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Abstract. This is an introduction to the algebras A ⊂ B(H) that the bounded linear
operators T : H → H can form, once a complex Hilbert space H is given. Motivated
by quantum mechanics, we are mostly interested in the von Neumann algebras, which
are stable under taking adjoints, T → T ∗, and weakly closed. When the algebra has a
trace tr : A → C, we can think of it as being of the form A = L∞(X), with X being a
quantum measured space, and of particular interest is the free case, where the center of
the algebra is Z(A) = C. Following Murray, von Neumann, Connes, Jones, Voiculescu,
Woronowicz, we discuss here the basic properties of such algebras A, and how to do
algebra, geometry, analysis and probability on the underlying quantum spaces X.



Preface

Quantum mechanics as we know it is the source of many puzzling questions. The sim-
plest quantum mechanical system is the hydrogen atom, consisting of a negative charge,
an electron, moving around a positive charge, a proton. This reminds electrodynamics,
and accepting the fact that the electron is a bit of a slippery particle, whose position and
speed are described by probability, rather than by exact formulae, the hydrogen atom
can indeed be solved, by starting with electrodynamics, and making a long series of “cor-
rections”, for the most coming from experiments, but sometimes coming as well from
intuition, with the idea in mind that beautiful mathematics should correspond to true
physics. The solution, as we presently know it, is something quite complicated.

Mathematically, the commonly accepted belief is that the good framework for the
study of quantum mechanics is an infinite dimensional complex Hilbert space H, whose
vectors can be thought of as being states of the system, and with the linear operators
T : H → H corresponding to the observables. This is however to be taken with care,
because in order to do “true physics”, things must be far sharper than that. Always
remember indeed that the simplest object of quantum mechanics is the hydrogen atom,
whose simplest states and observables are something quite complicated. Thus when talk-
ing about “states and observables”, we have a whole continuum of possible considerations
and theories, ranging from true physics to very abstract mathematics.

For making things worse, even the existence and exact relevance of the Hilbert space H
is subject to debate. This is something more philosophical, related to the 2-body problem
evoked above, which has twisted the minds of many scientists, starting with Einstein and
others. Can we get someday to a better quantum mechanics, by adding more variables to
those available inside H? No one really knows the answer here.

The present book is an introduction to the algebras A ⊂ B(H) that the bounded
linear operators T : H → H can form, once a Hilbert space H is given. There has been
an enormous amount of work on such algebras, starting with von Neumann and others,
and we will insist here on the aspects which are beautiful. With the idea, or rather hope
in mind, that beautiful mathematics should correspond to true physics.
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4 PREFACE

So, what is beauty, in the operator algebra framework? In our opinion, the source of
all possible beauty is an old result of von Neumann, related to the Spectral Theorem for
normal operators, which states that any commutative von Neumann algebra A ⊂ B(H)
must be of the form A = L∞(X), with X being a measured space.

This is something subtle and interesting, which suggests doing several things with the
von Neumann algebras A ⊂ B(H). Given such an algebra we can write the center as
Z(A) = L∞(X), we have then a decomposition of type A =

∫
X
Axdx, and the problem

is that of understanding the structure of the fibers, called “factors”. This is what von
Neumann himself, and then Connes and others, did. Another idea, more speculative,
following later work of Connes, and in parallel work of Voiculescu, is that of writing
A = L∞(X), with X being an abstract “quantum measured space”, and then trying to
understand the geometry and probabilistic theory of X. Finally, yet another beautiful
idea, due this time to Jones, is that of looking at the inclusions A0 ⊂ A1 of von Neumann
algebras, instead at the von Neumann algebras themselves, the point being that the
“symmetries” of such an inclusion lead to interesting combinatorics.

All in all, many things that can be done with a von Neumann algebra A ⊂ B(H),
and explaining the basics of the theory, plus having a look at the above 4 directions of
research, is already what a graduate textbook, covering what can be taught during a
1-year course, can cover. And this book is written exactly with this idea in mind. We
will talk about all the above, keeping things as simple as possible, and with everything
being accessible with a minimal knowledge of undergraduate mathematics.

The book is organized in 4 parts, with Part I explaining the basics of operator theory,
Part II explaining the basics of operator algebras, with a look into geometry and proba-
bility too, then Part III going into the structure of the von Neumann factors, and finally
Part IV being an introduction to the subfactor theory of Jones. There will be no physics
in this book, which is meant to be a purely mathematical introduction to all this. We
will give however references to more advanced texts, some dealing with physics.

This book contains, besides the basics of the operator algebra theory, a few recent con-
tributions as well, in relation with quantum group aspects. I am grateful to Julien Bichon,
Benôıt Collins, Steve Curran, Roland Speicher and my other coauthors, for working all
this out. Many thanks go as well to my cats. Their views and opinions on mathematics,
and knowledge of advanced functional analysis, have always been of great help.
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Part I

Bounded operators



Does anybody here remember Vera Lynn
Remember how she said that

We would meet again
Some sunny day



CHAPTER 1

Linear algebra

1a. Linear maps

According to various findings in physics, starting with those of Heisenberg from the
early 20s, basic quantum mechanics involves linear operators T : H → H from a complex
Hilbert space H to itself. The space H is typically infinite dimensional, a basic example
being the Schrödinger space H = L2(R3) of the wave functions ψ : R3 → C of the electron,
and more on this later. However, as a main source of inspiration, mathematically, we have
the finite dimensional case, where H = CN , with scalar product as follows:

< x, y >=
∑
i

xiȳi

Note in passing that we use here mathematicans’ convention for linearity, opposed to
the one of Dirac in [28], and more on this later. Long story short, as a preliminary now
to what we want to do, we need a good knowledge of linear algebra over C. You probably
know that, by having read a book like Lax [54] or equivalent, but always good to recall
all this, and the present chapter will be here for that. Let us start with:

Proposition 1.1. The linear maps T : CN → CN are in correspondence with the
square matrices A ∈MN(C), with the linear map associated to such a matrix being

Tx = Ax

and with the matrix associated to a linear map being Aij =< Tej, ei >.

Proof. The first assertion is clear, because a linear map T : CN → CN must send a
vector x ∈ CN to a certain vector Tx ∈ CN , all whose components are linear combinations
of the components of x. Thus, we can write, for certain complex numbers Aij ∈ C:

T


x1
...
...
xN

 =


A11x1 + . . .+ A1NxN

...

...
AN1x1 + . . .+ ANNxN


Now the parameters Aij ∈ C can be regarded as being the entries of a square matrix

A ∈MN(C), and with the usual convention for the rectangular matrix multiplication, the
above formula is precisely the one in the statement, namely Tx = Ax.

11



12 1. LINEAR ALGEBRA

Regarding the second assertion, with Tx = Ax as above, if we denote by e1, . . . , eN
the standard basis of CN , then we have the following formula:

Tej =


A1j

...

...
ANj


But this gives the second formula, < Tej, ei >= Aij, as desired. �

Our claim now is that, no matter what we want to do with T or A, of advanced type,
we will run at some point into their adjoints T ∗ and A∗, constructed as follows:

Proposition 1.2. The adjoint operator T ∗ : CN → CN , which is given by

< Tx, y >=< x, T ∗y >

corresponds to the adjoint matrix A∗ ∈MN(C), given by

(A∗)ij = Āji

via the correspondence between linear maps and matrices constructed above.

Proof. Given a linear map T : CN → CN , fix y ∈ CN , and consider the linear form
ϕ(x) =< Tx, y >. This form must be as follows, for a certain vector T ∗y ∈ CN :

ϕ(x) =< x, T ∗y >

Thus, we have constructed a map y → T ∗y as in the statement, which is obviously
linear, and that we can call T ∗. Now by taking the vectors x, y ∈ CN to be elements of
the standard basis of CN , our defining formula for T ∗ reads:

< Tei, ej >=< ei, T
∗ej >

By reversing the scalar product on the right, this formula can be written as:

< T ∗ej, ei >= < Tei, ej >

But this means that the matrix of T ∗ is given by (A∗)ij = Āji, as desired. �

Getting back to our claim, the adjoints ∗ are indeed ubiquitous, as shown by:

Theorem 1.3. The following happen:

(1) T (x) = Ux with U ∈MN(C) is an isometry precisely when U∗ = U−1.
(2) T (x) = Px with P ∈MN(C) is a projection precisely when P = P 2 = P ∗.

Proof. Let us first recall that the lengths, or norms, of the vectors x ∈ CN can be
recovered from the knowledge of the scalar products, as follows:

||x|| =
√
< x, x >
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Conversely, we can recover the scalar products out of norms, by using the following
impossible to remember formula, called complex polarization identity:

4 < x, y >= ||x+ y||2 − ||x− y||2 + i||x+ iy||2 − i||x− iy||2

The proof of this latter formula is indeed elementary, as follows:

||x+ y||2 − ||x− y||2 + i||x+ iy||2 − i||x− iy||2

= ||x||2 + ||y||2 − ||x||2 − ||y||2 + i||x||2 + i||y||2 − i||x||2 − i||y||2

+2Re(< x, y >) + 2Re(< x, y >) + 2iIm(< x, y >) + 2iIm(< x, y >)

= 4 < x, y >

Finally, we will use Proposition 1.2, and more specifically the following formula coming
from there, valid for any matrix A ∈MN(C) and any two vectors x, y ∈ CN :

< Ax, y >=< x,A∗y >

(1) Given a matrix U ∈ MN(C), we have indeed the following equivalences, with the
first one coming from the polarization identity, and the other ones being clear:

||Ux|| = ||x|| ⇐⇒ < Ux,Uy >=< x, y >

⇐⇒ < x,U∗Uy >=< x, y >

⇐⇒ U∗Uy = y

⇐⇒ U∗U = 1

⇐⇒ U∗ = U−1

(2) Given a matrix P ∈MN(C), in order for x→ Px to be an oblique projection, we
must have P 2 = P . Now observe that this projection is orthogonal when:

< Px− x, Py >= 0 ⇐⇒ < P ∗Px− P ∗x, y >= 0

⇐⇒ P ∗Px− P ∗x = 0

⇐⇒ P ∗P − P ∗ = 0

⇐⇒ P ∗P = P ∗

The point now is that by conjugating the last formula, we obtain P ∗P = P . Thus we
must have P = P ∗, and this gives the result. �

Summarizing, the linear operators come in pairs T, T ∗, and the associated matrices
come as well in pairs A,A∗. We will keep this in mind, and come back to it later.

1b. Diagonalization

Let us discuss now the diagonalization question for linear maps and matrices. Again,
we will be quite brief here, and for more, we refer to any standard linear algebra book,
such as Lax [54]. By the way, there will be some complex analysis involved too, and here
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we refer to Rudin [73]. Which book of Rudin will be in fact the one and only prerequisite
for reading the present book, but more on references and reading later.

The basic diagonalization theory, formulated in terms of matrices, is as follows:

Proposition 1.4. A vector v ∈ CN is called eigenvector of A ∈ MN(C), with corre-
sponding eigenvalue λ, when A multiplies by λ in the direction of v:

Av = λv

In the case where CN has a basis v1, . . . , vN formed by eigenvectors of A, with correspond-
ing eigenvalues λ1, . . . , λN , in this new basis A becomes diagonal, as follows:

A ∼

λ1

. . .
λN


Equivalently, if we denote by D = diag(λ1, . . . , λN) the above diagonal matrix, and by
P = [v1 . . . vN ] the square matrix formed by the eigenvectors of A, we have:

A = PDP−1

In this case we say that the matrix A is diagonalizable.

Proof. This is something which is clear, the idea being as follows:

(1) The first assertion is clear, because the matrix which multiplies each basis element
vi by a number λi is precisely the diagonal matrix D = diag(λ1, . . . , λN).

(2) The second assertion follows from the first one, by changing the basis. We can
prove this by a direct computation as well, because we have Pei = vi, and so:

PDP−1vi = PDei

= Pλiei

= λiPei

= λivi

Thus, the matrices A and PDP−1 coincide, as stated. �

Let us recall as well that the basic example of a non diagonalizable matrix, over the
complex numbers as above, is the following matrix:

J =

(
0 1
0 0

)
Indeed, the eigenvectors here are the vectors of type

(
x
0

)
, all with eigenvalue 0. Thus,

we have not enough eigenvectors for constructing a basis of C2, out of them.
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In general, in order to study the diagonalization problem, the idea is that the eigen-
vectors can be grouped into linear spaces, called eigenspaces, as follows:

Theorem 1.5. Let A ∈MN(C), and for any eigenvalue λ ∈ C define the corresponding
eigenspace as being the vector space formed by the corresponding eigenvectors:

Eλ =
{
v ∈ CN

∣∣∣Av = λv
}

These eigenspaces Eλ are then in a direct sum position, in the sense that given vectors
v1 ∈ Eλ1 , . . . , vk ∈ Eλk corresponding to different eigenvalues λ1, . . . , λk, we have:∑

i

civi = 0 =⇒ ci = 0

In particular, we have
∑

λ dim(Eλ) ≤ N , with the sum being over all the eigenvalues, and
our matrix is diagonalizable precisely when we have equality.

Proof. We prove the first assertion by recurrence on k ∈ N. Assume by contradiction
that we have a formula as follows, with the scalars c1, . . . , ck being not all zero:

c1v1 + . . .+ ckvk = 0

By dividing by one of these scalars, we can assume that our formula is:

vk = c1v1 + . . .+ ck−1vk−1

Now let us apply A to this vector. On the left we obtain:

Avk = λkvk

= λkc1v1 + . . .+ λkck−1vk−1

On the right we obtain something different, as follows:

A(c1v1 + . . .+ ck−1vk−1) = c1Av1 + . . .+ ck−1Avk−1

= c1λ1v1 + . . .+ ck−1λk−1vk−1

We conclude from this that the following equality must hold:

λkc1v1 + . . .+ λkck−1vk−1 = c1λ1v1 + . . .+ ck−1λk−1vk−1

On the other hand, we know by recurrence that the vectors v1, . . . , vk−1 must be
linearly independent. Thus, the coefficients must be equal, at right and at left:

λkc1 = c1λ1

...

λkck−1 = ck−1λk−1

Now since at least one ci must be nonzero, from λkci = ciλi we obtain λk = λi, which
is a contradiction. Thus our proof by recurrence of the first assertion is complete. As for
the second assertion, this follows from the first one. �
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In order to reach now to more advanced results, we can use the characteristic polyno-
mial, which appears via the following fundamental result:

Theorem 1.6. Given a matrix A ∈MN(C), consider its characteristic polynomial:

P (x) = det(A− x1N)

The eigenvalues of A are then the roots of P . Also, we have the inequality

dim(Eλ) ≤ mλ

where mλ is the multiplicity of λ, as root of P .

Proof. The first assertion follows from the following computation, using the fact that
a linear map is bijective when the determinant of the associated matrix is nonzero:

∃v,Av = λv ⇐⇒ ∃v, (A− λ1N)v = 0

⇐⇒ det(A− λ1N) = 0

Regarding now the second assertion, given an eigenvalue λ of our matrix A, consider
the dimension dλ = dim(Eλ) of the corresponding eigenspace. By changing the basis of
CN , as for the eigenspace Eλ to be spanned by the first dλ basis elements, our matrix
becomes as follows, with B being a certain smaller matrix:

A ∼
(
λ1dλ 0

0 B

)
We conclude that the characteristic polynomial of A is of the following form:

PA = Pλ1dλ
PB

= (λ− x)dλPB

Thus the multiplicity mλ of our eigenvalue λ, as a root of P , satisfies mλ ≥ dλ, and
this leads to the conclusion in the statement. �

Now recall that we are over C, which is something that we have not used yet, in our
last two statements. And the point here is that we have the following key result:

Theorem 1.7. Any polynomial P ∈ C[X] decomposes as

P = c(X − a1) . . . (X − aN)

with c ∈ C and with a1, . . . , aN ∈ C.

Proof. It is enough to prove that P has one root, and we do this by contradiction.
Assume that P has no roots, and pick a number z ∈ C where |P | attains its minimum:

|P (z)| = min
x∈C
|P (x)| > 0
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Since Q(t) = P (z+ t)−P (z) is a polynomial which vanishes at t = 0, this polynomial
must be of the form ctk + higher terms, with c 6= 0, and with k ≥ 1 being an integer. We
obtain from this that, with t ∈ C small, we have the following estimate:

P (z + t) ' P (z) + ctk

Now let us write t = rw, with r > 0 small, and with |w| = 1. Our estimate becomes:

P (z + rw) ' P (z) + crkwk

Now recall that we have assumed P (z) 6= 0. We can therefore choose w ∈ T such that
cwk points in the opposite direction to that of P (z), and we obtain in this way:

|P (z + rw)| ' |P (z) + crkwk|
= |P (z)|(1− |c|rk)

Now by choosing r > 0 small enough, as for the error in the first estimate to be small,
and overcame by the negative quantity −|c|rk, we obtain from this:

|P (z + rw)| < |P (z)|
But this contradicts our definition of z ∈ C, as a point where |P | attains its minimum.

Thus P has a root, and by recurrence it has N roots, as stated. �

Now by putting everything together, we obtain the following result:

Theorem 1.8. Given a matrix A ∈MN(C), consider its characteristic polynomial

P (X) = det(A−X1N)

then factorize this polynomial, by computing the complex roots, with multiplicities,

P (X) = (−1)N(X − λ1)n1 . . . (X − λk)nk

and finally compute the corresponding eigenspaces, for each eigenvalue found:

Ei =
{
v ∈ CN

∣∣∣Av = λiv
}

The dimensions of these eigenspaces satisfy then the following inequalities,

dim(Ei) ≤ ni

and A is diagonalizable precisely when we have equality for any i.

Proof. The statement is well formulated, thanks to Theorem 1.7. By summing the
inequalities dim(Eλ) ≤ mλ from Theorem 1.6, we obtain an inequality as follows:∑

λ

dim(Eλ) ≤
∑
λ

mλ ≤ N

On the other hand, we know from Theorem 1.5 that our matrix is diagonalizable when
we have global equality. Thus, we are led to the conclusion in the statement. �
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This was for the main result of linear algebra. There are countless applications of this,
and generally speaking, advanced linear algebra consists in building on Theorem 1.8.

Let us record as well a useful algorithmic version of the above result:

Theorem 1.9. The square matrices A ∈MN(C) can be diagonalized as follows:

(1) Compute the characteristic polynomial.
(2) Factorize the characteristic polynomial.
(3) Compute the eigenvectors, for each eigenvalue found.
(4) If there are no N eigenvectors, A is not diagonalizable.
(5) Otherwise, A is diagonalizable, A = PDP−1.

Proof. This is an informal reformulation of Theorem 1.8 above, with (4) referring to
the total number of linearly independent eigenvectors found in (3), and with A = PDP−1

in (5) being the usual diagonalization formula, with P,D being as before. �

As a remark here, in step (3) it is always better to start with the eigenvalues having
big multiplicity. Indeed, a multiplicity 1 eigenvalue, for instance, can never lead to the
end of the computation, via (4), simply because the eigenvectors always exist.

As an illustration for all this, which is a must-know computation, we have:

Proposition 1.10. The rotation of angle t ∈ R in the plane diagonalizes as:(
cos t − sin t
sin t cos t

)
=

1

2

(
1 1
i −i

)(
e−it 0
0 eit

)(
1 −i
1 i

)
Over the reals this is impossible, unless t = 0, π, where the rotation is diagonal.

Proof. Observe first that, as indicated, unlike we are in the case t = 0, π, where our
rotation is ±12, our rotation is a “true” rotation, having no eigenvectors in the plane.
Fortunately the complex numbers come to the rescue, via the following computation:(

cos t − sin t
sin t cos t

)(
1

i

)
=

(
cos t− i sin t

i cos t+ sin t

)
= e−it

(
1

i

)
We have as well a second complex eigenvector, coming from:(

cos t − sin t
sin t cos t

)(
1

−i

)
=

(
cos t+ i sin t

−i cos t+ sin t

)
= eit

(
1

−i

)
Thus, we are led to the conclusion in the statement. �
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1c. Matrix tricks

At the level of basic examples of diagonalizable matrices, we first have the following
result, which provides us with the “generic” examples:

Theorem 1.11. For a matrix A ∈MN(C) the following conditions are equivalent,

(1) The eigenvalues are different, λi 6= λj,
(2) The characteristic polynomial P has simple roots,
(3) The characteristic polynomial satisfies (P, P ′) = 1,
(4) The resultant of P, P ′ is nonzero, R(P, P ′) 6= 0,
(5) The discriminant of P is nonzero, ∆(P ) 6= 0,

and in this case, the matrix is diagonalizable.

Proof. The last assertion holds indeed, due to Theorem 1.8. As for the equivalences
in the statement, these are all standard, the idea for their proofs, along with some more
theory, needed for using in practice the present result, being as follows:

(1) ⇐⇒ (2) This follows from Theorem 1.8.

(2) ⇐⇒ (3) This is standard, the double roots of P being roots of P ′.

(3) ⇐⇒ (4) The idea here is that associated to any two polynomials P,Q is their
resultant R(P,Q), which checks whether P,Q have a common root. Let us write:

P = c(X − a1) . . . (X − ak)

Q = d(X − b1) . . . (X − bl)
We can define then the resultant as being the following quantity:

R(P,Q) = cldk
∏
ij

(ai − bj)

The point now, that we will explain as well, is that this is a polynomial in the coeffi-
cients of P,Q, with integer coefficients. Indeed, this can be checked as follows:

– We can expand the formula of R(P,Q), and in what regards a1, . . . , ak, which are
the roots of P , we obtain in this way certain symmetric functions in these variables, which
will be therefore polynomials in the coefficients of P , with integer coefficients.

– We can then look what happens with respect to the remaining variables b1, . . . , bl,
which are the roots of Q. Once again what we have here are certain symmetric functions,
and so polynomials in the coefficients of Q, with integer coefficients.

– Thus, we are led to the above conclusion, that R(P,Q) is a polynomial in the
coefficients of P,Q, with integer coefficients, and with the remark that the cldk factor is
there for these latter coefficients to be indeed integers, instead of rationals.
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Alternatively, let us write our two polynomials in usual form, as follows:

P = pkX
k + . . .+ p1X + p0

Q = qlX
l + . . .+ q1X + q0

The corresponding resultant appears then as the determinant of an associated matrix,
having size k + l, and having 0 coefficients at the blank spaces, as follows:

R(P,Q) =

∣∣∣∣∣∣∣∣∣∣∣

pk ql
...

. . .
...

. . .
p0 pk q0 qk

. . .
...

. . .
...

p0 q0

∣∣∣∣∣∣∣∣∣∣∣
Indeed, this follows by doing some linear algebra computations, mixed with algebra,

in the spirit of those from the proof of the Vandermonde determinant theorem.

(4) ⇐⇒ (5) Once again this is something standard, the idea here being that the
discriminant ∆(P ) of a polynomial P ∈ C[X] is, modulo scalars, the resultant R(P, P ′).
To be more precise, let us write our polynomial as follows:

P (X) = cXN + dXN−1 + . . .

Its discriminant is then defined as being the following quantity:

∆(P ) =
(−1)(

N
2 )

c
R(P, P ′)

This is a polynomial in the coefficients of P , with integer coefficients, with the division
by c being indeed possible, under Z, and with the sign being there for various reasons,
including the compatibility with some well-known formulae, at small values of N . �

All this might seem a bit complicated, so as an illustration, let us work out an example.
Consider the case of a polynomial of degree 2, and a polynomial of degree 1:

P = ax2 + bx+ c , Q = dx+ e

In order to compute the resultant, let us factorize our polynomials:

P = a(x− p)(x− q) , Q = d(x− r)

The resultant can be then computed as follows, by using the two-step method:

R(P,Q) = ad2(p− r)(q − r)
= ad2(pq − (p+ q)r + r2)

= cd2 + bd2r + ad2r2

= cd2 − bde+ ae2
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Observe that R(P,Q) = 0 corresponds indeed to the fact that P,Q have a common
root. Indeed, the root of Q is r = −e/d, and we have:

P (r) =
ae2

d2
− be

d
+ c

=
R(P,Q)

d2

We can recover as well the resultant as a determinant, as follows:

R(P,Q) =

∣∣∣∣∣∣
a d 0
b e d
c 0 e

∣∣∣∣∣∣
= ae2 − bde+ cd2

Finally, in what regards the discriminant, let us see what happens in degree 2. Here
we must compute the resultant of the following two polynomials:

P = aX2 + bX + c , P ′ = 2aX + b

The resultant is then given by the following formula:

R(P, P ′) = ab2 − b(2a)b+ c(2a)2

= 4a2c− ab2

= −a(b2 − 4ac)

Now by doing the discriminant normalizations, we obtain, as we should:

∆(P ) = b2 − 4ac

As already mentioned, one can prove that the matrices having distinct eigenvalues are
“generic”, and so the above result basically captures the whole situation. We have in fact
the following collection of density results, which are quite advanced, and with all being
very useful statements, coming as a complement to what has been said above:

Theorem 1.12. The following happen, inside MN(C):

(1) The invertible matrices are dense.
(2) The matrices having distinct eigenvalues are dense.
(3) The diagonalizable matrices are dense.

Proof. These are quite advanced linear algebra results, which can be proved as fol-
lows, with the technology that we have so far:

(1) This is clear, intuitively speaking, because the invertible matrices are given by the
condition detA 6= 0. Thus, the set formed by these matrices appears as the complement
of the surface detA = 0, and so must be dense inside MN(C), as claimed.
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(2) Here we can use a similar argument, this time by saying that the set formed by
the matrices having distinct eigenvalues appears as the complement of the surface given
by ∆(PA) = 0, and so must be dense inside MN(C), as claimed.

(3) This follows from (2), via the fact that the matrices having distinct eigenvalues are
diagonalizable, that we know from Theorem 1.11. There are of course some other proofs
as well, for instance by putting the matrix in Jordan form. �

As an application of the above results, and of our methods in general, we have:

Theorem 1.13. The following happen:

(1) We have PAB = PBA, for any two matrices A,B ∈MN(C).
(2) AB,BA have the same eigenvalues, with the same multiplicities.
(3) If A has eigenvalues λ1, . . . , λN , then f(A) has eigenvalues f(λ1), . . . , f(λN).

Proof. These results can be deduced by using Theorem 1.12, as follows:

(1) It follows from definitions that the characteristic polynomial of a matrix is invariant
under conjugation, in the sense that we have:

PC = PACA−1

Now observe that, when assuming that A is invertible, we have:

AB = A(BA)A−1

Thus, we have the result when A is invertible. By using now Theorem 1.12 (1), we
conclude that this formula holds for any matrix A, by continuity.

(2) This is a reformulation of (1), via the fact that P encodes the eigenvalues, with
multiplicities, which is hard to prove with bare hands.

(3) This is something more informal, the idea being that this is clear for the diagonal
matrices D, then for the diagonalizable matrices PDP−1, and finally for all the matrices,
by using Theorem 1.12 (3), provided that f has suitable regularity properties. �

We will be back to all this later on, and especially on (3) above, which is something
quite subtle, directly in the case of linear operators on arbitrary Hilbert spaces. Let
us go back to the main problem raised by the diagonalization procedure, namely the
computation of the roots of characteristic polynomials. We have here:

Theorem 1.14. The complex eigenvalues of a matrix A ∈MN(C), counted with mul-
tiplicities, have the following properties:

(1) Their sum is the trace.
(2) Their product is the determinant.
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Proof. Consider indeed the characteristic polynomial P of the matrix:

P (X) = det(A−X1N)

= (−1)NXN + (−1)N−1Tr(A)XN−1 + . . .+ det(A)

We can factorize this polynomial, by using its N complex roots, and we obtain:

P (X) = (−1)N(X − λ1) . . . (X − λN)

= (−1)NXN + (−1)N−1

(∑
i

λi

)
XN−1 + . . .+

∏
i

λi

Thus, we are led to the conclusion in the statement. �

Regarding now the intermediate terms, we have here:

Theorem 1.15. Assume that A ∈ MN(C) has eigenvalues λ1, . . . , λN ∈ C, counted
with multiplicities. The basic symmetric functions of these eigenvalues, namely

ck =
∑

i1<...<ik

λi1 . . . λik

are then given by the fact that the characteristic polynomial of the matrix is:

P (X) = (−1)N
N∑
k=0

(−1)kckX
k

Moreover, all symmetric functions of the eigenvalues, such as the sums of powers

ds = λs1 + . . .+ λsN

appear as polynomials in these characteristic polynomial coefficients ck.

Proof. These results can be proved by doing some algebra, as follows:

(1) Consider indeed the characteristic polynomial P of the matrix, factorized by using
its N complex roots, taken with multiplicities. By expanding, we obtain:

P (X) = (−1)N(X − λ1) . . . (X − λN)

= (−1)NXN + (−1)N−1

(∑
i

λi

)
XN−1 + . . .+

∏
i

λi

= (−1)NXN + (−1)N−1c1X
N−1 + . . .+ (−1)0cN

= (−1)N
(
XN − c1X

N−1 + . . .+ (−1)NcN
)

With the convention c0 = 1, we are led to the conclusion in the statement.

(2) This is something standard, coming by doing some abstract algebra. Working out
the formulae for the sums of powers ds =

∑
i λ

s
i , at small values of the exponent s ∈ N, is

an excellent exercise, which shows how to proceed in general, by recurrence. �
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1d. Spectral theorems

Let us go back now to the diagonalization question. Here is a key result:

Theorem 1.16. Any matrix A ∈MN(C) which is self-adjoint, A = A∗, is diagonaliz-
able, with the diagonalization being of the following type,

A = UDU∗

with U ∈ UN , and with D ∈MN(R) diagonal. The converse holds too.

Proof. As a first remark, the converse trivially holds, because if we take a matrix of
the form A = UDU∗, with U unitary and D diagonal and real, then we have:

A∗ = (UDU∗)∗

= UD∗U∗

= UDU∗

= A

In the other sense now, assume that A is self-adjoint, A = A∗. Our first claim is that
the eigenvalues are real. Indeed, assuming Av = λv, we have:

λ < v, v > = < λv, v >

= < Av, v >

= < v,Av >

= < v, λv >

= λ̄ < v, v >

Thus we obtain λ ∈ R, as claimed. Our next claim now is that the eigenspaces
corresponding to different eigenvalues are pairwise orthogonal. Assume indeed that:

Av = λv , Aw = µw

We have then the following computation, using λ, µ ∈ R:

λ < v,w > = < λv,w >

= < Av,w >

= < v,Aw >

= < v, µw >

= µ < v,w >

Thus λ 6= µ implies v ⊥ w, as claimed. In order now to finish the proof, it remains to
prove that the eigenspaces of A span the whole space CN . For this purpose, we will use
a recurrence method. Let us pick an eigenvector of our matrix:

Av = λv



1D. SPECTRAL THEOREMS 25

Assuming now that we have a vector w orthogonal to it, v ⊥ w, we have:

< Aw, v > = < w,Av >

= < w, λv >

= λ < w, v >

= 0

Thus, if v is an eigenvector, then the vector space v⊥ is invariant under A. In order to
do now the recurrence, it still remains to prove that the restriction of A to the vector space
v⊥ is self-adjoint. But this comes from a general property of the self-adjoint matrices,
that we will explain now. Our claim is that an arbitary square matrix A is self-adjoint
precisely when the following happens, for any vector v:

< Av, v >∈ R

Indeed, the fact that the above scalar product is real is equivalent to:

< (A− A∗)v, v >= 0

But this is equivalent to A = A∗, by using the complex polarization identity. Now back
to our questions, it is clear from our self-adjointness criterion above that the restriction of
A to any invariant subspace, and in particular to the subspace v⊥, is self-adjoint. Thus,
we can proceed by recurrence, and we obtain the result. �

As basic examples of self-adjoint matrices, we have the orthogonal projections. The
diagonalization result regarding them is as follows:

Proposition 1.17. The matrices P ∈MN(C) which are projections,

P 2 = P = P ∗

are precisely those which diagonalize as follows,

P = UDU∗

with U ∈ UN , and with D ∈MN(0, 1) being diagonal.

Proof. The equation for the projections being P 2 = P = P ∗, the eigenvalues λ are
real, and we have as well the following condition, coming from P 2 = P :

λ < v, v > = < λv, v >

= < Pv, v >

= < P 2v, v >

= < Pv, Pv >

= < λv, λv >

= λ2 < v, v >
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Thus we obtain λ ∈ {0, 1}, as claimed, and as a final conclusion here, the diagonal-
ization of the self-adjoint matrices is as follows, with ei ∈ {0, 1}:

P ∼

e1

. . .
eN


To be more precise, the number of 1 values is the dimension of the image of P , and

the number of 0 values is the dimension of space of vectors sent to 0 by P . �

An important class of self-adjoint matrices, which includes for instance all the projec-
tions, are the positive matrices. The theory here is as follows:

Theorem 1.18. For a matrix A ∈MN(C) the following conditions are equivalent, and
if they are satisfied, we say that A is positive:

(1) A = B2, with B = B∗.
(2) A = CC∗, for some C ∈MN(C).
(3) < Ax, x >≥ 0, for any vector x ∈ CN .
(4) A = A∗, and the eigenvalues are positive, λi ≥ 0.
(5) A = UDU∗, with U ∈ UN and with D ∈MN(R+) diagonal.

Proof. The idea is that the equivalences in the statement basically follow from some
elementary computations, with only Theorem 1.16 needed, at some point:

(1) =⇒ (2) This is clear, because we can take C = B.

(2) =⇒ (3) This follows from the following computation:

< Ax, x > = < CC∗x, x >

= < C∗x,C∗x >

≥ 0

(3) =⇒ (4) By using the fact that < Ax, x > is real, we have:

< Ax, x > = < x,A∗x >

= < A∗x, x >

Thus we have A = A∗, and the remaining assertion, regarding the eigenvalues, follows
from the following computation, assuming Ax = λx:

< Ax, x > = < λx, x >

= λ < x, x >

≥ 0

(4) =⇒ (5) This follows by using Theorem 1.16 above.
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(5) =⇒ (1) Assuming A = UDU∗ is as in the statement, with U ∈ UN , and with
D ∈MN(R+) being diagonal, we can set:

B = U
√
DU∗

Then B is self-adjoint, and its square is given by:

B2 = U
√
DU∗ · U

√
DU∗

= UDU∗

= A

Thus, we are led to the conclusion in the statement. �

Let us record as well the following technical version of the above result:

Theorem 1.19. For a matrix A ∈MN(C) the following conditions are equivalent, and
if they are satisfied, we say that A is strictly positive:

(1) A = B2, with B = B∗, invertible.
(2) A = CC∗, for some C ∈MN(C) invertible.
(3) < Ax, x >> 0, for any nonzero vector x ∈ CN .
(4) A = A∗, and the eigenvalues are strictly positive, λi > 0.
(5) A = UDU∗, with U ∈ UN and with D ∈MN(R∗+) diagonal.

Proof. This follows either from Theorem 1.18, by adding the various extra assump-
tions in the statement, or from the proof of Theorem 1.18, by modifying where needed. �

Let us discuss now the case of the unitary matrices. We have here:

Theorem 1.20. Any matrix U ∈ MN(C) which is unitary, U∗ = U−1, is diagonaliz-
able, with the eigenvalues on T. More precisely we have

U = V DV ∗

with V ∈ UN , and with D ∈MN(T) diagonal. The converse holds too.

Proof. As a first remark, the converse trivially holds, because given a matrix of type
U = V DV ∗, with V ∈ UN , and with D ∈MN(T) being diagonal, we have:

U∗ = (V DV ∗)∗

= V D∗V ∗

= V D−1V −1

= (V ∗)−1D−1V −1

= (V DV ∗)−1

= U−1
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Let us prove now the first assertion, stating that the eigenvalues of a unitary matrix
U ∈ UN belong to T. Indeed, assuming Uv = λv, we have:

< v, v > = < U∗Uv, v >

= < Uv, Uv >

= < λv, λv >

= |λ|2 < v, v >

Thus we obtain λ ∈ T, as claimed. Our next claim now is that the eigenspaces
corresponding to different eigenvalues are pairwise orthogonal. Assume indeed that:

Uv = λv , Uw = µw

We have then the following computation, using U∗ = U−1 and λ, µ ∈ T:

λ < v,w > = < λv,w >

= < Uv,w >

= < v,U∗w >

= < v,U−1w >

= < v, µ−1w >

= µ < v,w >

Thus λ 6= µ implies v ⊥ w, as claimed. In order now to finish the proof, it remains to
prove that the eigenspaces of U span the whole space CN . For this purpose, we will use
a recurrence method. Let us pick an eigenvector of our matrix:

Uv = λv

Assuming that we have a vector w orthogonal to it, v ⊥ w, we have:

< Uw, v > = < w,U∗v >

= < w,U−1v >

= < w, λ−1v >

= λ < w, v >

= 0

Thus, if v is an eigenvector, then the vector space v⊥ is invariant under U . Now since
U is an isometry, so is its restriction to this space v⊥. Thus this restriction is a unitary,
and so we can proceed by recurrence, and we obtain the result. �

The self-adjoint matrices and the unitary matrices are particular cases of the general
notion of a “normal matrix”, and we have here:
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Theorem 1.21. Any matrix A ∈ MN(C) which is normal, AA∗ = A∗A, is diagonal-
izable, with the diagonalization being of the following type,

A = UDU∗

with U ∈ UN , and with D ∈MN(C) diagonal. The converse holds too.

Proof. As a first remark, the converse trivially holds, because if we take a matrix of
the form A = UDU∗, with U unitary and D diagonal, then we have:

AA∗ = UDU∗ · UD∗U∗

= UDD∗U∗

= UD∗DU∗

= UD∗U∗ · UDU∗

= A∗A

In the other sense now, this is something more technical. Our first claim is that a
matrix A is normal precisely when the following happens, for any vector v:

||Av|| = ||A∗v||

Indeed, the above equality can be written as follows:

< AA∗v, v >=< A∗Av, v >

But this is equivalent to AA∗ = A∗A, by using the polarization identity. Our claim
now is that A,A∗ have the same eigenvectors, with conjugate eigenvalues:

Av = λv =⇒ A∗v = λ̄v

Indeed, this follows from the following computation, and from the trivial fact that if
A is normal, then so is any matrix of type A− λ1N :

||(A∗ − λ̄1N)v|| = ||(A− λ1N)∗v||
= ||(A− λ1N)v||
= 0

Let us prove now, by using this, that the eigenspaces of A are pairwise orthogonal.
Assume that we have two eigenvectors, corresponding to different eigenvalues, λ 6= µ:

Av = λv , Aw = µw
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We have the following computation, which shows that λ 6= µ implies v ⊥ w:

λ < v,w > = < λv,w >

= < Av,w >

= < v,A∗w >

= < v, µ̄w >

= µ < v,w >

In order to finish, it remains to prove that the eigenspaces of A span the whole CN .
This is something that we have already seen for the self-adjoint matrices, and for unitaries,
and we will use here these results, in order to deal with the general normal case. As a
first observation, given an arbitrary matrix A, the matrix AA∗ is self-adjoint:

(AA∗)∗ = AA∗

Thus, we can diagonalize this matrix AA∗, as follows, with the passage matrix being
a unitary, V ∈ UN , and with the diagonal form being real, E ∈MN(R):

AA∗ = V EV ∗

Now observe that, for matrices of type A = UDU∗, which are those that we supposed
to deal with, we have the following formulae:

V = U , E = DD̄

In particular, the matrices A and AA∗ have the same eigenspaces. So, this will be
our idea, proving that the eigenspaces of AA∗ are eigenspaces of A. In order to do so, let
us pick two eigenvectors v, w of the matrix AA∗, corresponding to different eigenvalues,
λ 6= µ. The eigenvalue equations are then as follows:

AA∗v = λv , AA∗w = µw

We have the following computation, using the normality condition AA∗ = A∗A, and
the fact that the eigenvalues of AA∗, and in particular µ, are real:

λ < Av,w > = < λAv,w >

= < Aλv,w >

= < AAA∗v, w >

= < AA∗Av,w >

= < Av,AA∗w >

= < Av, µw >

= µ < Av,w >

We conclude that we have < Av,w >= 0. But this reformulates as follows:

λ 6= µ =⇒ A(Eλ) ⊥ Eµ
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Now since the eigenspaces of AA∗ are pairwise orthogonal, and span the whole CN ,
we deduce from this that these eigenspaces are invariant under A:

A(Eλ) ⊂ Eλ

But with this result in hand, we can finish. Indeed, we can decompose the problem,
and the matrix A itself, following these eigenspaces of AA∗, which in practice amounts
in saying that we can assume that we only have 1 eigenspace. By rescaling, this is the
same as assuming that we have AA∗ = 1, and so we are now into the unitary case, that
we know how to solve, as explained in Theorem 1.20 above. �

As a first application, we have the following result:

Theorem 1.22. Given a matrix A ∈MN(C), we can construct a matrix |A| as follows,
by using the fact that A∗A is diagonalizable, with positive eigenvalues:

|A| =
√
A∗A

This matrix |A| is then positive, and its square is |A|2 = A. In the case N = 1, we obtain
in this way the usual absolute value of the complex numbers.

Proof. Consider indeed the matrix A∗A, which is normal. According to Theorem
1.21, we can diagonalize this matrix as follows, with U ∈ UN , and with D diagonal:

A = UDU∗

From A∗A ≥ 0 we obtain D ≥ 0. But this means that the entries of D are real, and
positive. Thus we can extract the square root

√
D, and then set:

√
A∗A = U

√
DU∗

Thus, we are basically done. Indeed, if we call this latter matrix |A|, then we are led to
the conclusions in the statement. Finally, the last assertion is clear from definitions. �

We can now formulate a first polar decomposition result, as follows:

Theorem 1.23. Any invertible matrix A ∈MN(C) decomposes as

A = U |A|

with U ∈ UN , and with |A| =
√
A∗A as above.

Proof. This is routine, and follows by comparing the actions of A, |A| on the vectors
v ∈ CN , and deducing from this the existence of a unitary U ∈ UN as above. We will be
back to this, later on, directly in the case of the linear operators on Hilbert spaces. �

Observe that at N = 1 we obtain in this way the usual polar decomposition of the
nonzero complex numbers. More generally now, we have the following result:
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Theorem 1.24. Any square matrix A ∈MN(C) decomposes as

A = U |A|
with U being a partial isometry, and with |A| =

√
A∗A as above.

Proof. Again, this follows by comparing the actions of A, |A| on the vectors v ∈ CN ,
and deducing from this the existence of a partial isometry U as above. Alternatively, we
can get this from Theorem 1.23, applied on the complement of the 0-eigenvectors. �

This was for our basic presentation of linear algebra. There are of course many other
things that can be said, but we will come back to some of them in what follows, directly
in the case of the linear operators on the arbitrary Hilbert spaces.

1e. Exercises

Linear algebra is a wide topic, and there are countless interesting matrices, and exer-
cises about them. As a continuation of our discussion about rotations, we have:

Exercise 1.25. Prove that the symmetry and projection with respect to the Ox axis
rotated by an angle t/2 ∈ R are given by the matrices

St =

(
cos t sin t
sin t − cos t

)
, Pt =

1

2

(
1 + cos t sin t

sin t 1− cos t

)
and then diagonalize these matrices, and if possible without computations.

Here the first part can only be clear on pictures, and don’t forget to check as well that
our formula of the rotation is the correct one. As for the second part, please but please
don’t go head-first into computations. There might be some geometry over there.

Exercise 1.26. Prove that the flat matrix, which is the all-one N ×N matrix, diag-
onalizes over the complex numbers as follows,1 . . . 1

...
...

1 . . . 1

 =
1

N
FN


N

0
. . .

0

F ∗N

where FN = (wij)ij with w = e2πi/N is the Fourier matrix, with the convention that the
indices are taken to be i, j = 0, 1, . . . , N − 1.

This is something very instructive. Normally you have to look for eigenvectors for the
flat matrix, and you are led in this way to the equation x0 + . . .+xN−1 = 0. The problem
however is that this equation, while looking very gentle, has no “canonical” solutions over
the real numbers. Thus you are led to the complex numbers, and more specifically to the
roots of unity, and their magic, leading to the above result. Enjoy.



CHAPTER 2

Bounded operators

2a. Hilbert spaces

We discuss in what follows an extension of the linear algebra results from the previous
chapter, obtained by looking at the linear operators T : H → H, with the space H
being no longer assumed to be finite dimensional. Our motivations come, as usual, from
quantum mechanics. However, these motivations cannot be something vague any longer,
because the theory of such operators T : H → H is quite technical, that you will certainly
not appreciate without some motivations in mind, and here is some reading:

(1) Generally speaking, physics is best learned from Feynman [36]. If you already
know some, and want to learn quantum mechanics, go with Griffiths [38]. And if you’re
already a bit familiar with quantum mechanics, a good book is Weinberg [94].

(2) A look at classics like Dirac [28], von Neumann [89] or Weyl [96] can be instructive
too. On the opposite, you have as well modern, fancy books on quantum information,
such as Bengtsson-Życzkowski [17], Nielsen-Chuang [64] or Watrous [92].

(3) In short, many ways of getting familiar with this big mess which is quantum
mechanics, and as long as you stay away from books advertised as “rigorous”, “axiomatic”,
“mathematical”, things fine. By the way, you can try as well my book [8].

Getting to work now, physics tells us to look at infinite dimensional complex spaces,
such as the space of wave functions ψ : R3 → C of the electron. In order to do some
mathematics on these spaces, we will need scalar products. So, let us start with:

Definition 2.1. A scalar product on a complex vector space H is a binary operation
H ×H → C, denoted (x, y)→< x, y >, satisfying the following conditions:

(1) < x, y > is linear in x, and antilinear in y.
(2) < x, y > =< y, x >, for any x, y.
(3) < x, x >> 0, for any x 6= 0.

Observe that we are using here mathematicians’ convention, with < ,> being linear
at left, as opposed to physicists’ convention, < ,> linear at right. The reasons for this
are quite subtle, mainly coming from the fact that basic quantum mechanics, which is
useful for many purposes, and is taught by physicists in their classes, looks better with

33
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< ,> linear at right, while advanced quantum mechanics, which is more of a business of
theoretical physicists and mathematicians, looks better with < ,> linear at left.

As a basic example for Definition 2.1, we have the finite dimensional vector space
H = CN , with its usual scalar product, which is as follows:

< x, y >=
∑
i

xiȳi

There are many other examples, and notably various spaces of L2 functions, which
naturally appear in problems coming from physics. We will discuss them later on. In
order to study now the scalar products, let us formulate the following definition:

Definition 2.2. The norm of a vector x ∈ H is the following quantity:

||x|| =
√
< x, x >

We also call this number length of x, or distance from x to the origin.

The terminology comes from what happens in CN , where the length of the vector, as
defined above, coincides with the usual length, given by:

||x|| =
√∑

i

|xi|2

In analogy with what happens in finite dimensions, we have two important results
regarding the norms. First we have the Cauchy-Schwarz inequality, as follows:

Theorem 2.3. We have the Cauchy-Schwarz inequality

| < x, y > | ≤ ||x|| · ||y||
and the equality case holds precisely when x, y are proportional.

