisis has
now defined several generations of researchers and reignited
interest in soils beyond an agricultural context. Knowing
your soil and how you impact that soil is as important as
water quality, and soil science is a fundamental curriculum
element for not only foresters and conservation majors but
also urban planners and backyard gardeners. New passionate
generations of young students have grown up on soil-judging
competitions, and soil reports are common for any land or
home purchase.

B2 The era of big data rescue

In the middle of the 21st century, we are in the heyday of the
“big data rescue” of the 21st century. Driven by the need to
understand the impact of legacy management and new data-
scrubbing technologies, researchers have dived deep into the
filing cabinets and paper archives of the past century. In ad-
dition to the traditional literature review, new graduate stu-
dents now do targeted data rescue chapters as part of their
dissertation. These data rescue projects have also drawn new
researchers from the library, data, and other sciences into
soils and are also used as a common undergraduate research
project.

Corporations and governments increasingly recognize the
value of legacy datasets and actively participate in dissem-
inating data to the public, though redaction of sensitive in-
formation is necessary. While the impact of “good–bad” data
metrics on land valuation are still a concern, double-blind
methods are being developed to increase the security of data
sharing and automate the obfuscation of sensitive data.

Ontologies and other semantic resources are increasingly
being adapted and extended by domain scientists. Unfortu-
nately, there are several competing standards reflecting na-
tional, domain, and general political divisions in the research
community. However there are several clearly identified ma-
ture semantic resources that most disciplines agree are pretty

good. Data management plans from funders now require
identifying semantic resources in addition to the final data
archive.

B3 A post-pandemic, better-connected world

Over the next few years, the soils community has fully rec-
ognized that we have a data problem, which is actually a
community problem. Collecting and publishing science in
isolated labs has become increasingly frustrating to new re-
searchers used to instantaneous web results. The COVID-19
pandemic forced a rapid shift in how science is done, mov-
ing what might have been a few-day workshop into a longer
slow-burn virtual collaboration over months. This led to a
new kind of decentralized project management where most
projects are now interconnected to similar researchers in reg-
ular virtual seminars and working groups.

This increase in researcher interactions has led to an in-
crease in data interactions. As researchers interacted more
online, there was a correlating increase in comparing data
from their study with their colleagues’ results. This led to
an informal common vocabulary and data methodologies
that increasingly showed up on newly archived data. Some
graduate students are starting to dive into data rescue op-
erations and further expand these vocabularies to include
older methodologies. Combining automated optical charac-
ter recognition of scanned documents with manual correc-
tions, these older data are providing valuable insights into
climate change.
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