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Abstract
Rainfed crop production predominates in West Africa. Rice is an important staple food, especially in Senegal. The scope for
increase in rice production under irrigated conditions is uncertain. Rainfed rice is therefore a key component for regional food
security impelling agronomists to assess climate change impact on rainfed rice yield and to design rainfed rice ideotypes suited to
future climate scenarios. The DSSATCSM-CERES-Rice model was thus calibrated and evaluated on 19 agronomic experiments
conducted in 2012, 2013, and 2014, in 6 locations, with 21 cultivars and two fertilization levels (20 and 80 kg N ha−1).
Simulations were then carried out with the crop model forced with the downscaled projections of seven climate models, with
and without considering the impact of an increase in atmospheric [CO2], using an ensemble of global circulation models and two
Representative Concentration Pathways (RCP2.6 and RCP8.5). Simulated rice yield was divided by two over the century with
RCP8.5 and stagnated with RCP2.6. Elevated [CO2] significantly increased yields, but this effect could not offset the yield
decline due to elevated temperatures. Cultivars with longer vegetative phases and greater temperature tolerance were better
adapted to climate change than current cultivars. Using these new cultivars with the recommended fertilization rate (80 kgN ha−1)
could offset the yield decline due to climate change. For the first time, we bring together a study based on a process-based crop
model handling crop response to elevated [CO2], a large set of field experiments and up-to-date climate projections (i) to provide
useful insights into plausible impacts of climate change on rainfed rice in Senegal and (ii) to identify cultivar characteristics
relevant for adaptation to future possible climates. Our findings will help set priorities for breeding resilient cultivar in the region.
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1 Introduction

Rice is the world’s most important food crop, estimated as the
staple food for half of humanity. The demand for rice is ex-
pected to increase with population growth. West African
countries like Senegal, Guinea-Bissau, and Guinea are highly
dependent on rice for food calories. According to the
International Food Policy Research Institute (Glatzel 2018),
the average Senegalese consumes about 85 kg of rice each
year. The government has embarked on political efforts to
achieve self-sufficiency for rice, with public investments,
price protection, and extension services reinforcement. The
national long-term economic development strategy targets
rice self-sufficiency for the country by 2035. The efforts focus
on both irrigated and rainfed rice. After a marked decline
during the dry decades at the end of the previous century,
rainfed rice cultivation has expanded rapidly in Senegal, es-
pecially in Kaffrine, Senegal oriental, and Casamance regions.
In the above-mentioned regions, the rainy season covers only
5 months, from June to October. Despite the strong political
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commitment to improve rice production, inadequate water,
soil, and crop management still compromises paddy yield
productivity. Rice production is also threatened by variability
in annual rainfall, fluctuations in the onset of growing season,
and increase in aridity (Koudahe et al. 2017). Assessments of
the changes in local climatic variables and their impact on rice
yield are currently scarce.

Water availability for crops in Africa varies strongly over
space and time. It is a major constraint for the continent’s
economic development, which may become even stronger
with climate warming. In most regions of sub-Saharan
Africa, climate change will likely increase water stress with
detrimental effects on crop yield (Roudier et al. 2011).
Ensuring sustainable agriculture in semi-arid to sub-humid
Africa requires adaptation to climatic variability and change.

Climate change, as simulated by Global Climate Models
(GCM), includes a gradual increase in temperature, modifica-
tion of rainfall patterns and amounts, and increase in the fre-
quency of extreme events (Barry et al. 2018). The impacts of
these perturbations on rice cropping systems in Asia have
been extensively investigated (Li et al. 2015; Kontgis et al.
2019). Impact studies on rainfed rice in Sudanian regions of
Africa are much scarcer, despite the fact that rice is one of the
major staple food. Global assessments, including the whole
Africa, have been performed, but they are not based on model
calibration with accurate field data (Oort and Zwart 2017). In
West Africa, an increase in the frequency and the magnitude
of extreme events (heavy rains, heat waves) is expected as
well as a decline and a slight increase in annual rainfall in
the west and east of the region, respectively (Diedhiou et al.
2018). Rainfed crop production dominates in West Africa,
making the region a climate change hotspot. To our knowl-
edge, among the very few studies focusing on the impact of
climate change on rice yield inWest Africa (Zhang et al. 2019;
Traore et al. 2020), none used a process-based crop model,
calibrated and evaluated for a set of cultivars based on field
measurements. These studies based on statistical modelling
overlooked the impact of elevated [CO2] on crop growth.

Breeding cultivars with adequate characteristics can offset
yield losses by limiting rice sterility with high temperatures
(Jagadish et al. 2015). Adequate characteristics identified with
field and glasshouse experiments include increased transpira-
tion cooling, early morning flowering, shifts in phenology to
avoid stresses, and increased spikelet numbers and sink
strength (Sheehy et al. 2001). Experiments on specific physi-
ological capacities and omics investigations of a large number
of traits and their interactions require resources and take time.
Plant traits expression and its impact on yield also vary with
agronomic practices. Increasing the amount of applied mineral
fertilizer can improve crop yield. However, rainfed cropping
systems prevail in Senegal and drought can severely under-
mine the benefits related to mineral fertilizer application.
Unfavorable value/cost ratio currently prevent adoption of

increased rates of mineral fertilizer application (Jayne et al.
2018). Crop simulation models can integrate the knowledge
on physiological processes to help explain yield limitations in
varying environments and agrosystems. CSM-CERES-Rice
has been used in India and China for investigating climate
change impacts on rice production (Yao et al. 2007). With
calibrated cultivar parameters used as proxy for physiological
traits, the model can help investigate genotype*environment
interactions and design rice ideotypes for adaptation to climate
change as it was done for other crops and models (Rötter et al.
2015).

In this study, we examined the potential impact of climate
change on rainfed rice yield in Senegal. We based our assess-
ment on the calibration of a crop model on a large field trials
dataset with 21 different cultivars and multiple environments.
Simulations were carried-out with a crop model that took as
daily input the downscaled projections of seven climate
models to take into account the uncertainties in climate pro-
jections. We also simulated possible adaptations strategies
using ideotypes with adaptive traits.

2 Material and methods

In order to provide useful predictions, a model has to be cal-
ibrated locally. To search for ideotypes, this has to be done on
a set of contrasted cultivars, of which we expect that the pa-
rameters genotypic variability will reflect the cultivated
diversity.