Proof. This is something very standard. Consider indeed the following quantity,
depending on a real variable t ∈ R, and on a variable on the unit circle, w ∈ T:

f(t) = ||twx+ y||2

By developing f , we see that this is a degree 2 polynomial in t:

f(t) = < twx+ y, twx+ y >

= t2 < x, x > +tw < x, y > +tw̄ < y, x > + < y, y >

= t2||x||2 + 2tRe(w < x, y >) + ||y||2

Since f is obviously positive, its discriminant must be negative:

4Re(w < x, y >)2 − 4||x||2 · ||y||2 ≤ 0

But this is equivalent to the following condition:

|Re(w < x, y >)| ≤ ||x|| · ||y||
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Now the point is that we can arrange for the number w ∈ T to be such that the
quantity w < x, y > is real. Thus, we obtain the following inequality:

| < x, y > | ≤ ||x|| · ||y||

Finally, the study of the equality case is straightforward, by using the fact that the
discriminant of f vanishes precisely when we have a root. But this leads to the conclusion
in the statement, namely that the vectors x, y must be proportional. �

As a second main result now, we have the Minkowski inequality:

Theorem 2.4. We have the Minkowski inequality

||x+ y|| ≤ ||x||+ ||y||

and the equality case holds precisely when x, y are proportional.

Proof. This follows indeed from the Cauchy-Schwarz inequality, as follows:

||x+ y|| ≤ ||x||+ ||y||
⇐⇒ ||x+ y||2 ≤ (||x||+ ||y||)2

⇐⇒ ||x||2 + ||y||2 + 2Re < x, y >≤ ||x||2 + ||y||2 + 2||x|| · ||y||
⇐⇒ Re < x, y >≤ ||x|| · ||y||

As for the equality case, this is clear from Cauchy-Schwarz as well. �

As a consequence of this, we have the following result:

Theorem 2.5. The following function is a distance on H,

d(x, y) = ||x− y||

in the usual sense, that of the abstract metric spaces.

Proof. This follows indeed from the Minkowski inequality, which corresponds to the
triangle inequality, the other two axioms for a distance being trivially satisfied. �

The above result is quite important, because it shows that we can do geometry and
analysis in our present setting, with distances and angles, a bit as in the finite dimensional
case. In order to do such abstract geometry, we will often need the following key result,
which shows that everything can be recovered in terms of distances:

Proposition 2.6. The scalar products can be recovered from distances, via the formula

4 < x, y >= ||x+ y||2 − ||x− y||2 + i||x+ iy||2 − i||x− iy||2

called complex polarization identity.
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Proof. This is something that we have already met in finite dimensions. In arbitrary
dimensions the proof is similar, as follows:

||x+ y||2 − ||x− y||2 + i||x+ iy||2 − i||x− iy||2

= ||x||2 + ||y||2 − ||x||2 − ||y||2 + i||x||2 + i||y||2 − i||x||2 − i||y||2

+2Re(< x, y >) + 2Re(< x, y >) + 2iIm(< x, y >) + 2iIm(< x, y >)

= 4 < x, y >

Thus, we are led to the conclusion in the statement. �

In order to do analysis on our spaces, we need the Cauchy sequences that we construct
to converge. This is something which is automatic in finite dimensions, but in arbitrary
dimensions, this can fail. It is convenient here to formulate a detailed new definition, as
follows, which will be the starting point for our various considerations to follow:

Definition 2.7. A Hilbert space is a complex vector space H given with a scalar
product < x, y >, satisfying the following conditions:

(1) < x, y > is linear in x, and antilinear in y.
(2) < x, y > =< y, x >, for any x, y.
(3) < x, x >> 0, for any x 6= 0.
(4) H is complete with respect to the norm ||x|| = √< x, x >.

In other words, we have taken here Definition 2.1 above, and added the condition that
H must be complete with respect to the norm ||x|| = √< x, x >, that we know indeed to
be a norm, according to the Minkowski inequality proved above. As a basic example, as
before, we have the space H = CN , with its usual scalar product, namely:

< x, y >=
∑
i

xiȳi

More generally now, we have the following construction of Hilbert spaces:

Proposition 2.8. The sequences of complex numbers (xi) which are square-summable,∑
i

|xi|2 <∞

form a Hilbert space l2(N), with the following scalar product:

< x, y >=
∑
i

xiȳi

In fact, given any index set I, we can construct a Hilbert space l2(I), in this way.

Proof. The fact that we have indeed a complex vector space with a scalar product
is elementary, and the fact that this space is indeed complete is very standard too. �

On the other hand, we can talk as well about spaces of functions, as follows:
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Proposition 2.9. Given an interval X ⊂ R, the quantity

< f, g >=

∫
X

f(x)g(x)dx

is a scalar product, making H = L2(X) a Hilbert space.

Proof. Once again this is routine, coming this time from basic measure theory, with
H = L2(X) being the space of square-integrable functions f : X → C, with the convention
that two such functions are identified when they coincide almost everywhere. �

We can unify the above two constructions, as follows:

Theorem 2.10. Given a measured space X, the quantity

< f, g >=

∫
X

f(x)g(x)dx

is a scalar product, making H = L2(X) a Hilbert space.

Proof. Here the first assertion is clear, and the fact that the Cauchy sequences
converge is clear as well, by taking the pointwise limit, and using a standard argument. �

The above construction is quite interesting, because it unifies all the Hilbert space
constructions that we have so far. To be more precise, the examples in Proposition 2.9
are certainly covered, and the previous examples are covered as well, as follows:

X = {1, . . . , N} =⇒ H = CN

X = N =⇒ H = l2(N)

X = I =⇒ H = l2(I)

Quite remarkably, the converse of this holds, in the sense that any Hilbert space must
be of the form L2(X). This follows indeed from the following key result, which tells us
that, in addition to this, we can always assume that X = I is a discrete space:

Theorem 2.11. Let H be a Hilbert space.

(1) Any algebraic basis of this space {fi}i∈I can be turned into an orthonormal basis
{ei}i∈I , by using the Gram-Schmidt procedure.

(2) Thus, H has an orthonormal basis, and so we have H ' l2(I), with I being the
indexing set for this orthonormal basis.

Proof. All this is standard, by recurrence in finite dimensions, using Gram-Schmidt,
as stated, and by recurrence as well in infinite, countable dimensions. As for the case
of infinite, uncountable dimensions, here the result holds as well, with the proof using
technical transfinite recurrence arguments, borrowed from logic. �

The above result, and its relation with Theorem 2.10, is something quite subtle, so let
us further get into this. First, we have the following definition, based on the above:
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Definition 2.12. A Hilbert space H is called separable when the following equivalent
conditions are satisfied:

(1) H has a countable algebraic basis {fi}i∈N.
(2) H has a countable orthonormal basis {ei}i∈N.
(3) We have H ' l2(N), isomorphism of Hilbert spaces.

In what follows we will be mainly interested in the separable Hilbert spaces, where
most of the questions coming from quantum physics take place. In view of the above, the
following philosophical question appears: why not simply talking about l2(N)?

In answer to this, we cannot really do so, because many of the separable spaces that
we are interested in appear as spaces of functions, and such spaces do not necessarily have
a very simple or explicit orthonormal basis, as shown by the following result:

Proposition 2.13. The Hilbert space H = L2[0, 1] is separable, having as orthonormal
basis the orthonormalized version of the algebraic basis fn = xn with n ∈ N.

Proof. This follows from the Weierstrass theorem, which provides us with the basis
fn = xn, which can be orthogonalized by using the Gram-Schmidt procedure, as explained
in Theorem 2.11. Working out the details here is actually an excellent exercise. �

As a conclusion to all this, we are interested in 1 space, namely the unique separable
Hilbert space H, but due to various technical reasons, it is often better to forget that we
have H = l2(N), and say instead that we have H = L2(X), with X being a separable
measured space, or simply say that H is an abstract separable Hilbert space.

2b. Linear operators

Let us get now into the study of linear operators T : H → H, which will eventually
lead us into the correct infinite dimensional version of linear algebra. We first have:

Theorem 2.14. Let H be a Hilbert space, with orthonormal basis {ei}i∈I . The linear
operators T : H → H can be then identified with matrices M ∈MI(C) via

Tx = Mx , Mij =< Tej, ei >

and we obtain in this way an embedding as follows, which is multiplicative:

L(H) ⊂MI(C)

In the case H = CN we obtain in this way the usual isomorphism L(H) ' MN(C). In
the separable case we obtain in this way a proper embedding L(H) ⊂M∞(C).

Proof. We have several assertions to be proved, the idea being as follows:

(1) Regarding the first assertion, given a linear operator T : H → H, let us associate
to it a matrix M ∈MI(C) as in the statement, by the following formula:

Mij =< Tej, ei >
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It is clear that this correspondence T → M is linear, and also that its kernel is {0}.
Thus, we have an embedding of linear spaces, as follows:

L(H) ⊂MI(C)

(2) Our claim now is that this embedding is multiplicative. But this is clear too,
because if we denote by T →MT our correspondence, we have:

(MST )ij = < STej, ei >

=

〈
S
∑
k

< Tej, ek > ek, ei

〉
=

∑
k

< Sek, ei >< Tej, ek >

=
∑
k

(MS)ik(MT )kj

= (MSMT )ij

(3) Finally, we must prove that the original operator T : H → H can be recovered
from its matrix M ∈ MI(C) via the formula in the statement, namely Tx = Mx. But
this latter formula holds for the vectors of the basis, x = ej, because we have:

(Tej)i = < Tej, ei >

= Mij

= (Mej)i

Now by linearity we obtain from this that the formula Tx = Mx holds everywhere,
on any vector x ∈ H, and this finishes the proof of the first assertion.

(4) In finite dimensions we obtain an isomorphism, because any matrix M ∈ MN(C)
determines an operator T : CN → CN , according to the formula < Tej, ei >= Mij. In
infinite dimensions, however, we do not have an isomorphism. For instance on H = l2(N)
the following matrix does not define an operator:

M =

1 1 . . .
1 1 . . .
...

...


Indeed, T (e1) should be the all-one vector, which is not square-summable. �

In connection with our previous comments on bases, the above result is something
quite theoretical, because for basic Hilbert spaces like L2[0, 1], which do not have a simple
orthonormal basis, the embedding L(H) ⊂M∞(C) that we obtain is not something very
useful. In short, while the operators T : H → H are basically some infinite matrices, it is
better to think of these operators as being objects on their own.
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In what follows we will be interested in the operators T : H → H which are bounded.
This is a quite subtle point, and a departure from basic quantum mechanics, that of
the 1920s, where the relevant operators T : H → H used to be densely defined, and
unbounded. But hey, if modern physics says that operators should be bounded, why
not assuming this, and with the remark that all this will considerably simplify the math,
certainly a good thing. Regarding such operators, we have the following result:

Theorem 2.15. Given a Hilbert space H, the linear operators T : H → H which are
bounded, in the sense that we have

||T || = sup
||x||≤1

||Tx|| <∞

form a complex algebra with unit B(H), having the property

||ST || ≤ ||S|| · ||T ||

and which is complete with respect to the norm.

Proof. The fact that we have indeed an algebra, satisfying the product condition in
the statement, follows from the following estimates, which are all elementary:

||S + T || ≤ ||S||+ ||T ||

||λT || = |λ| · ||T ||

||ST || ≤ ||S|| · ||T ||
Regarding now the last assertion, if {Tn} ⊂ B(H) is Cauchy then {Tnx} is Cauchy

for any x ∈ H, so we can define the limit T = limn→∞ Tn by setting:

Tx = lim
n→∞

Tnx

Let us first check that the application x→ Tx is linear. We have:

T (x+ y) = lim
n→∞

Tn(x+ y)

= lim
n→∞

Tn(x) + Tn(y)

= lim
n→∞

Tn(x) + lim
n→∞

Tn(y)

= T (x) + T (y)

Similarly, we have as well the following computation:

T (λx) = lim
n→∞

Tn(λx)

= λ lim
n→∞

Tn(x)

= λT (x)
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Thus we have T ∈ L(H). It remains now to prove that we have T ∈ B(H), and that
we have Tn → T in norm. For this purpose, observe that we have:

||Tn − Tm|| ≤ ε , ∀n,m ≥ N

=⇒ ||Tnx− Tmx|| ≤ ε , ∀||x|| = 1 , ∀n,m ≥ N

=⇒ ||Tnx− Tx|| ≤ ε , ∀||x|| = 1 , ∀n ≥ N

=⇒ ||TNx− Tx|| ≤ ε , ∀||x|| = 1

=⇒ ||TN − T || ≤ ε

As a first consequence, we obtain T ∈ B(H), because we have:

||T || = ||TN + (T − TN)||
≤ ||TN ||+ ||T − TN ||
≤ ||TN ||+ ε

< ∞
As a second consequence, we obtain TN → T in norm, and we are done. �

As a first observation, in connection with our previous comments, in relation with the
construction from Theorem 2.14 above, we have:

Proposition 2.16. We have embeddings of algebras as follows,

B(H) ⊂ L(H) ⊂MI(C)

which are both proper, in the infinite dimensional case.

Proof. According to Theorem 2.14, the algebra B(H) consists of the I × I complex
matrices which define indeed linear maps T : H → H, and which satisfy as well a second
boundedness condition, coming from the boundedness of the norm of T :

||T || <∞
In finite dimensions we have equalities everywhere, but in general this is not true, the

standard example of a matrix which does not produce a linear operator being:

M =

1 1 . . .
1 1 . . .
...

...


As for the examples of linear operators which are well-defined, on the whole Hilbert

space, but which are not bounded, these can be constructed as well, by using methods
from logic. We will not need these counterexamples in what follows. �

As already mentioned after Theorem 2.14, all this is something quite theoretical,
because for basic function spaces like L2[0, 1], which do not have a simple orthonormal
basis, the embedding B(H) ⊂MI(C) that we obtain is not very useful.
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As in the finite dimensional case, we can talk about adjoint operators, in this setting,
the definition and main properties of the construction T → T ∗ being as follows:

Theorem 2.17. Given a bounded operator T ∈ B(H), the following formula defines
a bounded operator T ∗ ∈ B(H), called adjoint of H:

< Tx, y >=< x, T ∗y >

The correspondence T → T ∗ is antilinear, antimultiplicative, and is an involution, and
an isometry. In finite dimensions, we recover the usual adjoint operator.

Proof. There are several things to be done here, the idea being as follows:

(1) We will need a standard functional analysis result, stating that the continuous
linear forms ϕ : H → C appear as scalar products, as follows, with z ∈ H:

ϕ(x) =< x, z >

Indeed, in one sense this is clear, because given z ∈ H, the application ϕ(x) =< x, z >
is linear, and continuous as well, because by Cauchy-Schwarz we have:

|ϕ(x)| ≤ ||x|| · ||z||

Conversely now, by using a basis we can assume H = l2(N), and our linear form
ϕ : H → C must be then, by linearity, given by a formula of the following type:

ϕ(x) =
∑
i

xiz̄i

But, again by Cauchy-Schwarz, in order for such a formula to define indeed a contin-
uous linear form ϕ : H → C we must have z ∈ l2(N), and so z ∈ H, as desired.

(2) With this in hand, we can now construct the adjoint T ∗, by the formula in the
statement. Indeed, given y ∈ H, the formula ϕ(x) =< Tx, y > defines a linear map
H → C. Thus, we must have a formula as follows, for a certain vector T ∗y ∈ H:

ϕ(x) =< x, T ∗y >

Moreover, this vector T ∗y ∈ H is unique with this property, and we conclude from
this that the formula y → T ∗y defines a certain map T ∗ : H → H, which is unique with
the property in the statement, namely < Tx, y >=< x, T ∗y > for any x, y.

(3) Let us prove that we have T ∗ ∈ B(H). By using once again the uniqueness of T ∗,
we conclude that we have the following formulae, which show that T ∗ is linear:

T ∗(x+ y) = T ∗x+ T ∗y , T ∗(λx) = λT ∗x
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Observe also that T ∗ is bounded as well, because we have:

||T || = sup
||x||=1

sup
||y||=1

< Tx, y >

= sup
||y||=1

sup
||x||=1

< x, T ∗y >

= ||T ∗||
(4) The fact that the correspondence T → T ∗ is antilinear, antimultiplicative, and is

an involution comes from the following formulae, coming from uniqueness:

(S + T )∗ = S∗ + T ∗ , (λT )∗ = λ̄T ∗

(ST )∗ = T ∗S∗ , (T ∗)∗ = T

As for the isometry property with respect to the operator norm, ||T || = ||T ∗||, this is
something that we already know, from the proof of (3) above.

(5) Regarding finite dimensions, let us first examine the general case where our Hilbert
space comes with a basis, H = l2(I). We know from Theorem 2.14 that the operators
T ∈ B(H) correspond to matrices M ∈MI(C), the connecting formula being:

Mij =< Tej, ei >

We can compute the matrix M∗ ∈ MI(C) associated to the operator T ∗ ∈ B(H), by
using the formula < Tx, y >=< x, T ∗y >, in the following way:

(M∗)ij = < T ∗ej, ei >

= < ei, T ∗ej >

= < Tei, ej >

= M ji

Thus, we have reached to the usual formula for the adjoints of matrices, and in the
particular case H = CN , we conclude that T ∗ comes indeed from the usual M∗. �

As in finite dimensions, the operators T, T ∗ can be thought of as being “twin brothers”,
and there is a lot of interesting mathematics connecting them. We will be back to this
later. For the moment, let us just record the following useful formula:

Theorem 2.18. We have the following formula,

||TT ∗|| = ||T ||2

valid for any operator T ∈ B(H).

Proof. We recall from Theorem 2.17 that the correspondence T → T ∗ is an isometry
with respect to the operator norm, in the sense that we have:

||T || = ||T ∗||
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In order to prove now the formula in the statement, observe first that we have:

||TT ∗|| ≤ ||T || · ||T ∗|| = ||T ||2

On the other hand, we have as well the following estimate:

||T ||2 = sup
||x||=1

| < Tx, Tx > |

= sup
||x||=1

| < x, T ∗Tx > |

≤ ||T ∗T ||
By replacing T → T ∗ we obtain from this that we have:

||T ||2 ≤ ||TT ∗||
Thus, we have obtained the needed inequality, and we are done. �

As a technical comment here, one may wonder whether there are other interesting
norm formulae relating T, T ∗, besides those that we already know, namely ||T || = ||T ∗||
and ||TT ∗|| = ||T ||2. The answer here is non-trivial, basically stating that all possible
norm formulae relating T, T ∗, including the basic isometry formula ||T || = ||T ∗||, can be
deduced from the “master formula” ||TT ∗|| = ||T ||2. We will be back to this.

2c. Unitaries, projections

Let us discuss now some explicit examples of operators, in analogy with what happens
in finite dimensions. The most basic examples of linear transformations are the rotations,
symmetries and projections. Then, we have certain remarkable classes of linear trans-
formations, such as the positive, self-adjoint and normal ones. In what follows we will
develop the basic theory of such transformations, in the present Hilbert space setting.

Let us begin with the rotations. The situation here is quite tricky in arbitrary dimen-
sions, and we have several notions instead of one. We first have the following result:

Theorem 2.19. For a linear operator U ∈ B(H) the following conditions are equiva-
lent, and if they are satisfied, we say that U is an isometry:

(1) U is a metric space isometry, d(Ux, Uy) = d(x, y).
(2) U is a normed space isometry, ||Ux|| = ||x||.
(3) U preserves the scalar product, < Ux,Uy >=< x, y >.
(4) U satisfies the isometry condition U∗U = 1.

In finite dimensions, we recover in this way the usual unitary transformations.

Proof. The proofs are similar to those in finite dimensions, as follows:

(1) ⇐⇒ (2) This follows indeed from the formula of the distances, namely:

d(x, y) = ||x− y||
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(2) ⇐⇒ (3) This is once again standard. Indeed, we can pass from scalar products
to distances, by using the following formula:

||x|| =
√
< x, x >

Conversely, we can compute the scalar products in terms of distances, by using the
complex polarization identity, which is as follows:

||x+ y||2 − ||x− y||2 + i||x+ iy||2 − i||x− iy||2

= ||x||2 + ||y||2 − ||x||2 − ||y||2 + i||x||2 + i||y||2 − i||x||2 − i||y||2

+2Re(< x, y >) + 2Re(< x, y >) + 2iIm(< x, y >) + 2iIm(< x, y >)

= 4 < x, y >

(3) ⇐⇒ (4) We have indeed the following equivalences, by using the standard formula
< Tx, y >=< x, T ∗y >, which defines the adjoint operator:

< Ux,Uy >=< x, y > ⇐⇒ < x,U∗Uy >=< x, y >

⇐⇒ U∗Uy = y

⇐⇒ U∗U = 1

Thus, we are led to the conclusions in the statement. �

The point now is that the condition U∗U = 1 does not imply in general UU∗ = 1, the
simplest counterexample here being the shift operator on l2(N):

Proposition 2.20. The shift operator on the space l2(N), given by

S(ei) = ei+1

is an isometry, S∗S = 1. However, we have SS∗ 6= 1.

Proof. The adjoint of the shift is given by the following formula:

S∗(ei) =

{
ei−1 if i > 0

0 if i = 0

When composing S, S∗, in one sense we obtain the following formula:

S∗S(ei) = ei

In other other sense now, we obtain the following formula:

SS∗(ei) =

{
ei if i > 0

0 if i = 0

Summarizing, the compositions are given by the following formulae:

S∗S = 1 , SS∗ = Proj(e⊥0 )

Thus, we are led to the conclusions in the statement. �
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As a conclusion, the notion of isometry is not the correct infinite dimensional analogue
of the notion of unitary, and the unitary operators must be introduced as follows:

Theorem 2.21. For a linear operator U ∈ B(H) the following conditions are equiva-
lent, and if they are satisfied, we say that U is a unitary:

(1) U is an isometry, which is invertible.
(2) U , U−1 are both isometries.
(3) U , U∗ are both isometries.
(4) UU∗ = U∗U = 1.
(5) U∗ = U−1.

Moreover, the unitary operators from a group U(H) ⊂ B(H).

Proof. There are several statements here, the idea being as follows:

(1) The various equivalences in the statement are all clear from definitions, and from
Theorem 2.19 in what regards the various possible notions of isometries which can be
used, by using the formula (ST )∗ = T ∗S∗ for the adjoints of the products of operators.

(2) The fact that the products and inverses of unitaries are unitaries is also clear, and
we conclude that the unitary operators from a group U(H) ⊂ B(H), as stated. �

As a conclusion to all this, in infinite dimensions we have three notions in relation with
the usual rotations, namely the isometries, the adjoints of isometries, and the unitaries.
The example to be kept in mind is the shift operator on S on the separable Hilbert space
l2(N), which is an isometry, S∗S = 1, but not a unitary, SS∗ 6= 1.

Let us discuss now the projections. Modulo the fact that all the subspaces K ⊂ H
where these projections project must be assumed to be closed, in the present setting, here
the result is perfectly similar to the one in finite dimensions, as follows:

Theorem 2.22. For a linear operator P ∈ B(H) the following conditions are equiva-
lent, and if they are satisfied, we say that P is a projection:

(1) P is the orthogonal projection on a closed subspace K ⊂ H.
(2) P satisfies the projection equations P 2 = P = P ∗.

Proof. As in finite dimensions, P is an abstract projection, not necessarily orthogo-
nal, when it is an idempotent, algebrically speaking, in the sense that we have:

P 2 = P

The point now is that this projection is orthogonal when:

< Px− x, Py >= 0 ⇐⇒ < P ∗Px− P ∗x, y >= 0

⇐⇒ P ∗Px− P ∗x = 0

⇐⇒ P ∗P − P ∗ = 0

⇐⇒ P ∗P = P ∗
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Thus we must have P ∗ = P ∗P . Now observe that by conjugating, we obtain:

P = (P ∗P )∗

= P ∗(P ∗)∗

= P ∗P

Now by comparing with the original relation, P ∗ = P ∗P , we conclude that P = P ∗.
Thus, we have shown that any orthogonal projection must satisfy, as claimed:

P 2 = P = P ∗

Conversely, if this condition is satisfied, P 2 = P shows that P is a projection, and
P = P ∗ shows via the above computation that P is indeed orthogonal. �

There is a relation between the projections and the general isometries, such as the
shift S that we met before, and we have the following result:

Proposition 2.23. Given an isometry U ∈ B(H), the following operator

P = UU∗

is a projection, namely the orthogonal projection on Im(U).

Proof. Assume indeed that we have an isometry, U∗U = 1. The fact that P = UU∗

is indeed a projection can be checked abstractly, as follows:

(UU∗)∗ = UU∗

UU∗UU∗ = UU∗

As for the last assertion, this is something that we already met, for the shift, and the
situation in general is similar, with the result itself being clear. �

More generally now, along the same lines, and clarifying the whole situation with the
unitaries and isometries, we have the following result:

Theorem 2.24. An operator U ∈ B(H) is a partial isometry, in the usual geometric
sense, when the following two operators are projections:

P = UU∗ , Q = U∗U

Moreover, the isometries, adjoints of isometries and unitaries are respectively character-
ized by the conditions Q = 1, P = 1, P = Q = 1.

Proof. The first assertion is a straightforward extension of Proposition 2.23, and the
second assertion follows from various results regarding isometries established above. �

Summarizing, we have infinite dimensional analogues of the rotations, projections and
partial isometries, and the theory is quite similar to what we knew before, with a few
twists, however, coming from counterexamples such as the shift operator on l2(N). It is
possible to talk as well about symmetries, in the following way:
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Definition 2.25. An operator S ∈ B(H) is called a symmetry when S2 = 1, and a
unitary symmetry when one of the following equivalent conditions is satisfied:

(1) S is a unitary, S∗ = S−1, and a symmetry as well, S2 = 1.
(2) S satisfies the equations S = S∗ = S−1.

With these basic examples discussed, and more on this later, on various occasions,
let us study now some larger classes of operators, which are of particular importance.
The idea indeed is that in finite dimensions we can have self-adjointness, T = T ∗, then
positivity and normality, and our next task will be that of talking about such operators,
in infinite dimensions. Regarding the relation between T, T ∗, we have here:

Proposition 2.26. Given a bounded operator T ∈ B(H), the following happen:

(1) kerT ∗ = (ImT )⊥.
(2) ImT ∗ = (kerT )⊥.

Proof. Both these assertions are elementary, as follows:

(1) Let us first prove “⊂”. Assuming T ∗x = 0, we have indeed x ⊥ ImT , because:

< x, Ty >=< T ∗x, y >= 0

As for “⊃”, assuming < x, Ty >= 0 for any y, we have T ∗x = 0, because:

< T ∗x, y >=< x, Ty >= 0

(2) This can be deduced from (1), applied to the operator T ∗, as follows:

(kerT )⊥ = (ImT ∗)⊥⊥ = ImT ∗

Here we have used the formula K⊥⊥ = K̄, valid for any linear subspace K ⊂ H of a
Hilbert space, which for K closed reads K⊥⊥ = K, and comes from H = K ⊕K⊥, and
which in general follows from K⊥⊥ ⊂ K̄⊥⊥ = K̄, the reverse inclusion being clear. �

Let us discuss now the self-adjoint operators. The basic theory here is as follows:

Theorem 2.27. For an operator T ∈ B(H), the following conditions are equivalent,
and if they are satisfied, we call T self-adjoint:

(1) T = T ∗.
(2) < Tx, x >∈ R.

In finite dimensions, we recover in this way the usual self-adjointness notion.

Proof. There are several assertions here, the idea being as follows:

(1) =⇒ (2) This is clear, because we have:

< Tx, x > = < x, Tx >

= < T ∗x, x >

= < Tx, x >
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(2) =⇒ (1) In order to prove this, observe that the beginning of the above computa-
tion shows that, when assuming < Tx, x >∈ R, the following happens:

< Tx, x >=< T ∗x, x >

Thus, in terms of the operator S = T − T ∗, we have:

< Sx, x >= 0

In order to finish, we use a polarization trick. We have the following formula:

< S(x+ y), x+ y >=< Sx, x > + < Sy, y > + < Sx, y > + < Sy, x >

Since the first 3 terms vanish, the sum of the 2 last terms vanishes too. But, by using
S∗ = −S, coming from S = T − T ∗, we can process this latter vanishing as follows:

< Sx, y > = − < Sy, x >

= < y, Sx >

= < Sx, y >

Thus we must have < Sx, y >∈ R, and with y → iy we obtain < Sx, y >∈ iR too,
and so < Sx, y >= 0. Thus S = 0, which gives T = T ∗, as desired.

(3) Finally, in what regards the finite dimensions, or more generally the case where our
Hilbert space comes with a basis, H = l2(I), here the condition T = T ∗ corresponds to
the usual self-adjointness condition M = M∗ at the level of the associated matrices. �

At the level of the basic examples, the situation is as follows:

Proposition 2.28. The folowing operators are self-adjoint:

(1) The projections, P 2 = P = P ∗. In fact, an abstract, algebraic projection is an
orthogonal projection precisely when it is self-adjoint.

(2) The unitary symmetries, S = S∗ = S−1. In fact, a unitary is a unitary symmetry
precisely when it is self-adjoint.

Proof. The fact that the projections and the unitary symmetries are indeed self-
adjoint is clear, the self-adjointness condition being part of the equations to be satisfied.
As for the other assertions, these are things that we know, which are trivial as well. �

Next in line, we have the notion of positive operator. We have here:

Theorem 2.29. The positive operators, which are the operators T ∈ B(H) satisfying
< Tx, x >≥ 0, have the following properties:

(1) They are self-adjoint, T = T ∗.
(2) As examples, we have the projections, P 2 = P = P ∗.
(3) More generally, T = S∗S is positive, for any S ∈ B(H).
(4) In finite dimensions, we recover the usual positive operators.
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Proof. All these assertions are elementary, the idea being as follows:

(1) This follows from the equivalence in Theorem 2.27 above, because the positivity
condition < Tx, x >≥ 0 assumes that we have < Tx, x >∈ R.

(2) This is clear from P 2 = P = P ∗, because we have:

< Px, x > = < P 2x, x >

= < Px, P ∗x >

= < Px, Px >

= ||Px||2

(3) This follows from a similar computation, namely:

< S∗Sx, x > = < Sx, Sx >

= ||Sx||2

(4) This is well-known, the idea being that the condition < Tx, x >≥ 0 corresponds
to the usual positivity condition A ≥ 0, at the level of the associated matrix. �

It is possible to talk as well about strictly positive operators, and we have here:

Theorem 2.30. The strictly positive operators, which are the operators T ∈ B(H)
satisfying < Tx, x >> 0, for any x 6= 0, have the following properties:

(1) They are self-adjoint, T = T ∗.
(2) As examples, T = S∗S is positive, for any S ∈ B(H) injective.
(3) In finite dimensions, we recover the usual strictly positive operators.

Proof. As before, all these assertions are elementary, the idea being as follows:

(1) This follows from the equivalence in Theorem 2.26 above, because the positivity
condition < Tx, x >> 0 assumes that we have < Tx, x >∈ R.

(2) This follows from the injectivity of S, because for any x 6= 0 we have:

< S∗Sx, x > = < Sx, Sx >

= ||Sx||2

> 0

(3) This is well-known, the idea being that the condition < Tx, x >> 0 corresponds
to the usual strict positivity condition A > 0, at the level of the associated matrix. �

As a comment here, in relation with the above, there are in fact some subtleties in
the infinite dimensional case. Indeed, while any strictly positive matrix A > 0 is well-
known to be invertible, the analogue of this fact does not hold in infinite dimensions, a
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conterexample here being the following operator on l2(N):

T =


1

1
2

1
3

. . .


As a last remarkable class of operators, we have the normal ones. We have here:

Theorem 2.31. For an operator T ∈ B(H), the following conditions are equivalent,
and if they are satisfied, we call T normal:

(1) TT ∗ = T ∗T .
(2) ||Tx|| = ||T ∗x||.

In finite dimensions, we recover in this way the usual normality notion.

Proof. There are several assertions here, the idea being as follows:

(1) =⇒ (2) This is clear, due to the following computation:

||Tx||2 = < Tx, Tx >

= < T ∗Tx, x >

= < TT ∗x, x >

= < T ∗x, T ∗x >

= ||T ∗x||2

(2) =⇒ (1) This is clear as well, because the above computation shows that, when
assuming ||Tx|| = ||T ∗x||, the following happens:

< TT ∗x, x >=< T ∗Tx, x >

Thus, in terms of the operator S = TT ∗ − T ∗T , we have:

< Sx, x >= 0

In order to finish, we use a polarization trick. We have the following formula:

< S(x+ y), x+ y >=< Sx, x > + < Sy, y > + < Sx, y > + < Sy, x >

Since the first 3 terms vanish, the sum of the 2 last terms vanishes too. But, by using
S = S∗, coming from S = TT ∗ − T ∗T , we can process this latter vanishing as follows:

< Sx, y > = − < Sy, x >

= − < y, Sx >

= −< Sx, y >

Thus we must have < Sx, y >∈ iR, and with y → iy we obtain < Sx, y >∈ R too,
and so < Sx, y >= 0. Thus S = 0, which gives TT ∗ = T ∗T , as desired.
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(3) Finally, in what regards the finite dimensions, or more generally the case where our
Hilbert space comes with a basis, H = l2(I), here the condition TT ∗ = T ∗T corresponds to
the usual normality condition MM∗ = M∗M at the level of the associated matrices. �

As a conclusion to all this, we have all sorts of classes of operators. By ignoring the
partial isometries, unitaries, symmetries and the strictly positive operators, which are
more specialized objects, we have the following hierarchy of bounded operators:

(1) Projections, P 2 = P = P ∗.

(2) Positive operators, T ≥ 0.

(3) Self-adjoint operators, T = T ∗.

(4) Normal operators, TT ∗ = T ∗T .

In addition, the class of normal operators covers all the unitaries, and in particular,
all the unitary symmetries. The non-unitary isometries, however, are not normal.

2d. Diagonal operators

Let us work out now what happens in the case that we are mostly interested in, namely
H = L2(X), with X being a measured space. We first have:

Theorem 2.32. Given a measured space X, consider the Hilbert space H = L2(X).
Associated to any function f ∈ L∞(X) is then the multiplication operator

Tf : H → H , Tf (g) = fg

which is well-defined, linear and bounded, having norm as follows:

||Tf || = ||f ||∞
Moreover, the correspondence f → Tf is linear, multiplicative and involutive.

Proof. There are several assertions here, the idea being as follows:

(1) We must first prove that the formula in the statement, Tf (g) = fg, defines indeed
an operator H → H, which amounts in saying that we have:

f ∈ L∞(X), g ∈ L2(X) =⇒ fg ∈ L2(X)

But this follows from the following explicit estimate:

||fg||2 =

√∫
X

|f(x)|2|g(x)|2dµ(x)

≤ sup
x∈X
|f(x)|2

√∫
X

|g(x)|2dµ(x)

= ||f ||∞||g||2
< ∞
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(2) Next in line, we must prove that T is linear and bounded. We have:

Tf (g + h) = Tf (g) + Tf (h) , Tf (λg) = λTf (g)

As for the boundedness condition, this follows from the estimate from the proof of (1),
which gives, in terms of the operator norm of B(H):

||Tf || ≤ ||f ||∞
(3) Let us prove now that we have equality, ||Tf || = ||f ||∞, in the above estimate. For

this purpose, we use the well-known fact that the L∞ functions can be approximated by
L2 functions. Indeed, with such an approximation gn → f we obtain:

||fgn||2 =

√∫
X

|f(x)|2|gn(x)|2dµ(x)

' sup
x∈X
|f(x)|2

√∫
X

|gn(x)|2dµ(x)

= ||f ||∞||gn||2
Thus, with n → ∞ we obtain ||Tf || ≥ ||f ||∞, which is reverse to the inequality

obtained in the proof of (2), and this leads to the conclusion in the statement.

(4) Regarding now the fact that the correspondence f → Tf is indeed linear and
multiplicative, the corresponding formulae are as follows, both clear:

Tf+h(g) = Tf (g) + Th(g) , Tλf (g) = λTf (g)

(5) Finally, let us prove that the correspondence f → Tf is involutive, in the sense
that it transforms the standard involution f → f̄ of the algebra L∞(X) into the standard
involution T → T ∗ of the algebra B(H). We must prove that we have:

T ∗f = Tf̄

But this follows from the following computation:

< Tfg, h > = < fg, h >

=

∫
X

f(x)g(x)h̄(x)dµ(x)

=

∫
X

g(x)f(x)h̄(x)dµ(x)

= < g, f̄h >

= < g, Tf̄h >

Indeed, since the adjoint is unique, we obtain from this T ∗f = Tf̄ . Thus the correspon-
dence f → Tf is indeed involutive, as claimed. �
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In what regards now the basic classes of operators, the above construction provides
us with many new examples, which are very explicit, and are complementary to the usual
finite dimensional examples that we usually have in mind, as follows:

Theorem 2.33. The multiplication operators Tf (g) = fg on the Hilbert space H =
L2(X) associated to the functions f ∈ L∞(X) are as follows:

(1) Tf is unitary when f : X → T.
(2) Tf is a symmetry when f : X → {−1, 1}.
(3) Tf is a projection when f = χY with Y ∈ X.
(4) There are no non-unitary isometries.
(5) There are no non-unitary symmetries.
(6) Tf is positive when f : X → R+.
(7) Tf is self-adjoint when f : X → R.
(8) Tf is always normal, for any f : X → C.

Proof. All these assertions are clear from definitions, and from the various properties
of the correspondence f → Tf , established above, as follows:

(1) The unitarity condition U∗ = U−1 for the operator Tf reads f̄ = f−1, which means
that we must have f : X → T, as claimed.

(2) The symmetry condition S2 = 1 for the operator Tf reads f 2 = 1, which means
that we must have f : X → {−1, 1}, as claimed.

(3) The projection condition P 2 = P = P ∗ for the operator Tf reads f 2 = f = f̄ ,
which means that we must have f : X → {0, 1}, or equivalently, f = χY with Y ⊂ X.

(4) A non-unitary isometry must satisfy by definition U∗U = 1, UU∗ 6= 1, and for the
operator Tf this means that we must have |f |2 = 1, |f |2 6= 1, which is impossible.

(5) This follows from (1) and (2), because the solutions found in (2) for the symmetry
problem are included in the solutions found in (1) for the unitarity problem.

(6) The fact that Tf is positive amounts in saying that we must have < fg, g >≥ 0
for any g ∈ L2(X), and this is equivalent to the fact that we must have f ≥ 0, as desired.

(7) The self-adjointness condition T = T ∗ for the operator Tf reads f = f̄ , which
means that we must have f : X → R, as claimed.

(8) The normality condition TT ∗ = T ∗T for the operator Tf reads ff̄ = f̄f , which is
automatic for any function f : X → C, as claimed. �

The above result might look quite puzzling, at a first glance, messing up our intuition
with various classes of operators, coming from usual linear algebra. However, a bit of
further thinking tells us that there is no contradiction, and that Theorem 2.33 in fact
is very similar to what we know about the diagonal matrices. To be more precise, the
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diagonal matrices are unitaries precisely when their entries are in T, there are no non-
unitary isometries, all such matrices are normal, and so on. In order to understand all
this, let us work out what happens with the correspondence f → Tf , in finite dimensions.
The situation here is in fact extremely simple, and illuminating, as follows:

Theorem 2.34. Assuming X = {1, . . . , N} with the counting measure, the embedding

L∞(X) ⊂ B(L2(X))

constructed via multiplication operators, Tf (g) = fg, corresponds to the embedding

CN ⊂MN(C)

given by the diagonal matrices, constructed as follows:

f → diag(f1, . . . , fN)

Thus, Theorem 2.33 generalizes what we know about the diagonal matrices.

Proof. The idea is that all this is trivial, with not a single new computation needed,
modulo some algebraic thinking, of quite soft type. Let us go back indeed to Theorem
2.32 above and its proof, with the abstract measured space X appearing there being now
the following finite space, with its counting mesure:

X = {1, . . . , N}
Regarding the functions f ∈ L∞(X), these are now functions as follows:

f : {1, . . . , N} → C
We can identify such a function with the corresponding vector (f(i))i ∈ CN , and so

we conclude that our input algebra L∞(X) is the algebra CN :

L∞(X) = CN

Regarding now the Hilbert space H = L2(X), this is equal as well to CN , and for the
same reasons, namely that g ∈ L2(X) can be identified with the vector (g(i))i ∈ CN :

L2(X) = CN

Observe that, due to our assumption that X comes with its counting measure, the
scalar product that we obtain on CN is the usual one, without weights. Now, let us
identify the operators on L2(X) = CN with the square matrices, in the usual way:

B(L2(X)) = MN(C)

This was our final identification, in order to get started. Now by getting back to
Theorem 2.32, the embedding L∞(X) ⊂ B(L2(X)) constructed there reads:

CN ⊂MN(C)

But this can only be the embedding given by the diagonal matrices, so are basically
done. In order to finish, however, let us understand what the operator associated to an
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arbitrary vector f ∈ CN is. We can regard this vector as a function, f(i) = fi, and so
the action Tf (g) = fg on the vectors of L2(X) = CN is by componentwise multiplica-
tion by the numbers f1, . . . , fN . But this is exactly the action of the diagonal matrix
diag(f1, . . . , fN), and so we are led to the conclusion in the statement. �

There are other things that can be said about the embedding L∞(X) ⊂ B(L2(X)), a
key observation here, which is elementary to prove, being the fact that the image of L∞(X)
is closed with respect to the weak topology, the one where Tn → T when Tnx → Tx for
any x ∈ H. And with this meaning that L∞(X) is a so-called von Neumann algebra on
L2(X). We will be back to this, on numerous occasions, in what follows.

2e. Exercises

As before with linear algebra, operator theory is a wide area of mathematics, and
there are many interesting operators, and exercises about them. We first have:

Exercise 2.35. Find an explicit orthonormal basis for the Hilbert space

H = L2[0, 1]

by starting with the algebraic basic fn = xn with n ∈ N, and applying Gram-Schmidt.

This is actually quite non-trivial, and in case you’re stuck with complicated computa-
tions, better look it up, preferably in the physics literature, physicists being well-known
to adore such things, and then write a brief account of what you found.

Exercise 2.36. Clarify whether the linear operators

T : H → H

are automatically bounded, or not.

This was briefly discussed in the above, with that comment that the answer is in
general is “no”, due to opaque reasons, coming from logic. Time to have this done.

Exercise 2.37. Prove that any positive operator T ≥ 0 appears as

T = S2

with S self-adjoint, first in finite dimensions, then in general.

Here the discussion in finite dimensions involves positive eigenvalues and their square
roots, which is something quite standard. In infinite dimensions things are a bit more
complicated, because we don’t have yet such eigenvalue technology, and with this being
actually to come in the next chapter, but you can try of course some other tricks.



CHAPTER 3

Spectral theorems

3a. Basic theory

We discuss in this chapter the diagonalization problem for the operators T ∈ B(H),
in analogy with the diagonalization problem for the usual matrices A ∈ MN(C). As in
the usual matrix case, our main results will concern the case of the normal operators.

As a first observation, we can talk about eigenvalues and eigenvectors of arbitrary
operators T ∈ B(H), in the obvious way, as follows:

Definition 3.1. Given an operator T ∈ B(H), assuming that we have

Tx = λx

we say that x ∈ H is an eigenvector of T , with eigenvalue λ ∈ C.

We know many basic things about the eigenvalues and eigenvectors, in the finite
dimensional case. However, most of these will not extend to the infinite dimensional case,
or at least not extend in a straightforward way, due to a number of reasons:

(1) Most of the basic linear algebra is based on the fact that Tx = λx is equivalent
to (T −λ)x = 0, so that λ is an eigenvalue precisely when T −λ is not invertible.
In the infinite dimensional setting T − λ might be injective and not surjective,
or vice versa, or invertible with (T − λ)−1 not bounded, and so on.

(2) The other basic fact is that T − λ is not invertible precisely when det(T − λ) =
0. In infinite dimensions, however, it is impossible to construct a determinant
function det : B(H) → C, and this for a myriad reasons, for instance because
any definition of det requires some kind of algorithm, which must stop.

Summarizing, we are in big trouble with our extension program, and this right from
the beginning. In order to have some theory started, however, let us forget about (2),
which obviously leads nowhere, and focus on the difficulties in (1).

In order to cut short the discussion there, regarding the various properties of T − λ,
we can just say that T − λ is either invertible with bounded inverse, the “good case”, or
not. We are led in this way to the following definition:

57
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Definition 3.2. The spectrum of an operator T ∈ B(H) is the set

σ(T ) =
{
λ ∈ C

∣∣∣T − λ 6∈ B(H)−1
}

where B(H)−1 ⊂ B(H) is the set of invertible operators.

As a basic example, in the finite dimensional case, H = CN , the spectrum of a usual
matrix A ∈ MN(C) is the collection of its eigenvalues, taken without multiplicities. We
will see many other examples. In general, the spectrum has the following properties:

Proposition 3.3. The spectrum of T ∈ B(H) contains the eigenvalue set

ε(T ) =
{
λ ∈ C

∣∣∣ ker(T − λ) 6= {0}
}

and ε(T ) ⊂ σ(T ) is an equality in finite dimensions, but not in infinite dimensions.

Proof. We have several assertions here, the idea being as follows:

(1) First of all, the eigenvalue set is indeed the one in the statement, because Tx = λx
tells us precisely that T − λ must be not injective.

(2) The fact that we have ε(T ) ⊂ σ(T ) is clear as well, because if T−λ is not injective,
it is not bijective, save of being bijective with bounded inverse.

(3) In finite dimensions we have ε(T ) = σ(T ), because T − λ is injective if and only if
it is bijective, with the boundedness of the inverse being automatic.

(4) In infinite dimensions we can assume H = l2(N), and here we have the operator
T (ei) = e2i, which is injective but not surjective. Thus 0 ∈ σ(T )− ε(T ). �

We will see more examples and counterexamples, and some general theory, in a mo-
ment. Philosophically speaking, the best way of thinking at all this is as follows:

– The numbers λ /∈ σ(T ) are good, because we can invert T − λ.

– The numbers λ ∈ σ(T )− ε(T ) are bad.

– The eigenvalues λ ∈ ε(T ) are evil.

Note that this is somewhat contrary to what happens in linear algebra, where the
eigenvalues are highly valued, and cherished, and regarded as being the source of all good
things on Earth. Welcome to operator theory, where some things are upside down.

Let us develop now some general theory for the spectrum, or perhaps for its comple-
ment, with the promise to come back to eigenvalues later. As a first result, we would like
to prove that the spectra are non-empty. This is something non-trivial even for the usual
matrices, with the standard proof using two non-trivial ingredients, namely the fact that
the eigenvalues are roots of the characteristic polynomial, and the fact that any complex
polynomial has a root. In our setting, in order to deal with this, we will need:
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Proposition 3.4. The following happen:

(1) ||T || < 1 =⇒ (1− T )−1 = 1 + T + T 2 + . . .
(2) The set B(H)−1 is open.
(3) The map T → T−1 is differentiable.

Proof. All these assertions are elementary, as follows:

(1) This follows as in the scalar case, the computation being as follows, provided that
everything converges under the norm, which amounts in saying that ||T || < 1:

(1− T )(1 + T + T 2 + . . .) = 1− T + T − T 2 + T 2 − T 3 + . . .

= 1

(2) Assuming T ∈ B(H)−1, let us pick S ∈ B(H) such that:

||T − S|| < 1

||T−1||
We have then the following estimate:

||1− T−1S|| = ||T−1(T − S)||
≤ ||T−1|| · ||T − S||
< 1

Now by using (1) we obtain from this that we have:

T−1S ∈ B(H)−1

It follows that we have S ∈ B(H)−1, as desired.

(3) This follows as in the scalar case, where the derivative of f(t) = t−1 is:

f ′(t) = −t−2

To be more precise, in the present normed space setting the derivative is no longer a
number, but rather a linear transformation. But this linear transformation can be found
by developing f(T ) = T−1 at order 1, as follows:

(T + S)−1 = ((1 + ST−1)T )−1

= T−1(1 + ST−1)−1

= T−1(1− ST−1 + (ST−1)2 − . . .)
' T−1(1− ST−1)

= T−1 − T−1ST−1

We conclude that the derivative that we are looking for is:

f ′(T )S = −T−1ST−1

Thus, we are led to the conclusion in the statement. �
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We can now formulate our first theorem about spectra, as follows:

Theorem 3.5. The spectrum of a bounded operator T ∈ B(H) is:

(1) Compact.
(2) Contained in the disc D0(||T ||).
(3) Non-empty.

Proof. This can be proved by using Proposition 3.4, along with a bit of complex and
functional analysis, for which we refer to Rudin [73] and Lax [55], as follows:

(1) In view of (2) below, it is enough to prove that σ(T ) is closed. But this follows
from the following computation, with |ε| being small:

λ /∈ σ(T ) =⇒ T − λ ∈ B(H)−1

=⇒ T − λ− ε ∈ B(H)−1

=⇒ λ+ ε /∈ σ(T )

(2) This follows from the following computation:

λ > ||T || =⇒
∣∣∣∣∣∣T
λ

∣∣∣∣∣∣ < 1

=⇒ 1− T

λ
∈ B(H)−1

=⇒ λ− T ∈ B(H)−1

=⇒ λ /∈ σ(T )

(3) Assume by contradiction σ(T ) = ∅. Given a linear form f ∈ B(H)∗, consider the
following map, which is well-defined, due to our assumption σ(T ) = ∅:

ϕ : C→ C , λ→ f((T − λ)−1)

By using the fact that T → T−1 is differentiable, that we know from Proposition 3.4,
we conclude that this map is differentiable, and so holomorphic. Also, we have:

λ→∞ =⇒ T − λ→∞
=⇒ (T − λ)−1 → 0

=⇒ f((T − λ))−1 → 0

Thus by the Liouville theorem we obtain ϕ = 0. But, in view of the definition of ϕ,
this gives (T − λ)−1 = 0, which is a contradiction, as desired. �

Here is now a second basic result regarding the spectra, inspired from what happens
in finite dimensions, for the usual complex matrices, and which shows that things do not
necessarily extend without troubles to the infinite dimensional setting:
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Theorem 3.6. We have the following formula, valid for any operators S, T :

σ(ST ) ∪ {0} = σ(TS) ∪ {0}

In finite dimensions we have σ(ST ) = σ(TS), but this fails in infinite dimensions.

Proof. There are several statements here, the idea being as follows:

(1) This is something that we know in finite dimensions, coming from the fact that
the characteristic polynomials of the associated matrices A,B coincide:

PAB = PBA

Thus we obtain σ(ST ) = σ(TS) in this case, as claimed. Observe that this improves
twice the general formula in the statement, first because we have no issues at 0, and
second because what we obtain is actually an equality of sets with mutiplicities.

(2) In general now, let us first prove the main assertion, stating that σ(ST ), σ(TS)
coincide outside 0. We first prove that we have the following implication:

1 /∈ σ(ST ) =⇒ 1 /∈ σ(TS)

Assume indeed that 1− ST is invertible, with inverse denoted R:

R = (1− ST )−1

We have then the following formulae, relating our variables R, S, T :

RST = STR = R− 1

By using RST = R− 1, we have the following computation:

(1 + TRS)(1− TS) = 1 + TRS − TS − TRSTS
= 1 + TRS − TS − TRS + TS

= 1

A similar computation, using STR = R− 1, shows that we have:

(1− TS)(1 + TRS) = 1

Thus 1 − TS is invertible, with inverse 1 + TRS, which proves our claim. Now by
multiplying by scalars, we deduce from this that for any λ ∈ C− {0} we have:

λ /∈ σ(ST ) =⇒ λ /∈ σ(TS)

But this leads to the conclusion in the statement.

(3) Regarding now the counterexample to the formula σ(ST ) = σ(TS), in general, let
us take S to be the shift on H = L2(N), given by the following formula:

S(ei) = ei+1
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As for T , we can take it to be the adjoint of S, which is the following operator:

S∗(ei) =

{
ei−1 if i > 0

0 if i = 0

Let us compose now these two operators. In one sense, we have:

S∗S = 1 =⇒ 0 /∈ σ(SS∗)

In the other sense, however, the situation is different, as follows:

SS∗ = Proj(e⊥0 ) =⇒ 0 ∈ σ(SS∗)

Thus, the spectra do not match on 0, and we have our counterexample, as desired. �

3b. Spectral radius

Let us develop now some systematic theory for the computation of the spectra, based
on what we know about the eigenvalues of the usual complex matrices. As a first result,
which is well-known for the usual matrices, and extends well, we have:

Theorem 3.7. We have the “polynomial functional calculus” formula

σ(P (T )) = P (σ(T ))

valid for any polynomial P ∈ C[X], and any operator T ∈ B(H).

Proof. We pick a scalar λ ∈ C, and we decompose the polynomial P − λ:

P (X)− λ = c(X − r1) . . . (X − rn)

We have then the following equivalences:

λ /∈ σ(P (T )) ⇐⇒ P (T )− λ ∈ B(H)−1

⇐⇒ c(T − r1) . . . (T − rn) ∈ B(H)−1

⇐⇒ T − r1, . . . , T − rn ∈ B(H)−1

⇐⇒ r1, . . . , rn /∈ σ(T )

⇐⇒ λ /∈ P (σ(T ))

Thus, we are led to the formula in the statement. �

The above result is something very useful, and generalizing it will be our next task.
As a first ingredient here, assuming that A ∈MN(C) is invertible, we have:

σ(A−1) = σ(A)−1

It is possible to extend this formula to the arbitrary operators, and we will do this in
a moment. Before starting, however, we have to think in advance on how to unify this
potential result, that we have in mind, with Theorem 3.7 itself.
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What we have to do here is to find a class of functions generalizing both the poly-
nomials P ∈ C[X] and the inverse function x → x−1, and the answer to this question is
provided by the rational functions, which are as follows:

Definition 3.8. A rational function f ∈ C(X) is a quotient of polynomials:

f =
P

Q

Assuming that P,Q are prime to each other, we can regard f as a usual function,

f : C−X → C

with X being the set of zeros of Q, also called poles of f .

Here the term “poles” comes from the fact that, if you want to imagine the graph of
such a rational function f , in two complex dimensions, what you get is some sort of tent,
supported by poles of infinite height, situated at the zeros of Q. For more on all this, and
on complex analysis in general, we refer as usual to Rudin [73]. Although a look at an
abstract algebra book, such as Lang [53], can be interesting as well.

Now that we have our class of functions, the next step consists in applying them to
operators. Here we cannot expect f(T ) to make sense for any f and any T , for instance
because T−1 is defined only when T is invertible. We are led in this way to:

Definition 3.9. Given an operator T ∈ B(H), and a rational function f = P/Q
having poles outside σ(T ), we can construct the following operator,

f(T ) = P (T )Q(T )−1

that we can denote as a usual fraction, as follows,

f(T ) =
P (T )

Q(T )

due to the fact that P (T ), Q(T ) commute, so that the order is irrelevant.

Again, this is something which requires some thinking. To be more precise, f(T ) as
constructed above is indeed well-defined, and the fraction notation is justified too. In
more formal terms, we can say that we have a morphism of complex algebras as follows,
with C(X)T standing for the rational functions having poles outside σ(T ):

C(X)T → B(H) , f → f(T )

Summarizing, we have now a good class of functions, generalizing both the polynomials
and the inverse map x → x−1, and we know as well how these functions can be applied
to the operators. We can now extend Theorem 3.7, as follows:
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Theorem 3.10. We have the “rational functional calculus” formula

σ(f(T )) = f(σ(T ))

valid for any rational function f ∈ C(X) having poles outside σ(T ).

Proof. We pick a scalar λ ∈ C, we write f = P/Q, and we set:

F = P − λQ
By using now Theorem 3.7, for this polynomial, we obtain:

λ ∈ σ(f(T )) ⇐⇒ F (T ) /∈ B(H)−1

⇐⇒ 0 ∈ σ(F (T ))

⇐⇒ 0 ∈ F (σ(T ))

⇐⇒ ∃µ ∈ σ(T ), F (µ) = 0

⇐⇒ λ ∈ f(σ(T ))

Thus, we are led to the formula in the statement. �

As an application of the above methods, we can investigate certain special classes of
operators, such as the unitary ones, and the self-adjoint ones. We first have:

Theorem 3.11. The spectrum of a unitary operator

U∗ = U−1

is on the unit circle, σ(U) ⊂ T.

Proof. Assuming U∗ = U−1, we have the following norm computation:

||U || =
√
||UU∗|| =

√
1 = 1

Now if we denote by D the unit disk, we obtain from this:

σ(U) ⊂ D

On the other hand, once again by using U∗ = U−1, we have as well:

||U−1|| = ||U∗|| = ||U || = 1

Thus, as before with D being the unit disk in the complex plane, we have:

σ(U−1) ⊂ D

Now by using the rational function f(z) = z−1, we obtain from this:

σ(U) ⊂ D−1

Now by putting everything together, we obtain:

σ(U) ⊂ D ∩D−1 = T
Thus, we are led to the conclusion in the statement. �
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Before getting into the study of self-adjoint elements, let us record the following ele-
mentary result, regarding the behaviour of the spectrum when taking adjoints:

Proposition 3.12. We have the following formula,

σ(T ∗) = σ(T )

valid for any operator T ∈ B(H).

Proof. By using the fact that an operator S is invertible precisely when its adjoint
S∗ is, the spectrum of the adjoint operator T ∗ can be computed as follows:

σ(T ∗) =
{
λ ∈ C

∣∣∣T ∗ − λ /∈ B(H)−1
}

=
{
λ ∈ C

∣∣∣T − λ̄ /∈ B(H)−1
}

= σ(T )

Thus, we are led to the conclusion in the statement. �

Let us discuss now the case of the self-adjoint elements. The result here, which is
quite similar to the one for the unitary operators, is as follows:

Theorem 3.13. The spectrum of a self-adjoint operator

T = T ∗

consists of real numbers, σ(T ) ⊂ R.

Proof. As a first observation, this cannot follow from Proposition 3.12 a bit as in
the proof of Theorem 3.11, because Proposition 3.12 only gives, in the case T = T ∗:

σ(T ) = σ(T )

However, we can deduce the result from Theorem 3.11, by using the following remark-
able rational function, depending on a parameter r ∈ R:

f(z) =
z + ir

z − ir
Indeed, for r >> 0 the operator f(T ) is well-defined, and we have:(

T + ir

T − ir

)∗
=

(T + ir)∗

(T − ir)∗

=
T − ir
T + ir

=

(
T + ir

T − ir

)−1
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Thus f(T ) is unitary, and by using Theorem 3.11 we obtain:

σ(T ) ⊂ f−1(f(σ(T )))

= f−1(σ(f(T )))

⊂ f−1(T)

= R
Thus, we are led to the conclusion in the statement. �

As a theoretical remark, it is possible to deduce as well Theorem 3.11 from Theorem
3.13, by performing the above computation in the other sense. Indeed, by assuming that
Theorem 3.13 holds indeed, and starting with a unitary U ∈ B(H), we obtain:

σ(U) ⊂ f(f−1(σ(U)))

= f(σ(f−1(U)))

⊂ f(R)

= T
As a conclusion now, we have so far a beginning of spectral theory, with results allowing

us to investigate the unitaries and the self-adjoints, and with the remark that these two
classes of operators are related by a certain wizarding rational function, namely:

f(z) =
z + ir

z − ir
Let us keep building on this, with more complex analysis involved. One key thing

that we know about matrices, and which follows for instance by using the fact that the
diagonalizable matrices are dense, is the following formula:

σ(eA) = eσ(A)

This is something heavily used across mathematics, as for instance in the theory of
ordinary differential equations. We would like of course to have such formulae for the
general operators T ∈ B(H) too, and this is indeed possible, as follows:

Theorem 3.14. We have the “holomorphic functional calculus” formula

σ(f(T )) = f(σ(T ))

valid for any holomorphic function f ∈ Hol(σ(T )).

Proof. This is something that we will not really need, for the purposes of the present
book, which is rather algebraic than analytic, but here is the general idea:

(1) Consider the rational calculus morphism from Definition 3.9, which is as follows,
with the exponent standing for “having poles outside σ(T )”:

C(X)T → B(H) , f → f(T )
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As already mentioned before, the rational functions are holomorphic outside their
poles, and this raises the question of extending this morphism, as follows:

Hol(σ(T ))→ B(H) , f → f(T )

(2) In order to construct this extension, let us first consider the case of the entire
functions, such as the exponential function f(z) = ez. Here we have a Taylor series
available, and we can simply apply this Taylor series to our operator, as follows:

eT =
∞∑
k=0

T k

k!

Observe that such infinite series converge indeed, due to:

||T k|| ≤ ||T ||k

It is possible to further build on this, a bit as in the polynomial function case, and
in the end to obtain the formula σ(f(T )) = f(σ(T )) as well, for the exponential function
f(z) = ez, and for the other entire holomorphic functions.

(3) In general, however, the holomorphic functions are not entire, and the above
method won’t actually cover the rational functions f ∈ C(X)T that we want to generalize.
Thus, we must use something else. And the answer here comes from the Cauchy formula:

f(t) =
1

2πi

∫
γ

f(z)

z − t
dz

Indeed, given a rational function f ∈ C(X)T , the corresponding operator f(T ) ∈
B(H), constructed in Definition 3.9, can be recaptured in an analytic way, as follows:

f(T ) =
1

2πi

∫
γ

f(z)

z − T
dz

Now given an arbitrary function f ∈ Hol(σ(T )), we can define f(T ) ∈ B(H) by the
exactly same formula, and we obtain in this way the desired correspondence:

Hol(σ(T ))→ B(H) , f → f(T )

(4) In practice now, all this needs a bit of care, notably with the verification of the
fact that the operator f(T ) ∈ B(H) does not depend on γ, and with the technical remark
that a winding number must be added to the above Cauchy formulae, for things to be
correct. But this can be done via a standard study, keeping in mind the fact that in the
case H = C, where our operators are usual numbers, B(H) = C, what we want to do is
simply proving that the usual Cauchy formula holds indeed.

(5) Now with this correspondence f → f(T ) constructed, and so with the formula in
the statement, namely σ(f(T )) = f(σ(T )), making now sense, it remains to prove that
this formula holds indeed. But this follows as well via a careful use of the Cauchy formula,
or by using approximation by polynomials, or rational functions. �
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As already said, the above result is important for advanced operator theory and ap-
plications, and we will not get further into this subject. We will be back, however, to all
this in the special case of the normal operators, which is of particular interest for us. In
order to formulate now our next result, we will need the following notion:

Definition 3.15. Given an operator T ∈ B(H), its spectral radius

ρ(T ) ∈ (0, ||T ||)
is the radius of the smallest disk centered at 0 containing σ(T ).

Here we have included for simplicity a number of basic results from Theorem 3.5,
namely the fact that the spectrum is indeed non-empty, and is contained in the disk
D0(||T ||). Now with this notion in hand, we have the following key result, improving
among others our key result so far, namely σ(T ) 6= ∅, from Theorem 3.5:

Theorem 3.16. The spectral radius of an operator T ∈ B(H) is given by

ρ(T ) = lim
n→∞

||T n||1/n

and in this formula, we can replace the limit by an inf.

Proof. We have to prove two inequalities, and the idea is as follows:

(1) In one sense, we can use the polynomial calculus formula σ(T n) = σ(T )n. Indeed,
this gives the following estimate, valid for any n, as desired:

ρ(T ) = sup
λ∈σ(T )

|λ|

= sup
ρ∈σ(T )n

|ρ|1/n

= sup
ρ∈σ(Tn)

|ρ|1/n

= ρ(T n)1/n

≤ ||T n||1/n

(2) For the reverse inequality, we fix ρ > ρ(T ). Using the Cauchy formula, we have:∫
|z|=ρ

zn

z − T
dz =

∫
|z|=ρ

∞∑
k=0

zn−k−1T k dz

=
∞∑
k=0

(∫
|z|=ρ

zn−k−1dz

)
T k

=
∞∑
k=0

δn,k+1T
k

= T n−1
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By applying the norm and taking n-th roots we obtain from this formula, modulo
some elementary manipulations, the following estimate:

ρ ≥ lim
n→∞

||T n||1/n

Now recall that ρ was by definition an arbitrary number satisfying ρ > ρ(T ). Thus,
we have obtained the following estimate, valid for any T ∈ B(H):

ρ(T ) ≥ lim
n→∞

||T n||1/n

Thus, we are led to the conclusion in the statement. �

In the case of the normal elements, we have the following finer result:

Theorem 3.17. The spectral radius of a normal element,

TT ∗ = T ∗T

is equal to its norm.

Proof. We can proceed in two steps, as follows:

Step 1. In the case T = T ∗ we have ||T n|| = ||T ||n for any exponent of the form

n = 2k, by using the formula ||TT ∗|| = ||T ||2, and by taking n-th roots we get:

ρ(T ) ≥ ||T ||
Thus, we are done with the self-adjoint case, with the result ρ(T ) = ||T ||.
Step 2. In the general normal case TT ∗ = T ∗T we have T n(T n)∗ = (TT ∗)n, and by

using this, along with the result from Step 1, applied to TT ∗, we obtain:

ρ(T ) ≥ lim
n→∞

||T n||1/n

=
√

lim
n→∞

||T n(T n)∗||1/n

=
√

lim
n→∞

||(TT ∗)n||1/n

=
√
ρ(TT ∗)

=
√
||T ||2

= ||T ||
Thus, we are led to the conclusion in the statement. �

As a first comment, the spectral radius formula ρ(T ) = ||T || does not hold in general,
the simplest counterexample being the following non-normal matrix:

J =

(
0 1
0 0

)
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As another comment, we can combine the formula ρ(T ) = ||T || for normal operators
with the formula ||TT ∗|| = ||T ||2, and we are led to the following statement:

Proposition 3.18. The norm of B(H) is given by

||T || =
√

sup
{
λ ∈ C

∣∣∣TT ∗ − λ /∈ B(H)−1
}

and so is a purely algebraic quantity.

Proof. We have the following computation, using the formula ||TT ∗|| = ||T ||2, then
the spectral radius formula for TT ∗, and finally the definition of the spectral radius:

||T || =
√
||TT ∗||

=
√
ρ(TT ∗)

=

√
sup

{
λ ∈ C

∣∣∣λ ∈ σ(TT ∗)
}

=

√
sup

{
λ ∈ C

∣∣∣TT ∗ − λ /∈ B(H)−1
}

Thus, we are led to the conclusion in the statement. �

The above result is quite interesting, philosophically speaking. We will be back to
this, with further results and comments on B(H), and other algebras of the same type.

3c. Normal operators

By using Theorem 3.17 we can say a number of non-trivial things concerning the
normal operators, commonly known as “spectral theorem for normal operators”. As a
first result here, we can improve the polynomial functional calculus formula:

Theorem 3.19. Given T ∈ B(H) normal, we have a unique morphism of algebras

C[X]→ B(H) , P → P (T )

given by X → T , which has the following properties:

(1) σ(P (T )) = P (σ(T )).
(2) ||P (T )|| = ||P|σ(T )||.
(3) Tx = λx =⇒ P (T )x = P (λ)x.
(4) [S, T ] = 0 =⇒ [S, P (T )] = 0.

Proof. This is an improvement of Theorem 3.7 in the normal case, as follows:

(1) This is something that we know from Theorem 3.7, valid for any T ∈ B(H).
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(2) The element P (T ) being normal, we can apply to it the spectral radius formula
for normal elements, and by using (1) we obtain, as desired:

||P (T )|| = ρ(P (T ))

= sup
λ∈σ(P (T ))

|λ|

= sup
λ∈P (σ(T ))

|λ|

= ||P|σ(T )||

(3) This is something clear, by linearity and multiplicativity.

(4) Once again this is clear, by linearity and multiplicativity. �

We can improve as well the rational calculus formula, as follows:

Theorem 3.20. Given T ∈ B(H) normal, we have a unique morphism of algebras as
follows, with the exponent standing for “having poles outside σ(T )”,

C(X)T → B(H) , f → f(T )

given by X → T , which has the following properties:

(1) σ(f(T )) = f(σ(T )).
(2) ||f(T )|| = ||f|σ(T )||.
(3) Tx = λx =⇒ f(T )x = f(λ)x.
(4) [S, T ] = 0 =⇒ [S, f(T )] = 0.

Proof. This is an improvement of Theorem 3.10 in the normal case, with all the
details of the proof being identical to those of the proof of Theorem 3.19. �

It is possible to improve as well the holomorphic calculus formula, as follows:

Theorem 3.21. Given T ∈ B(H) normal, we have a unique morphism of algebras

Hol(σ(T ))→ B(H) , f → f(T )

given by X → T , which has the following properties:

(1) σ(f(T )) = f(σ(T )).
(2) ||f(T )|| = ||f ||.
(3) Tx = λx =⇒ f(T )x = f(λ)x.
(4) [S, T ] = 0 =⇒ [S, f(T )] = 0.

Proof. This is an improvement of Theorem 3.14 in the normal case, with all the
details of the proof being again identical to those of the proof of Theorem 3.19. �

Importantly now, in the case of normal elements we have some new functional calculus
results, using more general functions than those used before. First, we have:
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Theorem 3.22. Given T ∈ B(H) normal, we have a unique continuous morphism of
algebras

C(σ(T ))→ B(H) , f → f(T )

given by z → T , which has the following properties:

(1) ||f(T )|| = ||f ||.
(2) σ(f(T )) = f(σ(T )).
(3) Tx = λx =⇒ f(T )x = f(λ)x.
(4) [S, T ] = 0 =⇒ [S, f(T )] = 0.

Proof. The idea here is to “complete” the morphisms in Theorems 3.19 or 3.20 or
3.21. Consider indeed the morphism constructed in Theorem 3.19, namely:

C[X]→ B(H) , P → P (T )

We know from Theorem 3.19 that this morphism is continuous, and in fact isometric,
when regarding the polynomials P ∈ C[X] as functions on σ(T ):

||P (T )|| = ||P|σ(T )||
Thus, by Stone-Weierstrass, we have a unique continuous extension, as follows:

C(σ(T ))→ B(H) , f → f(T )

Regarding now the assertions (1-4), the proof here goes as follows:

(1) This follows from our construction of f → f(T ), via Stone-Weierstrass.

(2) This is something that we know for polynomials and rational functions, that we
have now to extend to the continuous functions. We proceed by double inclusion:

“⊂” Given a continuous function f ∈ C(σ(T )), we must prove that we have:

λ /∈ f(σ(T )) =⇒ λ /∈ σ(f(T ))

For this purpose, consider the following function, which is well-defined:

1

f − λ
∈ C(σ(T ))

We can therefore apply this function to T , and we obtain:(
1

f − λ

)
T =

1

f(T )− λ
In particular f(T )− λ is invertible, so λ /∈ σ(f(T )), as desired.

“⊃” Given a continuous function f ∈ C(σ(T )), we must prove that we have:

λ ∈ f(σ(T )) =⇒ λ ∈ σ(f(T ))

But this is the same as proving that we have:

µ ∈ σ(T ) =⇒ f(µ) ∈ σ(f(T ))
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For this purpose, we approximate our function by polynomials, Pn → f , and we
examine the following convergence, which follows from Pn → f :

Pn(T )− Pn(µ)→ f(T )− f(µ)

We know from polynomial functional calculus that we have:

Pn(µ) ∈ Pn(σ(T )) = σ(Pn(T ))

Thus, the operators Pn(T ) − Pn(µ) are not invertible. On the other hand, we know
that the set formed by the invertible operators is open, so its complement is closed. Thus
the limit f(T )− f(µ) is not invertible either, and so f(µ) ∈ σ(f(T )), as desired.

(3) This is something clear, by linearity and multiplicativity.

(4) Once again this is clear, by linearity and multiplicativity. �

As an important comment, Theorem 3.22 is not exactly in final form, because it misses
an important point, namely that our correspondence maps:

z̄ → T ∗

However, this is something non-trivial, and we will be back to this later. Observe
however that Theorem 3.22 is fully powerful for the self-adjoint operators, T = T ∗, where
the spectrum is real, and so where z = z̄ on the spectrum. We will be back to this.

As a second result now, along the same lines, we can further extend Theorem 3.22
into a measurable functional calculus theorem, as follows:

Theorem 3.23. Given T ∈ B(H) normal, we have a unique continuous morphism of
algebras as follows, with L∞ standing for abstract measurable functions

L∞(σ(T ))→ B(H) , f → f(T )

given by z → T , which has the following properties:

(1) ||f(T )|| = ||f ||.
(2) σ(f(T )) = f(σ(T )).
(3) Tx = λx =⇒ f(T )x = f(λ)x.
(4) [S, T ] = 0 =⇒ [S, f(T )] = 0.

Proof. As before, the idea is that of “completing” what we have. For this purpose,
we will use a polarization trick. Given x ∈ H, consider the following functional:

C(σ(T ))→ C , f →< f(T )x, x >

By the Riesz theorem, this functional must be the integration with respect to a certain
measure µ on the space σ(T ). Thus, we have a formula as follows:

< f(T )x, x >=

∫
σ(T )

f(z)dµ(z)
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Now with this formula in hand, we can extend the continuous functional calculus into
an abstract measurable one, by exactly the same formula, as follows:

< f(T )x, x >=

∫
σ(T )

f(z)dµ(z)

We have then a morphism of algebras, as desired, and the properties (1-4) in the
statement hold too, with the extensions being as before, by using this time in the proofs
approximations by continuous functions, and the polarization identity. �

The same comments as before apply. Theorem 3.23 is not exactly in final form, because
it misses an important point, namely that our correspondence maps:

z̄ → T ∗

However, this is something non-trivial, and we will be back to this later. Observe
however that Theorem 3.23 is fully powerful for the self-adjoint operators, T = T ∗, where
the spectrum is real, and so where z = z̄ on the spectrum. We will be back to this.

3d. Diagonalization

We can now diagonalize the normal operators. We will do this in 3 steps, first for
the self-adjoint operators, then for the families of commuting self-adjoint operators, and
finally for the general normal operators, by using a trick of the following type:

T = Re(T ) + iIm(T )

The diagonalization in infinite dimensions is more tricky than in finite dimensions, and
instead of writing a formula of type T = UDU∗, with U,D ∈ B(H) being unitary and
diagonal, we will express our operator as T = U∗MU , with U : H → K being a certain
unitary, and M ∈ B(K) being a certain diagonal operator. This is how the spectral
theorem is best formulated, in view of applications. In practice, the explicit construction
of U,M , which will be actually rather part of the proof, is also needed.

For the self-adjoint operators, the statement and proof are as follows:

Theorem 3.24. Any self-adjoint operator T ∈ B(H) can be diagonalized,

T = U∗MfU

with U : H → L2(X) being a unitary operator from H to a certain L2 space associated to
T , with f : X → R being a certain function, once again associated to T , and with

Mf (g) = fg

being the usual multiplication operator by f , on the Hilbert space L2(X).
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Proof. The construction of U, f can be done in several steps, as follows:

(1) We first prove the result in the special case where our operator T has a cyclic
vector x ∈ H, with this meaning that the following holds:

span
(
T kx

∣∣∣n ∈ N
)

= H

For this purpose, let us go back to the proof of Theorem 3.23. We will use the following
formula from there, with µ being the measure on X = σ(T ) associated to x:

< g(T )x, x >=

∫
σ(T )

g(z)dµ(z)

Our claim is that we can define a unitary U : H → L2(X), first on the dense part
spanned by the vectors T kx, by the following formula, and then by continuity:

U [g(T )x] = g

Indeed, the following computation shows that U is well-defined, and isometric:

||g(T )x||2 = < g(T )x, g(T )x >

= < g(T )∗g(T )x, x >

= < |g|2(T )x, x >

=

∫
σ(T )

|g(z)|2dµ(z)

= ||g||22
We can then extend U by continuity into a unitary U : H → L2(X), as claimed. Now

observe that we have the following formula:

UTU∗g = U [Tg(T )x]

= U [(zg)(T )x]

= zg

Thus our result is proved in the present case, with U as above, and with f(z) = z.

(2) We discuss now the general case. Our first claim is that H has a decomposition
as follows, with each Hi being invariant under T , and admitting a cyclic vector xi:

H =
⊕
i

Hi

Indeed, this is something elementary, the construction being by recurrence in finite
dimensions, in the obvious way, and by using the Zorn lemma in general. Now with this
decomposition in hand, we can make a direct sum of the diagonalizations obtained in (1),
for each of the restrictions T|Hi , and we obtain the formula in the statement. �

We have the following technical generalization of the above result:
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Theorem 3.25. Any family of commuting self-adjoint operators Ti ∈ B(H) can be
jointly diagonalized,

Ti = U∗MfiU

with U : H → L2(X) being a unitary operator from H to a certain L2 space associated to
{Ti}, with fi : X → R being certain functions, once again associated to Ti, and with

Mfi(g) = fig

being the usual multiplication operator by fi, on the Hilbert space L2(X).

Proof. This is similar to the proof of Theorem 3.24, by suitably modifying the mea-
surable calculus formula, and the measure µ itself, as to have this formula working for all
the operators Ti. With this modification done, everything extends. �

In order to discuss now the case of the arbitrary normal operators, we will need:

Proposition 3.26. Any operator T ∈ B(H) can be written as

T = Re(T ) + iIm(T )

with Re(T ), Im(T ) ∈ B(H) being self-adjoint, and this decomposition is unique.

Proof. This is something elementary, the idea being as follows:

(1) As a first observation, in the case H = C our operators are usual complex numbers,
and the formula in the statement corresponds to the following basic fact:

z = Re(z) + iIm(z)

(2) In general now, we can use the same formulae for the real and imaginary part as
in the complex number case, the decomposition formula being as follows:

T =
T + T ∗

2
+ i · T − T

∗

2i

To be more precise, both the operators on the right are self-adjoint, and the summing
formula holds indeed, and so we have our decomposition result, as desired.

(3) Regarding now the uniqueness, by linearity it is enough to show that R + iS = 0
with R, S both self-adjoint implies R = S = 0. But this follows by applying the adjoint
to R + iS = 0, which gives R− iS = 0, and so R = S = 0, as desired. �

As a comment here, the above result is just the “tip of the iceberg”, in what regards
decomposition results for the operators T ∈ B(H), in analogy with decomposition results
for the complex numbers z ∈ C. As a sample result here, improving Proposition 3.26,
we can write any operator T ∈ B(H) as a linear combination of 4 positive operators, by
writing both Re(T ), Im(T ) as differences of positive operators. More on this later.

We can now discuss the case of arbitrary normal operators, as follows:
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Theorem 3.27. Any normal operator T ∈ B(H) can be diagonalized,

T = U∗MfU

with U : H → L2(X) being a unitary operator from H to a certain L2 space associated to
T , with f : X → C being a certain function, once again associated to T , and with

Mf (g) = fg

being the usual multiplication operator by f , on the Hilbert space L2(X).

Proof. This is our main diagonalization theorem, generalizing everything diagonal-
ization that we know so far, staring from chapter 1, the idea being as follows:

(1) Consider the decomposition of T into its real and imaginary parts, as constructed
in the proof of Proposition 3.26, namely:

T =
T + T ∗

2
+ i · T − T

∗

2i
We know that the real and imaginary parts are self-adjoint operators. Now since T

was assumed to be normal, TT ∗ = T ∗T , these real and imaginary parts commute:[
T + T ∗

2
,
T − T ∗

2i

]
= 0

Thus Theorem 3.25 applies to these real and imaginary parts, and gives the result.

(2) Alternatively, we can use methods similar to those that we used in chapter 1 above,
in order to deal with the usual normal matrices, involving the special relation between T
and the operator TT ∗, which is self-adjoint. We will be back to this. �

This was for our series of diagonalization theorems. There is of course one more result
here, regarding the families of commuting normal operators, as follows:

Theorem 3.28. Any family of commuting normal operators Ti ∈ B(H) can be jointly
diagonalized,

Ti = U∗MfiU

with U : H → L2(X) being a unitary operator from H to a certain L2 space associated to
{Ti}, with fi : X → C being certain functions, once again associated to Ti, and with

Mfi(g) = fig

being the usual multiplication operator by fi, on the Hilbert space L2(X).

Proof. This is similar to the proof of Theorem 3.25 and Theorem 3.27, by combining
the arguments there. To be more precise, this follows as Theorem 3.25, by using the
decomposition trick from the proof of Theorem 3.27. �

With the above diagonalization results in hand, we can now “fix” the continuous and
measurable functional calculus theorems, with a key complement, as follows:
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Theorem 3.29. Given a normal operator T ∈ B(H), the following hold, for both the
functional calculus and the measurable calculus morphisms:

(1) These morphisms are ∗-morphisms.
(2) The function z̄ gets mapped to T ∗.
(3) The functions Re(z), Im(z) get mapped to Re(T ), Im(T ).
(4) The function |z|2 gets mapped to TT ∗ = T ∗T .
(5) If f is real, then f(T ) is self-adjoint.

Proof. These assertions are more or less equivalent, with (1) being the main one,
which obviously implies everything else. But this assertion (1) follows from the diagonal-
ization result for normal operators, from Theorem 3.27 above. �

This was for the spectral theory of arbitrary and normal operators. As a conclusion
here, our main results are as follows:

(1) Regarding the arbitrary operators, the main results here, or rather the most
advanced results, are the holomorphic calculus formula from Theorem 3.14, and
the spectral radius estimate from Theorem 3.16.

(2) For the self-adjoint operators, the main results are the spectral radius formula
from Theorem 3.17, the measurable calculus formula from Theorem 3.23, and the
diagonalization result from Theorem 3.24.

(3) For general normal operators, the main results are the spectral radius formula
from Theorem 3.17, the measurable calculus formula from Theorem 3.23, com-
plemented by Theorem 3.29, and the diagonalization result in Theorem 3.27.

There are of course many other things that can be said about the spectral theory of
the bounded operators T ∈ B(H), and on that of the unbounded operators too, all the
above being just an introduction to the subject. As a complement, we recommend any
good operator theory related book, with the comment however that there is a bewildering
choice here, depending on taste, and on what exactly you want to do with your operators
T ∈ B(H). In what concerns us, who are rather into general quantum mechanics, but of
rather advanced type, with the operators being bounded, good choices are the functional
analysis book of Lax [55], or the operator algebra book by Blackadar [20].

3e. Exercises

The main theoretical notion introduced in this chapter was that of the spectrum of
an operator, and as a first exercise here, we have:

Exercise 3.30. Prove that for the usual matrices A,B ∈MN(C) we have

σ+(AB) = σ+(BA)

where σ+ denotes the set of eigenvalues, taken with multiplicities.
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As a remark, we have seen in the above that σ(AB) = σ(BA) holds outside {0}, and
the equality on {0} holds as well, because AB is invertible if and only if BA is invertible.
However, in what regards the eigenvalues taken with multiplicities, things are more tricky
here, and the answer should be somewhere inside your linear algebra knowledge.

Exercise 3.31. Clarify, with examples and counterexamples, the relation between the
eigenvalues of an operator T ∈ B(H), and its spectrum σ(T ) ⊂ C.

Here, as usual, the counterexamples could only come from the shift operator S, on the
space H = l2(N). As a bonus exercise here, try computing the spectrum of S.

Exercise 3.32. Prove, with full details, that the functional calculus formula

σ(f(T )) = f(σ(T ))

maked indeed sense for any holomorphic function f ∈ Hol(σ(T )).

This is something that we already discussed in the above, with the comment that the
proof is quite technical, involving countless applications of the Cauchy formula, and that
this will not be really needed, in what follows. However, this result is very important
when doing more advanced operator theory, and time now to have it understood.

Exercise 3.33. Draw the picture of the following rational function, and of its inverse,

f(z) =
z + ir

z − ir
with r ∈ R, and prove that for r >> 0 and T = T ∗, the element f(T ) is well-defined.

This is something that we actually used in the above, when computing spectra of
self-adjoints and unitaries, and the problem is that of working out all the details.

Exercise 3.34. Comment on the spectral radius theorem, stating that for a normal
operator, TT ∗ = T ∗T , the spectral radius is equal to the norm,

ρ(T ) = ||T ||

with examples and counterexamples, and simpler proofs of well, in various particular cases
of interest, such as the finite dimensional one.

This is of course something a bit philosophical, but the spectral radius theorem being
our key technical result so far, some further thinking of it is definitely a good thing.

Exercise 3.35. Develop a theory of ∗-algebras A for which the quantity

||a|| =
√

sup
{
λ ∈ C

∣∣∣aa∗ − λ /∈ A−1
}

defines a norm, for the elements a ∈ A.



80 3. SPECTRAL THEOREMS

As pointed out in the above, the spectral radius formula shows that for the full operator
algebra A = B(H) the norm is given by the above formula, and so there should be such a
theory of “good” ∗-algebras, with A = B(H) as a main example. However, this is tricky,
and in case you don’t find, just give up and do something else instead. Mathematics is
sometimes mysterious, and for best results, what is difficult must be avoided.

Exercise 3.36. Find and write down a proof for the spectral theorem for normal
operators in the spirit of the proof for normal matrices from chapter 1, and vice versa.

To be more precise, the problem is that the proof of the spectral theorem for the usual
matrices, from chapter 1, was using a certain kind of trick, while the proof of the spectral
theorem for the arbitrary operators, given in this chapter, was using some other kind of
trick. Thus, for full understanding all this, working out more proofs, both for the usual
matrices and for the arbitary operators, is a useful thing.

Exercise 3.37. Find and write down an enhancement of the proof given above for the
spectral theorem, as for z̄ → T ∗ to appear way before the end of the proof.

This is something a bit philosophical, and check here first the various comments made
above, and maybe work out this as well in parallel with the previous exercise.



CHAPTER 4

Compact operators

4a. Polar decomposition

We have seen so far the basic theory of bounded operators, in the arbitrary, normal
and self-adjoint cases, and in a few other cases of interest. In this chapter we discuss a
number of more specialized questions, for the most dealing with the compact operators,
which are particularly close, conceptually speaking, to the usual complex matrices. We
will see in particular that the diagonalization of such compact operators, in the normal
case, is something far more concrete and usable than what we have in general.

Before getting into this subject, however, which is quite technical, and as a first
application of our methods, we can now develop the theory of positive operators, and
then establish polar decomposition results for the operators T ∈ B(H). We first have the
following result, substantially improving our knowledge from chapter 2:

Theorem 4.1. For an operator T ∈ B(H), the following are equivalent:

(1) < Tx, x >≥ 0, for any x ∈ H.
(2) T is normal, and σ(T ) ⊂ [0,∞).
(3) T = S2, for some S ∈ B(H) satisfying S = S∗.
(4) T = R∗R, for some R ∈ B(H).

If these conditions are satisfied, we call T positive, and write T ≥ 0.

Proof. We have already seen some implications in chapter 2, but the above result
as stated, which is something complete, is quite tricky, and the best is to forget the few
partial results that we know from chapter 2, and prove everything, as follows:

(1) =⇒ (2) Assuming < Tx, x >≥ 0, with S = T − T ∗ we have:

< Sx, x > = < Tx, x > − < T ∗x, x >

= < Tx, x > − < x, Tx >

= < Tx, x > −< Tx, x >

= 0

The next step is to use a polarization trick, that we have already seen in chapter 2,
but that we reproduce here, for convenience. We have the following formula:

< S(x+ y), x+ y >=< Sx, x > + < Sy, y > + < Sx, y > + < Sy, x >

81
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Since the first 3 terms vanish, the sum of the 2 last terms vanishes too. But, by using
S∗ = −S, coming from S = T − T ∗, we can process this latter vanishing as follows:

< Sx, y > = − < Sy, x >

= < y, Sx >

= < Sx, y >

Thus we must have < Sx, y >∈ R, and with y → iy we obtain < Sx, y >∈ iR too,
and so < Sx, y >= 0. Thus S = 0, which gives T = T ∗. Now since T is self-adjoint, it is
normal as claimed. Moreover, by self-adjointness, we have:

σ(T ) ⊂ R
In order to prove now that we have indeed σ(T ) ⊂ [0,∞), as claimed, we must invert

T + λ, for any λ > 0. For this purpose, observe that we have:

< (T + λ)x, x > = < Tx, x > + < λx, x >

≥ < λx, x >

= λ||x||2

But this shows that T + λ is injective. In order to prove now the surjectivity, and the
boundedness of the inverse, observe first that we have:

Im(T + λ)⊥ = ker(T + λ)∗

= ker(T + λ)

= {0}
Thus Im(T + λ) is dense. On the other hand, observe that we have:

||(T + λ)x||2 = < Tx+ λx, Tx+ λx >

= ||Tx||2 + 2λ < Tx, x > +λ2||x||2

≥ λ2||x||2

Thus for any vector in the image y ∈ Im(T + λ) we have:

||y|| ≥ λ
∣∣∣∣(T + λ)−1y

∣∣∣∣
As a conclusion to what we have so far, T + λ is bijective and invertible as a bounded

operator from H onto its image, with the following norm bound:

||(T + λ)−1|| ≤ λ−1

But this shows that Im(T + λ) is complete, hence closed, and since we already knew
that Im(T + λ) is dense, our operator T + λ is surjective, and we are done.

(2) =⇒ (3) Since T is normal, and with spectrum contained in [0,∞), we can use the
continuous functional calculus formula for the normal operators, from chapter 3 above,
with the function f(x) =

√
x, as to construct a square root S =

√
T .
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(3) =⇒ (4) This is trivial, because we can set R = S.

(4) =⇒ (1) This is clear, because we have the following computation:

< R∗Rx, x >=< Rx,Rx >= ||Rx||2

Thus, we have the equivalences in the statement. �

In analogy with what happens in finite dimensions, where among the positive matrices
A ≥ 0 we have the strictly positive ones, A > 0, given by the fact that the eigenvalues
are strictly positive, we have as well a “strict” version of the above result, as follows:

Theorem 4.2. For an operator T ∈ B(H), the following are equivalent:

(1) T is positive and invertible.
(2) T is normal, and σ(T ) ⊂ (0,∞).
(3) T = S2, for some S ∈ B(H) invertible, satisfying S = S∗.
(4) T = R∗R, for some R ∈ B(H) invertible.

If these conditions are satisfied, we call T strictly positive, and write T > 0.

Proof. Our claim is that the above conditions (1-4) are precisely the conditions (1-4)
in Theorem 4.1, with the assumption “T is invertible” added. Indeed:

(1) This is clear by definition.

(2) In the context of Theorem 4.1 (2), namely when T is normal, and σ(T ) ⊂ [0,∞),
the invertibility of T , which means 0 /∈ σ(T ), gives σ(T ) ⊂ (0,∞), as desired.

(3) In the context of Theorem 4.1 (3), namely when T = S2, with S = S∗, by using
the basic properties of the functional calculus for normal operators, the invertibility of T
is equivalent to the invertibility of its square root S =

√
T , as desired.

(4) In the context of Theorem 4.1 (4), namely when T = RR∗, the invertibility of T
is equivalent to the invertibility of R. This can be either checked directly, or deduced via
the equivalence (3) ⇐⇒ (4) from Theorem 4.1, by using the above argument (3). �

As a subtlety now, we have the following complement to the above result:

Proposition 4.3. For a strictly positive operator, T > 0, we have

< Tx, x >> 0 , ∀x 6= 0

but the converse of this fact is not true, unless we are in finite dimensions.

Proof. We have several things to be proved, the idea being as follows:
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(1) Regarding the main assertion, the inequality can be deduced as follows, by using

the fact that the operator S =
√
T is invertible, and in particular injective:

< Tx, x > = < S2x, x >

= < Sx, S∗x >

= < Sx, Sx >

= ||Sx||2

> 0

(2) In finite dimensions, assuming < Tx, x >> 0 for any x 6= 0, we know from Theorem
4.1 that we have T ≥ 0. Thus we have σ(T ) ⊂ [0,∞), and assuming by contradiction
0 ∈ σ(T ), we obtain that T has λ = 0 as eigenvalue, and the corresponding eigenvector
x 6= 0 has the property < Tx, x >= 0, contradiction. Thus T > 0, as claimed.

(3) Finally, regarding the counterexample for the converse, in infinite dimensions,
consider the following operator on l2(N):

T =


1

1
2

1
3

. . .


This operator T is well-defined and bounded, and we have < Tx, x >> 0 for any

x 6= 0. However T is not invertible, and so the converse does not hold, as stated. �

With the above results in hand, let us discuss now some decomposition results for the
bounded operators T ∈ B(H), in analogy with what we know about the usual complex
numbers z ∈ C. We know that any z ∈ C can be written as follows, with a, b ∈ R:

z = a+ ib

Also, we know that both the real and imaginary parts a, b ∈ R, and more generally
any real number c ∈ R, can be written as follows, with p, q ≥ 0:

c = p− q
Here is the operator theoretic generalization of these results:

Proposition 4.4. Given an operator T ∈ B(H), the following hold:

(1) We can write T as follows, with Re(T ), Im(T ) ∈ B(H) being self-adjoint:

T = Re(T ) + iIm(T )

(2) When T = T ∗, we can write T as follows, with T+, T− ∈ B(H) being positive:

T = T+ − T−
(3) Thus, we can write any T as a linear combination of 4 positive elements.
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Proof. All this follows from basic spectral theory, as follows:

(1) This is something that we have already met in chapter 3 above, when proving the
spectral theorem in its general form, the decomposition formula being as follows:

T =
T + T ∗

2
+ i · T − T

∗

2i

(2) This follows from the measurable functional calculus. Indeed, assuming T = T ∗

we have σ(T ) ⊂ R, so we can use the following decomposition formula on R:

1 = χ[0,∞) + χ(−∞,0)

To be more precise, let us multiply by z, and rewrite this formula as follows:

z = χ[0,∞)z − χ(−∞,0)(−z)

Now by applying these measurable functions to T , we obtain as formula as follows,
with both the operators T+, T− ∈ B(H) being positive, as desired:

T = T+ − T−
(3) This follows by combining the results in (1) and (2) above. �

We can see from the above the power of the measurable functional calculus. It is
possible to do many more things along the same lines, as for instance cutting the bounded
operators into spectral projections, once again by using suitable characteristic functions,
and so on. We will discuss this later on, in the von Neumann algebra context.

Going ahead now with our decomposition results, let us record as well the following
technical statement, which comes as a consequence of Proposition 4.4:

Proposition 4.5. Any bounded operator T ∈ B(H) can be written as

T = λ1U1 + λ2U2 + λ3U3 + λ4U4

with Ui unitaries. That is, T is a linear combination of 4 unitary operators.

Proof. Indeed, by using Proposition 4.4 we can first write T as a linear combination
of 2 self-adjoint operators, and then by functional calculus each of these 2 self-adjoint
operators can be written as a linear linear combination of 2 unitary operators. �

Observe that the above result is not exactly along the lines of Proposition 4.4, sharply
generalizing what we know about the complex numbers. Indeed, the following formula
shows that any complex number z ∈ C appears as a real multiple of a unitary:

z = reit

However, the above result is technically quite useful. More on this later on.
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All this gets us into the multiplicative theory of the complex numbers, that we will
attempt to generalize now. As a first construction, that we would like to generalize to the
bounded operator setting, we have the construction of the modulus, as follows:

|z| =
√
zz̄

The point now is that we can indeed generalize this construction, as follows:

Proposition 4.6. Given an operator T ∈ B(H), we can construct a positive operator
|T | ∈ B(H) as follows, by using the fact that T ∗T is positive:

|T | =
√
T ∗T

The square of this operator is then |T |2 = T ∗T . In the case H = C, we obtain in this way
the usual absolute value of the complex numbers:

|z| =
√
zz̄

More generally, in the case where H = CN is finite dimensional, we obtain in this way
the usual moduli of the complex matrices A ∈MN(C).