2.1 Environments

Nineteen field trials were carried out from 2012 to 2014 in
the Sudanian and Sudano-Sahelian zones of Senegal to test
the adaptation of rice cropping systems to drought condi-
tions. Six sites (see fig. 1 in supplementary materials) were
considered: Darou (13° 57′36″ N/15° 50′24″ W), Sinthiou
Maleme (13° 49′48″ N/13° 54′36″ W), Ndama (13° 49′12″
N/15° 4 2′01″ W), Diéri (13° 37′12″ N/15° 34′12″ W),
Kolda (12° 51′36″ N/14° 57′00″ W), and Sefa (12°49′48″
N/15° 35′24″ W). Current average rainfall from June to
October is 500–600 mm, 600–700 mm, 600–700 mm,
700–800 mm, 900–1000 mm, and 1000–1100 mm in the
different sites, respectively. The experimental sites were
chosen to cover the range of pedoclimatic conditions found
in South and East Senegal (Fig. 1), where rainfed rice is one
of the main crops. Diéri and Ndama hosted farmers field
experiments, while the other sites hosted on-station con-
trolled experiments.

The experimental design at all sites was fully randomized
blocks with three to four replicated plots, two fertilization
rates, and 4 to 21 cultivars tested in each experiment. Plot size
was 2.5 mwide × 3m long = 7.5 m2, with 10 rows and 15 hills
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per row. The dataset was divided into a calibration and a
validation dataset (Table 1). Each cultivar was grown under
two fertilization rates, namely F1=80 kg N ha−1 and F2=20 kg
N ha−1, either in controlled conditions or on farmers’ fields.
Observation on on-station plots (averaged across replicates)
with F1=80 kg N ha−1 (assumed to be stress-free conditions)
were used for model calibration. On-station plots with
F2=20 kg N ha−1 and plots in farmers’ field experiments were
used for model validation (Table 1).

2.2 Weather data

Daily rainfall data was collected on experimental sites
with rain gauges. Daily temperatures were collected on
sites with automatic sensors Tinytag Plus 2 (Tinytag)
placed under shelter (in Sefa, Darou, Kolda) or at the
closest official meteorological station (Nioro station
13°45′00″N/15°48′00″ W) for Dieri Kao and Ndama
sites. Relative humidity and global radiation were col-
lected at the closest station of the public network of
meteorological stations, at Kolda (12° 53′00″ N/14°
57′00″ W) for Kolda and Sefa and at Nioro for Dieri
Kao, Ndama, and Darou. All Sinthiou data were collect-
ed on site through an automatic agrometeorological sta-
tion CIMEL ENERCO 405 (© Cimel Electronique
S.A.S France). The data was collected from 2012 to
2014.

2.3 Cultivars

The 21 cultivars used in the experiment were either hybrids,
japonica, or indica type and came from various breeding cen-
ters (Table 2).

2.4 Soil sampling and analysis

Agricultural soils in Senegal are well known, and many of
their chemical and physical properties in deeper layers can
be relatively well derived from key properties of the top layers
using reference soil profiles. Soil analyses were conducted on
four soil samples per experiment, done at 3 depths (0–10, 10–
20, and 20–30 cm) and averaged. Soil depth in the region is
also known to be either over 5m, i.e., much greater than
rooting depth of most annual crops, or very shallow when
soils are on lateritic deposits. In each experimental location,
auger prospection down to 1 m deep was carried out to ensure
that soils belong to the former case. Physical and chemical
properties were analyzed at ISRA laboratory at Bambey. All
soils were sandy, i.e., none of them hadmore than 20% clay +
silt (Table 1). Carbon, organic matter, and organic nitrogen
contents were low, and pH in water ranged from 5.3 to 7.2.

2.5 Plant observations

Rice anthesis and maturity were observed on the main stem of
six plants per plots. Anthesis and maturity dates corresponded
to the date when three plants out of the six had reached the
stage. Biomass at anthesis was measured on 10 hills randomly
taken on two side lines.

Grain weight, plant biomass, number of spikelets, tillers,
and grains were measured at harvest on a central subplot (6
lines × 7 hills). All plants samples were dried at 65 ° during
72 h before weighing.

2.6 Simulation of rice growth

The DSSAT 4.7.1.0 cropping system model (DSSAT-CSM)
(Boote et al. 2003) was used. DSSAT-CSM simulates soil
nitrogen, water, and carbon dynamics. CSM-CERES-Rice

Fig. 1 Rainfed rice cultivar experiments in Senegal 2012. Left: An agronomical trial set in ISRA Sinthiou Malème research station (on sandy soil).
Right: A rainfed farmer field near Kolda. (photograph by B. Muller).
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model is a process-based model that is embedded within
DSSAT. It has been used to simulate rice growth and yield
for decades (Buddhaboon et al. 2018). The climate driving
variables have a daily time step: maximum and minimum air
temperatures, solar radiation and precipitation, relative humid-
ity, and wind speed when available. In DSSAT, potential
evapotranspiration can be computed either using the
Penman-Monteith equation following the method of Allen
et al. (Allen et al. 1998) or using the Priestley and Taylor
approach (Priestley and Taylor 1972). We used the more ac-
curate Penman-Monteith approach in all the simulations using
observed weather data, but used the Priestley-Taylor approach
for simulations under future climate since CMIP5 models do
not provide estimates of wind speed and relative humidity that
are required for the Penman-Monteith approach. We used the
global solar radiation as input data and applied a 0.5 ratio to
get the photosynthetically active radiation. In DSSAT the soil
is represented assuming horizontal homogeneity and consid-
ering a number of superposed horizontal soil layers. The soil
properties of the 20–30 cm layer were applied to the below
30–100 cm horizon with a 50% reduced C and N content. Soil
water dynamics is simulated based on the classic reservoir
analogy. Soil water retention parameters (soil moisture at
wilting point and field capacity) are derived from soil texture
(Gijsman et al. 2002). The crop model calculates a daily water
stress factors as the ratio of soil water availability in the
rooting zone over crop potential transpiration. Water stress

reduces the rate of leaf growth, radiation conversion, and grain
filling; accelerates senescence; and determines the ratio of
actual over potential transpiration. Plant growth, development,
and yield depend on species- and cultivar-dependent parame-
ters determining the sensitivity of crops to variations in their
environment. The rice team (i.e., a partnership between the
International Fertilizer Development Center (IFDC),
University of Florida, and the global Agricultural Model
Intercomparison and Improvement Project (AgMIP)) has
studied rice models under varying climatic conditions
(Hasegawa et al. 2017) and proposed a new set of cultivar-
dependent parameters, the so-called genetic coefficients, to
ensure that CERES-Rice correctly simulated the effect of high
temperatures, drought, and increases in atmospheric [CO2].
These coefficients control crop development, such as
flowering and maturing. There are eleven genetic coefficients
defined in the CERES-Rice model. P1 (basic vegetative
phase), P20 (critical photoperiod), and P2R (extent to which
panicle initiation is delayed for each hour increase above P20)
drive flowering onset. P5 is the length from flowering to grain
maturity. G1 (potential spikelet number), G2 (single grain
weight), G3 (relative tillering coefficient), and PHINT
(phyllochron interval) influence crop growth and yield com-
ponents. THOT, TCLDP, and TCLDS are the new tempera-
ture coefficients used to improve crop response to extreme
temperatures. THOT drives spikelet sterility susceptibility to
high temperatures; TCLDP and TCLDS modify respectively