Proof. We have several things to be proved, the idea being as follows:

(1) The first assertion follows from Theorem 4.1. Indeed, according to (4) there the
operator T ∗T is indeed positive, and then according to (2) there we can extract the square
root of this latter positive operator, by applying to it the function

√
z.

(2) By functional calculus we have then |T |2 = T ∗T , as desired.

(3) In the case H = C, we obtain indeed the absolute value of complex numbers.

(4) In the case where the space H is finite dimensional, H = CN , we obtain indeed
the usual moduli of the complex matrices A ∈MN(C). �

As a comment here, it is possible to talk as well about the operator
√
TT ∗, which is

in general different from
√
T ∗T . The reasons for using

√
T ∗T instead of

√
TT ∗ are quite

standard, coming from the polar decomposition formula, to be discussed in a second, that
we would like to formulate as T = U |T |, rather than T = |T |U . Note by the way that
when T is normal, TT ∗ = T ∗T , there is no issue here, because we have:

√
TT ∗ =

√
T ∗T

Regarding now the polar decomposition formula, let us start with a weak version of
this statement, regarding the invertible operators, as follows:

Theorem 4.7. We have the polar decomposition formula

T = U
√
T ∗T

with U being a unitary, for any T ∈ B(H) invertible.
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Proof. According to our definition of |T | =
√
T ∗T , we have:

< |T |x, |T |y > = < x, |T |2y >
= < x, T ∗Ty >

= < Tx, Ty >

Thus we can define a unitary operator U ∈ B(H) as follows:

U(|T |x) = Tx

But this formula shows that we have T = U |T |, as desired. �

Observe that we have uniqueness in the above result, in what regards the choice of
the unitary U ∈ B(H), due to the fact that we can write this unitary as follows:

U = T (
√
T ∗T )−1

More generally now, we have the following result:

Theorem 4.8. We have the polar decomposition formula

T = U
√
T ∗T

with U being a partial isometry, for any T ∈ B(H).

Proof. As before, in the proof of Theorem 4.7, we have the following equality, valid
for any two vectors x, y ∈ H:

< |T |x, |T |y >=< Tx, Ty >

We conclude from this equality that the following linear application is well-defined,
and isometric:

U : Im|T | → Im(T ) , |T |x→ Tx

By continuity we can extend this map U into an isometry between Hilbert subspaces
of H, as follows:

U : Im|T | → Im(T ) , |T |x→ Tx

Moreover, we can further extend U into a partial isometry U : H → H, by setting

Ux = 0, for any x ∈ Im|T |
⊥

, and with this convention, the result follows. �

Summarizing, as a first application of our spectral theory methods, we have now a full
generalization of the polar decomposition result for the usual matrices.
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4b. Compact operators

We have seen so far the basic theory of the bounded operators, in the arbitrary, normal
and self-adjoint cases, and in a few other cases of interest. We will keep building on this,
with a number of more specialized results, regarding the finite rank operators and compact
operators, and other special classes of related operators, namely the trace class operators,
and the Hilbert-Schmidt operators. Let us start with a basic definition, as follows:

Definition 4.9. An operator T ∈ B(H) is said to be of finite rank if its image

Im(T ) ⊂ H

is finite dimensional. The set of such operators is denoted B0(H).

There are many interesting examples of finite rank operators, the most basic ones being
the finite rank projections, on the finite dimensional subspaces K ⊂ H. Observe also that
in the case where H is finite dimensional, any operator T ∈ B(H) is automatically of
finite rank. In general, we have the following result:

Proposition 4.10. The set of finite rank operators

B0(H) ⊂ B(H)

is a two-sided ∗-ideal.

Proof. We have several assertions to be proved, the idea being as follows:

(1) It is clear from definitions that B0(H) is indeed a vector space, with this due to
the following formulae, valid for any S, T ∈ B(H), which are both clear:

dim(Im(S + T )) ≤ dim(Im(S)) + dim(Im(T ))

dim(Im(λT )) = dim(Im(T ))

(2) Let us prove now that B0(H) is stable under ∗. Given T ∈ B0(H), we can regard
it as an invertible operator between finite dimensional Hilbert spaces, as follows:

T : (kerT )⊥ → Im(T )

Thus, we have the following dimension equality:

dim((kerT )⊥) = dim(Im(T ))

Our claim now is that we have in fact equalities as follows:

dim(Im(T ∗)) = dim(Im(T ∗))

= dim((kerT )⊥)

= dim(Im(T ))

Indeed, the third equality is the one above, and the second equality is something that
we know too, from chapter 2. Now by combining these two equalities we deduce that
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Im(T ∗) is finite dimensional, and so the first equality holds as well. Thus, our equalities
are proved, and this shows that we have T ∗ ∈ B0(H), as desired.

(3) Finally, regarding the ideal property, this follows from the following two formulae,
valid for any S, T ∈ B(H), which are once again clear from definitions:

dim(Im(ST )) ≤ dim(Im(T ))

dim(Im(TS)) ≤ dim(Im(T ))

Thus, we are led to the conclusion in the statement. �

Let us discuss now the compact operators. These are introduced as follows:

Definition 4.11. An operator T ∈ B(H) is said to be compact if the closed set

T (B1) ⊂ H

is compact, where B1 ⊂ H is the unit ball. The set of such operators is denoted B∞(H).

Equivalently, an operator T ∈ B(H) is compact when for any sequence {xn} ⊂ B1,
or more generally for any bounded sequence {xn} ⊂ H, the sequence {T (xn)} has a
convergence subsequence. We will see later some further criteria of compactness.

In finite dimensions any operator is compact. In general, as a first observation, any
finite rank operator is compact. We have in fact the following result:

Proposition 4.12. Any finite rank operator is compact,

B0(H) ⊂ B∞(H)

and the finite rank operators are dense inside the compact operators.

Proof. The first assertion is clear, because if Im(T ) is finite dimensional, then the
following subset is closed and bounded, and so it is compact:

T (B1) ⊂ Im(T )

Regarding the second assertion, let us pick a compact operator T ∈ B∞(H), and a
number ε > 0. By compactness of T we can find a finite set S ⊂ B1 such that:

T (B1) ⊂
⋃
x∈S

Bε(Tx)

Consider now the orthogonal projection P onto the following finite dimensional space:

E = span
(
Tx
∣∣∣x ∈ S)
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Since the set S is finite, this space E is finite dimensional, and so P is of finite rank,
P ∈ B0(H). Now observe that for any norm one y ∈ H and any x ∈ S we have:

||Ty − Tx||2 = ||Ty − PTx||2

= ||Ty − PTy + PTy − PTx||2

= ||Ty − PTy||2 + ||PTx− PTy||2

Now by picking x ∈ S such that the ball Bε(Tx) covers the point Ty, we conclude
from this that we have the following estimate:

||Ty − PTy|| ≤ ||Ty − Tx|| ≤ ε

Thus we have ||T − PT || ≤ ε, which gives the density result. �

Quite remarkably, the set of compact operators is closed, and we have:

Theorem 4.13. The set of compact operators

B∞(H) ⊂ B(H)

is a closed two-sided ∗-ideal.

Proof. We have several assertions here, the idea being as follows:

(1) It is clear from definitions that B∞(H) is indeed a vector space, with this due to
the following formulae, valid for any S, T ∈ B(H), which are both clear:

(S + T )(B1) ⊂ S(B1) + T (B1)

(λT )(B1) = |λ| · T (B1)

(2) In order to prove now that B∞(H) is closed, assume that a sequence Tn ∈ B∞(H)
converges to T ∈ B(H). Given ε > 0, let us pick N ∈ N such that:

||T − TN || ≤ ε

By compactness of TN we can find a finite set S ⊂ B1 such that:

TN(B1) ⊂
⋃
x∈S

Bε(TNx)

We conclude that for any y ∈ B1 there exists x ∈ S such that:

||Ty − Tx|| ≤ ||Ty − TNy||+ ||TNy − TNx||+ ||TNx− Tx||
≤ ε+ ε+ ε

= 3ε

Thus, we have an inclusion as follows, with S ⊂ B1 being finite:

T (B1) ⊂
⋃
x∈S

B3ε(Tx)

But this shows that our limiting operator T is compact, as desired.
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(3) Regarding the fact that B∞(H) is stable under involution, this follows from Propo-
sition 4.10, Proposition 4.12 and (2). Indeed, by using Proposition 4.12, given T ∈ B∞(H)
we can write it as a limit of finite rank operators, as follows:

T = lim
n→∞

Tn

Now by applying the adjoint, we obtain that we have as well:

T ∗ = lim
n→∞

T ∗n

We know from Proposition 4.10 that the operators T ∗n are of finite rank, and so compact
by Proposition 4.12, and by using (2) we obtain that T ∗ is compact too, as desired.

(4) Finally, regarding the ideal property, this follows from the following two formulae,
valid for any S, T ∈ B(H), which are once again clear from definitions:

(ST )(B1) = S(T (B1))

(TS)(B1) ⊂ ||S|| · T (B1)

Thus, we are led to the conclusion in the statement. �

Here is now a second key result regarding the compact operators:

Theorem 4.14. A bounded operator T ∈ B(H) is compact precisely when

Ten → 0

for any orthonormal system {en} ⊂ H.

Proof. We have two implications to be proved, the idea being as follows:

“ =⇒ ” Assume that T is compact. By contradiction, assume Ten 6→ 0. This means
that there exists ε > 0 and a subsequence satisfying ||Tenk || > ε, and by replacing {en}
with this subsequence, we can assume that the following holds, with ε > 0:

||Ten|| > ε

Since T was assumed to be compact, and the sequence {en} is bounded, a certain sub-
sequence {Tenk} must converge. Thus, by replacing once again {en} with a subsequence,
we can assume that the following holds, with x 6= 0:

Ten → x

But this is a contradiction, because we obtain in this way:

< x, x > = lim
n→∞

< Ten, x >

= lim
n→∞

< en, T
∗x >

= 0

Thus our assumption Ten 6→ 0 was wrong, and we obtain the result.
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“⇐=” Assume Ten → 0, for any orthonormal system {en} ⊂ H. In order to prove
that T is compact, we use the various results established above, which show that this is
the same as proving that T is in the closure of the space of finite rank operators:

T ∈ B0(H)

We do this by contradiction. So, assume that the above is wrong, and so that there
exists ε > 0 such that the following holds:

S ∈ B0(H) =⇒ ||T − S|| > ε

As a first observation, by using S = 0 we obtain ||T || > ε. Thus, we can find a norm
one vector e1 ∈ H such that the following holds:

||Te1|| > ε

Our claim, which will bring the desired contradiction, is that we can construct by
recurrence vectors e1, . . . , en such that the following holds, for any i:

||Tei|| > ε

Indeed, assume that we have constructed such vectors e1, . . . , en. Let E ⊂ H be the
linear space spanned by these vectors, and let us set:

P = Proj(E)

Since the operator TP has finite rank, our assumption above shows that we have:

||T − TP || > ε

Thus, we can find a vector x ∈ H such that:

||(T − TP )x|| > ε

We have then x 6∈ E, and so we can consider the following nonzero vector:

y = (1− P )x

With this nonzero vector y constructed, now let us set:

en+1 =
y

||y||
This vector en+1 is then orthogonal to E, has norm one, and satisfies:

||Ten+1|| ≥ ||y||−1ε ≥ ε

Thus we are done with our construction by recurrence, and this contradicts our as-
sumption that Ten → 0, for any orthonormal system {en} ⊂ H, as desired. �

Summarizing, we have so far a number of results regarding the compact operators, in
analogy with what we know about the usual complex matrices. Let us discuss now the
spectral theory of the compact operators. We first have the following result:
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Proposition 4.15. Assuming that T ∈ B(H), with dimH = ∞, is compact and
self-adjoint, the following happen:

(1) The eigenvalues of T form a sequence λn → 0.
(2) All eigenvalues λn 6= 0 have finite multiplicity.

Proof. We prove both the assertions at the same time. For this purpose, we fix
a number ε > 0, we consider all the eigenvalues satisfying |λ| ≥ ε, and for each such
eigenvalue we consider the corresponding eigenspace Eλ ⊂ H. Let us set:

E = span
(
Eλ

∣∣∣ |λ| ≥ ε
)

Our claim, which will prove both (1) and (2), is that this space E is finite dimensional.
In now to prove now this claim, we can proceed as follows:

(1) We know that we have E ⊂ Im(T ). Our claim is that we have:

Ē ⊂ Im(T )

Indeed, assume that we have a sequence gn ∈ E which converges, gn → g ∈ Ē. Let us
write gn = Tfn, with fn ∈ H. By definition of E, the following condition is satisfied:

h ∈ E =⇒ ||Th|| ≥ ε||h||

Now since the sequence {gn} is Cauchy we obtain from this that the sequence {fn} is
Cauchy as well, and with fn → f we have Tfn → Tf , as desired.

(2) Consider now the projection P ∈ B(H) onto the above space Ē. The composition
PT is then as follows, surjective on its target:

PT : H → Ē

On the other hand since T is compact so must be PT , and if follows from this that
the space Ē is finite dimensional. Thus E itself must be finite dimensional too, and as
explained in the beginning of the proof, this gives (1) and (2), as desired. �

In order to construct now eigenvalues, we will need:

Proposition 4.16. If T is compact and self-adjoint, one of the numbers

||T || , −||T ||

must be an eigenvalue of T .

Proof. We know from the spectral theory of the self-adjoint operators that the spec-
tral radius ||T || of our operator T is attained, and so one of the numbers ||T ||,−||T ||
must be in the spectrum. In order to prove now that one of these numbers must actually
appear as an eigenvalue, we must use the compactness of T , as follows:
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(1) First, we can assume ||T || = 1. By functional calculus this implies ||T 3|| = 1 too,
and so we can find a sequence of norm one vectors xn ∈ H such that:

| < T 3xn, xn > | → 1

By using our assumption T = T ∗, we can rewrite this formula as follows:

| < T 2xn, Txn > | → 1

Now since T is compact, and {xn} is bounded, we can assume, up to changing the
sequence {xn} to one of its subsequences, that the sequence Txn converges:

Txn → y

Thus, the convergence formula found above reformulates as follows, with y 6= 0:

| < Ty, y > | = 1

(2) Our claim now, which will finish the proof, is that this latter formula implies
Ty = ±y. Indeed, by using Cauchy-Schwarz and ||T || = 1, we have:

| < Ty, y > | ≤ ||Ty|| · ||y|| ≤ 1

We know that this must be an equality, so Ty, y must be proportional. But since T is
self-adjoint the proportionality factor must be ±1, and so we obtain, as claimed:

Ty = ±y
Thus, we have constructed an eigenvector for λ = ±1, as desired. �

We can further build on the above results in the following way:

Proposition 4.17. If T is compact and self-adjoint, there is an orthogonal basis of
H made of eigenvectors of T .

Proof. We use Proposition 4.15. According to the results there, we can arrange the
nonzero eigenvalues of T , taken with multiplicities, into a sequence λn → 0. Let yn ∈ H
be the corresponding eigenvectors, and consider the following space:

E = span(yn)

The result follows then from the following observations:

(1) Since we have T = T ∗, both E and its orthogonal E⊥ are invariant under T .

(2) On the space E, our operator T is by definition diagonal.

(3) On the space E⊥, our claim is that we have T = 0. Indeed, assuming that the
restriction S = TE⊥ is nonzero, we can apply Proposition 4.16 to this restriction, and we
obtain an eigenvalue for S, and so for T , contradicting the maximality of E. �

With the above results in hand, we can now formulate a first spectral theory result
for compact operators, which closes the discussion in the self-adjoint case:
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Theorem 4.18. Assuming that T ∈ B(H), with dimH = ∞, is compact and self-
adjoint, the following happen:

(1) The spectrum σ(T ) ⊂ R consists of a sequence λn → 0.
(2) All spectral values λ ∈ σ(T )− {0} are eigenvalues.
(3) All eigenvalues λ ∈ σ(T )− {0} have finite multiplicity.
(4) There is an orthogonal basis of H made of eigenvectors of T .

Proof. This follows from the various results established above:

(1) In view of Proposition 4.15 (1), this will follow from (2) below.

(2) Assume that λ 6= 0 belongs to the spectrum σ(T ), but is not an eigenvalue.
By using Proposition 4.17, let us pick an orthonormal basis {en} of H consisting of
eigenvectors of T , and then consider the following operator:

Sx =
∑
n

< x, en >

λn − λ
en

Then S is an inverse for T − λ, and so we have λ /∈ σ(T ), as desired.

(3) This is something that we know, from Proposition 4.15 (2).

(4) This is something that we know too, from Proposition 4.17. �

Finally, we have the following result, regarding the general case:

Theorem 4.19. The compact operators T ∈ B(H), with dimH =∞, are the operators
of the following form, with {en}, {fn} being orthonormal families, and with λn ↘ 0:

T (x) =
∑
n

λn < x, en > fn

The numbers λn, called singular values of T , are the eigenvalues of |T |. In fact, the polar
decomposition of T is given by T = U |T |, with

|T |(x) =
∑
n

λn < x, en > en

and with U being given by Uen = fn, and U = 0 on the complement of span(ei).

Proof. This basically follows from Theorem 4.8 and Theorem 4.18, as follows:

(1) Given two orthonormal families {en}, {fn}, and a sequence of real numbers λn ↘ 0,
consider the linear operator given by the formula in the statement, namely:

T (x) =
∑
n

λn < x, en > fn
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Our first claim is that T is bounded. Indeed, when assuming |λn| ≤ ε for any n, which
is something that we can do if we want to prove that T is bounded, we have:

||T (x)||2 =

∣∣∣∣∣∑
n

λn < x, en > fn

∣∣∣∣∣
2

=
∑
n

|λn|2| < x, en > |2

≤ ε2
∑
n

| < x, en > |2

≤ ε2||x||2

(2) The next observation is that this operator is indeed compact, because it appears
as the norm limit, TN → T , of the following sequence of finite rank operators:

TN =
∑
n≤N

λn < x, en > fn

(3) Regarding now the polar decomposition assertion, for the above operator, this
follows once again from definitions. Indeed, the adjoint is given by:

T ∗(x) =
∑
n

λn < x, fn > en

Thus, when composing T ∗ with T , we obtain the following operator:

T ∗T (x) =
∑
n

λ2
n < x, en > en

Now by extracting the square root, we obtain the formula in the statement, namely:

|T |(x) =
∑
n

λn < x, en > en

(4) Conversely now, assume that T ∈ B(H) is compact. Then T ∗T , which is self-
adjoint, must be compact as well, and so by Theorem 4.18 we have a formula as follows,
with {en} being a certain orthonormal family, and with λn ↘ 0:

T ∗T (x) =
∑
n

λ2
n < x, en > en

By extracting the square root we obtain the formula of |T | in the statement, and then
by setting U(en) = fn we obtain a second orthonormal family, {fn}, such that:

T (x) = U |T |
=

∑
n

λn < x, en > fn

Thus, our compact operator T ∈ B(H) appears indeed as in the statement. �
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As a technical remark here, it is possible to slightly improve a part of the above
statement. Consider indeed an operator of the following form, with {en}, {fn} being
orthonormal families as before, and with λn → 0 being now complex numbers:

T (x) =
∑
n

λn < x, en > fn

Then the same proof as before shows that T is compact, and that the polar decom-
position of T is given by T = U |T |, with the modulus |T | being as follows:

|T |(x) =
∑
n

|λn| < x, en > en

As for the partial isometry U , this is given by Uen = wnfn, and U = 0 on the
complement of span(ei), where wn ∈ T are such that λn = |λn|wn.

4c. Trace class operators

We have not talked so far about the trace of operators T ∈ B(H), in analogy with
the trace of the usual matrices M ∈ MN(C). This is because the trace can be finite or
infinite, or even not well-defined, and we will discuss this now. Let us start with:

Proposition 4.20. Given a positive operator T ∈ B(H), the quantity

Tr(T ) =
∑
n

< Ten, en >∈ [0,∞]

is indpendent on the choice of an orthonormal basis {en}.

Proof. If {fn} is another orthonormal basis, we have:∑
n

< Tfn, fn > =
∑
n

<
√
Tfn,

√
Tfn >

=
∑
n

||
√
Tfn||2

=
∑
mn

| <
√
Tfn, em > |2

=
∑
mn

| < T 1/4fn, T
1/4em > |2

Since this quantity is symmetric in e, f , this gives the result. �

We can now introduce the trace class operators, as follows:

Definition 4.21. An operator T ∈ B(H) is said to be of trace class if:

Tr|T | <∞
The set of such operators is denoted B1(H).
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In finite dimensions, any operator is of course of trace class. In arbitrary dimension,
finite or not, we first have the following result, regarding such operators:

Proposition 4.22. Any finite rank operator is of trace class, and any trace class
operator is compact, so that we have embeddings as follows:

B0(H) ⊂ B1(H) ⊂ B∞(H)

Moreover, for any compact operator T ∈ B∞(H) we have the formula

Tr|T | =
∑
n

λn

where λn ≥ 0 are the singular values, and so T ∈ B1(H) precisely when
∑

n λn <∞.

Proof. We have several assertions here, the idea being as follows:

(1) If T is of finite rank, it is clearly of trace class.

(2) In order to prove now the second assertion, assume first that T > 0 is of trace
class. For any orthonormal basis {en} we have:∑

n

||
√
Ten||2 =

∑
n

< Ten, en >

≤ Tr(T )

< ∞

But this shows that we have a convergence as follows:
√
Ten → 0

Thus the operator
√
T is compact. Now since the compact operators form an ideal, it

follows that T =
√
T ·
√
T is compact as well, as desired.

(3) In order to prove now the second assertion in general, assume that T ∈ B(H) is
of trace class. Then |T | is also of trace class, and so compact by (2), and since we have
T = U |T | by polar decomposition, it follows that T is compact too.

(4) Finally, in order to prove the last assertion, assume that T is compact. The singular
value decomposition of |T |, from Theorem 4.19 above, is then as follows:

|T |(x) =
∑
n

λn < x, en > en

But this gives the formula for Tr|T | in the statement, and proves the last assertion. �

Here is a useful reformulation of the above result, or rather of the above result coupled
with Theorem 4.19, without reference to compact operators:
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Theorem 4.23. The trace class operators are precisely the operators of the form

|T |(x) =
∑
n

λn < x, en > fn

with {en}, {fn} being orthonormal systems, and with λ↘ 0 being a sequence satisfying:∑
n

λn <∞

Moreover, for such an operator we have the following estimate:

|Tr(T )| ≤ Tr|T | =
∑
n

λn

Proof. This follows indeed from Proposition 4.22, or rather for step (4) in the proof
of Proposition 4.22, coupled with Theorem 4.19 above. �

Next, we have the following result, which comes as a continuation of Proposition 4.22,
and is our central result here, regarding the trace class operators:

Theorem 4.24. The space of trace class operators, which appears as an intermediate
space between the finite rank operators and the compact operators,

B0(H) ⊂ B1(H) ⊂ B∞(H)

is a two-sided ∗-ideal of B∞(H). The following is a Banach space norm on B1(H),

||T ||1 = Tr|T |

satisfying ||T || ≤ ||T ||1, and for T ∈ B1(H) and S ∈ B(H) we have:

||ST ||1 ≤ ||S|| · ||T ||1
Also, the subspace B0(H) is dense inside B1(H), with respect to this norm.

Proof. There are several assertions here, the idea being as follows:

(1) In order to prove that B1(H) is a linear space, and that ||T ||1 = Tr|T | is a norm
on it, the only non-trivial point is that of proving the following inequality:

Tr|S + T | ≤ Tr|S|+ Tr|T |

For this purpose, consider the polar decompositions of these operators:

S = U |S|

T = V |T |

S + T = W |S + T |
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Given an orthonormal basis {en}, we have the following formula:

Tr|S + T | =
∑
n

< |S + T |en, en >

=
∑
n

< W ∗(S + T )en, en >

=
∑
n

< W ∗U |S|en, en > +
∑
n

< W ∗V |T |en, en >

The point now is that the first sum can be estimated as follows:∑
n

< W ∗U |S|en, en >

=
∑
n

<
√
|S|en,

√
|S|U∗Wen >

≤
∑
n

∣∣∣∣∣∣√|S|en∣∣∣∣∣∣ · ∣∣∣∣∣∣√|S|U∗Wen

∣∣∣∣∣∣
≤

√∑
n

∣∣∣∣∣∣√|S|en∣∣∣∣∣∣2 ·√∑
n

∣∣∣∣∣∣√|S|U∗Wen

∣∣∣∣∣∣2
In order to estimate the terms on the right, we can proceed as follows:∑

n

∣∣∣∣∣∣√|S|U∗Wen

∣∣∣∣∣∣2 =
∑
n

< W ∗U |S|U∗Wen, en >

= Tr(W ∗U |S|U∗W )

≤ Tr(U |S|U∗)
≤ Tr(|S|)

The second sum in the above formula of Tr|S +T | can be estimated in the same way,
and in the end we obtain, as desired:

Tr|S + T | ≤ Tr|S|+ Tr|T |

(2) The estimate ||T || ≤ ||T ||1 can be established as follows:

||T || = |||T |||
= sup

||x||=1

< |T |x, x >

≤ Tr|T |

(3) The fact that B1(H) is indeed a Banach space follows by constructing a limit for
any Cauchy sequence, by using the singular value decomposition.
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(4) The fact that B1(H) is indeed closed under the involution follows from:

Tr(T ∗) =
∑
n

< T ∗en, en >

=
∑
n

< en, T eN >

= Tr(T )

(5) In order to prove the ideal property of B1(H), we use the standard fact, that we
already know from the above, that any bounded operator T ∈ B(H) can be written as a
linear combination of 4 unitary operators:

T = λ1U1 + λ2U2 + λ3U3 + λ4U4

Indeed, by taking the real and imaginary part we can first write T as a linear combina-
tion of 2 self-adjoint operators, and then by functional calculus each of these 2 self-adjoint
operators can be written as a linear linear combination of 2 unitary operators.

(6) With this trick in hand, we can now prove the ideal property of B1(H). Indeed, it
is enough to prove that we have:

T ∈ B1(H), U ∈ U(H) =⇒ UT, TU ∈ B1(H)

But this latter result follows by using the polar decomposition theorem.

(7) With a bit more care, we obtain from this the estimate ||ST ||1 ≤ ||S|| · ||T ||1 from
the statement. As for the last assertion, this is clear as well. �

This was for the basic theory of the trace class operators. Much more can be said,
and we refer here to the literature, such as Lax [55]. We will be back to this.

4d. Hilbert-Schmidt operators

As a last topic of this chapter, let us discuss yet another important class of operators,
namely the Hilbert-Schmidt ones. These operators, that we will need on several key
occasions in what follows, when talking operator algebras, are introduced as follows:

Definition 4.25. An operator T ∈ B(H) is said to be Hilbert-Schmidt if:

Tr(T ∗T ) <∞

The set of such operators is denoted B2(H).

As before with other sets of operators, in finite dimensions we obtain in this way all
the operators. In general, we have the following result, regarding such operators:
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Theorem 4.26. The space B2(H) of Hilbert-Schmidt operators, which appears as an
intermediate space between the trace class operators and the compact operators,

B0(H) ⊂ B1(H) ⊂ B2(H) ⊂ B∞(H)

is a two-sided ∗-ideal of B∞(H). This ideal has the property

S, T ∈ B2(H) =⇒ ST ∈ B1(H)

and conversely, each T ∈ B1(H) appears as product of two operators in B2(H). In terms
of the singular values (λn), the Hilbert-Schmidt operators are characterized by:∑

n

λ2
n <∞

Also, the following formula, whose output is finite by Cauchy-Schwarz,

< S, T >= Tr(ST ∗)

defines a scalar product of B2(H), making it a Hilbert space.

Proof. All this is quite standard, from the results that we have already, and more
specifically from the singular value decomposition theorem, and its applications. To be
more precise, the proof of the various assertions goes as follows:

(1) First of all, the fact that the space of Hilbert-Schmidt operators B2(H) is stable
under taking sums, and so is a vector space, follows from:

(S + T )∗(S + T ) ≤ (S + T )∗(S + T ) + (S − T )∗(S − T )

= (S∗ + T ∗)(S + T ) + (S∗ − T ∗)(S − T )

= 2(S∗S + T ∗T )

Regarding now multiplicative properties, we can use here the following inequality:

(ST )∗(ST ) = T ∗S∗ST

≤ ||S||2T ∗T
Thus, the space B2(H) is a two-sided ∗-ideal of B∞(H), as claimed.

(2) In order to prove now that the product of any two Hilbert-Schmidt operators is a
trace class operator, we can use the following formula, which is elementary:

S∗T =
4∑

k=1

ik(S − iT )∗(S − iT )

Conversely, given an arbitrary trace class operator T ∈ B1(H), we have:

T ∈ B1(H) =⇒ |T | ∈ B1(H)

=⇒
√
|T | ∈ B2(H)
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Thus, by using the polar decomposition T = U |T |, we obtain the following decompo-
sition for T , with both components being Hilbert-Schmidt operators:

T = U |T |
= U

√
|T | ·

√
|T |

(3) The condition for the singular values is clear.

(4) The fact that we have a scalar product is clear as well.

(5) The proof of the completness property is routine as well. �

In the above result, the key statement is the last one, allowing us to use Hilbert space
techniques for the study of the operators T ∈ B2(H). We will be back to this.

This was for the basic theory of bounded operators on a Hilbert space, T ∈ B(H). In
the remainder of this book we will be rather interested in the operator algebras A ⊂ B(H)
that these operators can form. This is of course related to operator theory, because we
can, at least in theory, take A =< T >, and then study T via the properties of A.
Actually, this is something that we already did a few times, when doing spectral theory,
and notably when talking about functional calculus for normal operators.

For further operator theory, however, nothing beats a good operator theory book, and
various ad-hoc methods, depending on the type of operators involved, and especially, on
what you want to do with them. As before, in relation with topics to be later discussed
in this book, we recommend here the books of Lax [55] and Blackadar [20].

Let us mention as well that there is a lot of interesting theory regarding the unbounded
operators T ∈ L(H), which is something quite technical, and here once again, we warmly
recommend a good operator theory book. In addition, we recommend as well a good
PDE book, such as Evans [34], because most of the questions making appear unbounded
operators usually have PDE formulations as well, which are extremely efficient.

4e. Exercises

There has been a lot of theory in this chapter, with some of the things not really
explained in great detail, and we have several exercises about all this. First comes:

Exercise 4.27. Try to find the best operator theoretic analogue of the formula

z = reit

for the complex numbers, telling us that any number is a real multiple of a unitary.

As explained in the above, a weak analogue of this holds, stating that any operator is
a linear combination of 4 unitaries. The problem is that of improving this.
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Exercise 4.28. Work out a few explicit examples of the polar decomposition formula

T = U
√
T ∗T

with, if possible, a non-trivial computation for the square root.

This is actually something quite tricky, even for the usual matrices. So, as a prelimi-
nary exercise here, have some fun with the 2× 2 matrices.

Exercise 4.29. Look up the various extra general properties of the sets of finite rank,
trace class, Hilbert-Schmidt and compact operators,

B0(H) ⊂ B1(H) ⊂ B2(H) ⊂ B∞(H)

coming in addition to what has been said above, about such operators.

This is of course quite vague, and, as good news, it is not indicated either if you
should just come with a list of such properties, or with a list of such properties coming
with complete proofs. Up to you here, and the more the better.



Part II

Operator algebras



There was something in the air that night
The stars were bright, Fernando

They were shining there for you and me
For liberty, Fernando



CHAPTER 5

Operator algebras

5a. Von Neumann algebras

We have seen that the study of the bounded operators T ∈ B(H) often leads to the
consideration of the algebras < T >⊂ B(H) generated by such operators, the idea being
that the study of A =< T > can lead to results about T itself. This method is particularly
efficient in the study of the normal operators, TT ∗ = T ∗T , where the algebra A =< T >
is commutative, with all this being related to the Spectral Theorem.

In this chapter, and in the remainder of this book, we will focus on the study of such
algebras A ⊂ B(H), which can be singly generated, A =< T >, or multiply generated,
A =< Ti >, or simply abstract, A ⊂ B(H). The main motivations will become clear later
on, the idea being that the study of such abstract algebras A ⊂ B(H) leads, after some
work, into some interesting problems coming from quantum physics.

Before anything, we should mention that there are countless ways of getting introduced
to the operator algebras, depending on motivations and taste. There are about 20-30
books written with this purpose, introduction to the subject, including:

(1) The old book of von Neumann [89], which started everything. This is a classic
book, with mathematical physics content, and is actually one of the first true mathemati-
cal physics books, written precisely at times when mathematics and physics were starting
to part ways. And so telling us, for generations to come, what mathematical physics is,
and how a book on that should look like. A classic, still enjoyable nowadays.

(2) Various post-war books, often coming as multi-volume treatises, including Dixmier
[29], Kadison-Ringrose [52], Sakai [74], Strătilă-Zsidó [77], Takesaki [78]. These can be
used as an introduction by the young enthusiastic reader, and are must-have books for
the researcher. As a warning, however, all these books are purely mathematical. And
also, they sometimes avoid deep, fundamental results of von Neumann of Connes.

(3) More recent books, including Blackadar [20], Connes [26] and Jones [49]. These
are all excellent books, each coming as a beautiful, well-concieved one-volume book, and
are often more complete than the above-mentioned treatises, save of course for proofs.

107
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These books [20], [26], [49] are written with different purposes in mind, with each one,
at least in my opinion, being the best in its category.

(4) In short, plenty of choices. For the story, personally I learned operator algebras
back in the mid 90s, right before starting my PhD, by reading Dixmier [29], and having
survived that. Later I completed with Sakai [74] and papers of von Neumann and others,
and for long years I used to have the book of Connes [26] on my desk. And more recently,
old man, I had to relearn a few things, from Blackadar [20] and Jones [49].

The present book, or at least its remainder, is heavily inspired by Connes [26], Jones
[49], Blackadar [20], but is yet a different beast. Without getting into details, let us
mention that operator algebras come in 2 flavors, C∗-algebras and von Neumann algebras,
with [26], [49], [20] being mainly on C∗-algebras, von Neumann algebras, and both. In
what follows we will talk about both C∗-algebras and von Neumann algebras, but not
exactly in the way Connes, Jones, Blackadar do in their books, with our presentation
being also heavily inspired by the work of Voiculescu [85] and Woronowicz [99]. And
more on this later, once we’ll know more about operator algebras.

But probably enough talking, let us get now to work. As mentioned before, we are
interested in the study of the algebras of bounded operators A ⊂ B(H). And, as per
general mathematical physics motivations, we would be rather interested in focusing on
such algebras A ⊂ B(H) which can be useful for something. But we cannot really know in
advance which algebras are useful, so let us start our discussion with the following broad
definition, obtained by imposing the “minimal” set of reasonable axioms:

Definition 5.1. An operator algebra is an algebra of bounded operators A ⊂ B(H)
which contains the unit, is closed under taking adjoints,

T ∈ A =⇒ T ∗ ∈ A
and is closed as well under the norm.

Here, as in the previous chapters, H is an arbitrary Hilbert space, with the case that we
are mostly interested in being the separable one. By separable we mean having a countable
orthonormal basis, {ei}i∈I with I countable, and such a space is of course unique. The
simplest model is the space l2(N), but in practice, we are particularly interested in the
spaces of the form H = L2(X), which are separable too, but with the basis {ei}i∈N and
the subsequent identification H ' l2(N) being not necessarily very explicit.

Also as in the previous chapters, B(H) is the algebra of linear operators T : H → H
which are bounded, in the sense that the norm ||T || = sup||x||=1 ||Tx|| is finite. This
algebra has an involution T → T ∗, with the adjoint operator T ∗ ∈ B(H) being defined
by the formula < Tx, y >=< x, T ∗y >, and in the above definition, the assumption
T ∈ A =⇒ T ∗ ∈ A refers to this involution. Thus, A must be a ∗-algebra.
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Regarding now our various assumptions from Definition 5.1, the rationale behind them,
which might look of course a bit subjective, is as follows:

(1) Regarding the assumption A ⊂ B(H), normally no questions here, we want to
look at the algebras of operators T ∈ B(H), motivated by quantum mechanics. With the
remark however that in basic quantum mechanics the operators T : H → H used to be
densely defined and unbounded, and what we will be doing here is motivated by more
recent quantum mehanics, where the operators are often bounded, T ∈ B(H).

(2) The assumption that A must be a ∗-algebra comes from operator theory, or even
from basic linear algebra. Indeed, the adjoint operator T ∗ ∈ B(H) is a sort of “twin
brother” to the original operator T ∈ B(H), with these two operators being related by
a lot of interesting mathematics, starting from the very basics, up the subtle normality
condition TT ∗ = T ∗T . Thus, it is unthinkable to assume T ∈ A, and T ∗ /∈ A.

(3) The assumption that A is norm closed, which is automatic in finite dimensions,
comes as well from operator theory. We have seen indeed in the previous chapters that
in infinite dimensions things are quite tricky, and analytic. Thus, in order to get to
something interesting, we must be able to do analysis inside A, and the least of the things
here is that of assuming that our Cauchy sequences inside A converge.

(4) Finally, the assumption 1 ∈ A is something more subtle than it seems, the idea
being on one hand that the study of non-unital algebras B reduces, at least in theory, to
the study of the non-unital subalgebras B ⊂ A of their unitizations A =< B, 1 >, and
on the other hand that all operator algebras which are really of basic type, including all
those to be discussed in the present book, are by definition unital.

Let us mention too that the operator algebras A ⊂ B(H) as axiomatized in Definition
5.1 are also called “concrete C∗-algebras”. We will discuss all this in chapter 6 below,
where we will introduce as well a notion of “abstract C∗-algebras”, and we will have a
theorem stating that abstract is the same as concrete. But more on this later.

Long story short, what we have above is a good, very reasonable definition, that we
have now to explore. In relation with the normal operators, where most of the non-trivial
results that we have so far are, we have the following result:

Theorem 5.2. The operator algebra < T >⊂ B(H) generated by a normal operator
T ∈ B(H) appears as an algebra of functions,

< T >= C(σ(T ))

where σ(T ) ⊂ C denotes as usual the spectrum of T .
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Proof. This is an abstract reformulation of the continuous functional calculus theo-
rem for the normal operators, that we know from chapter 3. Indeed, that theorem tells
us that we have a continuous morphism of ∗-algebras, as follows:

C(σ(T ))→ B(H) , f → f(T )

Moreover, by the general properties of the continuous calculus, also established in
chapter 3, this morphism is injective, and its image is the norm closed algebra < T >
generated by T, T ∗. Thus, we obtain the isomorphism in the statement. �

The above result is quite nice, and it is possible to further build on it, notably with a
result stating that any commutative algebra A ⊂ B(H) must be of the form A = C(X),
with X being a compact space, then with a definition stating that any operator algebra
A ⊂ B(H) can be thought of as being of the form A = C(X), with X being a “compact
quantum space”, and then with a geometric study of these compact quantum spaces,
which can quickly escalate into a big book like Connes’ [26], and beyond.

We will discuss such things, which are more advanced, later. For the moment, let
us return to our modest status of apprentice operator theorists, and declare ourselves
unsatisfied with Definition 5.1 and Theorem 5.2, on the following grounds:

Thought 5.3. Our assumption that A ⊂ B(H) is norm closed is not satisfying,
because we would like A to be stable under polar decomposition, under taking spectral
projections, and more generally, under measurable functional calculus.

Here all these “defects” are best visible in the context of Theorem 5.2, with the algebra
A = C(X) found there, with X = σ(T ), being obviously too small. In fact, Theorem 5.2
teaches us that, when looking for a fix, we should look for a weaker topology on B(H),
as for the algebra A =< T > generated by a normal operator to be A = L∞(X).

So, let us get now into this, topologies on B(H), and fine-tunings of Definition 5.1,
based on them. The result that we will need, which is elementary, is as follows:

Proposition 5.4. For a subalgebra A ⊂ B(H), the following are equivalent:

(1) A is closed under the weak operator topology, making each of the linear maps
T →< Tx, y > continuous.

(2) A is closed under the strong operator topology, making each of the linear maps
T → Tx continuous.

In the case where these conditions are satisfied, A is closed under the norm topology.

Proof. There are several statements here, the proof being as follows:

(1) It is clear that the norm topology is stronger than the strong operator topology,
which is in turn stronger than the weak operator topology. At the level of the subsets
S ⊂ B(H) which are closed things get reversed, in the sense that weakly closed implies
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strongly closed, which in turn implies norm closed. Thus, we are left with proving that
for any algebra A ⊂ B(H), strongly closed implies weakly closed.

(2) But this latter fact is something standard, which can be proved via an amplification
trick. Consider the Hilbert space obtained by summing n times H with itself:

K = H ⊕ . . .⊕H
The operators over K can be regarded as being square matrices with entries in B(H),

and in particular, we have a representation π : B(H)→ B(K), as follows:

π(T ) =

T . . .
T


Assume now that we are given an operator T ∈ Ā, with the bar denoting the weak

closure. We have then, by using the Hahn-Banach theorem, for any x ∈ K:

T ∈ Ā =⇒ π(T ) ∈ π(A)

=⇒ π(T )x ∈ π(A)x

=⇒ π(T )x ∈ π(A)x
||.||

Now observe that the last formula tells us that for any x = (x1, . . . , xn), and any ε > 0,
we can find S ∈ A such that the following holds, for any i:

||Sxi − Txi|| < ε

Thus T belongs to the strong operator closure of A, as desired. �

Observe that in the above the terminology is a bit confusing, because the norm topol-
ogy is stronger, and in fact considerably stronger, than the strong operator topology. As
a solution to this problem, we agree to call the norm topology “strong”, and the weak
and strong operator topologies “weak”, whenever these two topologies coincide.

With this convention made, the algebras A ⊂ B(H) appearing in Proposition 5.4 are
those which are weakly closed. Thus, we can now formulate:

Definition 5.5. A von Neumann algebra is an operator algebra

A ⊂ B(H)

which is closed under the weak topology.

The von Neumann algebras will be our main objects of study, in the remainder of
this chapter, and of this book. As basic examples, we have the algebra B(H) itself, then
the singly generated von Neumann algebras, A =< T > with T ∈ B(H), and then the
multiply generated von Neumann algebras, A =< Ti > with Ti ∈ B(H).
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We have as well a number of concrete and advanced examples coming from the operator
theory developed in the previous chapters, and we will be back to this later. For the
moment, let us keep things simple, and build directly on Definition 5.5, by using basic
functional analysis methods. We will need the following key result:

Theorem 5.6. For an operator algebra A ⊂ B(H), we have

A′′ = Ā

with A′′ being the bicommutant inside B(H), and Ā being the weak closure.

Proof. We can prove this by double inclusion, as follows:

“⊃” Since any operator commutes with the operators that it commutes with, we have
a trivial inclusion S ⊂ S ′′, valid for any set S ⊂ B(H). In particular, we have:

A ⊂ A′′

Our claim now is that the algebra A′′ is closed, with respect to the strong operator
topology. Indeed, assuming that we have Ti → T in this topology, we have:

Ti ∈ A′′ =⇒ STi = TiS, ∀S ∈ A′

=⇒ ST = TS, ∀S ∈ A′

=⇒ T ∈ A

Thus our claim is proved, and together with Proposition 5.4, which allows us to pass
from the strong to the weak operator topology, this gives Ā ⊂ A′′, as desired.

“⊂” Here we must prove that we have the following implication, valid for any T ∈
B(H), with the bar denoting as usual the weak operator closure:

T ∈ A′′ =⇒ T ∈ Ā

For this purpose, we use the same amplification trick as in the proof of Proposition
5.4 above. Consider the Hilbert space obtained by summing n times H with itself:

K = H ⊕ . . .⊕H

The operators over K can be regarded as being square matrices with entries in B(H),
and in particular, we have a representation π : B(H)→ B(K), as follows:

π(T ) =

T . . .
T


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The idea will be that of doing the computations in this representation. First, in this
representation, the image of our algebra A ⊂ B(H) is given by:

π(A) =


T . . .

T

∣∣∣T ∈ A


We can compute the commutant of this image, exactly as in the usual scalar matrix
case, and we obtain the following formula:

π(A)′ =


S11 . . . S1n

...
...

Sn1 . . . Snn

∣∣∣Sij ∈ A′


We conclude from this that, given an operator T ∈ A′′ as above, we have:T . . .
T

 ∈ π(A)′′

In other words, the conclusion of all this is that we have:

T ∈ A′′ =⇒ π(T ) ∈ π(A)′′

Now given a vector x ∈ K, consider the orthogonal projection P ∈ B(K) on the norm
closure of the vector space π(A)x ⊂ K. Since the subspace π(A)x ⊂ K is invariant under
the action of π(A), so is its norm closure inside K, and we obtain from this:

P ∈ π(A)′

By combining this with what we found above, we conclude that we have:

T ∈ A′′ =⇒ π(T )P = Pπ(T )

Since this holds for any x ∈ K, we conclude that any T ∈ A′′ belongs to the strong
operator closure of A. By using now Proposition 5.4, which allows us to pass from the
strong to the weak operator closure, we conclude that we have A′′ ⊂ Ā, as desired. �

Now by getting back to the von Neumann algebras, from Definition 5.5, we have the
following result, which is a reformulation of Theorem 5.6, by using this notion:

Theorem 5.7. For an operator algebra A ⊂ B(H), the following are equivalent:

(1) A is weakly closed, so it is a von Neumann algebra.
(2) A equals its algebraic bicommutant A′′, taken inside B(H).

Proof. This follows from the formula A′′ = Ā from Theorem 5.6 above, along with
the trivial fact that the commutants are automatically weakly closed. �
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The above statement, called bicommutant theorem, and due to von Neumann [86], is
quite interesting, philosophically speaking. Among others, it shows that the von Neumann
algebras are exactly the commutants of the self-adjoint sets of operators:

Proposition 5.8. Given a subset S ⊂ B(H) which is closed under ∗, the commutant

A = S ′

is a von Neumann algebra. Any von Neumann algebra appears in this way.

Proof. We have two assertions here, the idea being as follows:

(1) Given S ⊂ B(H) satisfying S = S∗, the commutant A = S ′ satisfies A = A∗, and
is also weakly closed. Thus, A is a von Neumann algebra. Note that this follows as well
from the following “tricommutant formula”, which follows from Theorem 5.7:

S ′′′ = S ′

(2) Given a von Neumann algebra A ⊂ B(H), we can take S = A′. Then S is closed
under the involution, and we have S ′ = A, as desired. �

Observe that Proposition 5.8 can be regarded as yet another alternative definition for
the von Neumann algebras, and with this definition being probably the best one when
talking about quantum mechanics, where the self-adjoint operators T : H → H can be
though of as being “observables” of the system, and with the commutants A = S ′ of the
sets of such observables S = {Ti} being the algebras A ⊂ B(H) that we are interested
in. And with all this actually needing some discussion about self-adjointness, and about
boundedness too, but let us not get into this here, and stay mathematical, as before.

As another interesting consequence of Theorem 5.7, we have:

Proposition 5.9. Given a von Neumann algebra A ⊂ B(H), its center

Z(A) = A ∩ A′

regarded as an algebra Z(A) ⊂ B(H), is a von Neumann algebra too.