Table 2 Characteristics of the
cultivars used in the experiments
in Senegal (identification, short
name, name of the variety,
genetical group, known cycle
length in days to reach maturity
and farmers use in Senegal).
n.a. not available.

Identification Short name Variety Genetical group Cycle length (d) Grown by farmers

1 DJ11 DJ11-509 Indica 100 Yes

2 DK17 Dkap 17 Hybrid n.a. No

3 DK2 Dkap 2 Hybrid n.a. No

4 DK3 Dkap 3 Hybrid n.a. No

5 FK45 FKR45N Hybrid 95 No

6 INTA Inta Fortaleza Japonica 90–95 No

7 IR10 Irat 10 Indica 100 Yes

8 ITA ITA 150 Japonica 100 Yes

9 NE1 Nerica 1 Hybrid 95–100 Yes

10 NE11 Nerica 11 Hybrid 75–85 No

11 NE12 Nerica 12 Hybrid 90–100 No

12 NE14 Nerica 14 Hybrid 75–85 No

13 NE17 Nerica 17 Hybrid 90–100 No

14 NE4 Nerica 4 Hybrid 95–100 No

15 NE6 Nerica 6 Hybrid 95–100 Yes

16 NE8 Nerica 8 Hybrid 75–85 No

17 NE9 Nerica 9 Hybrid 75–85 No

18 W181 Wab 181 Japonica 95 No

19 W189 Wab 189 Japonica 95 No

20 W5650 Wab 56-50 Japonica 100 Yes

21 WC165 Wab C165 Japonica 90 No
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panicle initiation and spikelet sterility when rice is exposed to
low temperatures.

2.7 Model calibration and evaluation

The DSSAT model was calibrated and evaluated for the vari-
eties evaluated in the trials (see Section 2.3). Calibration was
done by combining a trial and error procedure with
GENCALC calculator runs. GENCALC uses a deterministic
stepwise procedure to optimize plant parameters within real-
istic physiological ranges (Buddhaboon et al. 2018). In a first
step, we calibrated parameters related to crop phenology
against observed flowering and maturity dates. P1, P20, and
P2R were first adjusted so that simulated flowering date
matched with the observed date. P5 was then adjusted to im-
prove model agreement with observed maturity. In a second
step, the tillering coefficient G3 was calibrated against ob-
served aboveground biomass at flowering and harvest.
Adjustment of G3 can alter plant phenology simulation; there-
fore, flowering-related parameters were re-adjusted. In the last
step, G1, G2, and THOT were calibrated against observed
yield and yield components. TCLDP and TCLDS remained
unchanged in our calibration process.

The parameters were adjusted until there was a close match
between observed and simulated values. Root mean square
error (RMSE), EF, and d-stat index were used to evaluate
model performance following the recommendations by
Willmott (1982) for model evaluation, due to limitations in
the use of the modeling efficiency (EF) as an agreement index.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
∑
n

i¼1
yi−xið Þ2

s

EF ¼ 1−
∑
n

i¼1
xi−yið Þ2

∑
n

i¼1
xi−x:ð Þ2

d−stat ¼ 1−
∑
n

i¼1
yi−xið Þ2

∑
n

i¼1
jyi−x:j þ jxi−y:jð Þ2

where xi is the i
th observed value, yi the i

th simulated value, n
the number of observations, x. the mean of the observed var-
iable, and y. the mean of simulated variable.

These indicators for the calibration dataset are shown in
Table 3. Flowering and maturity dates were fairly well simu-
lated, i.e. observed and simulated mean values were similar,
and RMSE was 3.2 and 3.9 days for flowering and maturity
dates, respectively. Intermediate variables like aboveground
biomass at anthesis and harvest, byproducts (straw), and har-
vest index were not very well simulated. Average simulated
and observed values were similar, but RMSE was large. The
number of grains was simulated with a RMSE of 1587,

corresponding to 35% of the mean observed value.
Measurement of aboveground biomass at anthesis and harvest
required subplot sampling and transport. Drying usually oc-
curred in suboptimal conditions, so that the estimates of
aboveground biomass (dry matter) may not be as reliable as
those for phenology, yield, and yield components that were
obtained based on whole-plot sampling. Good correlation be-
tween observed and simulated grain yield were obtained in
calibration (EF= 0.64, Supplementary materials: Fig 2a;
d-stat = 0.9 and RMSE = 531) and validation (EF=0.47,
Supplementary materials: Fig 2b; d-stat = 0.81 and RMSE =
405). Figure 2 shows the comparisons between simulated and
observed values averaged for each cultivar, across years, fer-
tilizer applications, and sites. Cultivar diversity with regard to
number of panicles was not well reproduced by the model (EF
= −1.26). Cultivar diversity with regard to number of grains,
flowering date, and yield was adequately reproduced by the
model with regression coefficients of 0.79, 0.90, and 0.77,
respectively. We considered that the calibrated DSSATmodel
represented each cultivar with a good accuracy, especially for
phenology, grain yield, and its components. Values of the
genetic parameters used in CSM-CERES-Rice can be found
in supplementary materials (Table S1).

2.8 Statistical analysis of the experiments

2.8.1 Tests on cultivars, years, and location effect
and adjusted means

The set of tested cultivars varied across experiments (Table 1).
For a fair comparison of cultivars, we adjusted their mean
performance to account for year and location effects like in
an incomplete block design. Conversely, we adjusted year and
location effects to account for cultivar effect. We carried out
F-tests of cultivar, year, and location effects using Kenward
and Roger’s method for the denominator degrees of freedom
(Kenward and Roger 1997). The dataset used included all on-
station controlled experiments conducted at the four sites dur-
ing 3 years, with the two fertilizer rates and the 21 cultivars.

2.8.2 Detection of main varietal and environmental drivers
of rice grain yield

In order to identify the key interactions between genotype
traits and environments that were involved in yield variations,
we conducted a covariance analysis on the dataset of on-
station controlled experiment. The operational objective was
to determine (i) the key features to be captured by the crop
model and (ii) the key traits to account for when designing
new ideotypes. We used the DSSAT genetic coefficients ob-
tained from the calibration process as varietal covariates and
soil and rainfall measurements in each trial as environmental
covariates.
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Table 3 Values of observed and simulated variables, number of observations, and statistical criteria used to assess the performance of the calibrated
DSSAT model for rice in Senegal (EF, RMSE, d-Stat). EF model efficiency, RMSE root mean square error, d-Stat d-Stat index (see Willmott (1982))

Mean

Variable name Observed Simulated EF RMSE d-
Stat.

Number of observations

Anthesis (days) 66 66 0.53 3.24 0.826 182
Straw (kg ha −1) 2029 2365 0.25 1415.5 0.671 182
Above ground biomass at anthesis (kg ha −1) 3317 1705 0.12 2145.97 0.529 48
Above ground biomass at harvest (kg ha −1) 3416 3728 0.41 1571.05 0.785 48
Grain number (nb m−2) 4519 4490 0.74 1587.8 0.917 182
Harvest index 0.34 0.33 0.19 0.148 0.659 48
Grain yield (kg ha −1) 1187 1127 0.66 447.7 0.903 182
Seed weight g/unit 0.024 0.024 0.08 0.003 0.514 182
Maturity (days) 94 94 0.50 3.86 0.819 182
Panicles (nb m−2) 135.4 135.2 0.05 67.01 0.481 182
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Fig. 2 Observed and simulated rice yield (a), number (nb) of panicles (b),
number (nb) of grains (c) and anthesis day (d). Each dot is the average
value for a given cultivar across years, fertilizer applications, and sites)

Regression equations (dotted line): a: y = 1.0865x with r2 = 0.766 ; b: y =
1.0475xwith r2 = -1.266 ; c: y = 1.0058xwith r2 = 0.8985 ; d: y = 0.9875x
with r2 = 0.7936.
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The varietal covariates were P1, P2R, P5, P2O, G1, G2,
G3, and THOT (supplementary materials, Table S1). The en-
vironmental covariates were sowing date, cumulated rainfall
from sowing to 60 days after sowing (rain_0_60) and from 60
to 90 days after sowing (rain_60_90), soil nitrogen (N), car-
bon (C), and clay+silt content (Table 1).

In order to comply with the error structure of the multi-site
design, we considered experiment, genotype, environment,
and interactions as random effects for this analysis. The
resulting full linear mixed model was:

Zijkl ¼ mþ Σp xpi bp þ Σq yqj cq þ Ai þ Bj þ ABð Þij þ ck

þ Acð Þik þ Bcð Þjk þ ABcð Þijk þ Djl þ Eijkl

where

Zijkl is the observed yield for variety i with fertilization
k in replicate l of environment j.

x1i, x2i...
xPi

are the values of the P varietal covariates for
variety i

y1j,y2j,...
yQj

are the values of the Q environmental covariates
for environment j

b1...bP are the regression coefficients on varietal
covariates

c1...cQ are the regression coefficients on environmental
covariates

Ai is the random effect of variety i, remaining after
the effects of its covariates

Bj is the random effect of environment j, remaining
after the effects of its covariates

(AB)ij is the random variety ×x environment interaction
ck is the fixed effect of fertilization level k
(Ac)ik is the random variety ×x fertilization interaction
(Bc)jk is the random environment ×x fertilization

interaction
(ABc)ijk is the random variety ×x environment ×x

fertilization interaction
Djl is the random effect of replicate l in environment j
Eijkl is the residual error

Due to its considerable range, grain yield had a re-
sidual variance increasing with its mean, thus suggesting
a transformation in order to stabilize it: (grain yield)0.3

was analyzed rather than the original yield. Displayed
means were back-transformed (Table 4).

In order to select which covariates should enter the
model, we compared all models with or without each
covariate with the Schwartz Bayesian information crite-
rion (BIC). Best models have the smallest BICs, and we
considered that models not differing by more than two
BICs were equivalent. Among models for which BIC
did not exceed the smallest BIC by more than two,

we retained the model with the smallest number of co-
variates. Then, we checked the selected covariates for
zero slope using a Student’s t-test. We estimated the
error degrees of freedom for this test with Kenward
and Roger’s method (Kenward and Roger 1997). We
performed the mixed model analysis using SAS version
9.4.

2.9 Climate models

We used climate models projections of the Coupled
Models Intercomparison Project (CMIP5) to generate
the input weather data for DSSAT. These climate
models simulations are widely used to estimate the ef-
fect of the increase in greenhouse gases emissions on
climate. The results of climate model simulations are
summarized in the IPCC report (AR5). Their resolutions
range from 0.75° × 0.75° to 3.711° × 3.75° for rainfall
and temperatures (Supplementary materials: Table S2).

We tested two climate change scenarios: RCP2.6 is
representative of mitigation scenarios aiming at limit-
ing the increase of global mean temperature to 2°C.
RCP8.5 is representative of scenarios with high green-
house gas emissions and absence of climate change
policies. It leads to the greatest warming among sce-
narios, exceeding +4°C in some regions. Rainfall pro-
jections diverge substantially across models, especially
for RCP8.5, for which models simulate either an in-
crease or a decrease of rainfall in the future. Climate
models do not accurately simulate the penetration of
the rain belt during the monsoon season in West
Africa (IPCC 2013). This can introduce biases when
using the climate simulation with a crop model
(Famien et al. 2018). To overcome this, Famien et al.
(2018) used the cumulative distribution function trans-
form method to correct GCMs outputs in order to
mimic historical precipitation and temperatures with a
resolution of 0.5° × 0.5° for each GCM. We applied
this correction on future projections. Precipitation and
temperatures simulated by seven climatic models and
cor rec ted by Famien e t a l . (2018) were used
(Supplementary materials: Table S2). We choose seven
models for their diversity based on the Monerie classi-
fication that groups models according to their simulat-
ed rainfall trend in the future (Monerie et al. 2017).
Calibration of the climate models was done on years
1979 to 1996 and validation on years 1997–2013. This
selection maximizes the spanned range of simulated
rainfall for RCP2.6 and RCP8.5 scenarios for the
twenty-first century and allows to explore better the
possible climate change scenarios rather than using
one median or average scenario.
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2.10 Ideotype construction