Proof. This follows from the fact that the commutants are weakly closed, that we
know from the above, which shows that A′ ⊂ B(H) is a von Neumann algebra. Thus, the
intersection Z(A) = A ∩ A′ must be a von Neumann algebra too, as claimed. �

Again, this is something rather trivial, but with potentially deep consequences. Indeed,
we will see soon that any commutative von Neumann algebra must be of the form L∞(X),
with X being a measured space. Now in the case of a center algebra Z(A), which is
obviously commutative, this applies, and provides us with a formula as follows:

Z(A) = L∞(X)
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But then, starting from this, the idea is that one can prove that the whole algebra A
decomposes as a sum of fibers, over the center space X, as follows:

A =

∫
X

Axdx

This latter result is the “reduction theory” result of von Neumann [88], whose proof
is in fact something extremely complicated. We will be back to this later.

Finally, as yet another consequence of the bicommutant theorem, this time of practical
use, for the presentation, this allows us to write A′′ for the weak closure of any ∗-algebra
A ⊂ B(H). We will systematically use this convention, in what follows.

5b. Theory, examples

In order to develop now some general theory, let us start by investigating the finite
dimensional case. Here the ambient operator algebra is B(H) = MN(C), and any linear
subspace A ⊂ B(H) is automatically closed, for all 3 topologies in Proposition 5.4. Thus,
we are left with the question of investigating the ∗-algebras of usual matrices A ⊂MN(C).
But this is a purely algebraic question, whose answer is as follows:

Theorem 5.10. The ∗-algebras A ⊂MN(C) are exactly the algebras of the form

A = Mr1(C)⊕ . . .⊕Mrk(C)

depending on parameters k ∈ N and r1, . . . , rk ∈ N satisfying

r1 + . . .+ rk = N

embedded into MN(C) via the obvious block embedding, twisted by a unitary U ∈ UN .

Proof. We have two assertions to be proved, the idea being as follows:

(1) Given numbers r1, . . . , rk ∈ N satisfying r1 + . . . + rk = N , we have an obvious
embedding of ∗-algebras, via matrix blocks, as follows:

Mr1(C)⊕ . . .⊕Mrk(C) ⊂MN(C)

In addition, we can twist this embedding by a unitary U ∈ UN , as follows:

M → UMU∗

(2) In the other sense now, consider a ∗-algebra A ⊂MN(C). It is elementary to prove
that the center Z(A) = A ∩ A′, as an algebra, is of the following form:

Z(A) ' Ck

Consider now the standard basis e1, . . . , ek ∈ Ck, and let p1, . . . , pk ∈ Z(A) be the
images of these vectors via the above identification. In other words, these elements
p1, . . . , pk ∈ A are central minimal projections, summing up to 1:

p1 + . . .+ pk = 1
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The idea is then that this partition of the unity will eventually lead to the block
decomposition of A, as in the statement. We prove this in 4 steps, as follows:

Step 1. We first construct the matrix blocks, our claim here being that each of the
following linear subspaces of A are non-unital ∗-subalgebras of A:

Ai = piApi

But this is clear, with the fact that each Ai is closed under the various non-unital
∗-subalgebra operations coming from the projection equations p2

i = pi = p∗i .

Step 2. We prove now that the above algebras Ai ⊂ A are in a direct sum position,
in the sense that we have a non-unital ∗-algebra sum decomposition, as follows:

A = A1 ⊕ . . .⊕ Ak
As with any direct sum question, we have two things to be proved here. First, by

using the formula p1 + . . .+pk = 1 and the projection equations p2
i = pi = p∗i , we conclude

that we have the needed generation property, namely:

A1 + . . .+ Ak = A

As for the fact that the sum is indeed direct, this follows as well from the formula
p1 + . . .+ pk = 1, and from the projection equations p2

i = pi = p∗i .

Step 3. Our claim now, which will finish the proof, is that each of the ∗-subalgebras
Ai = piApi constructed above is a full matrix algebra. To be more precise here, with
ri = rank(pi), our claim is that we have isomorphisms, as follows:

Ai 'Mri(C)

In order to prove this claim, recall that the projections pi ∈ A were chosen central
and minimal. Thus, the center of each of the algebras Ai reduces to the scalars:

Z(Ai) = C
But this shows, either via a direct computation, or via the bicommutant theorem, that

the each of the algebras Ai is a full matrix algebra, as claimed.

Step 4. We can now obtain the result, by putting together what we have. Indeed, by
using the results from Step 2 and Step 3, we obtain an isomorphism as follows:

A 'Mr1(C)⊕ . . .⊕Mrk(C)

Moreover, a careful look at the isomorphisms established in Step 3 shows that at the
global level, of the algebra A itself, the above isomorphism simply comes by twisting the
following standard multimatrix embedding, discussed in the beginning of the proof, (1)
above, by a certain unitary matrix U ∈ UN :

Mr1(C)⊕ . . .⊕Mrk(C) ⊂MN(C)

Now by putting everything together, we obtain the result. �
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In relation with the bicommutant theorem, we have the following result, which fully
clarifies the situation, with a very explicit proof, in finite dimensions:

Proposition 5.11. Consider a ∗-algebra A ⊂MN(C), written as above:

A = Mr1(C)⊕ . . .⊕Mrk(C)

The commutant of this algebra is then, with respect with the block decomposition used,

A′ = C⊕ . . .⊕ C
and by taking one more time the commutant we obtain A itself, A = A′′.

Proof. Let us decompose indeed our algebra A as in Theorem 5.10:

A = Mr1(C)⊕ . . .⊕Mrk(C)

The center of each matrix algebra being reduced to the scalars, the commutant of this
algebra is then as follows, with each copy of C corresponding to a matrix block:

A′ = C⊕ . . .⊕ C
By taking once again the commutant we obtain A itself, and we are done. �

As another application of Theorem 5.10, clarifying this time the relation with operator
theory, in finite dimensions, we have the following result:

Theorem 5.12. Given an operator T ∈ B(H) in finite dimensions, H = CN , the von
Neumann algebra A =< T > that it generates inside B(H) = MN(C) is

A = Mr1(C)⊕ . . .⊕Mrk(C)

with the sizes of the blocks r1, . . . , rk ∈ N coming from the spectral theory of the associated
matrix M ∈MN(C). In the normal case TT ∗ = T ∗T , this decomposition comes from

T = UDU∗

with D ∈MN(C) diagonal, and with U ∈ UN unitary.

Proof. This is routine, by using the linear algebra theory and spectral theory devel-
oped in chapter 1 above, for the usual matrices M ∈MN(C). To be more precise:

(1) The fact that A =< T > decomposes into a direct sum of matrix algebras is
something that we already know, coming from Theorem 5.10.

(2) By using standard linear algebra, we can compute the block sizes r1, . . . , rk ∈ N,
from the knowledge of the spectral theory of the associated matrix M ∈MN(C).

(3) In the normal case, TT ∗ = T ∗T , we can simply invoke the spectral theorem, and
by suitably changing the basis, we are led to the conclusion in the statement. �

Let us get now to infinite dimensions, with Theorem 5.12 as our main source of in-
spiration. The same argument applies, provided that we are in the normal case, and we
have the following result, summarizing our basic knowledge here:
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Theorem 5.13. Given a bounded operator T ∈ B(H) which is normal, TT ∗ = T ∗T ,
the von Neumann algebra A =< T > that it generates inside B(H) is

< T >= L∞(σ(T ))

with σ(T ) ⊂ C being as usual its spectrum.

Proof. The measurable functional calculus theorem for the normal operators tells us
that we have a weakly continuous morphism of ∗-algebras, as follows:

L∞(σ(T ))→ B(H) , f → f(T )

Moreover, by the general properties of the measurable calculus, also established in
chapter 3, this morphism is injective, and its image is the weakly closed algebra < T >
generated by T, T ∗. Thus, we obtain the isomorphism in the statement. �

More generally now, along the same lines, we have the following result:

Theorem 5.14. Given operators Ti ∈ B(H) which are normal, and which commute,
the von Neumann algebra A =< Ti > that these operators generates inside B(H) is

< Ti >= L∞(X)

with X being a certain measured space, associated to the family {Ti}.

Proof. This is once again routine, by using the spectral theory for the families of
commuting normal operators Ti ∈ B(H) developed in chapter 3 above. �

As an interesting, fundamental consequence of the above result, we have:

Theorem 5.15. The commutative von Neumann algebras are the algebras

A = L∞(X)

with X being a measured space.

Proof. We have two assertions to be proved, the idea being as follows:

(1) In one sense, we must prove that given a measured space X, we can realize the
A = L∞(X) as a von Neumann algebra, on a certain Hilbert space H. But this is
something that we know since chapter 2, the representation being as follows:

L∞(X) ⊂ B(L2(X)) , f → (g → fg)

(2) In the other sense, given a commutative von Neumann algebra A ⊂ B(H), we
must construct a certain measured space X, and an identification A = L∞(X). But this
follows from Theorem 5.14, because we can write our algebra as follows:

A =< Ti >

To be more precise, A being commutative, any element T ∈ A is normal, so we can
pick a basis {Ti} ⊂ A, and then we have A =< Ti > as above, with Ti ∈ B(H) being
commuting normal operators. Thus Theorem 5.14 applies, and gives the result. �
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The above result is not the end of the story with the commutative von Neumann
algebras, because we still have to understand how a given algebra A = L∞(X) can
be represented as an operator algebra, A ⊂ B(H), over the various Hilbert spaces H.
The final result here, once again due to von Neumann, states that the commutative von
Neumann algebras appear as follows, up to a certain multiplicity:

L∞(X) ⊂ B(L2(X))

We will discuss this later on in this book, after developing all the needed tools. As a
more concrete consequence now of Theorem 5.15, we have:

Theorem 5.16. Given a von Neumann algebra A ⊂ B(H), we have

Z(A) = L∞(X)

with X being a certain measured space.

Proof. We know from Proposition 5.9 that the center Z(A) ⊂ B(H) is a von Neu-
mann algebra. Thus Theorem 5.15 applies, and gives the result. �

As mentioned after Proposition 5.9, it is possible to further build on this, with a
powerful decomposition result as follows, over the space X constructed above:

A =

∫
X

Axdx

But more on this later, after developing the appropriate tools for this program, which
is something non-trivial. Among others, before getting into such things, we will have to
study the von Neumann algebras A having trivial center, Z(A) = C, called factors, which
include the fibers Ax in the above decomposition result. More on this later.

5c. Random matrices

Our main results so far on the von Neumann algebras concern the finite dimensional
case, where the algebra is of the form A = ⊕iMni(C), and the commutative case, where
the algebra is of the form A = L∞(X). In order to unify these two constructions, the
natural idea is that of looking at direct integrals of matrix algebras:

A =

∫
X

Mnx(C)dx

All this is quite tricky, for later. For the moment, let us discuss the “isotypic” case,
where all fibers are isomorphic. In this case our algebra is a random matrix algebra:

A =

∫
X

MN(C)dx

Although there is some functional analysis to be done with these algebras, the main
questions regard the individual operators T ∈ A, called random matrices. Thus, we are
basically back to good old operator theory. Let us begin our discussion with:
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Definition 5.17. A random matrix algebra is a von Neumann algebra of the following
type, with X being a probability space, and with N ∈ N being an integer:

A = MN(L∞(X))

In other words, A appears as a tensor product, as follows,

A = MN(C)⊗ L∞(X)

of a matrix algebra and a commutative von Neumann algebra.

As a first observation, our algebra can be written as well as follows, with this latter
convention being quite standard in the probability literature:

A = L∞(X,MN(C))

In connection with the tensor product notation, which is often the most useful one for
computations, we have as well the following possible writing, also used in probability:

A = L∞(X)⊗MN(C)

Importantly now, each random matrix algebra A is naturally endowed with a canonical
von Neumann algebra trace tr : A→ C, which appears as follows:

Proposition 5.18. Given a random matrix algebra A = MN(L∞(X)), consider the
linear form tr : A→ C given by:

tr(T ) =
1

N

N∑
i=1

∫
X

T xiidx

In tensor product notation, A = MN(C)⊗ L∞(X), we have then the formula

tr =
1

N
Tr ⊗

∫
X

and this functional tr : A→ C is a faithful positive unital trace.

Proof. The first assertion, regarding the tensor product writing of tr, is clear from
definitions. As for the second assertion, regarding the various properties of tr, this follows
from this, because these properties are stable under taking tensor products. �

As before, there is a discussion here in connection with the other possible writings of
A. With the probabilistic notation A = L∞(X,MN(C)), the trace appears as:

tr(T ) =

∫
X

1

N
Tr(T x) dx

Also, with the probabilistic tensor notation A = L∞(X)⊗MN(C), the trace appears
exactly as in the second part of Proposition 5.18, with the order inverted:

tr =

∫
X

⊗ 1

N
Tr
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As already mentioned, the main questions about random matrix algebras regard the
individual operators T ∈ A, called random matrices. To be more precise, we are interested
in computing the “laws” or “distributions” of such matrices, according to:

Theorem 5.19. Given an operator algebra A ⊂ B(H) with a faithful trace tr : A→ C,
any normal element T ∈ A has a law, namely a probability measure µ satisfying

tr(T k) =

∫
C
zkdµ(z)

with the powers being with respect to colored exponents k = ◦ • • ◦ . . . , defined via

a∅ = 1 , a◦ = a , a• = a∗

and multiplicativity. This law is unique, and is supported by the spectrum σ(T ) ⊂ C. In
the non-normal case, TT ∗ 6= T ∗T , such a law does not exist.

Proof. We have two assertions here, the idea being as follows:

(1) In the normal case, TT ∗ = T ∗T , we know from Theorem 5.2, based on the contin-
uous functional calculus theorem, that we have:

< T >= C(σ(T ))

Thus the functional f(T )→ tr(f(T )) can be regarded as an integration functional on
the algebra C(σ(T )), and by the Riesz theorem, this latter functional must come from a
probability measure µ on the spectrum σ(T ), in the sense that we must have:

tr(f(T )) =

∫
σ(T )

f(z)dµ(z)

We are therefore led to the conclusions in the statement, with the uniqueness assertion
coming from the fact that the operators T k, taken as usual with respect to colored integer
exponents, k = ◦ • • ◦ . . . , generate the whole operator algebra C(σ(T )).

(2) In the non-normal case now, TT ∗ 6= T ∗T , we must show that such a law does not
exist. For this purpose, we can use a positivity trick, as follows:

TT ∗ − T ∗T 6= 0 =⇒ (TT ∗ − T ∗T )2 > 0

=⇒ TT ∗TT ∗ − TT ∗T ∗T − T ∗TTT ∗ + T ∗TT ∗T > 0

=⇒ tr(TT ∗TT ∗ − TT ∗T ∗T − T ∗TTT ∗ + T ∗TT ∗T ) > 0

=⇒ tr(TT ∗TT ∗ + T ∗TT ∗T ) > tr(TT ∗T ∗T + T ∗TTT ∗)

=⇒ tr(TT ∗TT ∗) > tr(TTT ∗T ∗)

Now assuming that T has a law µ ∈ P(C), in the sense that the moment formula
in the statement holds, the above two different numbers would have to both appear by
integrating |z|2 with respect to this law µ, which is contradictory, as desired. �
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Back now to the random matrices, as a basic example, assume X = {.}, so that we
are dealing with a usual scalar matrix, T ∈MN(C). By changing the basis of CN , which
won’t affect our trace computations, we can assume that T is diagonal:

T ∼

λ1

. . .
λN


Thus, the law of T is the average of the Dirac masses at the eigenvalues:

µ =
1

N
(δλ1 + . . .+ δλN )

As a second example now, assume N = 1, and so T ∈ L∞(X). In this case we obtain
the usual law of T , because the equation to be satisfied by µ is:∫

X

ϕ(T ) =

∫
C
ϕ(x)dµ(x)

At a more advanced level, the main problem regarding the random matrices is that of
computing the law of various classes of such matrices, coming in series:

Question 5.20. What is the law of random matrices coming in series

TN ∈MN(L∞(X))

in the N >> 0 regime?

The general strategy here, coming from physicists, is that of computing first the as-
ymptotic law µ0, in the N → ∞ limit, and then looking for the higher order terms as
well, as to finally reach to a series in N−1 giving the law of TN , as follows:

µN = µ0 +N−1µ1 +N−2µ2 + . . .

As a basic example here, of particular interest are the random matrices having i.i.d.
complex normal entries, under the constraint T = T ∗. Here the asymptotic law µ0 is
the Wigner semicircle law on [−2, 2]. We will discuss this in chapter 6 below, and in the
meantime we can only recommend some reading, from the original papers of Marchenko-
Pastur [58], Voiculescu [84], Wigner [97], and from the books of Anderson-Guionnet-
Zeitouni [1], Mehta [59], Nica-Speicher [63], Voiculescu-Dykema-Nica [85].

In fact, and saying it because you should be aware of this, while the random matrix
algebras A = MN(L∞(X)) might look a bit trivial, from a functional analysis viewpoint,
in practice, meaning in relation with concrete applications to physics, they are a full-scale
rival to the whole von Neumann algebra theory. But hey, don’t worry, we will keep an
eye on the random matrices throughout this book, until the very end.
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5d. Quantum spaces

Let us end this preliminary chapter on operator algebras with some philosophy, a bit
a la Heisenberg. In relation with our previous “quantum space” goals, Theorem 5.15 is
something very interesting, philosophically speaking, suggesting us to formulate:

Definition 5.21. Given a von Neumann algebra A ⊂ B(H), we write

A = L∞(X)

and call X a quantum measured space.

As an example here, for the simplest noncommutative von Neumann algebra that we
know, namely the usual matrix algebra A = MN(C), the formula that we want to write
is as follows, with MN being a certain mysterious quantum space:

MN(C) = L∞(MN)

What can we say about this space MN? As a first observation, this is a finite space,
with its cardinality being defined and computed as follows:

|MN | = dimCMN(C) = N2

Now since this is the same as the cardinality of the set {1, . . . , N2}, we are led to the
conclusion that we should have a twisting result as follows, with the twisting operation
X → Xσ being something that destroys the points, but keeps the cardinality:

MN = {1, . . . , N2}σ

Abstract algebra can help here, and it is possible to prove that this is indeed the case,
with a result stating that at the level of the associated algebras of L∞ functions we have
indeed a twisting result, as follows, with the algebraic twisting operation A → Aσ being
something that destroys the commutativity of the multiplication:

MN(C) = L∞(1, . . . , N2)σ

From an analytic viewpoint, we would like to understand what is the “uniform mea-
sure” on MN , giving rise to the corresponding L∞ functions. But this problem is obviously
ill-posed, because MN having no points, we cannot talk about measures on it. However, we
can talk about integration functionals with respect to such measures, and the integration
with respect to the uniform measure on MN exists indeed, and is given by:∫

MN

A = tr(A)

To be more precise, on the left we have the integral of an arbitrary function on MN ,
which according to our conventions, should be a usual matrix:

A ∈ L∞(MN) = MN(C)
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As for the quantity on the right, the outcome of the computation, this can only be the
trace of A. In addition, it is better to choose this trace to be normalized, by tr(1) = 1,
and this in order for our measure on MN to have mass 1, as it is ideal:

tr(A) =
1

N
Tr(A)

We can say even more about this. Indeed, since the traces of positive matrices are
positive, we are led to the following formula, to be taken with the above conventions,
which shows that the measure on MN that we constructed is a probability measure:

A > 0 =⇒
∫
MN

A > 0

Before going further, let us record what we found, for future reference:

Theorem 5.22. The quantum measured space MN given by

MN(C) = L∞(MN)

has cardinality N2, appears as a twist, in a purely algebraic sense,

MN = {1, . . . , N2}σ

and is a probability space, its uniform integration being given by∫
MN

A = tr(A)

where at right we have the normalized trace of matrices, tr = Tr/N .

Proof. This is something half-informal, mostly for fun, which basically follows from
the above discussion, the details and missing details being as follows:

(1) In what regards the formula |MN | = N2, coming by computing the complex vector
space dimension, as explained above, this is obviously something rock-solid.

(2) Regarding the twisting result now, as explained before, this should come by defi-
nition from a twisting result at the level of the algebras of functions. To be more precise,
we would like to have a formula as follows, with the algebraic twisting operation A→ Aσ

being something that destroys the commutativity of the multiplication:

L∞(MN) = L∞(1, . . . , N2)σ

In more familiar terms, of usual complex matrices on the left, and with a better-looking
product of sets being used on the right, this formula reads:

MN(C) = L∞
(
{1, . . . , N} × {1, . . . , N}

)σ
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In order to establish this formula, consider the algebra on the right. As a complex
vector space, this algebra has the standard basis {fij} formed by the Dirac masses at the
points (i, j), and the multiplicative structure of this algebra is given by:

fijfkl = δij,kl

Now let us twist this multiplication, according to the formula eijekl = δjkeil. We obtain
in this way the usual combination formulae for the standard matrix units eij : ej → ei of
the algebra MN(C), and so we have our twisting result, as claimed.

(3) In what regards the integration formula in the statement, with the conclusion
that the underlying measure on MN is a probability one, this is something that we fully
explained before, and as for the result (1) above, it is something rock-solid.

(4) As a last technical comment, observe that the twisting operation performed in
(2) destroys both the involution, and the trace of the algebra. This is something quite
interesting, which cannot be fixed, and we will back to it, later on. �

In order to advance now, based on the above result, the key point there is the con-
struction and interpretation of the trace tr : MN(C) → C, as an integration functional.
But this leads us into the following natural question: in the general context of Definition
5.21 above, what is the underlying integration functional tr : A→ C?

This is a subtle question, and there are several possible answers here. For instance,
we would like the integration functional to have the following property:

tr(ab) = tr(ba)

And the problem is that certain von Neumann algebras do not possess such traces.
This is actually something quite advanced, that we do not know yet, but by anticipating
a bit, we are in trouble, and we must modify Definition 5.21, as follows:

Definition 5.23. Given a von Neumann algebra A ⊂ B(H), coming with a faithful
positive unital trace tr : A→ C, we write

A = L∞(X)

and call X a quantum probability space. We also write the trace as

tr =

∫
X

and call it integration with respect to the uniform measure on X.

At the level of examples, passed the classical probability spaces X, we know from
Theorem 5.22 that the quantum space MN is a finite quantum probability space. But
this raises the question of understanding what the finite quantum probability spaces are,
in general. For this purpose, we need to examine the finite dimensional von Neumann
algebras. And the result here, extending Theorem 5.10, is as follows:
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Theorem 5.24. The finite dimensional von Neumann algebras A ⊂ B(H) over an
arbitrary Hilbert space H are exactly the direct sums of matrix algebras,

A = Mr1(C)⊕ . . .⊕Mrk(C)

embedded into B(H) by using a partition of unity of B(H) with rank 1 projections

1 = P1 + . . .+ Pk

with the “factors” Mri(C) being each embedded into the algebra PiB(H)Pi.

Proof. This is standard, as in the case A ⊂MN(C). Consider the center of A, which
is a finite dimensional commutative von Neumann algebra, of the following form:

Z(A) = Ck

Now let Pi be the Dirac mass at i ∈ {1, . . . , k}. Then Pi ∈ B(H) is an orthogonal
projection, and these projections form a partition of unity, as follows:

1 = P1 + . . .+ Pk

With Ai = PiAPi, which is a non-unital ∗-subalgebra of A, we have then a non-unital
∗-algebra sum decomposition, as follows:

A = A1 ⊕ . . .⊕ Ak
On the other hand, it follows from the minimality of each of the projections Pi ∈ Z(A)

that we have unital ∗-algebra isomorphisms, as follows:

Ai 'Mri(C)

Thus, we are led to the conclusion in the statement. �

We can now deduce what the finite quantum measured spaces are, in the sense of the
old Definition 5.21. Indeed, we must solve here the following equation:

L∞(X) = Mr1(C)⊕ . . .⊕Mrk(C)

Now since the direct unions of sets correspond to direct sums at the level of the
associated algebras of functions, in the classical case, we can take the following formula
as a definition for a direct union of sets, in the general, noncommutative case:

L∞(X1 t . . . tXr) = L∞(X1)⊕ . . .⊕ L∞(Xr)

Now by remembering the definition of MN , we are led to the conclusion that the
solution to our quantum measured space equation above is as follows:

X = Mr1 t . . . tMrk

However, for fully solving the problem, in the spirit of Definition 5.23, we still have
to discuss the traces on L∞(X). Such a trace can only appear as a linear combination of
the traces of the components, with certain weights λi > 0, summing up to 1:

tr = λ1tr1 ⊕ . . .⊕ λktrk
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We are therefore done, or almost, the last question, which is a bit philosophical, being
that of understanding whether, among these traces, there is a “canonical” one. The first
thought here would go to the trace having equally distributed weights, as follows:

λi =
1

k
This is motivated for instance by the fact that our trace tr : A → C is uniquely

determined by its restriction to the center of our algebra, tr : Z(A) → C, and since we
have Z(A) = Ck, we are therefore left with choosing a trace, as follows:

tr : Ck → C
And common sense tells us that the good choice here can only be the standard trace,

corresponding to the choice of the weigths λi = 1/k for the global trace, as above.

However, this is a not the correct choice. The point indeed is that, when using the
pair (A, tr) in practice, in connection with various advanced questions, the different sized
blocks Mri(C) should correspond to different sized weights λi > 0. The solution to the
problem, along with a summary of the above discussion, is as follows:

Theorem 5.25. The finite quantum measured spaces are the spaces

X = Mr1 t . . . tMrk

according to the following formula, for the associated algebras of functions:

L∞(X) = Mr1(C)⊕ . . .⊕Mrk(C)

The cardinality |X| of such a space is the following number,

N = r2
1 + . . .+ r2

k

and the possible traces are as follows, with λi > 0 summing up to 1:

tr = λ1tr1 ⊕ . . .⊕ λktrk
Among these traces, we have the canonical trace, appearing as

tr : L∞(X) ⊂ L(L∞(X))→ C
via the left regular representation, having weights λi = n2

i /N .

Proof. We have many assertions here, which were for the most already discussed in
the above, the details and missing details being as follows:

(1) The first assertion, regarding the structure of the spaces X and of the algebras
L∞(X) follows from Theorem 5.24, as explained above.

(2) The second assertion, regarding the cardinality, is clear from our convention for
the cardinalities of noncommutative measured spaces, namely:

|X| = dimC L
∞(X)
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(3) The third assertion, regarding the traces on L∞(X), is clear from the fact that
each matrix block has a unique trace, namely the normalized trace of matrices.

(4) Regarding now the last assertion, consider indeed the left regular representation
of our algebra A = L∞(X), which is given by the following formula:

π : A ⊂ L(A) , π(a) : b→ ab

Observe that this representation is something purely algebraic, and this because we
have not yet a trace, and hence a scalar product, on our algebra A. However, the alge-
bra L(A) of linear operators T : A → A is isomorphic to a matrix algebra, and more
specifically to the algebra MN(C), with N = |X| being as before:

L(A) 'MN(C)

Thus, this algebra has a unique trace, as follows:

tr : L(A)→ C
Thus, we can compose this trace with the representation π, and we obtain a certain

trace tr : A→ C, that we can call “canonical”, for obvious reasons:

tr : A ⊂ L(A)→ C
We can compute the weights of this trace by using a multimatrix basis of A, formed

by matrix units eiab, with i ∈ {1, . . . , k} and with a, b ∈ {1, . . . , ri}, and we obtain:

λi =
n2
i

N
Thus, we are led to the conclusion in the statement, namely that we have indeed a

canonical trace on A = L∞(X), given by the formula there. �

All the above, including our preference for the canonical trace, is of course quite
subjective, but all this was, and we repeat, just an elementary, relaxed introduction to
the subject. We will be back to quantum spaces on several occasions, in what follows, in
particular with clarifications and extensions of the above discussion. In fact, the present
book is as much on operator algebras as it is on quantum spaces, and this because these
two points of view are both useful, and complementary to each other.

5e. Exercises

The theory in this chapter has been quite exciting, and we have already run into a
number of difficult questions. As a basic exercise on all this, we have:

Exercise 5.26. Find a simple proof for the bicommutant theorem, in finite dimen-
sions.

This is something quite subjective, and try not to cheat. That is, not to convert the
amplification proof that we have in general, by using matrix algebras everywhere, nor by
using the structure result for the finite dimensional algebras either.



CHAPTER 6

Random matrices

6a. Random matrices

We have seen so far the basics of von Neumann algebras A ⊂ B(H), with a look into
some interesting ramifications too, concerning random matrices and quantum spaces. To
be more precise, in what regards these ramifications, the situation is as follows:

(1) The random matrix algebras, A = MN(L∞(X)) acting on H = CN ⊗ L2(X), are
the simplest von Neumann algebras, from a variety of viewpoints. The main problem
regarding them is of operator theoretic nature, regarding the computation of the law of
individual elements T ∈ A with respect to the random matrix trace tr : A→ C.

(2) The quantum spaces are exciting abstract objects, obtained by looking at an
arbitrary von Neumann algebra A ⊂ B(H) coming with a trace tr : A→ C, and formally
writing the algebra as A = L∞(X), and its trace as tr =

∫
X

. In this picture, X is our
quantum probability space, and

∫
X

is the integration over it, or expectation.

All this is quite interesting, and in this chapter and in the next one we go back to
a more normal pace, and we explore in detail these two topics, random matrices and
quantum spaces. As a first observation, these topics are related, because the quantum
space associated to a random matrix algebra can be computed according to:

MN(L∞(X)) = MN(C)⊗ L∞(X)

= L∞(MN)⊗ L∞(X)

= L∞(MN ×X)

Thus, the quantum space here is X = MN × X, which is something very simple, at
least conceptually speaking. Now with this picture in hand, in view of what we know so
far about von Neumann algebras, we can formulate a question, as follows:

Question 6.1. What are the quantum spaces, and what is to be done with them?

Of course, do not expect an easy answer to this. Quantum spaces are more or less
the same thing as operator algebras, and from this perspective, our question becomes
“what are the operator algebras, and what is to be done with them”, obviously difficult.
And there is even worse, because when remembering that operator algebras are closely

129
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related to quantum mechanics, our question becomes something of type “what is quantum
mechanics, mathematically speaking, and what is to be done with it”.

In short, modesty. Question 6.1, which naturally appeared from our considerations
so far, is something extremely difficult. And it will take us the whole remainder of the
present book, not for answering this question, but rather for exploring it a bit, to the
point of getting a feeling on what this question exactly says.

Getting back to Earth, now that we have our philosophy, for the whole remainder of
this book, let us get into random matrices. Philosophically speaking, what we have so far
provides us with an epsilon of answer to Question 6.1, as follows:

Answer 6.2. The simplest quantum spaces are those coming from random matrix
algebras, which are as follows, with X being a usual probability space,

X = MN ×X

and what is to be done with them is the computation of the law of individual elements, the
random matrices T ∈ L∞(X ) = MN(L∞(X)), in the N >> 0 regime.

In order to move on, and get into computations, we must first further build on the
general material from chapter 5. We recall from there that given a von Neumann algebra
A ⊂ B(H) coming with a trace tr : A→ C, any normal element T ∈ A has a law, which
is the complex probability measure µ ∈ P(C) given by the following formula:

tr(T k) =

∫
C
zkdµ(z)

In the non-normal case, TT ∗ 6= T ∗T , the law does not exist as a complex probability
measure µ ∈ P(C), as also explained in chapter 5. However, we can trick a bit, and talk
about the law of non-normal elements as well, in the following abstract way:

Definition 6.3. Let A be a von Neumann algebra, given with a trace tr : A→ C.

(1) The elements T ∈ A are called random variables.
(2) The moments of such a variable are the numbers Mk(T ) = tr(T k).
(3) The law of such a variable is the functional µ : P → tr(P (T )).

Here k = ◦ • • ◦ . . . is by definition a colored integer, and the powers T k are defined
by multiplicativity and the usual formulae, namely:

T ∅ = 1 , T ◦ = T , T • = T ∗

As for the polynomial P , this is a noncommuting ∗-polynomial in one variable:

P ∈ C < X,X∗ >
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Observe that the law is uniquely determined by the moments, because:

P (X) =
∑
k

λkX
k =⇒ µ(P ) =

∑
k

λkMk(T )

Generally speaking, the above definition, due to Voiculescu [85], is something quite
abstract, but there is no other way of doing things, at least at this level of generality.
However, in the special case where our variable T ∈ A is self-adjoint, or more generally
normal, the theory simplifies, and we recover more familiar objects, as follows:

Theorem 6.4. The law of a normal variable T ∈ A can be identified with the corre-
sponding spectral measure µ ∈ P(C), according to the following formula,

tr(f(T )) =

∫
σ(T )

f(x)dµ(x)

valid for any f ∈ L∞(σ(T )), coming from the measurable functional calculus. In the
self-adjoint case the spectral measure is real, µ ∈ P(R).

Proof. This is something that we know well, from chapter 5, coming from the spectral
theorem for the normal operators, as developed in chapter 3. �

Getting back now to the random matrices, we have all we need, as general formalism,
and we are ready for doing some computations. As a first observation, we have:

Theorem 6.5. The laws of basic random matrices T ∈MN(L∞(X)) are as follows:

(1) In the case N = 1 the random matrix is a usual random variable, T ∈ L∞(X),
automatically normal, and its law as defined above is the usual law.

(2) In the case X = {.} the random matrix is a usual scalar matrix, T ∈ MN(C),
and in the diagonalizable case, the law is µ = 1

N
(δλ1 + . . .+ δλN ).

Proof. This is something that we know, once again, from chapter 5, and which is
elementary. Indeed, the first assertion follows from definitions, and the above discussion.
As for the second assertion, this comes by changing the basis of CN , which won’t affect
our trace computations, as to assume that T is diagonal, as follows:

T ∼

λ1

. . .
λN


But for such a diagonal matrix the result is clear from defintions, as desired. �

In general, what we have can only be a mixture of (1) and (2) above. Our plan will
be that of discussing more in detail (1), and then getting into the general case, or rather
into the case of the most interesting random matrices, with inspiration from (2).
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6b. Probability theory

In order to get started, let us set N = 1. Here our algebra is A = L∞(X), an arbitrary
commutative von Neumann algebra. The most interesting linear operators T ∈ A, that
we will rather denote as complex functions f : X → C, and call random variables, as it is
customary, are the normal, or Gaussian variables, which are defined as follows:

Definition 6.6. A variable f : X → R is called standard normal when its law is:

g1 =
1√
2π
e−x

2/2dx

More generally, the normal law of parameter t > 0 is the following measure:

gt =
1√
2πt

e−x
2/2tdx

These are also called Gaussian distributions, with “g” standing for Gauss.

Observe that these laws have indeed mass 1, and this due to the Gauss formula, which
can be established by using polar coordinates, as follows:(∫

R
e−x

2

dx

)2

=

∫
R

∫
R
e−x

2−y2dxdy

=

∫ 2π

0

∫ ∞
0

e−r
2

rdrdt

= 2π × 1

2
= π

Let us start with some basic results regarding the normal laws. Regarding the variance,
moments and Fourier transform, we have the following result:

Proposition 6.7. The normal law gt with t > 0 has the following properties:

(1) The variance of this law is its parameter:

V = t

(2) The odd moments vanish, and the even moments are as follows, with the standard
convention k!! = (k − 1)(k − 3)(k − 5) . . . :

Mk = tk/2 × k!!

(3) The Fourier transform Ff (x) = E(eixf ) is given by:

F (x) = e−tx
2/2

Also, we have the convolution semigroup formula gs ∗ gt = gs+t, for any s, t > 0.
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Proof. We have four formulae to be proved, the idea being as follows:

(1) The normal law gt being centered, its variance is the second moment, V = M2.
Thus the result follows from (2), proved below, which gives in particular:

M2 = t2/2 × 2!! = t

(2) We have indeed the following computation, by partial integration:

Mk =
1√
2πt

∫
R
xke−x

2/2tdx

=
1√
2πt

∫
R
(txk−1)

(
−e−x2/2t

)′
dx

=
1√
2πt

∫
R
t(k − 1)xk−2e−x

2/2tdx

= t(k − 1)× 1√
2πt

∫
R
xk−2e−x

2/2tdx

= t(k − 1)Mk−2

As for the initial values, coming from (1), these are as follows:

M0 = 1 , M1 = 0

Thus, we obtain by recurrence the formula in the statement.

(3) The Fourier transform formula can be established as follows:

F (x) =
1√
2πt

∫
R
e−y

2/2t+ixydy

=
1√
2πt

∫
R
e−(y/

√
2t−
√
t/2ix)2−tx2/2dy

=
1√
2πt

∫
R
e−z

2−tx2/2
√

2tdz

=
1√
π
e−tx

2/2

∫
R
e−z

2

dz

= e−tx
2/2

(4) As for the last assertion, this follows from (3), because logFgt is linear in t. �

We are now ready to establish the Central Limit Theorem (CLT), which is a key result,
telling us why the normal laws appear a bit everywhere, in the real life:
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Theorem 6.8. Given a sequence of real random variables f1, f2, f3, . . . ∈ L∞(X),
which are i.i.d., centered, and with variance t > 0, we have

1√
n

n∑
i=1

fi ∼ gt

with n→∞, in moments.

Proof. In terms of moments, the Fourier transform Ff (x) = E(eixf ) is given by:

Ff (x) = E

(
∞∑
k=0

(ixf)k

k!

)

=
∞∑
k=0

ikMk(f)

k!
xk

Thus, the Fourier transform of the variable in the statement is:

F (x) =

[
Ff

(
x√
n

)]n
=

[
1− tx2

2n
+O(n−2)

]n
'

[
1− tx2

2n

]n
' e−tx

2/2

But this latter function being the Fourier transform of gt, we obtain the result. �

There are many other things that can be said about normal variables, but what we
have so far, namely definition, basic properties and CLT is perfect as a starter pack. Let
us discuss now the “discrete” counterpart of the above results. The main result here will
be the Poisson Limit Theorem (PLT), involving the Poisson laws:

Definition 6.9. The Poisson law of parameter 1 is the following measure,

p1 =
1

e

∑
k

δk
k!

and the Poisson law of parameter t > 0 is the following measure,

pt = e−t
∑
k

tk

k!
δk

with the letter “p” standing for Poisson.

In analogy with the normal laws, the Poisson laws have the following properties:
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Proposition 6.10. The Poisson law pt with t > 0 has the following properties:

(1) The variance is V = t.
(2) The moments are Mk =

∑
π∈P (k) t

|π|, with |.| being the number of blocks.

(3) The Fourier transform is F (x) = exp ((eix − 1)t).

Also, we have ps ∗ pt = ps+t, for any s, t > 0.

Proof. We have four formulae to be proved, the idea being as follows:

(1) The variance is V = M2−M2
1 , and by using the formulae M1 = t and M2 = t+ t2,

coming from (2), proved below, we obtain as desired, V = t.

(2) This is something more tricky. Consider indeed the set P (k) of all partitions of
{1, . . . , k}. At t = 1, to start with, the formula that we want to prove is:

Mk = |P (k)|
We have the following recurrence formula for the moments of p1:

Mk+1 =
1

e

∑
s

(s+ 1)k+1

(s+ 1)!

=
1

e

∑
s

sk

s!

(
1 +

1

s

)k
=

1

e

∑
s

sk

s!

∑
r

(
k

r

)
s−r

=
∑
r

(
k

r

)
· 1

e

∑
s

sk−r

s!

=
∑
r

(
k

r

)
Mk−r

Our claim is that the numbers Bk = |P (k)| satisfy the same recurrence formula.
Indeed, since a partition of {1, . . . , k + 1} appears by choosing r neighbors for 1, among
the k numbers available, and then partitioning the k − r elements left, we have:

Bk+1 =
∑
r

(
k

r

)
Bk−r

Thus, our moments Mk satisfy the same recurrence as the numbers Bk. Regarding
now the initial values, these are elementary to compute, given by:

M1 = B1 = 1 , M2 = B2 = 2

Thus we obtain by recurrence Mk = Bk, as desired. Regarding now the general case,
t > 0, we can use here a similar method. We have the following recurrence formula for
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the moments of pt, obtained by using the binomial formula:

Mk+1 = e−t
∑
s

ts+1(s+ 1)k+1

(s+ 1)!

= e−t
∑
s

ts+1sk

s!

(
1 +

1

s

)k
= e−t

∑
s

ts+1sk

s!

∑
r

(
k

r

)
s−r

=
∑
r

(
k

r

)
· e−t

∑
s

ts+1sk−r

s!

= t
∑
r

(
k

r

)
Mk−r

On the other hand, consider the numbers in the statement, Sk =
∑

π∈P (k) t
|π|. As

before, since a partition of {1, . . . , k + 1} appears by choosing r neighbors for 1, among
the k numbers available, and then partitioning the k − r elements left, we have:

Sk+1 = t
∑
r

(
k

r

)
Sk−r

Thus, our moments Mk satisfy the same recurrence as the numbers Sk. Regarding
now the initial values, these are elementary to compute, given by:

M1 = S1 = t , M2 = S2 = t+ t2

Thus we obtain by recurrence Mk = Bk, as desired.

(3) The Fourier transform formula can be established as follows:

Fpt(x) = e−t
∑
k

tk

k!
Fδk(x)

= e−t
∑
k

tk

k!
eikx

= e−t
∑
k

(eixt)k

k!

= exp(−t) exp(eixt)

= exp
(
(eix − 1)t

)
(4) As for the last assertion, this follows from (3), because logFpt is linear in t. �
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We are now ready to establish the Poisson Limit Theorem (PLT), which is a key result,
telling us why the normal laws appear a bit everywhere, in the real life:

Theorem 6.11. We have the following convergence, in moments,((
1− t

n

)
δ0 +

t

n
δ1

)∗n
→ pt

for any t > 0.

Proof. Let us denote by µn the measure under the convolution sign:

µn =

(
1− t

n

)
δ0 +

t

n
δ1

We have the following computation:

Fδr(x) = eirx =⇒ Fµn(x) =

(
1− t

n

)
+
t

n
eix

=⇒ Fµ∗nn (x) =

((
1− t

n

)
+
t

n
eix
)n

=⇒ Fµ∗nn (x) =

(
1 +

(eix − 1)t

n

)n
=⇒ F (x) = exp

(
(eix − 1)t

)
Thus, we obtain the Fourier transform of pt, as desired. �

As a third and last topic from classical probability, let us discuss now the complex
normal laws. To start with, we have the following definition:

Definition 6.12. The complex Gaussian law of parameter t > 0 is

Gt = law

(
1√
2

(a+ ib)

)
where a, b are independent, each following the law gt.

As in the real case, these measures form convolution semigroups:

Proposition 6.13. The complex Gaussian laws have the property

Gs ∗Gt = Gs+t

for any s, t > 0, and so they form a convolution semigroup.

Proof. This follows indeed from the real result, namely gs ∗ gt = gs+t, established
above, simply by taking real and imaginary parts. �

We have the following complex analogue of the CLT:
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Theorem 6.14 (CCLT). Given complex random variables f1, f2, f3, . . . ∈ L∞(X)
which are i.i.d., centered, and with variance t > 0, we have, with n→∞, in moments,

1√
n

n∑
i=1

fi ∼ Gt

where Gt is the complex Gaussian law of parameter t.

Proof. This follows indeed from the real CLT, established above, simply by taking
the real and imaginary parts of all the variables involved. �

Regarding now the moments, we use the general formalism from Definition 6.3, involv-
ing colored integer exponents k = ◦ • • ◦ . . . We say that a pairing π ∈ P2(k) is matching
when it pairs ◦ − • symbols. With this convention, we have the following result:

Theorem 6.15. The moments of the complex normal law are the numbers

Mk(Gt) =
∑

π∈P2(k)

t|π|

where P2(k) are the matching pairings of {1, . . . , k}, and |.| is the number of blocks.

Proof. This is something well-known, which can be done in several steps, as follows:

(1) We recall from the above that the moments of the real Gaussian law g1, with
respect to integer exponents k ∈ N, are the following numbers:

mk = |P2(k)|

Numerically, we have the following formula, explained as well in the above:

mk =

{
k!! (k even)

0 (k odd)

(2) We will show here that in what concerns the complex Gaussian law G1, similar
results hold. Numerically, we will prove that we have the following formula, where a
colored integer k = ◦ • • ◦ . . . is called uniform when it contains the same number of ◦
and • , and where |k| ∈ N is the length of such a colored integer:

Mk =

{
(|k|/2)! (k uniform)

0 (k not uniform)

Now since the matching partitions π ∈ P2(k) are counted by exactly the same numbers,
and this for trivial reasons, we will obtain the formula in the statement, namely:

Mk = |P2(k)|
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(3) This was for the plan. In practice now, we must compute the moments, with
respect to colored integer exponents k = ◦ • • ◦ . . . , of the variable in the statement:

c =
1√
2

(a+ ib)

As a first observation, in the case where such an exponent k = ◦••◦ . . . is not uniform
in ◦, • , a rotation argument shows that the corresponding moment of c vanishes. To be
more precise, the variable c′ = wc can be shown to be complex Gaussian too, for any
w ∈ C, and from Mk(c) = Mk(c

′) we obtain Mk(c) = 0, in this case.

(4) In the uniform case now, where k = ◦ • • ◦ . . . consists of p copies of ◦ and p copies
of • , the corresponding moment can be computed as follows:

Mk =

∫
(cc̄)p

=
1

2p

∫
(a2 + b2)p

=
1

2p

∑
s

(
p

s

)∫
a2s

∫
b2p−2s

=
1

2p

∑
s

(
p

s

)
(2s)!!(2p− 2s)!!

=
1

2p

∑
s

p!

s!(p− s)!
· (2s)!

2ss!
· (2p− 2s)!

2p−s(p− s)!

=
p!

4p

∑
s

(
2s

s

)(
2p− 2s

p− s

)
(5) In order to finish now the computation, let us recall that we have the following

formula, coming from the generalized binomial formula, or from the Taylor formula:

1√
1 + t

=
∞∑
k=0

(
2k

k

)(
−t
4

)k
By taking the square of this series, we obtain the following formula:

1

1 + t
=

∑
ks

(
2k

k

)(
2s

s

)(
−t
4

)k+s

=
∑
p

(
−t
4

)p∑
s

(
2s

s

)(
2p− 2s

p− s

)
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Now by looking at the coefficient of tp on both sides, we conclude that the sum on the
right equals 4p. Thus, we can finish the moment computation in (4), as follows:

Mp =
p!

4p
× 4p = p!

(6) As a conclusion, if we denote by |k| the length of a colored integer k = ◦ • • ◦ . . . ,
the moments of the variable c in the statement are given by:

Mk =

{
(|k|/2)! (k uniform)

0 (k not uniform)

On the other hand, the numbers |P2(k)| are given by exactly the same formula. Indeed,
in order to have matching pairings of k, our exponent k = ◦ • • ◦ . . . must be uniform,
consisting of p copies of ◦ and p copies of •, with p = |k|/2. But then the matching
pairings of k correspond to the permutations of the • symbols, as to be matched with ◦
symbols, and so we have p! such matching pairings. Thus, we have the same formula as
for the moments of c, and we are led to the conclusion in the statement. �

This was for the basic probability theory, which is in a certain sense advanced operator
theory, inside the commutative von Neumann algebras, A = L∞(X), quickly explained.
For more on all this, we refer to any standard probability book, such as Durrett [31]. We
will be back to this, with some further limiting theorems, in chapter 8 below.

6c. Wigner matrices

Let us exit now the classical world, that of the commutative von Neumann algebras
A = L∞(X), and do as promised some random matrix theory. We recall that a random
matrix algebra is a von Neumann algebra of type A = MN(L∞(X)), and that we are
interested in the computation of the laws of the operators T ∈ A, called random matrices.
Regarding the precise classes of random matrices that we are interested in, first we have
the complex Gaussian matrices, which are constructed as follows:

Definition 6.16. A complex Gaussian matrix is a random matrix of type

Z ∈MN(L∞(X))

which has i.i.d. complex normal entries.