We used the cultivar coefficients of Nerica 8 (one of the best
yielding cultivars in the experiments) as a starting point. We
built 16 ideotypes by changing the values of four coeffi-
cients as follows: P1 +60 growing degree days, P5 +40
growing degree days, G1+30 spikelet per m2, and THOT
+ 2°C. We explored all combinations of changed/
unchanged coefficients resulting in 42 = 16 virtual cultivars.
We explored ideotypes performance in Sinthiou Maleme
and Kolda, two contrasting sites representative of the range
of environmental conditions found in Senegal for rainfed
rice cultivation. Total rainfall at Sinthiou Maleme ranged
600 to 700 mm and soils were sandy (10 % clay + silt).
Kolda had wetter conditions (900 to 1000 mm year−1) and
heavier soils (16.8 % clay + silt). For the simulations, plant
population at seeding was set to 60 plants m−2 and row
spacing to 0.6 m. Emergence dates were fixed on 8 July,
and fertilization was set to 100 kg N ha−1 (applied at 1, 30,
and 60 days after emergence). Independent simulations
(i.e., the crop model was reset each year) were carried from
2000 to 2099 for each of the seven climate models.
Simulated rice yields were then averaged across the seven
climate models and across decades.

3 Results and discussion

3.1 Statistical analysis of the experiments

3.1.1 Tests of cultivar, year, and location effect and adjusted
means

The adjusted cultivars, years, and location means for grain
yield, anthesis, and maturity dates are shown in Table 4.
Results of the tests for cultivar, year, and site effects are listed
in Table 4. Cultivar yield varied widely, from 351 (DK17) to
1313 kg ha−1 (NE14). The best yielding cultivar (NE14) had
the second shortest growth cycle: on average 57 and 83 days
were required to reach anthesis and maturity, respectively.
Cultivars with short cycle generally outperformed cultivars
with longer cycles.

Fertilization greatly affected grain yield: cutting the recom-
mended doses by 75% (from 80 to 20 kg N ha−1) reduced the
average grain yield by 651 kg ha−1. There was a large yield
differences between sites and years. Average yield at Darou
was 17% of that at Sefa, and average yield dropped by 30% in
2013 and 2014 compared with 2012. By contrast, fertilization,
site, and year had little or no effect on flowering and maturity
dates. Only one significant genotype × environment interac-
tion (between fertilization and year) was observed (Table 5).

Table 4 Anthesis date, maturity
date, and rice yield means.
Varietal means were adjusted for
environment effects, and
environment means were adjusted
for varietal effects. Variety is
sorted by anthesis date.

Factor Level Anthesis date (days) Maturity date (day) Rice yield (kg ha−1)

Variety NE8 57.2 83.1 1115
NE14 57.3 83.2 1313
NE11 57.7 83.6 964
NE9 58.0 83.9 906
FK45 61.3 89.1 935
INTA 63.3 91.2 1108
ITA 63.6 91.4 700
DK2 64.2 92.0 762
NE17 64.5 92.3 862
WC165 64.6 92.5 954
W189 64.8 92.7 780
DK3 65.2 93.2 605
DJ11 65.7 93.6 981
W5650 65.8 93.7 896
W181 65.9 93.9 780
NE1 66.2 94.1 568
NE4 66.2 94.1 732
NE12 67.6 95.4 525
NE6 68.0 95.8 655
DK17 68.2 96.1 351
IR10 71.5 99.1 543

Fertilization F1 (80 kg N ha−1) 63.7 91.2 1160
F2 (20 kg N ha−1) 64.5 92.0 509

Site Darou 64.0 91.3 269
Kolda 64.8 92.4 1015
Sinthiou Maleme 63.1 90.4 695
Séfa 64.5 92.3 1589

Year 2012 64.1 91.6 1000
2013 64.1 91.6 748
2014 64.1 91.6 645

Page 9 of 16     57Agron. Sustain. Dev. (2021) 41: 57



In 2012, a year with good rainfall, yield response to fertiliza-
tion was greater than in the other years.

3.1.2 Genotypic and environmental drivers of grain yield
variability

Using BIC criterion, the selected cultivar covariates were G1
and THOT. The selected environmental covariates were sow-
ing date, rain 0–60 (cumulated rainfall from 0 to 60 days after
sowing), soil N, soil C, and soil clay+silt. In the resulting
model, all selected covariates had a significant effect (data
not shown). Fertilization had the greatest F-value (Table 5)
and was therefore the main controlled effect affecting yield,
followed by soil clay+silt and sowing date. The selected co-
variates helped explain a substantial part of the varietal and
environmental random variation: as compared to a model
without covariates, the remaining varietal variance was re-
duced by 56% and the environmental variance by 89%. It
means that the full model including the identified covariates
captured half of the varietal effects and a large part of the
environmental effect. The varietal covariates are included as
genetic parameters in CSM-CERES-Rice; environmental co-
variates are the climate, soil, and crop management inputs of
the model. For these reasons, the chosen crop model appears
relevant to explore the performance of ideotypes.

The only significant interaction between treatment and envi-
ronment was the fertilization × year interaction (Table 5). It can
be explained by the fertilizer × rainfall interaction. Figure 3
shows the increase in observed and simulated rice yield (aver-
aged per experiment across all cultivars) due to fertilizer (i.e.,
the difference between yield in F1, 80 kg N ha−1 and yield in
F2, 20 kg N ha−1). Variability due to cultivar (verticals error
bars in Fig. 3) highlights the varietal diversity in response to
fertilizer. The need for simultaneous and adequate supply of

nitrogen and water is recognized worldwide especially in
rainfed cereal cropping systems (Cossani et al. 2010). Water
and nitrogen stresses interact to limit yields, so that the effect
of the combined stress may be lower or greater than the effect of
each stresses in isolation (Affholder 1995). For example, the
benefits of adequate nitrogen supply for rice thanks to timely
fertilizer application can be undermined if water stress occurs
during vegetative phase. The large variability in yield response
to nitrogen in the context of our study highlights a paradox:
fertilizer application offers the promises of doubling rice yield
(Table 4), but risk is high that a farmer will not get that yield
increase if rainfall is not sufficient, especially at the end of the
season after rice flowering. Therefore, policies targeting inten-
sification strategies in such environment should include mea-
sures to mitigate those risks (e.g., insurance, weather forecast at
different time horizon, crop diversification)

3.2 Climate data

A delay in monsoon onset and an increase in rainfall in the
second period of the monsoon are expected by the end of the
century (Biasutti 2013). With RCP8.5, the climate model
MIROC-ESM-CHEM belonged to group 1 in Monerie’s classi-
fication and simulated an increase in rainfall across the West
African Sahel up to 20 °N and a moderate temperature increase.
Group 3, the most populated group in CMIP5 exercise, includes
models (HadGEM2-ES and IPSL-CM5A-LR) that predicted a
decrease in rainfall in West Africa between 10 and 20°N, in
relation with the strengthening of the inter-hemispheric SST gra-
dient over the Atlantic with an enhancement of moisture flux
convergence. Group 2 models (MPI-ESM-LR and MPI-ESM-
MR) predicted a slight decrease in rainfall over West African
Sahel without a relation with changes in moisture flux conver-
gence but linked locally with changes in moisture recycling. On
the other hand, group 4 models (e.g., bcc-csm1-1) depicted a
decrease in rainfall across the same region (Monerie et al.
2017). Finally, NorESM1-M simulated an increase in rainfall
(May to September).

Temperature projections in Sinthiou Maleme did not di-
verge substantially between climate models (Supplementary
materials: Tables S3 and S4) as well as in Kolda (not shown).
Confidence interval for Tmin and Tmax grew from 0.16 and
0.24 in 2000 to 0.21 and 0.57 in 2100, respectively.
Projections are more consistent for Tmin than for Tmax, be-
cause Tmin is less impacted by cloud changes than Tmax.
Climate models with RCP8.5 predicted an increase in Tmin
and Tmax of 4.2 and 3.4 °C from 2000 to 2100, respectively.
This greater increase in Tmin is related to a greater increase in
temperature during the night than during the day, a common
output of climate models (Lobell et al. 2007). Greater Tmin
increases crop night respiration and lowers net photosynthesis.
To account for this, crop models need a daily photosynthesis/
respiration module. CSM-CERES-Rice does not have such

Table 5 Covariance analysis of the rainfed rice cultivar experiments in
Senegal from 2012 to 2014: test for the effect of fertilization, varietal, and
environmental covariates. Denominator degrees of freedom (df) are
computed following the method of Kenward and Roger (1997). G1,
basic vegetative phase; THOT, spikelet sterility susceptibility to high.

Source Numerator df Denominator df F-value p-value

Fertilization 1 15.5 69.97 <.0001

G1 1 12.9 13.50 0.0029

THOT 1 15.5 6.08 0.0258

Sowing date 1 11.3 25.27 0.0004

Rain 0–60 1 10.6 6.31 0.0297

Soil N (‰) 1 10.6 5.47 0.0400

Soil C (‰) 1 10.7 6.39 0.0287

Clay + silt (%) 1 11.3 38.49 <.0001

Fertilization × year 2 7.0 5.15 0.0421
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module. However, in the latest version, the new cultivar pa-
rameter THOT allows to account for heat effect on spikelet
sterility, number of grains, and grain yield. There was no clear
trend over the century in the global solar radiation. All models
predicted more or less 20 MJ m2 day−1 (see Supplementary
materials Table S5).

Models diverged with regard to rainfall simulations. For
example, ME simulated an increase in annual rainfall over
the century with RCP8.5 (Table 6), while the 6 other climate
models simulated a decrease. This highlights the need to use
an ensemble of climate models to study climate change im-
pacts. Table 6 shows the simulated average decadal rainfall
and its confidence interval for the seven climate models from
2000 to 2100 in Sinthiou Maleme. Temperature in the other
locations followed similar trends (data not shown). Simulated
average daily rainfall from May to November declined at a
rate of 0.05 mm year−1. Over 100 years, total rainfall de-
creased by 50 mm ± 100 mm on average at that site
(Table 6). However, the confidence interval was larger than
the expected decrease. This decrease in rainfall will likely
cause an increase in drought stress if farmers intensify rice
production with more balanced and appropriate nutrient appli-
cations. The simulated average decrease in total rainfall hides
intra-season differences. The main simulated drop occurred in
August: average daily rainfall in this month decreased by
3.9 mm year−1 (data not shown). No reduction in average
daily rainfall was expected in October and a very limited
one in June (0.5 mm per year, data not shown). Thus, rice
sowing date will remain unchanged, and the expected length
of growing season from June to October will be similar, but
heavy rains in August will be less frequent. Consequently, on
one hand, the crop might have enough time to mature before
the end of the rainy season. On the other hand, warming will

accelerate crop development. Accordingly, no direct link can
be drawn “a priori” between a reduction of rainfall amounts
and a reduction of yield without the use of a model to simulate
soil/climate/management interactions on plant growth, water,
and nitrogen availability.

3.3 Crop yields simulations

3.3.1 Global trends in rice yields

Figure 4 shows the trends in the decadal average of simulated
rice yield with recommended fertilization (80 kg N ha−1) and
Nerica 8 for the seven climatic models, with and without the
effect of elevated [CO2], for RCP2.6 and 8.5, in Sinthiou
Maleme. With RCP2.6 and consideration of CO2 effect, rice
yield will increase from 3600 in 2000–2009 to 4500 kg ha−1 in
2090–2099 (Fig. 4a). For all climate model projections (ex-
cept IL and MM), the crop model predicted an increase in
yield.

This “fertilizing” effect of CO2 is well known, especially for
C3 crops. Though it used to be controversial, it is now support-
ed by recent findings from multiple free-air CO2 enrichment
(FACE) experiments on soybean, rice, cotton, and wheat (Long
et al. 2006). The future increases in crop production caused by
the aerial fertilization effect of the atmosphere’s rising [CO2]
may well be twice as large as what FACE experiments suggest
(Bunce 2013). A recent review showed that the effect of ele-
vated [CO2] on C3 crops (Makowski et al. 2020) with adapta-
tion practices can offset the yield decline due to temperature
increase (estimated to be 2.4% yield decrease per °C increase in
temperature), even at +4 °C. However, this positive effect can-
not offset yield decline caused by temperature increase above
4°C (Xiong et al. 2007). Without the effect of elevated [CO2]

Fig. 3 Observed and simulated rice response to fertilization (difference
between yield in F1, 80 kg N ha-1 and yield in F2, 20 kg N ha-1) as a
function of cumulated rainfall from 60 to 90 days after planting. Each dot
is the mean difference for a given experiment, averaged across cultivars.