We will see that the above matrices have an interesting, and “central” combinatorics,
among all kinds of random matrices, with the study of the other random matrices being
usually obtained as a modification of the study of the Gaussian matrices.

As a somewhat surprising remark, using real normal variables in Definition 6.16, in-
stead of the complex ones appearing there, leads nowhere. The correct real versions of
the Gaussian matrices are the Wigner random matrices, constructed as follows:
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Definition 6.17. A Wigner matrix is a random matrix of type

Z ∈MN(L∞(X))

which has i.i.d. complex normal entries, up to the constraint Z = Z∗.

In other words, a Wigner matrix must be as follows, with the diagonal entries being
real normal variables, ai ∼ gt, for some t > 0, the upper diagonal entries being complex
normal variables, bij ∼ Gt, the lower diagonal entries being the conjugates of the upper
diagonal entries, as indicated, and with all the variables ai, bij being independent:

Z =


a1 b12 . . . . . . b1N

b̄12 a2
. . .

...
...

. . . . . . . . .
...

...
. . . aN−1 bN−1,N

b̄1N . . . . . . b̄N−1,N aN


As a comment here, for many concrete applications the Wigner matrices are in fact the

central objects in random matrix theory, and in particular, they are often more important
than the Gaussian matrices. In fact, these are the random matrices which were first
considered and investigated, a long time ago, by Wigner himself [97].

Finally, we will be interested as well in the complex Wishart matrices, which are the
positive versions of the above random matrices, constructed as follows:

Definition 6.18. A complex Wishart matrix is a random matrix of type

Z = Y Y ∗ ∈MN(L∞(X))

with Y being a complex Gaussian matrix.

As before with the Gaussian and Wigner matrices, there are many possible comments
that can be made here, of technical or historical nature. First, using real Gaussian
variables instead of complex ones leads to a less interesting combinatorics. Also, these
matrices were introduced and studied by Marchenko-Pastur not long after Wigner, in
[58], and so historically came second. Finally, in what regards their combinatorics and
applications, these matrices quite often come first, before both the Gaussian and the
Wigner ones, with all this being of course a matter of knowledge and taste.

Summarizing, we have three main types of random matrices, which can be somehow
designated as “complex”, “real” and “positive”, and that we will study in what follows.
Let us also mention that there are many other interesting classes of random matrices,
usually appearing as modifications of the above. More on these later.

In order to compute the asymptotic laws of the above matrices, we will use the moment
method. We have the following result, which will be our main tool here:
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Theorem 6.19. Given independent variables Xi, each following the complex normal
law Gt, with t > 0 being a fixed parameter, we have the Wick formula

E
(
Xk1
i1
. . . Xks

is

)
= ts/2#

{
π ∈ P2(k)

∣∣∣π ≤ ker(i)
}

where k = k1 . . . ks and i = i1 . . . is, for the joint moments of these variables.

Proof. This is something well-known, and the basis for all possible computations
with complex normal variables, which can be proved in two steps, as follows:

(1) Let us first discuss the case where we have a single complex normal variable X,
which amounts in taking Xi = X for any i in the formula in the statement. What we
have to compute here are the moments of X, with respect to colored integer exponents
k = ◦ • • ◦ . . . , and the formula in the statement tells us that these moments must be:

E(Xk) = t|k|/2|P2(k)|

But this is something that we know well from the above, the idea being that at t = 1
this follows by doing some combinatorics and calculus, in analogy with the combinatorics
and calculus from the real case, where the moment formula is identical, save for the
matching pairings P2 being replaced by the usual pairings P2, and then that the general
case t > 0 follows from this, by rescaling. Thus, we are done with this case.

(2) In general now, the point is that we obtain the formula in the statement. Indeed,
when expanding the product Xk1

i1
. . . Xks

is
and rearranging the terms, we are left with doing

a number of computations as in (1), and then making the product of the expectations
that we found. But this amounts precisely in counting the partitions in the statement,
with the condition π ≤ ker(i) there standing precisely for the fact that we are doing the
various type (1) computations independently, and then making the product. �

Now by getting back to the Gaussian matrices, we have the following result:

Theorem 6.20. Given a sequence of Gaussian random matrices

ZN ∈MN(L∞(X))

having independent Gt variables as entries, for some fixed t > 0, we have

Mk

(
ZN√
N

)
' t|k|/2|NC2(k)|

for any colored integer k = ◦ • • ◦ . . . , in the N →∞ limit.

Proof. This is something standard, which can be done as follows:



6C. WIGNER MATRICES 143

(1) We fix N ∈ N, and we let Z = ZN . Let us first compute the trace of Zk. With
k = k1 . . . ks, and with the convention (ij)◦ = ij, (ij)• = ji, we have:

Tr(Zk) = Tr(Zk1 . . . Zks)

=
N∑
i1=1

. . .

N∑
is=1

(Zk1)i1i2(Z
k2)i2i3 . . . (Z

ks)isi1

=
N∑
i1=1

. . .

N∑
is=1

(Z(i1i2)k1 )k1(Z(i2i3)k2 )k2 . . . (Z(isi1)ks )
ks

(2) Next, we rescale our variable Z by a
√
N factor, as in the statement, and we also

replace the usual trace by its normalized version, tr = Tr/N . Our formula becomes:

tr

((
Z√
N

)k)
=

1

N s/2+1

N∑
i1=1

. . .
N∑
is=1

(Z(i1i2)k1 )k1(Z(i2i3)k2 )k2 . . . (Z(isi1)ks )
ks

Thus, the moment that we are interested in is given by:

Mk

(
Z√
N

)
=

1

N s/2+1

N∑
i1=1

. . .
N∑
is=1

∫
X

(Z(i1i2)k1 )k1(Z(i2i3)k2 )k2 . . . (Z(isi1)ks )
ks

(3) Let us apply now the Wick formula, from Theorem 6.19 above. We conclude that
the moment that we are interested in is given by:

Mk

(
Z√
N

)
=

ts/2

N s/2+1

N∑
i1=1

. . .
N∑
is=1

#
{
π ∈ P2(k)

∣∣∣π ≤ ker
(
(i1i2)k1 , (i2i3)k2 , . . . , (isi1)ks

)}
= ts/2

∑
π∈P2(k)

1

N s/2+1
#
{
i ∈ {1, . . . , N}s

∣∣∣π ≤ ker
(
(i1i2)k1 , (i2i3)k2 , . . . , (isi1)ks

)}
(4) Our claim now is that in the N → ∞ limit the combinatorics of the above sum

simplifies, with only the noncrossing partitions contributing to the sum, and with each of
them contributing precisely with a 1 factor, so that we will have, as desired:

Mk

(
Z√
N

)
= ts/2

∑
π∈P2(k)

(
δπ∈NC2(k) +O(N−1)

)
' ts/2

∑
π∈P2(k)

δπ∈NC2(k)

= ts/2|NC2(k)|
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(5) In order to prove this, the first observation is that when k is not uniform, in the
sense that it contains a different number of ◦, • symbols, we have P2(k) = ∅, and so:

Mk

(
Z√
N

)
= ts/2|NC2(k)| = 0

(6) Thus, we are left with the case where k is uniform. Let us examine first the case
where k consists of an alternating sequence of ◦ and • symbols, as follows:

k = ◦ • ◦ • . . . . . . ◦ •︸ ︷︷ ︸
2p

In this case it is convenient to relabel our multi-index i = (i1, . . . , is), with s = 2p, in
the form (j1, l1, j2, l2, . . . , jp, lp). With this done, our moment formula becomes:

Mk

(
Z√
N

)
= tp

∑
π∈P2(k)

1

Np+1
#
{
j, l ∈ {1, . . . , N}p

∣∣∣π ≤ ker (j1l1, j2l1, j2l2, . . . , j1lp)
}

Now observe that, with k being as above, we have an identification P2(k) ' Sp,
obtained in the obvious way. With this done too, our moment formula becomes:

Mk

(
Z√
N

)
= tp

∑
π∈Sp

1

Np+1
#
{
j, l ∈ {1, . . . , N}p

∣∣∣jr = jπ(r)+1, lr = lπ(r),∀r
}

(7) We are now ready to do our asymptotic study, and prove the claim in (4). Let
indeed γ ∈ Sp be the full cycle, which is by definition the following permutation:

γ = (1 2 . . . p)

In terms of γ, the conditions jr = jπ(r)+1 and lr = lπ(r) found above read:

γπ ≤ ker j , π ≤ ker l

Counting the number of free parameters in our moment formula, we obtain:

Mk

(
Z√
N

)
=

tp

Np+1

∑
π∈Sp

N |π|+|γπ|

= tp
∑
π∈Sp

N |π|+|γπ|−p−1

(8) The point now is that the last exponent is well-known to be ≤ 0, with equality
precisely when the permutation π ∈ Sp is geodesic, which in practice means that π must
come from a noncrossing partition. Thus we obtain, in the N →∞ limit, as desired:

Mk

(
Z√
N

)
' tp|NC2(k)|

This finishes the proof in the case of the exponents k which are alternating, and the
case where k is an arbitrary uniform exponent is similar, by permuting everything. �
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As a conclusion to all this, we have obtained as asymptotic law for the Gaussian
matrices a certain mysterious distribution, having as moments some numbers which are
similar to the moments of the usual normal laws, but with the “underlying matching
pairings being now replaced by underlying matching noncrossing pairings”.

Obviously, some interesting things are going on here. We will see in a moment, after
doing some more combinatorics, this time in connection with the Wigner matrices, that
there are some good reasons for calling the above mysterious law “circular”.

Regarding now the Wigner matrices, we have here the following result, coming as a
consequence of Theorem 6.20, via some simple algebraic manipulations:

Theorem 6.21. Given a sequence of Wigner random matrices

ZN ∈MN(L∞(X))

having independent Gt variables as entries, with t > 0, up to ZN = Z∗N , we have

Mk

(
ZN√
N

)
' tk/2|NC2(k)|

for any integer k ∈ N, in the N →∞ limit.

Proof. This can be deduced from a direct computation based on the Wick formula,
similar to that from the proof of Theorem 6.20, but the best is to deduce this result
from Theorem 6.20 itself. Indeed, we know from there that for Gaussian matrices YN ∈
MN(L∞(X)) we have the following formula, valid for any colored integer K = ◦ • • ◦ . . . ,
in the N →∞ limit, with NC2 standing for noncrossing matching pairings:

MK

(
YN√
N

)
' t|K|/2|NC2(K)|

By doing some combinatorics, we deduce from this that we have the following formula
for the moments of the matrices Re(YN), with respect to usual exponents, k ∈ N:

Mk

(
Re(YN)√

N

)
= 2−k ·Mk

(
YN√
N

+
Y ∗N√
N

)
= 2−k

∑
|K|=k

MK

(
YN√
N

)
' 2−k

∑
|K|=k

tk/2|NC2(K)|

= 2−k · tk/2 · 2k/2|NC2(k)|
= 2−k/2 · tk/2|NC2(k)|

Now since the matrices ZN =
√

2Re(YN) are of Wigner type, this gives the result. �
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Summarizing, all this brings us into counting noncrossing pairings. So, let us start
with some preliminaries here. We first have the following well-known result:

Theorem 6.22. The Catalan numbers, which are by definition given by

Ck = |NC2(2k)|
satisfy the following recurrence formula,

Ck+1 =
∑
a+b=k

CaCb

their generating series f(z) =
∑

k≥0Ckz
k satisfies the equation

zf 2 − f + 1 = 0

and is given by the following explicit formula,

f(z) =
1−
√

1− 4z

2z
and we have the following explicit formula for these numbers:

Ck =
1

k + 1

(
2k

k

)
Proof. We must count the noncrossing pairings of {1, . . . , 2k}. Now observe that

such a pairing appears by pairing 1 to an odd number, 2a + 1, and then inserting a
noncrossing pairing of {2, . . . , 2a}, and a noncrossing pairing of {2a + 2, . . . , 2l}. We
conclude that we have the following recurrence formula for the Catalan numbers:

Ck =
∑

a+b=k−1

CaCb

In terms of the generating series f(z) =
∑

k≥0Ckz
k, this recurrence formula reads:

zf 2 =
∑
a,b≥0

CaCbz
a+b+1

=
∑
k≥1

∑
a+b=k−1

CaCbz
k

=
∑
k≥1

Ckz
k

= f − 1

Thus f satisfies zf 2 − f + 1 = 0, and by solving this equation, and choosing the
solution which is bounded at z = 0, we obtain the following formula:

f(z) =
1−
√

1− 4z

2z
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By using now the Taylor formula for
√
x, we obtain the following formula:

f(z) =
∑
k≥0

1

k + 1

(
2k

k

)
zk

It follows that the Catalan numbers are given by:

Ck =
1

k + 1

(
2k

k

)
Thus, we are led to the conclusion in the statement. �

In order to recapture now the measure from its moments, we can use:

Proposition 6.23. The Catalan numbers are the even moments of

γ1 =
1

2π

√
4− x2dx

called standard semicircle law. As for the odd moments of γ1, these all vanish.

Proof. The even moments of the Wigner law can be computed with the change of
variable x = 2 cos t, and we are led to the following formula:

M2k =
1

π

∫ 2

0

√
4− x2x2kdx

=
1

π

∫ π/2

0

√
4− 4 cos2 t (2 cos t)2k2 sin t dt

=
4k+1

π

∫ π/2

0

cos2k t sin2 t dt

=
4k+1

π
· π

2
· (2k)!!2!!

(2k + 3)!!

= 2 · 4k · (2k)!/2kk!

2k+1(k + 1)!

= Ck

As for the odd moments, these all vanish, because the density of γ1 is an even function.
Thus, we are led to the conclusion in the statement. �

More generally, we have the following result, involving a parameter t > 0:

Proposition 6.24. The Catalan numbers are the even moments of

γt =
1

2πt

√
4t2 − x2dx

called standard semicircle law. As for the odd moments of γt, these all vanish.

Proof. This follows indeed from Proposition 6.23, with a change of variables. �
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Now by putting everything together, we obtain the Wigner theorem, as follows:

Theorem 6.25. Given a sequence of Wigner random matrices

ZN ∈MN(L∞(X))

which by definition have i.i.d. complex normal entries, up to ZN = Z∗N , we have

ZN ∼ γt

in the N →∞ limit, up to a normalization, where

γt =
1

2πt

√
4t2 − x2dx

is the Wigner standard semicircle law.

Proof. This follows indeed by combining Theorem 6.21 and Proposition 6.24. �

Regarding now the complex Gaussian matrices, in view of this result, it is natural to
think at the law found in Theorem 6.20 as being “circular”. But this is just a thought,
and more on this later, in chapter 8 below, when doing free probability.

6d. Wishart matrices

Let us discuss now the Wishart matrices, which are the positive analogues of the
Wigner matrices. Quite surprisingly, the computation here leads to the Catalan numbers,
but not in the same way as for the Wigner matrices, the result being as follows:

Theorem 6.26. Given a sequence of complex Wishart matrices

WN = YNY
∗
N ∈MN(L∞(X))

with YN being N ×N complex Gaussian of parameter t > 0, we have

Mk

(
WN

N

)
' tkCk

for any exponent k ∈ N, in the N →∞ limit.

Proof. There are several possible proofs for this result, as follows:

(1) A first method is by using the formula that we have in Theorem 6.20, for the
Gaussian matrices YN . Indeed, we know from there that we have the following formula,
valid for any colored integer K = ◦ • • ◦ . . . , in the N →∞ limit:

MK

(
YN√
N

)
' t|K|/2|NC2(K)|

With K = ◦ • ◦ • . . . , alternating word of lenght 2k, with k ∈ N, this gives:

Mk

(
YNY

∗
N

N

)
' tk|NC2(K)|
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Thus, in terms of the Wishart matrix WN = YNY
∗
N we have, for any k ∈ N:

Mk

(
WN

N

)
' tk|NC2(K)|

The point now is that, by doing some combinatorics, we have:

|NC2(K)| = |NC2(2k)| = Ck

Thus, we are led to the formula in the statement.

(2) A second method, that we will explain now as well, is by proving the result directly,
starting from definitions. The matrix entries of our matrix W = WN are given by:

Wij =
N∑
r=1

YirȲjr

Thus, the normalized traces of powers of W are given by the following formula:

tr(W k) =
1

N

N∑
i1=1

. . .
N∑
ik=1

Wi1i2Wi2i3 . . .Wiki1

=
1

N

N∑
i1=1

. . .
N∑
ik=1

N∑
r1=1

. . .
N∑

rk=1

Yi1r1Ȳi2r1Yi2r2Ȳi3r2 . . . Yikrk Ȳi1rk

By rescaling now W by a 1/N factor, as in the statement, we obtain:

tr

((
W

N

)k)
=

1

Nk+1

N∑
i1=1

. . .
N∑
ik=1

N∑
r1=1

. . .
N∑

rk=1

Yi1r1Ȳi2r1Yi2r2Ȳi3r2 . . . Yikrk Ȳi1rk

By using now the Wick rule, we obtain the following formula for the moments, with
K = ◦ • ◦ • . . . , alternating word of lenght 2k, and with I = (i1r1, i2r1, . . . , ikrk, i1rk):

Mk

(
W

N

)
=

tk

Nk+1

N∑
i1=1

. . .

N∑
ik=1

N∑
r1=1

. . .

N∑
rk=1

#
{
π ∈ P2(K)

∣∣∣π ≤ ker(I)
}

=
tk

Nk+1

∑
π∈P2(K)

#
{
i, r ∈ {1, . . . , N}k

∣∣∣π ≤ ker(I)
}

In order to compute this quantity, we use the standard bijection P2(K) ' Sk. By
identifying the pairings π ∈ P2(K) with their counterparts π ∈ Sk, we obtain:

Mk

(
W

N

)
=

tk

Nk+1

∑
π∈Sk

#
{
i, r ∈ {1, . . . , N}k

∣∣∣is = iπ(s)+1, rs = rπ(s), ∀s
}

Now let γ ∈ Sk be the full cycle, which is by definition the following permutation:

γ = (1 2 . . . k)
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The general factor in the product computed above is then 1 precisely when following
two conditions are simultaneously satisfied:

γπ ≤ ker i , π ≤ ker r

Counting the number of free parameters in our moment formula, we obtain:

Mk

(
W

N

)
= tk

∑
π∈Sk

N |π|+|γπ|−k−1

The point now is that the last exponent is well-known to be≤ 0, with equality precisely
when the permutation π ∈ Sk is geodesic, which in practice means that π must come from
a noncrossing partition. Thus we obtain, in the N →∞ limit:

Mk

(
W

N

)
' tkCk

Thus, we are led to the conclusion in the statement. �

As a consequence of the above result, we have a new look on the Catalan numbers,
which is more adapted to our present Wishart matrix considerations, as follows:

Proposition 6.27. The Catalan numbers Ck = |NC2(2k)| appear as well as

Ck = |NC(k)|
where NC(k) is the set of all noncrossing partitions of {1, . . . , k}.

Proof. This follows indeed from the proof of Theorem 6.26. Observe that we obtain
as well a formula in terms of matching pairings of alternating colored integers. �

The direct explanation for the above formula, relating noncrossing partitions and
pairings, comes form the following result, which is very useful, and good to know:

Proposition 6.28. We have a bijection between noncrossing partitions and pairings

NC(k) ' NC2(2k)

which is constructed as follows:

(1) The application NC(k)→ NC2(2k) is the “fattening” one, obtained by doubling
all the legs, and doubling all the strings as well.

(2) Its inverse NC2(2k) → NC(k) is the “shrinking” application, obtained by col-
lapsing pairs of consecutive neighbors.

Proof. The fact that the two operations in the statement are indeed inverse to each
other is clear, by computing the corresponding two compositions, with the remark that
the construction of the fattening operation requires the partitions to be noncrossing. �

Getting back now to probability, we are led to the question of finding the law having
the Catalan numbers as moments. The result here is as follows:
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Proposition 6.29. The real measure having the Catalan numbers as moments is

π1 =
1

2π

√
4x−1 − 1 dx

called Marchenko-Pastur law of parameter 1.

Proof. The moments of the law π1 in the statement can be computed with the change
of variable x = 4 cos2 t, as follows:

Mk =
1

2π

∫ 4

0

√
4x−1 − 1xkdx

=
1

2π

∫ π/2

0

sin t

cos t
· (4 cos2 t)k · 2 cos t sin t dt

=
4k+1

π

∫ π/2

0

cos2k t sin2 t dt

=
4k+1

π
· π

2
· (2k)!!2!!

(2k + 3)!!

= 2 · 4k · (2k)!/2kk!

2k+1(k + 1)!

= Ck

Thus, we are led to the conclusion in the statement. �

Now back to the Wishart matrices, we are led to the following result:

Theorem 6.30. Given a sequence of complex Wishart matrices

WN = YNY
∗
N ∈MN(L∞(X))

with YN being N ×N complex Gaussian of parameter t > 0, we have

WN

tN
∼ 1

2π

√
4x−1 − 1 dx

with N →∞, with the limiting measure being the Marchenko-Pastur law π1.

Proof. This follows indeed from Theorem 6.26 and Proposition 6.29. �

As a comment now, while the above result is definitely something interesting at t = 1,
at general t > 0 this looks more like a “fake” generalization of the t = 1 result, because the
law π1 stays the same, modulo a trivial rescaling. The reasons behind this phenomenon
are quite subtle, and skipping some discussion, the point is that Theorem 6.30 is indeed
something “fake” at general t > 0, and the correct generalization of the t = 1 computation,
involving more general classes of complex Wishart matrices, is as follows:
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Theorem 6.31. Given a sequence of general complex Wishart matrices

WN = YNY
∗
N ∈MN(L∞(X))

with YN being N ×M complex Gaussian of parameter 1, we have

WN

N
∼ max(1− t, 0)δ0 +

√
4t− (x− 1− t)2

2πx
dx

with M = tN →∞, with the limiting measure being the Marchenko-Pastur law πt.

Proof. This follows once again by using the moment method, the limiting moments
in the M = tN →∞ regime being as follows, after doing the combinatorics:

Mk

(
WN

N

)
'

∑
π∈NC(k)

t|π|

But these numbers are the moments of the Marchenko-Pastur law πt, which in addition
has the density given by the formula in the statement, and this gives the result. �

As a philosophical conclusion now, we have 4 main laws in what we have been doing
so far, namely the Gaussian laws gt, the Poisson laws pt, the Wigner laws γt and the
Marchenko-Pastur laws πt. These laws naturally form a diagram, as follows:

πt γt

pt gt

We will see in chapter 8 that πt, γt appear as “free analogues” of pt, gt, and that a
full theory can be developed, with central limiting theorems for all 4 laws, convolution
semigroup results for all 4 laws too, and character results for all 4 laws too. And also, we
will be back to the random matrices as well, with further results about them.

6e. Exercises

There has been a lot of non-trivial combinatorics and calculus in this chapter, some-
times only briefly explained, and as an exercise on all this, we have:

Exercise 6.32. Clarify all the details in connection with the Wigner and Marchenko-
Pastur computations, first at t = 1, and then for general t > 0.

As before, these are things discussed in the above, but only briefly, this whole chapter
having been just a brief and modest introduction to this exciting subject which are the
random matrices. In the hope that you’ll find some time, and fully do the exercise.



CHAPTER 7

Quantum spaces

7a. Gelfand theorem

In this chapter we go back to generalities. We have seen that the von Neumann alge-
bras A ⊂ B(H) are interesting objects, and it is tempting to go ahead with a systematic
study of such algebras, from an operator theory viewpoint. This is what Murray and von
Neumann did, when first coming across such algebras, back in the 1930s, in their series
of papers [60], [61], [62], [86], [87], [88]. In what concerns us, we will rather keep this
material for later, chapters 9-12, and talk instead, in this chapter and in the next one, of
things which are perhaps more basic, motivated by the following definition:

Definition 7.1. Given a von Neumann algebra A ⊂ B(H), coming with a faithful
positive unital trace tr : A→ C, we write

A = L∞(X)

and call X a quantum probability space. We also write the trace as tr =
∫
X

, and call it
integration with respect to the uniform measure on X.

Obviously, this is something beautiful and exciting, and we have already seen how
some interesting theory can be developed along these lines in the simplest case, that of
the random matrix algebras. Thus, we can only say that in general, the above notion of
quantum space needs a better understanding, before going ahead with the Murray-von
Neumann theory from [60], [61], [62], [86], [87], [88]. In order to get started now, in
addition to what we already know, a few comments on the above definition:

(1) Generally speaking, all this comes from a result from chapter 5, stating that the
commutative von Neumann algebras are those of the form A = L∞(X), with X being a
measured space. Indeed, when adding to this the obvious fact that, in the finite measure
case, where µ(X) <∞, the integration can be regarded as being a faithful positive unital
trace tr : L∞(X)→ C, we are basically led to Definition 7.1.

(2) To be more precise, in order to justify Definition 7.1, we still have to say a word
on our assumption µ(X) < ∞, making the integration tr : A → C bounded. This is un-
fortunately something advanced, coming from deep classification results of von Neumann
and Connes, which roughly state that “modulo classical measure theory, the study of the
quantum measured spaces X basically reduces to the case µ(X) <∞”.

153
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(3) And with the comment here that the key word in the above is “modulo”. Indeed,
the most important measure space of them all is R with its uniform measure, and any
attempt of compactifying, such as using a Gaussian density, or a stereographic projection,
is something unnatural, and unuseful. What von Neumann and Connes say is what has
been said above, something rather technical, not regarding spaces like R.

(4) Finally, there is a word to be said too about the traciality of the integration func-
tional tr : A→ C. Unfortunately this is advanced too, once again coming from that deep
classification results of von Neumann and Connes, which in their more precise formulation
state that “modulo classical measure theory, the study of the quantum measured spaces
X basically reduces to the case where µ(X) <∞, and

∫
X

is a trace”.

In short, quite complicated all this, and you will have to trust me here. Of course
you might say that you would like to go first through the above-mentioned results of
von Neumann and Connes, before talking about general quantum spaces. To which I
would answer that you are welcome to do so, but be aware that this is something fairly
complicated, requiring reading first Murray-von Neumann [60], [61], [62], [86], [87], then
von Neumann’s tough reduction theory paper [88], then a series of non-trivial post-war
papers by Tomita, Takesaki and others, culminating with Connes’ classification paper
[24], and then, why not the work of Connes [25] and Haagerup [40] too, on the so-called
hyperfinite case, which is the most important anyway, and must be known.

Also, be aware that, while several multi-volume treatises on von Neumann algebras
have been written, including Dixmier [29], Kadison-Ringrose [52], Strătilă-Zsidó [77],
Takesaki [78], none of them explains all this material, full theory, with full proofs for
everything. With this being not a matter of volume, but rather of some sort of fear in
getting involved in such a project. And more on this later, once we’ll know more.

Going ahead now, and saying congratulations and welcome back, in case you took
a break, and read all the above, there is one more thing to be discussed in connection
with Definition 7.1, and this regardless of the various mathematical aspects, and this is
physics. Let me formulate here the question that you surely have in mind:

Question 7.2. We already agreed, without clear evidence, that our linear operators
T : H → H should be bounded. But what now about quantum spaces, is it a good idea to
assume that these are as above, of finite mass, and with tracial integration?

Well, this is certainly an interesting question. In favor of my choice, I would argue
that the mathematical physics of Jones [44], [45], [46], [48], [49] and Voiculescu [83],
[84], [85] needs a trace tr : A → C, as above. And the same goes for certain theoretical
physics continuations of the main work of Connes [26], as for instance the basic theory
of the Standard Model spectral triple of Chamseddine-Connes, whose free gauge group is
a certain quantum group, which is compact, and whose Haar integration is tracial. And
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there are several other things that can be said, along the same lines. Needless to say, all
this is quite subjective, and some other people, knowing less or more, might come with
an argumentation for the exactly opposite viewpoint. But hey, question of theoretical
physics you asked, answer of theoretical physics is what you got.

Hang on, we are not done yet. Now that we are convinced that Definition 7.1 is the
correct one, be that on mathematical or physical grounds, let us look for examples. And
here the situation is quite grim, because even in the classical case, where X is a usual
probability space, there is something wrong with Definition 7.1, due to:

Fact 7.3. The measure on a classical measured space X cannot come out of nowhere,
and is usually a Haar measure, appearing by theorem. Thus, in our picture

A ⊂ B(H)

both the Hilbert space H = L2(X) and the von Neumann algebra A = L∞(X) should
appear by theorem, not by definition, contrary to what Definition 7.1 says.

To be more precise, in what regards the first assertion, this is certainly the case with
simple objects like Lie groups, or spheres and other homogeneous spaces. Of course you
might say that [0, 1] with the uniform measure is a measured space, but isn’t [0, 1] obtained
by cutting the Lie group R, with its Haar measure. And the same goes with [0, 1] with an
arbitrary measure f(x)dx, or with [0, 1] being deformed into a curve, and so on, because
that dx, or what is left from it, will always refer to the Haar measure of R.

As for the second assertion, nothing much to comment here, mathematics has spoken.
So, getting back now to Definition 7.1 as it is, looks like we have two dead bodies there,
the Hilbert space H and the operator algebra A. So let us try to get rid of at least one
of them. But which? In the lack of any obvious idea, let us turn to physics:

Question 7.4. In quantum mechanics, which came first, the Hilbert space H, or the
operator algebra A?

Unfortunately this question is as difficult as the one regarding the chicken and the
egg. A look at what various physicists said on this matter, in a direct or indirect way,
does not help much, and at the end of the day we are left with guidelines like “no one
understands quantum mechanics” (Feynman) or “shut up and compute” (Dirac). And
all this, coming on top on what has been already said on Definition 7.1, of rather unclear
nature, is probably too much. That is, the last drop, time to conclude:

Conclusion 7.5. The theory of von Neumann algebras has the same peculiarity as
quantum mechanics: it tends to self-destruct, when approached axiomatically.

Which is not bad as a conclusion, and by twisting a bit our minds, matter to be
optimistic, we will take this as a good thing. After all, we have here solid evidence for
the fact that von Neumann algebras might be indeed related to quantum mechanics.
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Back to business now, in practice, we must go back to chapter 5, and examine what
we were saying right before introducing the von Neumann algebras. And at that time, we
were talking about general operator algebras A ⊂ B(H), closed with respect to the norm,
but not necessarily with respect to the weak topology. But this suggests formulating the
following definition, somewhat as a purely mathematical answer to Question 7.4:

Definition 7.6. A C∗-algebra is an complex algebra A, given with:

(1) A norm a→ ||a||, making it into a Banach algebra.
(2) An involution a→ a∗, related to the norm by the formula ||aa∗|| = ||a||2.

Here by Banach algebra we mean a complex algebra with a norm satisfying all the
conditions for a vector space norm, along with ||ab|| ≤ ||a|| · ||b|| and ||1|| = 1, and which
is such that our algebra is complete, in the sense that the Cauchy sequences converge. As
for the involution, this must be antilinear, antimultiplicative, and satisfying a∗∗ = a.

As basic examples, we have the operator algebra B(H), for any Hilbert space H, and
more generally, the norm closed ∗-subalgebras A ⊂ B(H). It is possible to prove that
any C∗-algebra appears in this way, but this is a non-trivial result, called GNS theorem,
and more on this later. Note in passing that this result tells us that there is no need
to memorize the above axioms for the C∗-algebras, because these are simply the obvious
things that can be said about B(H), and its norm closed ∗-subalgebras A ⊂ B(H).

As a second class of basic examples, which are of great interest for us, we have:

Proposition 7.7. If X is a compact space, the algebra C(X) of continuous functions
f : X → C is a C∗-algebra, with the usual norm and involution, namely:

||f || = sup
x∈X
|f(x)| , f ∗(x) = f(x)

This algebra is commutative, in the sense that fg = gf , for any f, g ∈ C(X).

Proof. Almost everything here is trivial. Observe that we have indeed:

||ff ∗|| = sup
x∈X
|f(x)f(x)|

= sup
x∈X
|f(x)|2

= ||f ||2

Thus, the axioms are satisfied, and finally fg = gf is clear. �

In general, the C∗-algebras can be thought of as being algebras of operators, over some
Hilbert space which is not present. By using this philosophy, one can emulate spectral
theory in this setting, with extensions of the various results from chapters 2-3:
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Theorem 7.8. Given element a ∈ A of a C∗-algebra, define its spectrum as:

σ(a) =
{
λ ∈ C

∣∣∣a− λ /∈ A−1
}

The following spectral theory results hold, exactly as in the A = B(H) case:

(1) We have σ(ab) ∪ {0} = σ(ba) ∪ {0}.
(2) We have polynomial, rational and holomorphic calculus.
(3) As a consequence, the spectra are compact and non-empty.
(4) The spectra of unitaries (u∗ = u−1) and self-adjoints (a = a∗) are on T,R.
(5) The spectral radius of normal elements (aa∗ = a∗a) is given by ρ(a) = ||a||.

Proof. The proofs here are similar to those for the full operator algebra A = B(H).
All this is standard material, and in fact, things in chapters 2-3 were written in such a
way as for their extension now, to the general C∗-algebra setting, to be obvious. �

We can now get back to the commutative C∗-algebras, and we have the following
result, due to Gelfand, which will be of crucial importance for us:

Theorem 7.9. The commutative C∗-algebras are exactly the algebras of the form

A = C(X)

with the “spectrum” X of such an algebra being the space of characters χ : A → C, with
topology making continuous the evaluation maps eva : χ→ χ(a).

Proof. Given a commutative C∗-algebra A, we can define X as in the statement.
Then X is compact, and a→ eva is a morphism of algebras, as follows:

ev : A→ C(X)

(1) We first prove that ev is involutive. We use the following formula, which is similar
to the z = Re(z) + iIm(z) formula for the usual complex numbers:

a =
a+ a∗

2
+ i · a− a

∗

2i

Thus it is enough to prove the equality eva∗ = ev∗a for self-adjoint elements a. But this
is the same as proving that a = a∗ implies that eva is a real function, which is in turn
true, because eva(χ) = χ(a) is an element of σ(a), contained in R.

(2) Since A is commutative, each element is normal, so ev is isometric:

||eva|| = ρ(a) = ||a||
(3) It remains to prove that ev is surjective. But this follows from the Stone-Weierstrass

theorem, because ev(A) is a closed subalgebra of C(X), which separates the points. �

The Gelfand theorem has some important philosophical consequences. Indeed, in view
of this theorem, we can formulate the following definition:
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Definition 7.10. Given an arbitrary C∗-algebra A, we write

A = C(X)

and call X a compact quantum space.

This might look like something informal, but it is not. Indeed, we can define the
category of compact quantum spaces to be the category of the C∗-algebras, with the
arrows reversed. When A is commutative, the above space X exists indeed, as a Gelfand
spectrum, X = Spec(A). In general, X is something rather abstract, and our philosophy
here will be that of studying of course A, but formulating our results in terms of X. For
instance whenever we have a morphism Φ : A→ B, we will write A = C(X), B = C(Y ),
and rather speak of the corresponding morphism φ : Y → X. And so on.

Less enthusiastically now, we will see later that the above formalism has its limitations,
and needs a fix. To be more precise, when looking at compact quantum spaces having a
probability measure, there are more of them in the sense of Definition 7.10, than in the
von Neumann algebra sense. Thus, everything in Definition 7.10, algebras and spaces,
must be divided by a suitable equivalence relation. But more on this later.

As a first concrete consequence of the Gelfand theorem, we have:

Proposition 7.11. Assume that a ∈ A is normal, and let f ∈ C(σ(a)).

(1) We can define f(a) ∈ A, with f → f(a) being a morphism of C∗-algebras.
(2) We have the “continuous functional calculus” formula σ(f(a)) = f(σ(a)).

Proof. Since a is normal, the C∗-algebra < a > that is generates is commutative, so
if we denote by X the space formed by the characters χ :< a >→ C, we have:

< a >= C(X)

Now since the map X → σ(a) given by evaluation at a is bijective, we obtain:

< a >= C(σ(a))

Thus, we are dealing with usual functions, and this gives all the assertions. �

As another consequence of the Gelfand theorem, we have:

Proposition 7.12. For a normal element a ∈ A, the following are equivalent:

(1) a is positive, in the sense that σ(a) ⊂ [0,∞).
(2) a = b2, for some b ∈ A satisfying b = b∗.
(3) a = cc∗, for some c ∈ A.

Proof. This is very standard, exactly as in the case A = B(H), as follows:

(1) =⇒ (2) This follows from Proposition 7.11, because we can use the function
f(z) =

√
z, which is well-defined on σ(a) ⊂ [0,∞), and set b =

√
a.
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(2) =⇒ (3) This is trivial, because we can set c = b.

(3) =⇒ (1) We proceed by contradiction. By multiplying c by a suitable element of
< cc∗ >, we are led to the existence of an element d 6= 0 satisfying:

−dd∗ ≥ 0

By writing now d = x+ iy with x = x∗, y = y∗ we have:

dd∗ + d∗d = 2(x2 + y2) ≥ 0

Thus d∗d ≥ 0. But this contradicts the elementary fact that σ(dd∗), σ(d∗d) must
coincide outside {0}, coming from Theorem 7.8 above. �

Summarizing, what we have so far is an abstract extension of most of the basic operator
theory from chapters 2-3, from the case of the algebra A = B(H), and more generally of
the operator algebras A ⊂ B(H), to the case of the abstract C∗-algebras, as axiomatized
in Definition 7.6. All this is certainly good to know, and as a bonus we have Definition
7.10, which is something extremely interesting for us, remaining to be explored.

7b. GNS theorem

Let us clarify now the relation between C∗-algebras and von Neumann algebras. In
order to do so, we need a prove a key result, called GNS representation theorem, stating
that any C∗-algebra appears as an operator algebra. As a first result, we have:

Proposition 7.13. Let A be a commutative C∗-algebra, write A = C(X), with X
being a compact space, and let µ be a positive measure on X. We have then

A ⊂ B(H)

where H = L2(X), with f ∈ A corresponding to the operator g → fg.

Proof. Given a continuous function f ∈ C(X), consider the operator Tf (g) = fg,
on H = L2(X). Observe that Tf is indeed well-defined, and bounded as well, because:

||fg||2 =

√∫
X

|f(x)|2|g(x)|2dµ(x)

≤ ||f ||∞||g||2
The application f → Tf being linear, involutive, continuous, and injective as well, we

obtain in this way a C∗-algebra embedding A ⊂ B(H), as claimed. �

In order to prove the GNS representation theorem, we must extend the above con-
struction, to the case where A is not necessarily commutative. Let us start with:

Definition 7.14. Consider a C∗-algebra A.

(1) ϕ : A→ C is called positive when a ≥ 0 =⇒ ϕ(a) ≥ 0.
(2) ϕ : A→ C is called faithful and positive when a ≥ 0, a 6= 0 =⇒ ϕ(a) > 0.
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In the commutative case, A = C(X), the positive elements are the positive functions,
f : X → [0,∞). As for the positive linear forms ϕ : A→ C, these appear as follows, with
µ being positive, and strictly positive if we want ϕ to be faithful and positive:

ϕ(f) =

∫
X

f(x)dµ(x)

In general, the positive linear forms can be thought of as being integration functionals
with respect to some underlying “positive measures”. We can use them as follows:

Proposition 7.15. Let ϕ : A→ C be a positive linear form.

(1) < a, b >= ϕ(ab∗) defines a generalized scalar product on A.
(2) By separating and completing we obtain a Hilbert space H.
(3) π(a) : b→ ab defines a representation π : A→ B(H).
(4) If ϕ is faithful in the above sense, then π is faithful.

Proof. Almost everything here is straightforward, as follows:

(1) This is clear from definitions, and from the basic properties of the positive elements
a ≥ 0, which can be established exactly as in the A = B(H) case.

(2) This is a standard procedure, which works for any scalar product, the idea being
that of dividing by the vectors satisfying < x, x >= 0, then completing.

(3) All the verifications here are standard algebraic computations, in analogy with
what we have seen many times, for multiplication operators, or group algebras.

(4) Assuming that we have a 6= 0, we have then π(aa∗) 6= 0, which in turn implies by
faithfulness that we have π(a) 6= 0, which gives the result. �

In order to establish the embedding theorem, it remains to prove that any C∗-algebra
has a faithful positive linear form ϕ : A→ C. This is something more technical:

Proposition 7.16. Let A be a C∗-algebra.

(1) Any positive linear form ϕ : A→ C is continuous.
(2) A linear form ϕ is positive iff there is a norm one h ∈ A+ such that ||ϕ|| = ϕ(h).
(3) For any a ∈ A there exists a positive norm one form ϕ such that ϕ(aa∗) = ||a||2.
(4) If A is separable there is a faithful positive form ϕ : A→ C.

Proof. The proof here is quite technical, inspired from the existence proof of the
probability measures on abstract compact spaces, the idea being as follows:

(1) This follows from Proposition 7.15, via the following estimate:

|ϕ(a)| ≤ ||π(a)||ϕ(1) ≤ ||a||ϕ(1)
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(2) In one sense we can take h = 1. Conversely, let a ∈ A+, ||a|| ≤ 1. We have:

|ϕ(h)− ϕ(a)| ≤ ||ϕ|| · ||h− a||
≤ ϕ(h)1

= ϕ(h)

Thus Re(ϕ(a)) ≥ 0, and with a = 1− h we obtain:

Re(ϕ(1− h)) ≥ 0

Thus Re(ϕ(1)) ≥ ||ϕ||, and so ϕ(1) = ||ϕ||, so we can assume h = 1. Now observe
that for any self-adjoint element a, and any t ∈ R we have, with ϕ(a) = x+ iy:

ϕ(1)2(1 + t2||a||2) ≥ ϕ(1)2||1 + t2a2||
= ||ϕ||2 · ||1 + ita||2

≥ |ϕ(1 + ita)|2

= |ϕ(1)− ty + itx|
≥ (ϕ(1)− ty)2

Thus we have y = 0, and this finishes the proof of our remaining claim.

(3) We can set ϕ(λaa∗) = λ||a||2 on the linear space spanned by aa∗, then extend this
functional by Hahn-Banach, to the whole A. The positivity follows from (2).

(4) This is standard, by starting with a dense sequence (an), and taking the Cesàro
limit of the functionals constructed in (3). We have ϕ(aa∗) > 0, and we are done. �

With these ingredients in hand, we can now state and prove:

Theorem 7.17. Any C∗-algebra appears as a norm closed ∗-algebra of operators

A ⊂ B(H)

over a certain Hilbert space H. When A is separable, H can be taken to be separable.

Proof. This result, called called GNS representation theorem after Gelfand, Naimark
and Segal, follows indeed by combining the construction from Proposition 7.15, called GNS
construction, with the existence result from Proposition 7.16. �

This might seem quite surprising, and your first reaction would be to say what have
we been we doing here, with our C∗-algebra theory, because we are now back to operator
algebras A ⊂ B(H), and everything that we did with C∗-algebras, extending things that
we knew about operator algebras A ⊂ B(H), looks more like a waste of time.

Error. The axioms in Definition 7.6, coupled with the writing A = C(X) in Definition
7.10, are something powerful, because they do not involve any kind of L2 or L∞ functions
on our quantum spaces X. Thus, we can start hunting for such spaces, just by defining
C∗-algebras with generators and relations. And then, we can look for Haar measures on
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such spaces, and use the GNS construction in order to reach to von Neumann algebras,
and so to quantum probability spaces in previous sense, that of chapters 5-6.

So, this will be our program in what follows, constructing quantum probability spaces
X the hard and honest way, using C∗-algebras, and with a Haar measure theorem proved.
Before that, however, let us summarize the above discussion as follows:

Proposition 7.18. We can talk about compact quantum measured spaces, as follows:

(1) The category of compact quantum measured spaces (X,µ) is the category of the
C∗-algebras with faithful traces (A,ϕ), with the arrows reversed.

(2) In the case where we have a non-faithful trace ϕ, we can still talk about the
corresponding space (X,µ), by performing the GNS construction.

(3) By taking the weak closure in the GNS representation, we obtain the von Neu-
mann algebra A′′ = L∞(X), in the previous general measured space sense.

Proof. All this follows from Theorem 7.17, and from the other things that we already
know, with the whole result itself being something rather philosophical. �

This statement makes a bridge between the two notions of quantum spaces that we
have so far, those coming from von Neumann algebras, and those coming from C∗-algebras.
However, things remain still a bit unclear, because we still have to divide some of our
categories of spaces and algebras by a suitable equivalence relation, as for everything to
work fine. We will investigate this question later, once we’ll know more.

Let us go now for the real thing, namely looking for Haar measure existence results,
in the quantum space setting. Our source of inspiration will be:

Theorem 7.19. Any compact group G has a uniform, or Haar measure, meaning a
probability measure µ satisfying the following condition, for any E ⊂ G:

µ(gE) = µ(Eg) = µ(E)

More generally, any quotient space G/H of such compact groups has a Haar measure,
which must be by definition invariant under the action of G.

Proof. This is something well-known, the idea being as follows:

(1) We can indeed pick any probability measure ν on our group G, and then start
convolving with itself. The more we convolve, the more ν becomes invariant, and so in
the n → ∞ limit we will obtain an invariant measure µ. This is the general idea, but in
practice, in order for things to converge, we must use a Cesàro limit, as follows:

µ = lim
n→∞

1

n

n∑
k=1

ν∗k

The fact that this Cesàro limit converges indeed, and is left and right invariant under
the action of G, is standard measure theory and functional analysis.
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(2) Assume indeed that X = G/H is an homogeneous space, coming from a closed
subgroup H ⊂ G, as in the statement. The Haar measure on X appears then as the
push-forward of the Haar measure of G, via the canonical quotient map:

π : G→ G/H

We can recover this as well via functional analysis. Indeed, at the level of algebras of
functions, the above quotient map π produces an embedding, as follows:

i : C(X) ⊂ C(G)

Thus, we can define the Haar integration over X as being the restriction of the Haar
integration over G, via this embedding i, and this gives the result. �

Our idea in what follows will be that of finding “quantum analogues” of Theorem 7.19.
In order to get started, let us forget about the general quotient spaces X = G/H, which
are quite complicated, and focus on the compact groups G. The simplest such groups
are the abelian ones, and in connection with these abelian groups, there is one important
result to be known, namely the Pontrjagin duality result, which is as follows:

Theorem 7.20. The compact abelian groups G are in correspondence with the discrete
abelian groups Γ, via Pontrjagin duality,

G = Γ̂ , Γ = Ĝ

with the dual of a locally compact group L being the locally compact group L̂ consisting of
the continuous group characters χ : L→ T.

Proof. This is something very standard, the idea being that, given a group L as

above, its continuous characters χ : L→ T form indeed a group, that we can call L̂. The

correspondence L→ L̂ constructed in this way has then the following properties:

(1) We have ẐN = ZN . This is the basic computation to be performed, before anything
else, and which is something algebraic, with roots of unity.

(2) More generally, the dual of a finite abelian group G = ZN1× . . .×ZNk is the group

G itself. This comes indeed from (1) and from Ĝ×H = Ĝ× Ĥ.

(3) At the opposite end now, that of the locally compact groups which are not compact,

nor discrete, the main example, which is standard, is R̂ = R.

(4) Getting now to what we are interested in, it follows from the definition of the

correspondence L→ L̂ that when L is compact L̂ is discrete, and vice versa.

(5) Finally, in order to best understand this latter phenomenon, the best is to work

out the main pair of examples, which are T̂ = Z and Ẑ = T. �
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Observe that the above result reminds Fourier analysis, which can be of three types,
namely the usual one, on R, then the theory of Fourier series, on T/Z, and then the
discrete Fourier transform, over ZN . This analogy is of course not accidental, and in fact
quite the opposite happens, in the sense that when looking for abstract “Fourier transform
theories” we are naturally led into groups, and into Theorem 7.20 above.