Vertical bars are standard deviations. The dotted line is the regression of
rice yield increase against cumulated rainfall. Observed yield (a): y = 4.2x
+ 270 with r2 = 0.46 and simulated yield (b): y = 4.9x + 89 with r2= 0.40.
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(Fig. 4b), simulated rice yield stagnated over the century.
Figure 4c and d show trends in decadal average of simulated
rice yield for the pessimistic RCP8.5 scenario. This scenario
could be realistic given the lack of mitigation effort put in place
by the industrial countries driving global emissions. Assuming
no adaptation, average simulated rice yield will be divided by
two by the end of the century. However, simulated yields dif-
fered strongly across climate models. With ME and BC climate
models, the crop model simulated an increase in yield from
2700–2800 in 2000s to 3200–3500 kg ha−1in the 2050s, while
it predicted a large decrease (below 2000 kg ha−1) with the other
climate models. ME and BC simulated more rainfall than the
other models (Table 6). ME predicted an increase in average
daily rainfall from 3 to 5 mm by the end of the century
(Table 6), as a consequence the crop model simulated an in-
crease in rice yield.

3.3.2 Designing ideotypes

Since crop model simulations with all GCMs predicted a
decrease in rice yield in Sinthiou Maleme with RCP8.5
(Fig. 4c and d), breeding for new cultivars that are toler-
ant and adapted to higher temperatures can contribute to

adaptation of cropping systems. This increase in temper-
ature causes a shortening of rice phenological stages in
days. The rainy season will probably have an unchanged
start and duration. Relevant adaptation traits include an
increase in the thermal time (degree days) to reach
flowering or grain filling to regain this loss in crop cycle
duration. Higher tolerance to extreme temperature would
also help reduce the negative impacts of days with ex-
treme temperature. Higher productivity would also be
positive if possible to achieve. Table 7 shows the simu-
lated relative yield increase with 15 ideotypes derived
from Nerica 8 for all GCMs with RCP8.5, in Sinthiou
Maleme and Kolda. It shows large differences in yield
advantage according to ideotypes. In the baseline periods
(2000 to 2020, Table 7), a cultivar with a longer vegeta-
tive phase (increase in P1) would produce 13–17% more
than Nerica 8 in Kolda, and a cultivar with more spikelets
or a better tolerance to high temperature (increase in G1
or THOT) would produce 16 % more than Nerica 8 in
Sinthiou Maleme. For mid and long term, interactions
between ideotypes and future climate are similar in both
sites. However, potential increase in yield with the
ideotypes with all parameters changed was greater in

Table 6 Decadal average of seasonal rainfall (mm day−1) for two RCPs
and seven climatic models in Sinthiou Maleme. RCP Representative
Concentration Pathways; climate models: BC bcc-csm1-1, HE

HadGEM2-ES, IL IPSL-CM5A-LR, ME MIROC-ESM-CHEM, ML
MPI-ESM-LR, MM MPI-ESM-MR, NM NorESM1-M. More details on
climate models are given in SI Table S2

2000–
2009

2010–
2019

2020–
2029

2030–
2039

2040–
2049

2050–
2059

2060–
2069

2070–
2079

2080–
2089

2090–
2099

RCP
2.6

Mean 3.10 3.02 3.01 3.12 3.18 3.09 3.18 3.34 3.12 3.31

Confidence
interval

0.27 0.31 0.39 0.37 0.49 0.50 0.59 0.50 0.53 0.62

BC 2.89 3.52 3.85 3.37 3.38 3.39 3.60 3.52 3.23 3.17

HE 3.27 3.21 2.66 2.61 3.47 2.92 2.95 3.92 3.13 3.40

IL 3.19 2.87 2.76 2.45 2.26 2.45 2.39 2.52 2.19 2.50

ME 3.53 3.41 3.49 3.66 4.26 4.49 4.88 4.28 4.52 4.99

ML 3.14 2.31 2.39 3.15 2.60 2.45 2.63 2.77 2.60 2.82

MM 2.60 2.45 2.35 2.83 2.37 2.35 2.26 2.34 2.33 2.14

NM 2.57 3.09 3.11 2.87 3.43 3.20 3.40 3.40 3.67 3.41

RCP
8.5

Mean 2.97 2.80 2.83 2.99 2.83 2.73 2.74 2.68 2.55 2.44

Confidence
interval

0.20 0.29 0.36 0.43 0.54 0.68 0.89 0.94 1.06 1.18

BC 3.38 3.10 3.20 3.24 2.73 3.07 3.03 2.86 2.75 2.59

HE 2.96 2.56 2.49 2.78 2.51 1.91 1.78 1.80 1.32 1.07

IL 2.49 2.39 2.18 2.32 2.17 1.97 1.50 1.94 1.42 1.16

ME 3.18 3.05 3.78 4.00 4.34 4.69 5.12 5.31 5.08 5.29

ML 2.94 2.34 2.49 2.32 2.81 2.08 1.89 1.60 1.32 1.21

MM 2.72 2.64 2.45 2.69 1.96 1.86 1.78 1.64 1.66 1.15

NM 3.19 2.75 2.95 2.89 2.55 2.87 2.79 2.17 2.14 2.28
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Kolda (32% in 2090–2100) than in Sinthiou Maleme
(10% in 2090–2100). Cultivars with longer vegetative
phase (increase in P1) were more productive than their
unmodified counterparts. On the contrary, ideotypes with
increased time for grain filling were less productive than
their counterparts without changes. By the end of the cen-
tury, ideotypes with longer time for grain filling (n° 5, 7,
14, and 15) will be more productive. Some ideotypes per-
formed better than Nerica8 at the beginning of the century
(e.g., n°1 in Kolda), but this yield advantage decreased
over time as climate change became more prominent.
Conversely, the two ideotypes with increase in P5, G1,
and THOT (n°14 and 15) had lower yield advantage with
current climate and greater yield advantage at the end of
the century (2050 to 2100), where simulated temperatures
were greater. The best ideotype (n°7) had changes in P1,
G1, and THOT coefficients: it had a yield advantage and
stability in the two locations, regardless of the time period
considered.