Our claim now is that, by using operator algebra theory, we can talk about the dual

G = Γ̂ of any discrete group Γ. Let us start our discussion in the von Neumann algebra
setting, where things are particularly simple. We have here:

Theorem 7.21. Given a discrete group Γ, we can construct its von Neumann algebra

L(Γ) ⊂ B(l2(Γ))

by using the left regular representation. This algebra has a faithful positive trace, tr(g) =
δg,1, and when Γ is abelian we have an isomorphism of tracial von Neumann algebras

L(Γ) ' L∞(G)

given by a Fourier type transform, where G = Γ̂ is the compact dual of Γ.

Proof. There are many assertions here, the idea being as follows:

(1) The first part is standard, with the left regular representation of Γ working as
expected, and being a unitary representation, as follows:

Γ ⊂ B(l2(Γ)) , π(g) : h→ gh

(2) The positivity of the trace comes from the following alternative formula for it, with
the equivalence with the definition in the statement being clear:

tr(T ) =< T1, 1 >

(3) The third part is standard as well, because when Γ is abelian the algebra L(Γ)
is commutative, and its spectral decomposition leads by delinearization to the group

characters χ : Γ→ T, and so the dual group G = Γ̂, as indicated.

(4) Finally, the fact that our isomorphism transforms the trace of L(Γ) into the Haar
integration functional of L∞(G) is clear. Moreover, the study of various examples show
that what we constructed is in fact the Fourier transform, in its various incarnations. �

Getting back now to our quantum space questions, we have a beginning of answer,
because based on the above, we can formulate the following definition:

Definition 7.22. Given a discrete group Γ, not necessarily abelian, we can construct

its abstract dual G = Γ̂ as a quantum measured space, via the following formula:

L∞(G) = L(Γ)

In the case where Γ happens to be abelian, this quantum space G = Γ̂ is a classical space,
namely the usual Pontrjagin dual of Γ, endowed with its Haar measure.
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This is very nice, and we will keep building on this. The problem is that our theory
developed above is incomplete, still missing a discussion of the “group-type structure” of

the abstract dual G = Γ̂ that we constructed. We will come later with a solution to this
problem, stating that G is a “compact quantum group”, in an appropriate sense.

Let us discuss now the same questions, in the C∗-algebra setting. The situation here
is more complicated than in the von Neumann algebra setting, as follows:

Proposition 7.23. Associated to any discrete group Γ are several group C∗-algebras,

C∗(Γ)→ C∗π(Γ)→ C∗red(Γ)

which are constructed as follows:

(1) C∗(Γ) is the closure of the group algebra C[Γ], with involution g∗ = g−1, with
respect to the maximal C∗-seminorm on this ∗-algebra, which is a C∗-norm.

(2) C∗red(Γ) is the norm closure of the group algebra C[Γ] in the left regular represen-
tation, on the Hilbert space l2(Γ), given by λ(g)(h) = gh and linearity.

(3) C∗π(Γ) can be a priori any intermediate C∗-algebra, but for best results, the in-
dexing object π must be a unitary group representation, satisfying π ⊗ π ⊂ π.

Proof. This is something quite technical, with (2) being very similar to the von
Neumann algebra construction, from Theorem 7.21, with (1) being something new, with
the norm property there coming from (2), and finally with (3) being an informal statement,
that we will comment on later, once we will know about compact quantum groups. �

When Γ is finite, or abelian, or more generally amenable, all the above group algebras
coincide. In the abelian case, that we are particularly interested in here, the precise result
is as follows, complementing the L∞ analysis from Theorem 7.21 above:

Theorem 7.24. When Γ is abelian all its group C∗-algebras coincide, and we have an
isomorphism as follows, given by a Fourier type transform,

C∗(Γ) ' C(G)

where G = Γ̂ is the compact dual of Γ. Moreover, this isomorphism transforms the
standard group algebra trace tr(g) = δg,1 into the Haar integration of G.

Proof. Since Γ is abelian, any of its group C∗-algebras A = C∗π(Γ) is commutative.
Thus, we can apply the Gelfand theorem, and we obtain A = C(X), with X = Spec(A).
But the spectrum X = Spec(A), consisting of the characters χ : A→ C, can be identified

by delinearizing with the Pontrjagin dual G = Γ̂, and this gives the results. �

As already mentioned, the various group C∗-algebras coincide when Γ is more generally
amenable. However, when Γ is not amenable, the full and reduced group algebras are
known to be distinct. And this is something that can really happen, a well-known example
of non-amenable group being the free group on two generators F2.
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Philosophically speaking, we keep from the above discussion the conclusion that, while

the quantum space G = Γ̂ is definitely unique, and the L∞ functions on it are uniquely
determined, via the formula L∞(G) = L(Γ), in what concerns the continuous functions,
“some of them are more continuous than some other”, in the non-amenable setting.

This might seem quite surprising, at a first glance, but with a bit of experience, and
some further functional analysis knowledge, not only this becomes a non-issue in the long
term, but rather something quite natural. It is in fact part of the quantum mechanics
philosophy that the classical world that we live in is a kind of “wonderland”, appearing
via mysterious N →∞ limits which simplify everything, and the continuity of functions
in the classical setting, which is a luminous, unique notion, appears like this.

7c. Quantum groups

With these ingredients in hand, we can now develop our “quantum algebraic manifold”
program. Let us start with the following key definition, due to Woronowicz [99]:

Definition 7.25. A Woronowicz algebra is a C∗-algebra A, given with a unitary
matrix u ∈MN(A) whose coefficients generate A, such that the formulae

∆(uij) =
∑
k

uik ⊗ ukj

ε(uij) = δij

S(uij) = u∗ji
define morphisms of C∗-algebras ∆ : A→ A⊗ A, ε : A→ C, S : A→ Aopp.

We say that A is cocommutative when Σ∆ = ∆, where Σ(a ⊗ b) = b ⊗ a is the flip.
We have the following result, which justifies the terminology and axioms:

Proposition 7.26. The following are Woronowicz algebras:

(1) C(G), with G ⊂ UN compact Lie group. Here the structural maps are:

∆(ϕ) = (g, h)→ ϕ(gh)

ε(ϕ) = ϕ(1)

S(ϕ) = g → ϕ(g−1)

(2) C∗(Γ), with FN → Γ finitely generated group. Here the structural maps are:

∆(g) = g ⊗ g

ε(g) = 1

S(g) = g−1

Moreover, we obtain in this way all the commutative/cocommutative algebras.
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Proof. In both cases, we have to exhibit a certain matrix u. For the first assertion,
we can use the matrix u = (uij) formed by matrix coordinates of G, given by:

g =

u11(g) . . . u1N(g)
...

...
uN1(g) . . . uNN(g)


For the second assertion, we can use the diagonal matrix formed by generators:

u =

g1 0
. . .

0 gN


Finally, the last assertion follows from the Gelfand theorem, in the commutative case,

and in the cocommutative case, we will be back to this later. �

In general now, the structural maps ∆, ε, S have the following properties:

Proposition 7.27. Let (A, u) be a Woronowicz algebra.

(1) ∆, ε satisfy the usual axioms for a comultiplication and a counit, namely:

(∆⊗ id)∆ = (id⊗∆)∆

(ε⊗ id)∆ = (id⊗ ε)∆ = id

(2) S satisfies the antipode axiom, on the ∗-subalgebra generated by entries of u:

m(S ⊗ id)∆ = m(id⊗ S)∆ = ε(.)1

(3) In addition, the square of the antipode is the identity, S2 = id.

Proof. When A is commutative, by using Proposition 7.26 we can write:

∆ = mt , ε = ut , S = it

The above 3 conditions come then by transposition from the basic 3 group theory
conditions satisfied by m,u, i, which are as follows, with δ(g) = (g, g):

m(m× id) = m(id×m)

m(id× u) = m(u× id) = id

m(id× i)δ = m(i× id)δ = 1

Observe that S2 = id is satisfied as well, coming from i2 = id. In general now, all
the formulae in the statement are satisfied on the generators uij, and so by linearity,
multiplicativity and continuity they are satisfied everywhere, as desired. �

Summarizing, the Woronowicz algebras appear to have nice properties. In view of
Proposition 7.26, we can now formulate the following definition:
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Definition 7.28. Given a Woronowicz algebra A, we formally write

A = C(G) = C∗(Γ)

and call G compact quantum group, and Γ discrete quantum group.

When A is both commutative and cocommutative, G is a compact abelian group, Γ
is a discrete abelian group, and these groups are dual to each other:

G = Γ̂ , Γ = Ĝ

In general, we still agree to write G = Γ̂,Γ = Ĝ, in a formal sense. Finally, in relation
with functoriality bugs, let us complement Definitions 7.25 and 7.28 with:

Definition 7.29. Given two Woronowicz algebras (A, u) and (B, v), we write

A ' B

and we identify as well the corresponding compact and discrete quantum groups, when we
have an isomorphism between the ∗-algebras A =< uij > and B =< vij >,

A ' B

mapping standard coordinates to standard coordinates.

With this in hand, the functoriality problem is fixed, with for instance all the group
algebras in Proposition 7.23 being identified. Note in passing that this convention tells
us also which topological tensor product ⊗ to use in Definition 7.25, topic that we have
carefully avoided, the answer here being that all such tensor products will do, the cor-
responding Woronowicz algebras being identified anyway. We will be back to this later,
with a number of supplementary comments, when talking about amenability.

In order to develop now some theory, let us call corepresentation of A any unitary
matrix v ∈Mn(A), with A =< uij >, satisfying the same conditions as u, namely:

∆(vij) =
∑
k

vik ⊗ vkj

ε(vij) = δij

S(vij) = v∗ji

These corepresentations can be thought of as corresponding to the unitary representa-
tions of the underlying compact quantum group G. As main examples, we have u = (uij)
itself, its conjugate ū = (u∗ij), as well as any tensor product between u, ū.

We have the following key result, due to Woronowicz [99]:



7C. QUANTUM GROUPS 169

Theorem 7.30. Any Woronowicz algebra has a unique Haar integration functional,(∫
G

⊗id
)

∆ =

(
id⊗

∫
G

)
∆ =

∫
G

(.)1

which can be constructed by starting with any faithful positive form ϕ ∈ A∗, and setting∫
G

= lim
n→∞

1

n

n∑
k=1

ϕ∗k

where φ ∗ ψ = (φ⊗ ψ)∆. Moreover, for any corepresentation v ∈Mn(C)⊗ A we have(
id⊗

∫
G

)
v = P

where P is the orthogonal projection onto Fix(v) = {ξ ∈ Cn|vξ = ξ}.

Proof. Following [99], this can be done in 3 steps, as follows:

(1) Given ϕ ∈ A∗, our claim is that the following limit converges, for any a ∈ A:∫
ϕ

a = lim
n→∞

1

n

n∑
k=1

ϕ∗k(a)

Indeed, by linearity we can assume that a is the coefficient of corepresentation, a =
(τ ⊗ id)v. But in this case, an elementary computation shows that we have the following
formula, where Pϕ is the orthogonal projection onto the 1-eigenspace of (id⊗ ϕ)v:(

id⊗
∫
ϕ

)
v = Pϕ

(2) Since vξ = ξ implies [(id⊗ ϕ)v]ξ = ξ, we have Pϕ ≥ P , where P is the orthogonal
projection onto the space Fix(v) = {ξ ∈ Cn|vξ = ξ}. The point now is that when ϕ ∈ A∗
is faithful, by using a positivity trick, one can prove that we have Pϕ = P . Thus our
linear form

∫
ϕ

is independent of ϕ, and is given on coefficients a = (τ ⊗ id)v by:(
id⊗

∫
ϕ

)
v = P

(3) With the above formula in hand, the left and right invariance of
∫
G

=
∫
ϕ

is clear

on coefficients, and so in general, and this gives all the assertions. See [99]. �

As a main application, we can develop a Peter-Weyl type theory for the corepresen-
tations of A. Consider the dense ∗-subalgebra A ⊂ A generated by the coefficients of the
fundamental corepresentation u, and endow it with the following scalar product:

< a, b >=

∫
G

ab∗

With this convention, we have the following result, also from Woronowicz [99]:
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Theorem 7.31. We have the following Peter-Weyl type results:

(1) Any corepresentation decomposes as a sum of irreducible corepresentations.
(2) Each irreducible corepresentation appears inside a certain u⊗k.
(3) A =

⊕
v∈Irr(A) Mdim(v)(C), the summands being pairwise orthogonal.

(4) The characters of irreducible corepresentations form an orthonormal system.

Proof. All these results are from [99], the idea being as follows:

(1) Given v ∈ Mn(A), its intertwiner algebra End(v) = {T ∈ Mn(C)|Tv = vT} is a
finite dimensional C∗-algebra, and so decomposes as End(v) = Mn1(C) ⊕ . . . ⊕Mnr(C).
But this gives a decomposition of type v = v1 + . . .+ vr, as desired.

(2) Consider indeed the Peter-Weyl corepresentations, u⊗k with k colored integer,
defined by u⊗∅ = 1, u⊗◦ = u, u⊗• = ū and multiplicativity. The coefficients of these
corepresentations span the dense algebra A, and by using (1), this gives the result.

(3) Here the direct sum decomposition, which is technically a ∗-coalgebra isomorphism,
follows from (2). As for the second assertion, this follows from the fact that (id⊗

∫
G

)v is
the orthogonal projection Pv onto the space Fix(v), for any corepresentation v.

(4) Let us define indeed the character of v ∈Mn(A) to be the matrix trace, χv = Tr(v).
Since this character is a coefficient of v, the orthogonality assertion follows from (3). As
for the norm 1 claim, this follows once again from (id⊗

∫
G

)v = Pv. �

We can now solve a problem that we left open before, namely:

Proposition 7.32. The cocommutative Woronowicz algebras appear as the quotients

C∗(Γ)→ A→ C∗red(Γ)

given by A = C∗π(Γ) with π ⊗ π ⊂ π, with Γ being a discrete group.

Proof. This follows from the Peter-Weyl theory, and clarifies a number of things said
before, in the statement of Proposition 7.23, and in the proof of Proposition 7.26. �

As another consequence of the above results, once again by following Woronowicz [99],
we have the following result, dealing with functional analysis aspects:

Theorem 7.33. Let Afull be the enveloping C∗-algebra of A, and let Ared be the
quotient of A by the null ideal of the Haar integration. The following are then equivalent:

(1) The Haar functional of Afull is faithful.
(2) The projection map Afull → Ared is an isomorphism.
(3) The counit map ε : Afull → C factorizes through Ared.
(4) We have N ∈ σ(Re(χu)), the spectrum being taken inside Ared.

If this is the case, we say that the underlying discrete quantum group Γ is amenable.
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Proof. This is well-known in the group dual case, A = C∗(Γ), with Γ being a usual
discrete group. In general, the result follows by adapting the group dual case proof:

(1) ⇐⇒ (2) This simply follows from the fact that the GNS construction for the
algebra Afull with respect to the Haar functional produces the algebra Ared.

(2) ⇐⇒ (3) Here =⇒ is trivial, and conversely, a counit map ε : Ared → C produces
an isomorphism Ared → Afull, via a formula of type (ε⊗ id)Φ. See [99].

(3) ⇐⇒ (4) Here =⇒ is clear, coming from ε(N −Re(χ(u))) = 0, and the converse
can be proved by doing some functional analysis. Once again, we refer here to [99]. �

Summarizing, we have a nice general theory of compact and discrete quantum groups,
generalizing the basic theory of the usual compact and discrete groups. Let us discuss
now the examples. Following Wang [90], we have the following key result:

Theorem 7.34. The following universal algebras are Woronowicz algebras,

C(O+
N) = C∗

(
(uij)i,j=1,...,N

∣∣∣u = ū, ut = u−1
)

C(U+
N ) = C∗

(
(uij)i,j=1,...,N

∣∣∣u∗ = u−1, ut = ū−1
)

so the underlying spaces O+
N , U

+
N and O∗N , U

∗
N are compact quantum groups.

Proof. This follows from the elementary fact that if a matrix u = (uij) is orthogonal
or biunitary, then so must be the following matrices:

u∆
ij =

∑
k

uik ⊗ ukj , uεij = δij , uSij = u∗ji

Thus, we can indeed define morphisms ∆, ε, S as in Definition 7.25, by using the
universal properties of C(O+

N), C(U+
N ), and this gives the result. �

There are many more examples that can be constructed along the same lines, namely
taking a suitable compact Lie group G ⊂ U+

N , and then “liberating” it into a certain
compact quantum group G+ ⊂ U+

N . It is possible as well to talk about half-liberations,
G ⊂ G∗ ⊂ G+, twists G → G−1, and more. The theory here goes back to [9], [11], [13],
dealing with the main examples, then to [16], where the liberation operation G→ G+ was
axiomatized, and then to a number of papers subsequent to [16], containing classification
work, extensions and applications. We will discuss this later, on several occasions.

7d. Algebraic manifolds

Our purpose now will be that of going beyond what can be said about quantum groups,
with the remark that what has been said above is just a tiny little bit of what can be
said, and discuss more general manifolds. Following [15], let us start with:
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Definition 7.35. We have compact quantum spaces, constructed as follows,

C(SN−1
R,+ ) = C∗

(
x1, . . . , xN

∣∣∣xi = x∗i ,
∑
i

x2
i = 1

)

C(SN−1
C,+ ) = C∗

(
x1, . . . , xN

∣∣∣∑
i

xix
∗
i =

∑
i

x∗ixi = 1

)
called respectively the free real sphere, and the free complex sphere.

Here the C∗ symbols on the right stand for “universal C∗-algebra generated by”. The
fact that such universal C∗-algebras exist indeed follows by considering the corresponding
universal ∗-algebras, and then completing with respect to the biggest C∗-norm. Observe
that this biggest C∗-norm exists indeed, because the quadratic conditions give:

||xi||2 = ||xix∗i || ≤

∣∣∣∣∣
∣∣∣∣∣∑

i

xix
∗
i

∣∣∣∣∣
∣∣∣∣∣ = 1

Given a compact quantum space X, its classical version is the space Xclass obtained
by dividing C(X) by its commutator ideal, and then applying the Gelfand theorem:

C(Xclass) = C(X)/I , I =< [a, b] >

Observe that we have an embedding of compact quantum spaces Xclass ⊂ X. In this
situation, we also say that X appears as a “liberation” of X. We have:

Proposition 7.36. We have embeddings of compact quantum spaces

SN−1
C

// SN−1
C,+

SN−1
R

//

OO

SN−1
R,+

OO

and the spaces on the right appear as liberations of the spaces of the left.

Proof. The first assertion is clear. For the second one, we must establish the following
isomorphisms, where C∗comm stands for “universal commutative C∗-algebra”:

C(SN−1
R ) = C∗comm

(
x1, . . . , xN

∣∣∣xi = x∗i ,
∑
i

x2
i = 1

)

C(SN−1
C ) = C∗comm

(
x1, . . . , xN

∣∣∣∑
i

xix
∗
i =

∑
i

x∗ixi = 1

)
But these isomorphisms are both clear, by using the Gelfand theorem. �
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We can now introduce a broad class of quantum manifolds, as follows:

Definition 7.37. A real algebraic submanifold X ⊂ SN−1
C,+ is a closed quantum space

defined, at the level of the corresponding C∗-algebra, by a formula of type

C(X) = C(SN−1
C,+ )

/〈
fi(x1, . . . , xN) = 0

〉
for certain noncommutative polynomials fi ∈ C < x1, . . . , xN >.

Observe that such manifolds exist indeed, because the free complex spheres themselves
exist, and this due to the fact that the quadratic conditions give:

||xi|| ≤ 1

This estimate, explained before, is something extremely important, and any attempt
of further extending Definition 7.37, beyond the sphere level, stumbles into this. There
are no such things as free analogues of RN or CN , and the problem comes from this.

In practice now, while our assumption X ⊂ SN−1
C,+ is definitely something technical,

we are not losing much when imposing it, and we have the following list of examples:

Proposition 7.38. The following are algebraic submanifolds X ⊂ SN−1
C,+ :

(1) The spheres SN−1
R ⊂ SN−1

C , SN−1
R,+ ⊂ SN−1

C,+ .

(2) Any compact Lie group, G ⊂ Un, with n2 = N .
(3) Any compact quantum Lie group, G ⊂ U+

n , with n2 = N .

(4) The duals Γ̂ of finitely generated groups, Γ =< g1, . . . , gN >.

Proof. In this statement (1) follows from definitions, and (2) follows from (3). Re-
garding now (3), the point here is that we have an embedding as follows:

G ⊂ U+
n ⊂ SN−1

C,+ , xij =
uij√
n

Moreover, as a consequence of Woronowicz’s Tannakian duality in [100], to be dis-
cussed later, we obtain indeed an algebraic manifold. Finally, (4) follows from the fact
that the variables xi = gi√

N
satisfy the relations

∑
i xix

∗
i =

∑
i x
∗
ixi = 1. �

At the level of the general theory, we have the following version of the Gelfand theorem,
which is something very useful, and that we will use several times in what follows:

Theorem 7.39. When X ⊂ SN−1
C,+ is an algebraic manifold, given by

C(X) = C(SN−1
C,+ )

/〈
fi(x1, . . . , xN) = 0

〉
for certain noncommutative polynomials fi ∈ C < x1, . . . , xN >, we have

Xclass =
{
x ∈ SN−1

C

∣∣∣fi(x1, . . . , xN) = 0
}

and X appears as a liberation of Xclass.
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Proof. If we denote by X ′class the manifold in the statement, we have a quotient map
of C∗-algebras as follows, mapping standard coordinates to standard coordinates:

C(Xclass)→ C(X ′class)

Conversely, from X ⊂ SN−1
C,+ we obtain Xclass ⊂ SN−1

C , and since the relations defining
X ′class are satisfied by Xclass, we obtain an inclusion of subspaces Xclass ⊂ X ′class. Thus,
at the level of algebras of continuous functions, we have a quotient map of C∗-algebras as
follows, mapping standard coordinates to standard coordinates:

C(X ′class)→ C(Xclass)

Thus, we have constructed a pair of inverse morphisms, and we are done. �

Getting back now to the examples, the above formalism allows us to have a new, more
geometric look at the group duals. Let us formulate indeed:

Definition 7.40. Given a closed subspace S ⊂ SN−1
C,+ , the subspace T ⊂ S given by

C(T ) = C(S)
/〈

xix
∗
i = x∗ixi =

1

N

〉
is called associated torus. In the real case, S ⊂ SN−1

R,+ , we also call T cube.

As a basic example here, for S = SN−1
C the corresponding submanifold T ⊂ S appears

by imposing the relations |xi| = 1√
N

to the coordinates, so we obtain a torus:

S = SN−1
C =⇒ T =

{
x ∈ CN

∣∣∣|xi| = 1√
N

}
As for the case of the real sphere, S = SN−1

R , here the submanifold T ⊂ S appears by
imposing the relations xi = ± 1√

N
to the coordinates, so we obtain a cube:

S = SN−1
R =⇒ T =

{
x ∈ RN

∣∣∣xi = ± 1√
N

}
Observe that we have a relation here with groups, because the complex torus computed

above is the group TN , and the cube is the finite group ZN2 . In fact, we have:

Theorem 7.41. The tori of the basic spheres are all group duals, as follows,

TN // F̂N

ZN2 //

OO

Ẑ∗N2

OO

where FN is the free group on N generators, and ∗ is a group-theoretical free product.
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Proof. In order to prove this, let us get back to Definition 7.40, and assume that the
subspace there S ⊂ SN−1

C,+ is an algebraic manifold, as follows:

C(S) = C(SN−1
C,+ )

/〈
fi(x1, . . . , xN) = 0

〉
In order to get to group algebras, let us rescale the coordinates, ui = xi√

N
. Consider

as well the corresponding rescalings of the polynomials fi, given by:

gi(u1, . . . , uN) = fi(
√
Nu1, . . . ,

√
NuN)

Now since the relations defining T ⊂ S from Definition 7.40 correspond to the fact
that the rescaled coordinates ui must be unitaries, we obtain:

C(T ) = C∗
(
u1, . . . , uN

∣∣∣u∗i = u−1
i , gi(u1, . . . , uN) = 0

)
Now in the case of the 4 main spheres, from Proposition 7.36, we obtain from this

that the diagram formed by the corresponding algebras C(T ) is as follows:

C∗(ZN)

��

C∗(Z∗N)

��

oo

C∗(ZN2 ) C∗(Z∗N2 )oo

We are therefore led to the conclusion in the statement. �

With these results in hand, we are now ready for formulating yet another fix for the
functoriality issues of the Gelfand correspondence, as follows:

Definition 7.42. The category of the real algebraic submanifolds X ⊂ SN−1
C,+ is formed

by the compact quantum spaces appearing as follows,

C(X) = C(SN−1
C,+ )

/〈
fi(x1, . . . , xN) = 0

〉
with fi ∈ C < x1, . . . , xN > being noncommutative polynomials, and with the arrows
X → Y being the ∗-algebra morphisms between the ∗-algebras of coordinates

C(Y )→ C(X)

mapping standard coordinates to standard coordinates.

In other words, we are complementing here Definition 7.37 with an equivalence rela-
tion. The point is that all this works fine for the group duals, as follows:

Theorem 7.43. The category of finitely generated groups Γ =< g1, . . . , gN >, with

morphisms mapping generators to generators, embeds contravariantly via Γ→ Γ̂ into the
category of real algebraic submanifolds X ⊂ SN−1

C,+ .
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Proof. We know from Proposition 7.38 above that, given an arbitrary finitely gen-

erated group Γ =< g1, . . . , gN >, we have an embedding Γ̂ ⊂ SN−1
C,+ given by:

xi =
gi√
N

Now since a morphism of ∗-algebras of coordinates C[Γ] → C[Λ] mapping coordi-
nates to coordinates corresponds to a morphism of groups Γ→ Λ mapping generators to
generators, our notion of isomorphism is indeed the correct one, as claimed. �

More generally, again based on Proposition 7.38, we can see that the equivalence
relation in Definition 7.42 is compatible with the equivalence relation for Woronowicz
algebras and underlying compact and discrete quantum groups from Definition 7.29. This
is quite interesting, philosophically speaking, the conclusions being as follows:

(1) We can now safely say that we have a good, unified fix for the bad functoriality
of the Gelfand correspondence, mentioned a long time ago, after Definition 7.10. We will
see later that this fix covers as well all the quantum homogeneous spaces X = G/H that
we are interested in, which all fit into the framework of Definition 7.42.

(2) We will also see that the free spheres, and other quantum homogeneous spaces
X = G/H that we are interested in, have Haar functionals, and so have associated von
Neumann algebras L∞(X), and with the functoriality fix for them, from Definition 7.42,
being compatible with the von Neumann functoriality fix from Proposition 7.18.

In short, we are currently building a theory of quantum spaces which is not particu-
larly ∗-algebraic, or C∗-algebraic, or von Neumann algebraic, but is rather some kind of
wonderland in between, with no issues whatsoever. And with the hope, of course, that
this mathematical wonderland could correspond to a physical wonderland.

7e. Exercises

There have been many things in this chapter, and fully understanding it would require
doing lots of exercises. We will be however short. Let us start with:

Exercise 7.44. Work out the proof of the existence result for the Haar measure on a
compact group G, as a particular case of the result proved for quantum groups.

This is of course something very standard, the problem being that of eliminating
algebras, linear forms and other functional analysis notions from the proof for the quantum
groups, as to have in the end something talking about spaces, and measures on them.

Exercise 7.45. Clarify the construction of the discrete group algebras C∗π(Γ), using
representations satisfying π ⊗ π ⊂ π, again by adapting our quantum group knowldege.

As before with the previous exercise, this should be something quite standard.



CHAPTER 8

Integration theory

8a. Independence, freeness

We have seen so far a number of interesting examples of von Neumann algebras,
namely the random matrix algebras MN(L∞(X)) from chapter 6, then the group algebras

L(Γ) and their generalizations L∞(G), with G = Γ̂ being a compact quantum group,
from chapter 7. Moreover, we potentially have as examples quantum homogeneous space
algebras of type L∞(G/H), with the Haar measure question still to be investigated.

Looking at all this suggests doing some systematic probability theory, or integration
theory if you prefer, for our von Neumann algebras. We would like for instance to know
if the CLT, which is the main result in classical probability, or in the theory of the
commutative von Neumann algebras A = L∞(X), has noncommutative analogues.

We discuss here such questions, following Voiculescu [83], [84], [85]. The conclusion,
which is quite surprising, will be that classical probability theory has a “twin sister”, which
is free probability. And this will be of great interest for us, because Voiculescu’s theory
will apply to both the random matrix algebras MN(L∞(X)), and to the free quantum
algebras L∞(G+) and their homogeneous space generalizations L∞(G+/H+).

Of course, this might seem a bit specialized, because there might be some other types
of probability theory between classical and free. But such beasts can only be understood
as “interpolating” between classical and free, and so you need a good knowledge of free
probability for studying them. And in addition, if you are extremely demanding, looking
only for utter beauty and so on, there is in fact none. But more on this later, once we
will understand how basic free probability works, as to be in business.

Let us start our discussion with something that we know since chapter 5:

Definition 8.1. Let A be a von Neumann algebra, given with a trace tr : A→ C.

(1) The elements a ∈ A are called random variables.
(2) The moments of such a variable are the numbers Mk(a) = tr(ak).
(3) The law of such a variable is the functional µ : P → tr(P (a)).

Here A is a von Neumann algebra, but most of the theory developed below works in
fact for any C∗-algebra, and even for any ∗-algebra in most cases, and the notation a ∈ A

177
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instead of T ∈ A will stand for reminding us that, namely that we are doing some sort
of abstract algebra, not really related to operator theory. As for the assumption that the
expectation functional is a trace, tr(ab) = tr(ba), this will be not really needed in the
beginning, but later on, when doing more specialized theory, we will need it.

For the rest, in Definition 8.1 the exponent k = ◦ • • ◦ . . . is a colored integer, with
the powers ak being defined by multiplicativity and the usual formulae, namely:

a∅ = 1 , a◦ = a , a• = a∗

As for the polynomial P , this is a noncommuting ∗-polynomial in one variable:

P ∈ C < X,X∗ >

Observe that the law is uniquely determined by the moments, because:

P (X) =
∑
k

λkX
k =⇒ µ(P ) =

∑
k

λkMk(a)

Generally speaking, the above definition of the law is something quite abstract, but
there is no other way of doing things, at least at this level of generality. However, in the
special case where our variable a ∈ A is self-adjoint, or more generally normal, the theory
simplifies, and we recover more familiar objects, as follows:

Proposition 8.2. The law of a normal variable a ∈ A can be identified with the
corresponding spectral measure µ ∈ P(C), according to the following formula,

tr(f(a)) =

∫
σ(a)

f(x)dµ(x)

valid for any f ∈ L∞(σ(a)), coming from the measurable functional calculus. In the
self-adjoint case the spectral measure is real, µ ∈ P(R).

Proof. This is something that we know well, either from chapter 5, or simply from
chapter 3, coming from the spectral theorem for normal operators. �

Let us discuss now independence, and its noncommutative versions. As a starting
point, we have the following update of the classical notion of independence:

Definition 8.3. We call two subalgebras B,C ⊂ A independent when the following
condition is satisfied, for any x ∈ B and y ∈ C:

tr(xy) = tr(x)tr(y)

Equivalently, the following condition must be satisfied, for any x ∈ B and y ∈ C:

tr(x) = tr(y) = 0 =⇒ tr(xy) = 0

Also, two variables b, c ∈ A are called independent when the algebras that they generate
B =< b > and C =< c > are independent, in the above sense.
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Observe that the above two conditions for independence are indeed equivalent, as
shown by the following computation, with the convention x′ = x− tr(x):

tr(xy) = tr[(x′ + tr(x))(y′ + tr(y))]

= tr(x′y′) + t(x′)tr(y) + tr(x)tr(y′) + tr(x)tr(y)

= tr(x′y′) + tr(x)tr(y)

= tr(x)tr(y)

It is possible to develop some theory here, but this leads to the usual CLT. As a much
more interesting notion now, we have Voiculescu’s freeness [83]:

Definition 8.4. Given a pair (A, tr), we call two subalgebras B,C ⊂ A free when the
following condition is satisfied, for any xi ∈ B and yi ∈ C:

tr(xi) = tr(yi) = 0 =⇒ tr(x1y1x2y2 . . .) = 0

Also, two noncommutative random variables b, c ∈ A are called free when the algebras
B =< b >,C =< c > that they generate inside A are free, in the above sense.

In short, freeness appears by definition as a kind of “free analogue” of independence,
taking into account the fact that the variables do not necessarily commute. We will see
in a moment examples and some general theory, confirming this analogy.

As a first observation, however, there is a certain lack of symmetry between Definition
8.3 and Definition 8.4, because the latter does not include an explicit formula for quantities
of type tr(x1y1x2y2 . . .). But this is simply due to the fact that the formula in the free
case is something quite complicated, the precise result being as follows:

Proposition 8.5. If B,C ⊂ A are free, the restriction of tr to < B,C > can be
computed in terms of the restrictions of tr to B,C. To be more precise, we have

tr(x1y1x2y2 . . .) = P
(
{tr(xi1xi2 . . .)}i, {tr(yj1yj2 . . .)}j

)
where P is certain polynomial, depending on the length of x1y1x2y2 . . . , having as variables
the traces of products xi1xi2 . . . and yj1yj2 . . . , with i1 < i2 < . . . and j1 < j2 < . . .

Proof. As a first illustration, we have the following formula, with proof exactly as
in the independence case, by using the computation performed after Definition 8.3:

tr(xy) = tr(x)tr(y)

In general, as before with x′ = x− tr(x), we can start our computation as follows:

tr(x1y1x2y2 . . .) = tr
[
(x′1 + tr(x1))(y′1 + tr(y1))(x′2 + tr(x2)) . . .

]
= tr(x′1y

′
1x
′
2y
′
2 . . .) + other terms

= other terms

Thus, we are led to a kind of recurrence, and this gives the result. �
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Let us discuss now some examples of independence and freeness. We first have:

Theorem 8.6. Given two algebras (A, tr) and (B, tr), the following hold:

(1) A,B are independent inside their tensor product A⊗B, endowed with its canonical
tensor product trace, given on basic tensors by tr(a⊗ b) = tr(a)tr(b).

(2) A,B are free inside their free product A ∗ B, endowed with its canonical free
product trace, given by the formulae in Proposition 8.5.

Proof. Both the assertions are clear from definitions, as follows:

(1) This is something elementary, which is clear with either of the definitions of the
independence given above.

(2) This is clear from definitions, the only point being that of showing that the notion
of freeness, or the recurrence formulae in Proposition 8.5, can be used in order to construct
a canonical free product trace, on the free product of the two algebras involved:

tr : A ∗B → C
But this can be checked for instance by using a GNS construction. Indeed, consider

the GNS constructions for the algebras (A, tr) and (B, tr):

A→ B(l2(A) , B → B(l2(B))

By taking the free product of these representations, we obtain a representation as
follows, with the ∗ symbol on the right being a free product of pointed Hilbert spaces:

A ∗B → B(l2(A) ∗ l2(B))

Now by composing with the linear form T →< Tξ, ξ >, where ξ = 1A = 1B is the
common pointed vector of l2(A) and l2(B), we obtain a linear form, as follows:

tr : A ∗B → C
It is routine then to check that tr is indeed a trace, and then an elementary compu-

tation shows that A,B are indeed free inside A ∗B, as desired. See [83]. �

More concretely now, we have the following result, also from Voiculescu [83]:

Theorem 8.7. We have the following results, valid for group algebras:

(1) L(Γ), L(Λ) are independent inside L(Γ× Λ).
(2) L(Γ), L(Λ) are free inside L(Γ ∗ Λ).

Proof. In order to prove these results, we can use the general results in Theorem 8.6
above, along with the following two isomorphisms, which are both standard:

L(Γ× Λ) = L(Λ)⊗ L(Γ)

L(Γ ∗ Λ) = L(Λ) ∗ L(Γ)

Alternatively, we can check the independence and freeness formulae on group elements,
which is something trivial, and then conclude by linearity. See [83]. �
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8b. Limiting theorems

We have already seen limiting theorems in classical probability, in chapter 6 above.
In order to deal now with freeness, let us develop some tools. First, we have:

Proposition 8.8. We have a well-defined operation �, given by

µa � µb = µa+b

with a, b being free, called free convolution.

Proof. The only verification which is needed is that of the fact that if a, b are free,
then the distribution µa+b depends only on the distributions µa, µb. But for this purpose,
we can use the general formula from Proposition 8.5, namely:

tr(x1y1x2y2 . . .) = P
(
{tr(xi1xi2 . . .)}i, {tr(yj1yj2 . . .)}j

)
Now by plugging in arbitrary powers of a, b as variables xi, yj, we obtain a family of

formulae of the following type, with Q being certain polyomials:

tr(ak1bl1ak2bl2 . . .) = P
(
{tr(ak)}k, {tr(bl)}l

)
Thus the moments of a+b depend only on the moments of a, b, and the same argument

shows that the same holds for ∗-moments, and this gives the result. �

In order to advance now, we would need an analogue of the Fourier transform, or
rather of the log of the Fourier transform. Quite remarkably, such a transform exists
indeed, the precise result here, due to Voiculescu [83], being as follows:

Theorem 8.9. Given a probability measure µ, define its R-transform as follows:

Gµ(ξ) =

∫
R

dµ(t)

ξ − t
=⇒ Gµ

(
Rµ(ξ) +

1

ξ

)
= ξ

The free convolution operation is then linearized by the R-transform.

Proof. This is something quite tricky, the idea being as follows:

(1) In order to model the free convolution, the best is to use creation operators on free
Fock spaces, corresponding to the semigroup von Neumann algebras L(N∗k). Indeed, we
have some freeness here, a bit in the same way as in the free group algebras L(Fk).

(2) The point now, motivating this choice, is that the variables of type S∗+f(S), with
S ∈ L(N) being the shift, and with f ∈ C[X] being an arbitrary polynomial, are easily
seen to model in moments all the possible distributions µ : C[X]→ C.

(2) Now let f, g ∈ C[X] and consider the variables S∗ + f(S) and T ∗ + g(T ), where
S, T ∈ L(N ∗ N) are the shifts corresponding to the generators of N ∗ N. These variables
are free, and by using a 45◦ argument, their sum has the same law as S∗ + (f + g)(S).
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(3) Thus the operation µ → f linearizes the free convolution. We are therefore left
with a computation inside L(N), which is elementary, and whose conclusion is that Rµ = f
can be recaptured from µ via the Cauchy transform Gµ, as in the statement. �

With the above linearization technology in hand, we can now establish the following
remarkable free analogue of the CLT, also due to Voiculescu [83]:

Theorem 8.10 (Free CLT). Given self-adjoint variables x1, x2, x3, . . . , which are f.i.d.,
centered, with variance t > 0, we have, with n→∞, in moments,

1√
n

n∑
i=1

xi ∼ γt

where γt is the Wigner semicircle law of parameter t, namely

γt =
1

2πt

√
4t2 − x2dx

also called free Gaussian law of parameter t.

Proof. We follow the same idea as in the proof of the CLT:

(1) At t = 1, the R-transform of the variable in the statement can be computed by
using the linearization property from Theorem 8.9, and is given by:

R(ξ) = nRx

(
ξ√
n

)
' ξ

(2) On the other hand, some standard computations show that the Cauchy transform
of the Wigner law γ1 satisfies the following equation:

Gγ1

(
ξ +

1

ξ

)
= ξ

Thus, by using Theorem 8.9, we have the following formula:

Rγ1(ξ) = ξ

(3) We conclude that the laws in the statement have the same R-transforms, and so
they are equal. The passage to the general case, t > 0, is routine, by dilation. �

In the complex case now, we have a similar result. First, we have:

Definition 8.11. The Voiculescu circular law of parameter t > 0 is given by

Γt = law

(
1√
2

(a+ ib)

)
where a, b are free, each following the Wigner semicircle law γt.

As in the classical case, we obtain a semigroup, this time with respect to �:
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Proposition 8.12. The Wigner and Voiculescu laws have the property

µs � µt = µs+t

so they form 1-parameter semigroups with respect to free convolution.

Proof. In what regards the Wigner laws γt, here the free convolution semigroup
property follows from the R-transform formulae from the proof of Theorem 8.10, or simply
from Theorem 8.10 itself. As for the Voiculescu laws Γt, here the result follows from the
result for the Wigner laws, simply by taking real and imaginary parts. �

We have the following free analogue of the complex CLT, also from [83]:

Theorem 8.13 (Free CCLT). Given random variables x1, x2, x3, . . . which are f.i.d.,
centered, with variance t > 0, we have, with n→∞, in moments,

1√
n

n∑
i=1

xi ∼ Γt

where Γt is the Voiculescu circular law of parameter t.

Proof. This follows indeed from the free CLT, established before, by taking real and
imaginary parts. Indeed, let us write:

xi =
1√
2

(yi + izi)

The variables yi satisfy then the assumptions of the free CLT, and so their rescaled
averages converge to a semicircle law γt, and the same happens for the variables zi:

1√
n

n∑
i=1

yi ∼ γt ,
1√
n

n∑
i=1

zi ∼ γt

Now since the two limiting semicircle laws that we obtain in this way are free, their
rescaled sum is circular, in the sense of Definition 8.11, and this gives the result. �

Now that we are done with the basic results in continuous case, let us discuss the
discrete case. We can establish a free version of the PLT, as follows:

Theorem 8.14 (Free PLT). The following limit converges, for any t > 0,

lim
n→∞

((
1− t

n

)
δ0 +

t

n
δ1

)�n
and we obtain the Marchenko-Pastur law of parameter t,

πt = max(1− t, 0)δ0 +

√
4t− (x− 1− t)2

2πx
dx

also called free Poisson law of parameter t.
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Proof. Let µ be the measure in the statement, appearing under the convolution sign.
The Cauchy transform of this measure is elementary to compute, given by:

Gµ(ξ) =

(
1− t

n

)
1

ξ
+
t

n
· 1

ξ − 1

By using Theorem 8.9 above, we want to compute the following R-transform:

R = Rµ�n(y) = nRµ(y)

We know that the equation for this function R is as follows:(
1− t

n

)
1

y−1 +R/n
+
t

n
· 1

y−1 +R/n− 1
= y

By multiplying by n/y, this equation can be written as follows:

t+ yR

1 + yR/n
=

t

1 + yR/n− y
With n→∞ we obtain from this the following formula:

R =
t

1− y
But this being the R-transform of πt, via some calculus, we are done. �

Let us record as well the following result:

Proposition 8.15. The Marchenko-Pastur laws have the semigroup property

πs+t = πs � πt

with respect to the Voiculescu free convolution operation �.

Proof. This follows either from the R-transform formula for πt, from the proof of
Theorem 8.14, which is linear in t, or simply from Theorem 8.14 itself. �

As a first application of all this, following Voiculescu [84], we have:

Theorem 8.16. Given a sequence of complex Gaussian matrices ZN ∈MN(L∞(X)),
having independent Gt variables as entries, with t > 0, we have

ZN√
N
∼ Γt

in the N →∞ limit, with the limiting measure being Voiculescu’s circular law.

Proof. We know from chapter 6 that the asymptotic moments of the complex Gauss-
ian matrices are given by the following formula:

Mk

(
ZN√
N

)
' t|k|/2|NC2(k)|
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On the other hand, the free Fock space analysis done in the proof of Theorem 8.9
shows that we have, with the notations there, the following formulae:

S + S∗ ∼ γ1 , S + T ∗ ∼ Γ1

By doing some combinatorics, this shows that an abstract noncommutative variable
a ∈ A is circular, following the law Γt, precisely when its moments are:

Mk(a) = t|k|/2|NC2(k)|

Thus, we are led to the conclusion in the statement. See [84]. �

Next in line, comes the main result of Voiculescu in [84], as follows:

Theorem 8.17. Given a family of sequences of Wigner matrices,

Zi
N ∈MN(L∞(X)) , i ∈ I

with pairwise independent entries, each following the complex normal law Gt, with t > 0,
up to the constraint Zi

N = (Zi
N)∗, the rescaled sequences of matrices

Zi
N√
N
∈MN(L∞(X)) , i ∈ I

become with N →∞ semicircular, each following the Wigner law γt, and free.

Proof. Here the first assertion is Wigner’s theorem, that we know well from chapter
6. Voiculescu’s contribution concerns the asymptotic freeness claim at the end. In order
to prove this, we can assume that we are dealing with 2 sequences of matrices:

ZN , Z
′
N ∈MN(L∞(X))

We have to prove that these matrices become asymptotically free, with N →∞. For
this purpose, consider indeed the following matrix:

YN =
1√
2

(ZN + iZ ′N)

This is then a complex Gaussian matrix, and so by using Theorem 8.16 above, we
obtain that in the limit N →∞, we have:

YN√
N
∼ Γt

We are therefore in the situation where (ZN + iZ ′N)/
√
N , which has asymptotically

semicircular real and imaginary parts, converges to the distribution of a free combination
of such variables. Thus ZN , Z

′
N become asymptotically free, as desired. �

Getting now to the complex case, we have a similar result here, as follows:
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Theorem 8.18. Given a family of sequences of complex Gaussian matrices,

Zi
N ∈MN(L∞(X)) , i ∈ I

with pairwise independent entries, each following the law Gt, with t > 0, the matrices

Zi
N√
N
∈MN(L∞(X)) , i ∈ I

become with N →∞ circular, each following the Voiculescu law Γt, and free.

Proof. This follows indeed from Theorem 8.17, which applies to the real and imagi-
nary parts of our complex Gaussian matrices, and gives the result. �

Finally, we have as well a similar result for the Wishart matrices, as follows:

Theorem 8.19. Given a family of sequences of complex Wishart matrices,

Zi
N = Y i

N(Y i
N)∗ ∈MN(L∞(X)) , i ∈ I

with each Y i
N being a N ×M matrix, with entries following the normal law G1, and with

all these entries being pairwise independent, the rescaled sequences of matrices

Zi
N

N
∈MN(L∞(X)) , i ∈ I

become with M = tN →∞ Marchenko-Pastur, each following the law πt, and free.

Proof. Here the first assertion is the Marchenko-Pastur theorem, from chapter 6,
and the second assertion follows from Theorem 8.17, or from Theorem 8.18. �

All this, going back to the work of Voiculescu from the 80s, and especially to the papers
[83], [84], has considerably evolved since then. For more on general free probability, and
its applications to random matrices, we recommend the books of Voiculescu-Dykema-Nica
[85], Nica-Speicher [63] and Anderson-Guionnet-Zeitouni [1].

In what concerns us, we still have to use all this in relation with quantum groups. For
this purpose, we will need some further limiting theorems, classical and free. We have the
following definition, extending the Poisson limit theory developed above:

Definition 8.20. Associated to any compactly supported positive measure ρ on R are
the probability measures

pρ = lim
n→∞

((
1− c

n

)
δ0 +

1

n
ρ

)∗n
πρ = lim

n→∞

((
1− c

n

)
δ0 +

1

n
ρ

)�n
where c = mass(ρ), called compound Poisson and compound free Poisson laws.
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In what follows we will be interested in the case where ρ is discrete, as is for instance
the case for ρ = tδ1 with t > 0, which produces the Poisson and free Poisson laws. The
following result allows one to detect compound Poisson/free Poisson laws:

Proposition 8.21. For ρ =
∑s

i=1 ciδzi with ci > 0 and zi ∈ R, we have

Fpρ(y) = exp

(
s∑
i=1

ci(e
iyzi − 1)

)
, Rπρ(y) =

s∑
i=1

cizi
1− yzi

where F,R denote respectively the Fourier transform, and Voiculescu’s R-transform.