Cultivars with changes in P5 (grain filling duration) and G1
(number of spikelets) need more time to reach maturity and
produce more spikelets. They belong to the new plant type

(NPT) obtained through crosses with japonica types. They
have a high sink capacity often not met by carbohydrates
offer. Their simulated yield advantage during the first half of
the century was negative (see Table 7, n°12, 13, 14, and 15).
Interestingly, after 2050, as carbon supply by the atmosphere
increased, their yield advantage became positive if THOTwas
also increased (n°14 and 15). This interaction between sink
strength and source limitations was simulated on irrigated rice
by Aggarwal et al. (1997). Our results are also in line with a
recent evolutionary analysis over 20,000 years, which con-
cluded that breeding programs and ideotypes construction
needed to focus on sink strength capacity (Dingkuhn et al.
2020). Breeders need different genetic engineering toolboxes
for the creation of ideotypes with different source-sink and
assimilate partitioning. The principle is to match simulta-
neously photosynthesis carbon offer to a growing demand.
For example, modifying T6P genes expression, the regulators
of photosynthesis downregulation, and targeting the size and
the number of organs were demonstrated to be a promising
strategy for maize breeders (Nuccio et al. 2015).

To summarize, we predicted a sharp decline in rainfed rice
yield in Senegal under climate change along the twenty-first

Fig. 4 Decadal average of simulated rice yield in Sinthiou Maleme over
the century for two RCP (Representative Concentration Pathways), seven
climate models. a: RCP 2.6 with CO2 fertilizing effect, b: : RCP 2.6

without CO2 fertilizing effect, c: RCP 8.5 with fertilizing CO2 effect, d:
RCP 8.5 without CO2 fertilizing effect. For the abbrevations of the
climate models please see supplementary materials Table S2.
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century if no climate mitigation and no cropping adaptation
occurs. We also showed that, given the range of genetic var-
iability we had in our hand, breeding for new cultivar is pos-
sible to get more resilient cultivars. Ideotypes with a longer
vegetative phase and a higher sink demand to match the in-
crease in carbon supply by the atmosphere offer a real poten-
tial for high yielding and resilient cultivars. To our knowl-
edge, this is the first time that a study using a process-based
crop model coupled with an ensemble of global circulation
models quantifies the rice yield trends in West Africa under
climate change and thoroughly identifies ideotypes to set pri-
orities for breeding programs.

4 Conclusions

In this study, the potential impacts of climate change on
rainfed rice yield were assessed for RCP2.6 and 8.5 at differ-
ent sites representative of a rainfall gradient in Senegal. Our
study based on crop model simulations with future climate
identified promising ideotypes that can help set priorities for
rainfed rice breeding in the region. Farmers currently grow
long cycle cultivars, while hybrids with shorter cycles associ-
ated with high fertilization rates could yield more with current
climate. Climate models predict a decrease in rainfall and an
increase in temperature in the future that cause a decline in
simulated rice yield if no adaptation occurs. We showed that
new cultivars with longer vegetative phase could partially

offset the simulated yield losses. Better tolerance to high tem-
peratures and higher sink capacity with increased number of
tillers and spikelets also conferred yield advantage over the
current best-performing cultivar. This is the first time that
adaptive traits and ideotypes of rainfed rice adapted to current
and future conditions inWest Africa are defined in such phys-
iological terms using up-to-date climatic predictions.
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material available at https://doi.org/10.1007/s13593-021-00710-2.
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Table 7 Average relative change (%) in simulated decadal rice yield for
15 ideotypes comparedwith Nerica 8. Scenario RCP 8.5 and projection of
7 GCMs at two sites (Kolda and Sinthiou Maleme) were considered. The
coefficient identified in the Black box were modified from Nerica 8 as
follows: P1, P1 +60 growing degree days; P5, P5 +40 growing degree
days; G1, G1+30 spikelets per m2, THOT: Thot + 2°C). RCP,
Representative Concentration Pathways; GCM, Global Climate Models;

P1, basic vegetative phase; P5, length from flowering to grain maturity;
THOT, drives spikelet sterility susceptibility to high temperatures. Color
codes: red = very negative (relative change < –9); light red = negative
(–10 < relative change < 0) ; white = no changes (6 > relative change >–5)
; light blue = positive (11 > relative change > 5) ; blue = very positive
(relative change > 10).

Kolda Sinthiou Maleme

N

° P1 P5

G

1

Tho

t

2000

2009

2010

2019

2020

2029

2030

2039

2040

2049

2050

2059

2060

2069

2070

2079

2080

2089

2090

2099

2000

2009

2010

2019

2020

2029

2030

2039

2040

2049

2050

2059

2060

2069

2070

2079

2080

2089

2090

2099

1 17 16 13 10 9 7 6 3 5 -1.0 9 7 9 7 7 4.8 -5 -12 -16 -22

2 1 0 -1 -1 -1 0 0 0 0 0 -0 0 0 0 0 0 0 0 0.7 1 1

3 1 1 6 7 8 8 11 12 13 12 13 13 9 10 9 11 14 15 17 18 20 21

4 1 4 5 5 5 5 5 6 6 6 6 6 7 6 6 7 6.9 7 7 8.6 8

5 1 1 10 12 13 13 16 17 18 17 18 18 16 16 15 17 21 22 23 25 28 29

6 1 1 3 5 4 4 5 6 6 6 6 6 7 7 6 7 8 7 8 8 9 9

7 1 1 1 9 12 12 12 15 16 18 17 18 18 16 16 15 17 21 22 24 25 29 29

8 1 -26 -25 -24 -21 -19 -17 -15 -14 -14 -14 -25 -23 -21 -18 -16 -17 -16 -15 -16 -15

9 1 1 -20 -19 -17 -15 -1 5 -3 -3 -4 -18 -16 -14 -9 -5 -5 -2 0 0 3

10 1 1 -26 -25 -24 -21 -19 -17 -15 -14 -14 -14 -25 -23 -21 -18 -16 -17 -16 -14 -16 -14

11 1 1 1 -20 -19 -17 -15 -10 -8 -5 -4 -3 -4 -18 -16 -15 -9 -5 -5 -3 0 1 3

12 1 1 -22 -21 -19 -17 -14 -12 -10 -9 -9 -10 -20 -18 -16 -12 -10 -12 -10 -8 -9 -8

13 1 1 1 -17 -15 -14 -11 -6 -3 0 1 1 0 -13 -10 -9 -4 1 0 3 6 7 9.7

14 1 1 1 -25 -22 -20 -11 -10 -1 6 10 17 23 -20 -17 -16 -12 -10 -11 -10 -7 -8 -7

15 1 1 1 1 -21 -17 -13 -6 -2.4 7 15 18 27 33 -13 -11 -9 -4 1 0 4 7 8 10

8 -0 -
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