Proof. Let µn be the measure appearing in Definition 8.20, under the convolution
signs. In the classical case, we have the following computation:

Fµn(y) =
(

1− c

n

)
+

1

n

s∑
i=1

cie
iyzi =⇒ Fµ∗nn (y) =

((
1− c

n

)
+

1

n

s∑
i=1

cie
iyzi

)n

=⇒ Fpρ(y) = exp

(
s∑
i=1

ci(e
iyzi − 1)

)
In the free case now, we use a similar method. The Cauchy transform of µn is:

Gµn(ξ) =
(

1− c

n

) 1

ξ
+

1

n

s∑
i=1

ci
ξ − zi

Consider now the R-transform of the measure µ�nn , which is given by:

Rµ�nn
(y) = nRµn(y)

The above formula of Gµn shows that the equation for R = Rµ�nn
is as follows:(

1− c

n

) 1

y−1 +R/n
+

1

n

s∑
i=1

ci
y−1 +R/n− zi

= y

=⇒
(

1− c

n

) 1

1 + yR/n
+

1

n

s∑
i=1

ci
1 + yR/n− yzi

= 1

Now multiplying by n, rearranging the terms, and letting n→∞, we get:

c+ yR

1 + yR/n
=

s∑
i=1

ci
1 + yR/n− yzi

=⇒ c+ yRπρ(y) =
s∑
i=1

ci
1− yzi

=⇒ Rπρ(y) =
s∑
i=1

cizi
1− yzi

This finishes the proof in the free case, and we are done. �
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We have the following result, providing an alternative to Definition 8.20, which will
be our formulation here of the Compond Poisson Limit Theorem, classical and free:

Theorem 8.22 (CPLT). For ρ =
∑s

i=1 ciδzi with ci > 0 and zi ∈ R, we have

pρ/πρ = law

(
s∑
i=1

ziαi

)

where the variables αi are Poisson/free Poisson(ci), independent/free.

Proof. Let α be the sum of Poisson/free Poisson variables in the statement. We
will show that the Fourier/R-transform of α is given by the formulae in Proposition 8.21.
Indeed, by using some well-known Fourier transform formulae, we have:

Fαi(y) = exp(ci(e
iy − 1)) =⇒ Fziαi(y) = exp(ci(e

iyzi − 1))

=⇒ Fα(y) = exp

(
s∑
i=1

ci(e
iyzi − 1)

)
Also, by using some well-known R-transform formulae, we have:

Rαi(y) =
ci

1− y
=⇒ Rziαi(y) =

cizi
1− yzi

=⇒ Rα(y) =
s∑
i=1

cizi
1− yzi

Thus we have indeed the same formulae as those in Proposition 8.21. �

Following [9], [11], we will be interested here in the main examples of classical and
free compound Poisson laws, which are constructed as follows:

Definition 8.23. The Bessel and free Bessel laws are the compound Poisson laws

bst = ptεs , βst = πtεs

where εs is the uniform measure on the s-th roots unity. In particular:

(1) At s = 1 we obtain the usual Poisson and free Poisson laws, pt, πt.
(2) At s = 2 we obtain the “real” Bessel and free Bessel laws, denoted bt, βt.
(3) At s =∞ we obtain the “complex” Bessel and free Bessel laws, denoted Bt,Bt.

There is a lot of theory regarding these laws, and we refer here to [9], [11], where
these laws were introduced. Let us just record here the following result, about these laws
and the other laws that we met so far, that we will need in what follows:
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Theorem 8.24. The moments of the various central limiting measures, namely

Bt Γt

βt γt

Bt Gt

bt gt

are always given by the same formula, involving partitions, namely

Mk =
∑

π∈D(k)

t|π|

with the sets of partitions D(k) in question being respectively

NCeven

{{

��

NC2
oo

��

{{
NCeven

��

NC2
oo

��

Peven

{{

P2
oo

{{
Peven P2

oo

where 2 stands for pairings, even stands for “with even blocks”, NC stands for noncrossing,
calligraphic stands for matching, and with |.| being as usual the number of blocks.

Proof. This is something that we know well for the Gaussian laws gt, and from this
we can deduce the result for the complex Gaussian laws Gt too. We also know this for
the Poisson laws pt, with these laws actually not appearing in the above diagram, with
the corresponding set of partitions being the set P of all partitions. Finally, we met the
formula in the statement for the Wigner laws γt and the Marchenko-Pastur laws πt, in
chapter 6 above, in the random matrix context. The proof for the remaining laws is
similar, by using calculus and combinatorics, and for full details, we refer to [9]. �

Observe that the faces of the first cube stand for real/complex, discrete/continuous,
and classical/free, therefore providing us with some “3D orientation” into the general
subject of noncommutative probability. There are many more things that can be said,
and we refer to Bercovici-Pata [18] and Nica-Speicher [63]. We will see that the second
cube has a similar, key 3D interpretation, in the context of quantum algebra.
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8c. Weingarten formula

Let us go back to quantum groups, and to the Peter-Weyl theory from chapter 7. In
order to further build on this, and reach to combinatorics, the idea will be, as in the Lie
group case, to “linearize”. In the present setting we cannot really do geometry and talk
about Lie algebras, but we can instead talk about tensor categories, as follows:

Definition 8.25. The Tannakian category associated to a Woronowicz algebra (A, u)
is the collection CA = (CA(k, l)) of vector spaces

CA(k, l) = Hom(u⊗k, u⊗l)

where the corepresentations u⊗k with k = ◦ • • ◦ . . . colored integer, defined by

u⊗∅ = 1 , u⊗◦ = u , u⊗• = ū

and multiplicativity, u⊗kl = u⊗k ⊗ u⊗l, are the Peter-Weyl corepresentations.

As a key remark, the fact that u ∈ MN(A) is biunitary translates into the following
conditions, where R : C→ CN ⊗ CN is the linear map given by R(1) =

∑
i ei ⊗ ei:

R ∈ Hom(1, u⊗ ū) , R ∈ Hom(1, ū⊗ u)

R∗ ∈ Hom(u⊗ ū, 1) , R∗ ∈ Hom(ū⊗ u, 1)

We are therefore led to the following abstract definition, summarizing the main prop-
erties of the categories appearing from Woronowicz algebras:

Definition 8.26. Let H be a finite dimensional Hilbert space. A tensor category over
H is a collection C = (C(k, l)) of subspaces

C(k, l) ⊂ L(H⊗k, H⊗l)

satisfying the following conditions:

(1) S, T ∈ C implies S ⊗ T ∈ C.
(2) If S, T ∈ C are composable, then ST ∈ C.
(3) T ∈ C implies T ∗ ∈ C.
(4) Each C(k, k) contains the identity operator.
(5) C(∅, ◦•) and C(∅, •◦) contain the operator R : 1→

∑
i ei ⊗ ei.

The point now is that conversely, we can associate a Woronowicz algebra to any tensor
category in the sense of Definition 8.26, in the following way:

Proposition 8.27. Given a tensor category C = (C(k, l)) over CN , as above,

AC = C∗
(

(uij)i,j=1,...,N

∣∣∣T ∈ Hom(u⊗k, u⊗l),∀k, l, ∀T ∈ C(k, l)
)

is a Woronowicz algebra.

Proof. This is something standard, because the relations T ∈ Hom(u⊗k, u⊗l) deter-
mine a Hopf ideal, so they allow the construction of ∆, ε, S as in chapter 7. �
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With the above constructions in hand, we have the following result:

Theorem 8.28. The Tannakian duality constructions

C → AC , A→ CA

are inverse to each other, modulo identifying full and reduced versions.

Proof. The idea is that we have C ⊂ CAC , for any algebra A, and so we are left with
proving that we have CAC ⊂ C, for any category C. But this follows from a long series
of algebraic manipulations, including in particular an application of the von Neumann
bicommutant theorem, and for details we refer to Malacarne [57], and also to Woronowicz
[100], where this result was first proved, by using other methods. �

As a first application, solving a problem that we have left open in chapter 7, let us
go back to the standard embedding there G ⊂ SN

2−1
C,+ , given by xij = uij/

√
N . By using

Theorem 8.28, we see that G is an algebraic manifold, as previously claimed.

More concretely now, and back to integration questions, we can go take our basic
geometric objects, from chapter 7, and their various extensions, and write a Weingarten
integration formula for them. Let us start with the quantum group case. The first result
here, coming from Peter-Weyl theory and basic linear algebra, is as follows:

Theorem 8.29. Assuming that A = C(G) has Tannakian category C = (C(k, l)), the
Haar integration over G is given by the Weingarten type formula∫

G

ue1i1j1 . . . u
ek
ikjk

=
∑

π,σ∈Dk

δπ(i)δσ(j)Wk(π, σ)

for any colored integer k = e1 . . . ek and any multi-indices i, j, where Dk is a linear basis
of C(∅, k), δπ(i) =< π, ei1 ⊗ . . .⊗ eik >, and Wk = G−1

k , with Gk(π, σ) =< π, σ >.

Proof. We know from chapter 7 that the integrals in the statement form altogether
the orthogonal projection P k onto the following space:

Fix(u⊗k) = span(Dk)

Consider now the following linear map, with Dk = {ξk} being as in the statement:

E(x) =
∑
π∈Dk

< x, ξπ > ξπ

By a standard linear algebra computation, it follows that we have P = WE, where W
is the inverse on span(Tπ|π ∈ Dk) of the restriction of E. But this restriction is the linear
map given by Gk, and so W is the linear map given by Wk, and this gives the result. �

In practice now, we must combine the above result with Brauer type results, for the
specific quantum groups that we are interested in. Let us start with:
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Definition 8.30. Let P (k, l) be the set of partitions between an upper colored integer
k, and a lower colored integer l. A collection of subsets

D =
⊔
k,l

D(k, l)

with D(k, l) ⊂ P (k, l) is called a category of partitions when it has the following properties:

(1) Stability under the horizontal concatenation, (π, σ)→ [πσ].
(2) Stability under vertical concatenation (π, σ)→ [σπ], with matching middle symbols.
(3) Stability under the upside-down turning ∗, with switching of colors, ◦ ↔ •.
(4) Each set P (k, k) contains the identity partition || . . . ||.
(5) The sets P (∅, ◦•) and P (∅, •◦) both contain the semicircle ∩.

Observe the similarity with Definition 8.26. In fact Definiton 8.30 is a delinearized
version of Definition 8.26, the relation with the Tannakian categories coming from:

Proposition 8.31. Each partition π ∈ P (k, l) produces a linear map

Tπ : (CN)⊗k → (CN)⊗l

given by the following formula, where e1, . . . , eN is the standard basis of CN ,

Tπ(ei1 ⊗ . . .⊗ eik) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

and with the Kronecker type symbols δπ ∈ {0, 1} depending on whether the indices fit or
not. The assignement π → Tπ is categorical, in the sense that we have

Tπ ⊗ Tσ = T[πσ] , TπTσ = N c(π,σ)T[σπ ] , T ∗π = Tπ∗

where c(π, σ) are certain integers, coming from the erased components in the middle.

Proof. This is something very elementary, as follows:

(1) The concatenation axiom follows from the following computation:

(Tπ ⊗ Tσ)(ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)

=
∑
j1...jq

∑
l1...ls

δπ

(
i1 . . . ip
j1 . . . jq

)
δσ

(
k1 . . . kr
l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

=
∑
j1...jq

∑
l1...ls

δ[πσ]

(
i1 . . . ip k1 . . . kr
j1 . . . jq l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

= T[πσ](ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)
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(2) The composition axiom follows from the following computation:

TπTσ(ei1 ⊗ . . .⊗ eip)

=
∑
j1...jq

δσ

(
i1 . . . ip
j1 . . . jq

) ∑
k1...kr

δπ

(
j1 . . . jq
k1 . . . kr

)
ek1 ⊗ . . .⊗ ekr

=
∑
k1...kr

N c(π,σ)δ[σπ ]

(
i1 . . . ip
k1 . . . kr

)
ek1 ⊗ . . .⊗ ekr

= N c(π,σ)T[σπ ](ei1 ⊗ . . .⊗ eip)

(3) Finally, the involution axiom follows from the following computation:

T ∗π (ej1 ⊗ . . .⊗ ejq)

=
∑
i1...ip

< T ∗π (ej1 ⊗ . . .⊗ ejq), ei1 ⊗ . . .⊗ eip > ei1 ⊗ . . .⊗ eip

=
∑
i1...ip

δπ

(
i1 . . . ip
j1 . . . jq

)
ei1 ⊗ . . .⊗ eip

= Tπ∗(ej1 ⊗ . . .⊗ ejq)

Summarizing, our correspondence is indeed categorical, as claimed. �

In relation with the quantum groups, we have the following result, from [16]:

Theorem 8.32. Each category of partitions D = (D(k, l)) produces a family of com-
pact quantum groups G = (GN), one for each N ∈ N, via the following formula:

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

To be more precise, the spaces on the right form a Tannakian category, and so produce a
certain closed subgroup GN ⊂ U+

N , via the Tannakian duality correspondence.

Proof. This follows indeed from Woronowicz’s Tannakian duality, in its “soft” form
from Malacarne [57], as explained in Theorem 8.28. Indeed, let us set:

C(k, l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

By using the axioms in Definition 8.30, and the categorical properties of the operation
π → Tπ, from Proposition 8.31 above, we deduce that C = (C(k, l)) is a Tannakian
category. Thus the Tannakian duality applies, and gives the result. �

All the above might seem a bit complicated, but we will see examples in a moment.
Philosophically speaking, the quantum groups appearing as in Theorem 8.32 are the
simplest, from the perspective of Tannakian duality, so let us formulate:
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Definition 8.33. A closed subgroup G ⊂ U+
N is called easy when we have

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

for any colored integers k, l, for a certain category of partitions D ⊂ P .

In other words, a compact quantum group is called easy when its Tannakian category
appears in the simplest possible way: from partitions. The terminology is quite natural,
because Tannakian duality is basically our only serious tool.

Before getting into examples, let us formulate, as a first result based on easiness, the
following remarkable particularization of Theorem 8.29 above:

Theorem 8.34. For an easy quantum group G ⊂ U+
N , coming from a category of

partitions D = (D(k, l)), we have the Weingarten integration formula∫
G

ue1i1j1 . . . u
ek
ikjk

=
∑

π,σ∈D(k)

δπ(i)δσ(j)WkN(π, σ)

for any k = e1 . . . ek and any i, j, where D(k) = D(∅, k), δ are usual Kronecker symbols,
and WkN = G−1

kN , with GkN(π, σ) = N |π∨σ|, where |.| is the number of blocks.

Proof. With notations from Theorem 8.29, the Kronecker symbols are given by:

δξπ(i) = < ξπ, ei1 ⊗ . . .⊗ eik >
= δπ(i1, . . . , ik)

The Gram matrix being as well the correct one, we obtain the result. �

All this might seem a bit complicated, but the idea in fact is very simple. Once we
know that a classical or quantum group is easy, and examples coming in a moment, in
order to compute integrals over it we can use the Weingarten formula in Theorem 8.34,
and this is something that can be run on a usual laptop. Indeed, implement the partitions,
let the laptop do the hard job, namely computing WkN = G−1

kN , with you smoking cigars
in the meantime, and then compute any integral you want, just by summing.

There is of course a long story behind this. Passed the laptop part, and perhaps the
cigars too, and other things like citations, grants and so on, things in the classical case go
back to old work of Weyl [96] and Brauer [22]. Then there were the papers of Weingarten

[94] and Collins-Śniady [23], from the 70s and 00s, formalizing the formula, and making
it popular with physicists and mathematicians. And finally, the formula was extended to
the quantum group setting in various late 00s papers, including [13] and [16].

As another comment, philosophically, in the operator algebra context the Weingarten
formula is usually associated with Voiculescu’s free probability theory [85]. However, as
we will discover in chapters 13-16 below, Jones’ notion of planar algebra [46] is something
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far deeper than easiness, although its Weingarten type consequences remain a bit unclear.
As for Connes [26], his theory uses different integration methods, more abstract, but
as already mentioned on several occasions, the Chamseddine-Connes spectral triple for
instance has a free gauge group, which is subject to a Weingarten formula.

In short, very interesting all this. However, before enjoying the Weingarten formula,
we still have to prove that some quantum groups are easy. In order to formulate our result
we will need, besides the groups ON , UN and quantum groups O+

N , U
+
N that we know from

chapter 7, two more groups and quantum groups, constructed as follows:

Definition 8.35. The hyperoctahedral group HN and its complex version KN are

HN = Z2 o SN , KN = T o SN
with o being a wreath product, and their free versions are the quantum groups

H+
N = Z2 o∗ S+

N , K+
N = T o∗ S+

N

with o∗ being a free wreath product, and S+
N being the free analogue of SN .

Obviously, many things going on here, and for details we refer to Wang’s paper [90]
for S+

N , then to [11] for H+
N , and to [9] for K+

N . We can now formulate:

Theorem 8.36. The basic quantum unitary and reflection groups, namely

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

<<

are all easy, the corresponding categories of partitions being as follows,

NCeven

{{

��

NC2

��

oo

��

NCeven

��

NC2

��

oo

Peven

{{

P2

��

oo

Peven P2
oo

exactly as for the main limiting laws in classical and free probability.
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Proof. There is a long story with this result, going back to the Brauer theorems in
[22], proving it for ON , UN , then to the work in [13], [16] for O+

N , U
+
N , and then to the

work in [9], [11] for HN , KN and H+
N , K

+
N , the idea being as follows:

(1) The quantum group U+
N is defined via the following relations:

u∗ = u−1 , ut = ū−1

Thus, the following operators must be in the associated Tannakian category C:

Tπ , π = ∩
◦• ,

∩
•◦

Thus the associated Tannakian category is C = span(Tπ|π ∈ D), with:

D =< ∩
◦• ,

∩
•◦ >= NC2

(2) The quantum group O+
N ⊂ U+

N is defined by imposing the following relations:

uij = ūij

Thus, the following operators must be in the associated Tannakian category C:

Tπ , π = |◦• , |•◦
Thus the associated Tannakian category is C = span(Tπ|π ∈ D), with:

D =< NC2, |◦•, |•◦ >= NC2

(3) The group UN ⊂ U+
N is defined via the following relations:

[uij, ukl] = 0 , [uij, ūkl] = 0

Thus, the following operators must be in the associated Tannakian category C:

Tπ , π = /\◦◦◦◦ , /\
◦•
•◦

Thus the associated Tannakian category is C = span(Tπ|π ∈ D), with:

D =< NC2, /\◦◦◦◦, /\
◦•
•◦ >= P2

(4) In order to deal now with ON , we can simply use the following formula:

ON = O+
N ∩ UN

At the categorical level, this tells us that the associated Tannakian category is given
by C = span(Tπ|π ∈ D), with:

D =< NC2,P2 >= P2

(5) Summarizing, we have results for the right face of the cube, involving rotations
and quantum rotations. The results for the left face of the cube, involving reflections and
quantum reflections, are similar, and for details here, we refer to [9], [11]. �
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8d. Liberation theory

Getting back now to integration questions and to the Weingarten formula from Theo-
rem 8.34, we are not ready yet for applications, because we still have to understand which
assumptions on N ∈ N make the vectors ξπ linearly independent. We will need:

Definition 8.37. The Möbius function of any lattice, and so of P , is given by

µ(π, σ) =


1 if π = σ

−
∑

π≤τ<σ µ(π, τ) if π < σ

0 if π 6≤ σ

with the construction being performed by recurrence.

The main interest in the Möbius function comes from the Möbius inversion formula,
which states that the following happens:

f(σ) =
∑
π≤σ

g(π) =⇒ g(σ) =
∑
π≤σ

µ(π, σ)f(π)

In linear algebra terms, the statement and proof of this formula are as follows:

Theorem 8.38. The inverse of the adjacency matrix of P , given by

Aπσ =

{
1 if π ≤ σ

0 if π 6≤ σ

is the Möbius matrix of P , given by Mπσ = µ(π, σ).

Proof. This is well-known, coming for instance from the fact that A is upper trian-
gular. Indeed, when inverting, we are led into the recurrence from Definition 8.37. �

As an illustration, for P (2) = {||,u}, the formula M = A−1 appears as follows:(
1 −1
0 1

)
=

(
1 1
0 1

)−1

Also, for P (3) = {|||,u|,u| , |u,uu} the formula M = A−1 reads:
1 −1 −1 −1 2
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 −1
0 0 0 0 1

 =


1 1 1 1 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1


−1

Now back to our Gram and Weingarten matrix considerations, WkN = G−1
kN , as in the

statement of Theorem 8.34, we have the following result:
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Proposition 8.39. The Gram matrix is given by GkN = AL, where

L(π, σ) =

{
N(N − 1) . . . (N − |π|+ 1) if σ ≤ π

0 otherwise

and where A = M−1 is the adjacency matrix of P (k).

Proof. We have indeed the following computation:

N |π∨σ| = #
{
i1, . . . , ik ∈ {1, . . . , N}

∣∣∣ ker i ≥ π ∨ σ
}

=
∑
τ≥π∨σ

#
{
i1, . . . , ik ∈ {1, . . . , N}

∣∣∣ ker i = τ
}

=
∑
τ≥π∨σ

N(N − 1) . . . (N − |τ |+ 1)

According to the definition of GkN and of A,L, this formula reads:

(GkN)πσ =
∑
τ≥π

Lτσ =
∑
τ

AπτLτσ = (AL)πσ

Thus, we obtain the formula in the statement. �

With the above result in hand, we can now investigate the linear independence prop-
erties of the vectors ξπ. To be more precise, we have the following result:

Theorem 8.40. The determinant of the Gram matrix GkN is given by:

det(GkN) =
∏

π∈P (k)

N !

(N − |π|)!

In particular, the vectors {ξπ|π ∈ P (k)} are linearly independent for N ≥ k.

Proof. This is an old formula from the 60s, due to Lindstöm and others, having
many things behind it. By using the formula in Proposition 8.39, we have:

det(GkN) = det(A) det(L)

Now if we order P (k) with respect to the number of blocks, then lexicographically, A
is upper triangular, and L is lower triangular. Thus det(A) can be computed by making
the product on the diagonal, and we obtain 1. As for det(L), this can be computed as well
by making the product on the diagonal, and we obtain the number in the statement. �

As already mentioned, there is a lot of further mathematics behind Theorem 8.40.
To be more precise, in addition to what has been said in Theorem 8.36, it is known
that SN , S

+
N are easy, coming from the categories P,NC, and so Theorem 8.40 computes

the Gram determinant for SN . But the computation for S+
N , and for the other groups

and quantum groups from Theorem 8.36, is something very interesting too, related to a



8D. LIBERATION THEORY 199

bewildering variety of modern, first-class combinatorics questions. We refer here to Di
Francesco [27] for the main computations, and to [14] for an overview.

Now back to our quantum groups, let us start with:

Theorem 8.41. For an easy quantum group G = (GN), coming from a category of
partitions D = (D(k, l)), the asymptotic moments of the character χ =

∑
i uii are

lim
N→∞

∫
GN

χk = |D(k)|

where D(k) = D(∅, k), with the limiting sequence on the left consisting of certain integers,
and being stationary at least starting from the k-th term.

Proof. This is something elementary, which follows straight from Peter-Weyl theory,
by using the linear independence result from Theorem 8.40. �

In practice now, for the basic rotation and reflection groups, we obtain:

Theorem 8.42. The character laws for basic rotation and reflection groups are

B1 Γ1

β1 γ1

B1 G1

b1 g1

in the N →∞ limit, corresponding to the basic probabilistic limiting theorems, at t = 1.

Proof. This follows indeed from Theorem 8.36 and Theorem 8.41, by using the known
moment formulae for the laws in the statement, from Theorem 8.24, at t = 1. �

An interesting feature of the above result is that in the free case, the convergence can
be shown to be actually stationary starting from N = 4. The “fix” comes by looking at
truncated characters, which are constructed as follows:

χt =

[tN ]∑
i=1

uii

With this convention, we have the following final result on the subject, with the
convergence being non-stationary at t < 1, in both the classical and free cases:
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Theorem 8.43. The truncated character laws for the basic quantum groups are

Bt Γt

βt γt

Bt Gt

bt gt

in the N →∞ limit, corresponding to the basic probabilistic limiting theorems.

Proof. We already know that the result holds at t = 1, and the proof at arbitrary
t > 0 is once again based on easiness, but this time by using the Weingarten formula for
the computation of the moments. We refer here to [9], [11], [13], [16]. �

Finally, still left for this chapter was the extension of all this to the case of more
general homogeneous spaces X = G/H. But hey, we learned enough math in this chapter,
time for a beer. We refer here to the 2010 paper [15], which started everything with
the computation for the real spheres SN−1

R,+ , and then to the book [7], which explains
everything that has been found on this subject, in the 10s and early 20s. And with the
comment that all this, free geometry, is a virtually infinite subject, coming when developed
probabilistically as a nice complement to Voiculescu’s free probability theory [85].

8e. Exercises

There has been a lot of exciting theory in this chapter, often with details missing, and
our exercises will be about this. In relation with general probability, we have:

Exercise 8.44. Consider the symmetric group SN , regarded as symmetry group of the
N coordinate axes of RN , and so as group of orthogonal matrices:

SN ⊂ ON

Compute the main character for this group, then the law of this main character, and work
out the N →∞ asymptotics. Then, study as well the truncated characters.

As a comment here, since the permutation matrices have 0-1 entries, the law of the
main character is supported by N. Thus, the law can only be Poisson.

Exercise 8.45. Prove that S+
N is easy, coming from the category of all noncrossing

partitions NC, and compute the asymptotic law of the main character.

As a bonus exercise, try as well the truncated characters. And as a second bonus
exercise, you can redo the computation for SN , this time using easiness.



Part III

Theory of factors



And the story tellers say
That the score brave souls inside

For many a lonely day sailed across the milky seas
Never looked back, never feared, never cried



CHAPTER 9

Functional analysis

9a. Kaplansky density

Welcome to this second half of the present book. We will get back here to a more
normal pace, at least for most of the text to follow, our goal being to discuss the basics
of the von Neumann algebra theory, due to Murray, von Neumann and Connes [24], [25],
[60], [61], [62], [86], [87], [88], or at least the “basics of the basics”, the whole theory
being quite complex, and then the most beautiful advanced theory which can be built on
this, which is the subfactor theory of Jones [44], [45], [46], [47], [48], [50], [51].

The material here will be in direct continuation of what we learned in chapter 5,
namely bicommutant theorem, commutative case, finite dimensions, and a handful of
other things. The idea will be that of building directly on that material, and using the
same basic techniques, namely functional analysis and operator theory.

As an important point, however, all this is related, but in a subtle way, to what
we learned in chapters 6-8 too. To be more precise, what we will be doing in chapters
9-12 now, following Murray, von Neumann, Connes, will be more or less orthogonal to
what we did in chapters 6-8, with different goals and using different techniques, and
the presentation could have been well reversed. However, and here comes our point,
the continuation of all this, chapters 13-16 below following Jones, will stand as a direct
continuation of what we did in chapters 6-8, with Jones’ subfactors being something more
general than the random matrices and quantum groups from there.

So long for strategy. As an attempt to further explain all this, let us formulate:

Fact 9.1. The functional analysis approach to von Neumann algebras leads to:

(1) Murray-von Neumann-Connes principle: the most interesting algebras are those
which are infinite dimensional, dimA = ∞, have trivial center, Z(A) = C, and
have a trace tr : A→ C. These algebras are called II1 factors.

(2) Jones principle: the most interesting thing to be done with the II1 factors is
to look at the inclusions A ⊂ B of such factors, and more specifically at the
“symmetries” of such inclusions, which generalize the quantum groups.

Obviously, many things going on here, and it will take us some time in order to
understand what all this means. And so, just trust me, and let us focus now on (1).

203
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Getting started now, so to say, there is a considerable surprise waiting for us, when
focusing on (1). So, we would like to understand the basic structure and classification re-
sults for the von Neumann algebras, following the classical work of Murray, von Neumann
and Connes, and leading to the above conclusion regarding the II1 factors.

The surprise is that this material, which is something very basic and fundamental,
and somewhat indivisible, and we insist on this, takes around 500-1000 pages, in standard
graduate textbook style, from what we know already. And cherry on the cake, while
several multi-volume treatises on von Neumann algebras have been written, such as those
of Dixmier [29], Kadison-Ringrose [52], Strătilă-Zsidó [77], Takesaki [78], none of these
explains all this material, full theory, with full proofs for everything.

The point with this is that the Murray-von Neumann-Connes principle from Fact 9.1
(1) is in fact something a bit more complicated, as follows:

Fact 9.2. The basic theory of von Neumann algebras consists of:

(1) Reduction theorem of von Neumann: when writing Z(A) = L∞(X), the algebra
decomposes as follows, with the fibers Ax being factors, Z(Ax) = C:

A =

∫
X

Ax dx

(2) Murray-von Neumann principle: the study of the factors having a semifinite trace,
which are called of type I, II, reduces to the study of the factors which are infinite
dimensional, and have a trace tr : A→ C, called of type II1.

(3) Tomita-Takesaki-Connes principle: the study of the remaining factors, lacking a
semifinite trace, which are called of type III, basically reduces as well to the study
of the II1 factors, via crossed product type constructions.

(4) Murray-von Neumann-Connes-Haagerup principle: the smallest, most interesting
von Neumann algebras, which are the hyperfinite ones, decompose as

A =

∫
X

Ax dx

with Ax being hyperfinite factors, and the study of these latter factors basically
reduces to the study of the hyperfinite II1 factor R, which is unique.

Going ahead with page estimates, along the lines of our previous discussion, (2) which
is the simplest, and historically came first, takes 50-100 pages, and each of (1,3,4) takes
150-300 pages. So the math is here, 500-1000 pages total, as previously announced.

All this can only lead to some meditation. Something wrong with all this? Certainly
not. The only reasonable change that can be made to the above is to assume, as we usually
do in this book, that the von Neumann algebras have traces, tr : A→ C. Although this
assumption, extensively discussed philosophically in the beginning of chapter 7, remains



9A. KAPLANSKY DENSITY 205

something controversial, absolutely not agreed upon, neither by mathematicians, nor by
physicists. And this assumption, which cuts (3), along with about 1/3 of each of (1,4),
still brings us into something quite considerable, in the 250-500 page range.

Whom to blame, then? Quantum mechanics, you guessed right. Anyway, that is the
situation, and as a last thought here, let us formulate:

Conclusion 9.3. Someone write sometimes a complete von Neumann algebra book,
containing all the foundations, with complete proofs for everything.

Back to business now, recall from Fact 9.1 that we are mostly interested in this book
in understanding Jones’ work on the inclusions of II1 factors A ⊂ B, as a continuation
of the material from chapters 5-8. Thus, we have now 100 pages to discuss Fact 9.2, and
with the remark that, since we are basically interested in II1 factors, we definitely need
(2), we do not need (3), and we can be soft on (1), and mildly soft on (4).

Getting started for good, let us go back to the basic theory of von Neumann algebras,
developed in chapter 5, by using basic functional analysis and operator theory. As a
first objective, we would like to have a better understanding of the precise difference
between the norm closed ∗-algebras, or C∗-algebras, A ⊂ B(H), and the weakly closed
such algebras, which are the von Neumann algebras, from a functional analytic viewpoint.
We will explain this in this chapter. Let us start with a standard result, as follows:

Proposition 9.4. Given an operator algebra A ⊂ B(H), a linear form f : A→ C is
weakly continuous precisely when it is of the form

f(T ) =
n∑
i=1

< Txi, yi >

for a certain number n ∈ N, and certain vectors xi, yi ∈ H.

Proof. This is something standard, using the same tools at those already used in
chapter 5 above, namely basic functional analysis, and amplification tricks:

(1) In one sense, consider families of vectors xi, yi ∈ H. The following linear form is
then clearly weakly continuous:

f(T ) =
n∑
i=1

< Txi, yi >

(2) Conversely now, assume that f : A → C is weakly continuous. By continuity we
can find vectors x1, . . . , xn ∈ H and a number ε > 0 such that:

n∑
i=1

||Txi||2 ≤ ε =⇒ |f(T )| ≤ 1
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It follows from this that we have the following estimate:

|f(T )| ≤
√∑n

i=1 ||Txi||2
ε

Consider now the direct sum H⊕n, and inside it, the following vector:

x = (x1, . . . , xn) ∈ H⊕n

Consider also the following linear space, written in tensor product notation:

K = (A⊗ 1)x ⊂ H⊕n

We can define then a linear form f ′ : K → C by the following formula, and continuity:

f ′(Tx1, . . . , Txn) = f(T )

We conclude that there exists a vector y ∈ K such that:

f ′
(
(T ⊗ 1)y

)
=< (T ⊗ 1)x, y >

But in terms of the original linear form f : A→ C, this means that we have:

f(T ) =
n∑
i=1

< Txi, yi >

Thus, we are led to the conclusion in the statement. �

We have the following result, called Kaplansky density theorem, which is something
very useful, and is of independent interest as well:

Theorem 9.5. Given an operator algebra A ⊂ B(H), the following happen:

(1) The unit ball of A is strongly dense in the unit ball of A′′.
(2) The same happens for the self-adjoint parts of the above unit balls.

Proof. Here the first assertion is standard, and the second assertion is something
more tricky, making use of functional calculus with the following function:

f(t) =
2t

1 + t2

Indeed, by using this function, and then a standard 2×2 matrix trick, we can eventually
deduce the first assertion from the second one, and we are done. To be more precise:

(1) Consider the self-adjoint part Asa ⊂ A. By taking real parts of operators, and
using the fact that T → T ∗ is weakly continuous, we have then:

Asa
w ⊂

(
A
w)

sa

Now since the set Asa is convex, and all weak operator topologies coincide on the
convex sets, we conclude that we have in fact equality:

Asa
w

=
(
A
w)

sa
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(2) With this result in hand, let us prove now the second assertion of the theorem.
Consider an element T ∈ A

w
, satisfying T = T ∗ and ||T || ≤ 1. Consider as well the

following function, from [−1, 1] to itself:

f(t) =
2t

1 + t2

By functional calculus we can find an element S ∈
(
A
w)

sa
such that:

f(S) = T

In other words, we can find an element S ∈
(
A
w)

sa
such that:

T =
2S

1 + S2

Now given vectors x1, . . . , xn ∈ H and a number ε > 0, let us pick R ∈ Asa, subject
to the following two inequalities:

||RTxi − STxi|| ≤ ε∣∣∣∣∣∣∣∣ R

1 + S2
xi −

S

1 + S2
xi

∣∣∣∣∣∣∣∣ ≤ ε

Finally, consider the following element, which has norm ≤ 1:

L =
2R

1 +R2

We have then the following computation, using the above formulae:

L− T =
2R

1 +R2
− 2S

1 + S2

= 2

(
1

1 +R2

(
R(1 + S2)− (1 + S2)R

) 1

1 + S2

)
= 2

(
1

1 +R2
(R− S)

1

1 + S2
+

R

1 +R2
(S −R)

S

1 + S2

)
=

2

1 +R2
(R− S)

1

1 + S2
+
L

2
(S −R)T

Thus, we have the following estimate, for any i ∈ {1, . . . , n}:
||(L− T )xi|| ≤ ε

But this gives the density assertion, (2) in the statement.

(3) Let us prove now the first assertion of the theorem. Given an arbitrary element
T ∈ Aw, satisfying ||T || ≤ 1, let us look at the following element:

T ′ =

(
0 T
T ∗ 0

)
∈M2(A

w
)
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This element is then self-adjoint, and we can use what we proved in the above, and
we are led to the conclusion in the statement. �

We can go back now to our original question, and we have:

Theorem 9.6. An operator algebra A ⊂ B(H) is a von Neumann algebra precisely
when its unit ball is weakly compact.

Proof. This is now something clear, coming from the density results established in
Theorem 9.5. To be more precise:

(1) In one sense, assuming that A ⊂ B(H) is a von Neumann algebra, this algebra
is weakly closed. But since the unit ball of B(H) is weakly compact, we are led to the
conclusion that the unit ball of A is weakly compact too.

(2) Conversely, assume that an operator algebra A ⊂ B(H) is such that its unit ball
is weakly compact. In particular, the unit ball of A is weakly closed. Now if T satisfying
||T || ≤ 1 belongs to the weak closure of A, by Kaplansky density we conclude that we
have T ∈ A. Thus our algebra A must be a von Neumann algebra, as claimed. �

There are several other abstract characterizations of the von Neumann algebras, inside
the class of C∗-algebras, and we will be back to this, on several occasions, and notably at
the end of the present chapter, with such a characterization involving the predual.

9b. Projections, factors

Among the von Neumann algebras A ⊂ B(H), of particular interest are the “free”
ones, having trivial center, Z(A) = C. These algebras are called factors:

Definition 9.7. A factor is a von Neumann algebra A ⊂ B(H) whose center

Z(A) = A ∩ A′

which is a commutative von Neumann algebra, reduces to the scalars, Z(A) = C.

Here the fact that the center is indeed a von Neumann algebra follows from the bicom-
mutant theorem, which shows that the commutant of any ∗-algebra is a von Neumann
algebra. Thus, the intersection Z(A) = A ∩ A′ is a von Neumann algebra as well.

In what follows we will be mainly interested in these factors, with our motivation
coming from the fact that the condition Z(A) = C defining them is somehow opposite
to the condition Z(A) = A defining the commutative von Neumann algebras. Thus, the
factors are the von Neumann algebras which are “free”, with this meaning being as far as
possible from the commutative ones. Equivalently, in terms of the quantum space writing
A = L∞(X), the spaces X coming from factors are as “free” as one can hope for.
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There is of course another motivation as well, coming from the reduction theory of
von Neumann, evoked in Fact 9.2 above. But this is something quite advanced, to be
discussed later, and for the moment “factor” meaning “free” will do.

In order to investigate the factors, the idea of Murray-von Neumann, coming from the
analysis of the finite dimensional algebras explained in chapter 5, will be that of looking
at the projections. Let us start with some generalities. In analogy with what happens in
finite dimensions, we have the following notions, over an arbitrary Hilbert space H:

Definition 9.8. Associated to any two projections P,Q ∈ B(H) are:

(1) The projection P ∧Q, projecting on the common range.
(2) The projection P ∨Q, projecting on the span of the ranges.

Abstractly speaking, these two operations can be thought of as being inf and sup type
operations, and all the known algebraic formulae for inf and sup hold in this setting. For
the moment we will not need all this, and we will be back to it later. Let us record
however the following basic formula, which is something very useful:

Proposition 9.9. We have the following formula,

P +Q = P ∧Q+ P ∨Q
valid for any two projections P,Q ∈ B(H).

Proof. This is clear from definitions, because when computing P +Q we obtain the
projection P ∨ Q on the span on the ranges, modulo the fact that the vectors in the
common range are obtained twice, which amounts in saying that we must add P ∧Q. �

With the above notions in hand, we have the following result:

Theorem 9.10. Consider two projections P,Q ∈ B(H).

(1) In finite dimensions, over H = CN , we have, in norm:

(PQ)n → P ∧Q
(2) In infinite dimensions, we have the following convergence, for any x ∈ H,

(PQ)nx→ (P ∧Q)x

but the operators (PQ)n do not necessarily converge in norm.

Proof. We have several assertions here, the proof being as follows:

(1) Assume that we are in the case P,Q ∈MN(C). By substracting P ∧Q from both
P,Q, we can assume P ∧Q = 0, and we must prove that we have:

P ∧Q = 0 =⇒ (PQ)n → 0

Our claim is that we have ||PQ|| < 1. Indeed, we know that we have:

||PQ|| ≤ ||P || · ||Q|| = 1
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Assuming now by contradiction that we have ||PQ|| = 1, since we are in finite dimen-
sions, we must have, for a certain norm one vector, ||x|| = 1:

||PQx|| = 1

Thus, we must have equalities in the following estimate:

||PQx|| ≤ ||Qx|| ≤ ||x||

But the second equality tells us that we must have x ∈ Im(Q), and with this in hand,
the first equality tells us that we must have x ∈ Im(P ). But this contradicts P ∧Q = 0,
so we have proved our claim, and the convergence (PQ)n → 0 follows.

(2) In infinite dimensions now, as before by substracting P ∧ Q from both P,Q, we
can assume P ∧Q = 0, and we must prove that we have, for any x ∈ H:

P ∧Q = 0 =⇒ (PQ)nx→ 0

For this purpose, consider the following operator:

R = PQP

This operator is positive, because we have R = (PQ)(PQ)∗, and we have:

||R|| ≤ ||P || · ||Q|| · ||P || = 1

Our claim, which will finish the proof, is that for any x ∈ H we have:

Rnx→ 0

In order to prove this claim, let us diagonalize R, by using the spectral theorem for
self-adjoint operators, from chapter 3 above. If all the eigenvalues are < 1 then we are
done. If not, this means that we can find a nonzero vector x ∈ H such that:

||Rx|| = ||x||

But this condition means that we must have equalities in the following estimate:

||PQPx|| ≤ ||QPx|| ≤ ||Px|| ≤ ||x||

The point now is that this is impossible, due to our assumption P ∧ Q = 0. Indeed,
the last equality tells us that we must have x ∈ Im(P ), and with this in hand, the middle
equality tells us that we must have x ∈ Im(Q). But this contradicts P ∧ Q = 0, so we
have proved our claim, and the convergence (PQ)nx→ 0 follows.

(3) Finally, for a counterexample to (PQ)n → 0, in infinite dimensions, we can take
H = l2(N), and then find projections P,Q such that (PQ)nek → 0 for any k, but with
the convergence arbitrarily slowing down with k →∞. Thus, (PQ)n 6→ 0. �

As a consequence, in connection with the von Neumann algebras, we have:
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Theorem 9.11. Given two projections P,Q ∈ B(H), the projections

P ∧Q , P ∨Q
both belong to the von Neumann algebra generated by P,Q.

Proof. This is something that follows from the above, as follows:

(1) In what regards P ∧ Q, this is something that follows from Theorem 9.10, with
the comment that there are some other proofs as well for this.

(2) As for P ∨ Q, here the result follows from the result for P ∧ Q, discussed above,
and from the formula P +Q = P ∧Q+ P ∨Q, from Proposition 9.9. �

The idea now will be that of studying the von Neumann algebras A ⊂ B(H) by using
their projections, p ∈ A. Let us start with the following result:

Theorem 9.12. Any von Neumann algebra is generated by its projections.

Proof. This is something that we know from chapter 5, coming from the measurable
functional calculus, which can cut any normal operator into projections. �

There are many other things that can be said about projections, in the general setting.
In what follows we will just discuss the most important and useful such results. A first
such result, providing us with some geometric intuition on projections, is as follows:

Theorem 9.13. Given a von Neumann algebra A ⊂ B(H), and a projection p ∈ A,
we have the following equalities, between von Neumann algebras on pH:

(1) pAp = (A′p)′.
(2) (pAp)′ = A′p.

Proof. This is not exactly obvious, but can be proved as follows:

(1) As a first observation, the algebras pAp and A′p commute on pH. Thus, we must
prove that we have the following implication:

x ∈ (A′p)′ =⇒ x ∈ pAp
For this purpose, consider the element y = xp. Then for any z ∈ A′ we have:

zy = zxp

= zpxp

= xpzp

= xpz

= yz

Thus we obtain y ∈ A, and so we have, as desired:

x = pyp ∈ pAp
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(2) As before, one of the inclusions being clear, we must prove that we have:

x ∈ (pAp)′ =⇒ x ∈ A′p
By using the standard fact that any bounded operator appears as a linear combination

of 4 unitaries, that we know from chapter 4, it is enough to prove this for a unitary element,
x = u. So, assume that we have a unitary as follows:

u ∈ (pAp)′

In order to prove our claim, consider the following vector space:

K = ApH

This space being invariant under both A,A′, the projection q = Proj(K) onto it
belongs to the center of our von Neumann algebra:

q ∈ Z(A)

Our claim is that we can extend the above unitary u ∈ (pAp)′ to the space K = ApH
via the following formula, valid for any elements xi ∈ A, and any vectors ξi ∈ pH:

v

(∑
i

xiξi

)
=
∑
i

xiuξi

Indeed, we have the following computation:∣∣∣∣∣
∣∣∣∣∣v
(∑

i

xiξi

)∣∣∣∣∣
∣∣∣∣∣
2

=
∑
ij

< xiuξi, xjuξj >

=
∑
ij

< x∗jxiuξi, uξj >

=
∑
ij

< px∗jxipuξi, uξj >

=
∑
ij

< upx∗jxipξi, uξj >

=
∑
ij

< px∗jxipξi, ξj >

=
∑
ij

< x∗jxiξi, ξj >

=
∑
ij

< xiξi, xjξj >

=

∣∣∣∣∣
∣∣∣∣∣∑

i

xiξi

∣∣∣∣∣
∣∣∣∣∣
2
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Thus v is well-defined by the above formula, and is an isometry of K. Now observe
that this element v commutes with A on the space ApH, hence on K. Thus vq ∈ A′, and
so u = vqp, which proves that we have u ∈ A′p, as desired. �

As a second result now, once again in the general setting, we have:

Proposition 9.14. Given a von Neumann algebra A ⊂ B(H), the formula

p ' q ⇐⇒ ∃u,

{
uu∗ = p

u∗u = q

defines an equivalence relation for the projections p ∈ A.

Proof. This is something elementary, which follows from definitions, with the tran-
sitivity coming by composing the corresponding partial isometries. �

As a third and final result, once again in the general setting, which once again provides
us with some intuition, but this time of somewhat abstract type, we have:

Theorem 9.15. Given a von Neumann algebra A ⊂ B(H), we have a partial order
on the projections p ∈ A, constructed as follows, with u being a partial isometry,

p � q ⇐⇒ ∃u,

{
uu∗ = p

u∗u ≤ q

which is related to the equivalence relation ' constructed above by:

p ' q ⇐⇒ p � q, q � p

Thus, � is a partial order on the equivalence classes of projections p ∈ A.

Proof. We have several assertions here, the idea being as follows:

(1) The fact that we have indeed a partial order is clear, with the transitivity coming,
as before, by composing the corresponding partial isometries.

(2) Regarding now the relation with ', via the equivalence in the statement, the
implication =⇒ is clear. Thus, we are left with proving ⇐=, which reads:

p � q, q � p =⇒ p ' q

Our assumption is that we have partial isometries u, v such that:

uu∗ = p , u∗u ≤ q

v∗v ≤ p , vv∗ = q

We can construct two sequences of decreasing projections, as follows:

p0 = p , pn+1 = v∗qnv

q0 = q , qn+1 = u∗pnu



214 9. FUNCTIONAL ANALYSIS

Consider now the limits of these two sequences of projections:

p∞ =
∧
i

pi , q∞ =
∧
i

qi

In terms of all these projections that we constructed, we have the following decompo-
sition formulae for the original projections p, q:

p = (p− p1) + (p1 − p2) + . . .+ p∞

q = (q − q1) + (q1 − q2) + . . .+ q∞

Now observe that the summands are equivalent, with this being clear from the defini-
tion of pn, qn at the finite indices n <∞, and with p∞ ' q∞ coming from:

v∗q∞v = p∞ , q∞vv
∗q∞ = q∞

Thus we obtain that we have p ' q, as desired, by summing.

(3) Finally, the fact that the order � factorizes indeed to the equivalence classes under
' follows from the equivalence established in (2). �

Summarizing, in view of Theorem 9.12, and of Theorem 9.15, we have:

Conclusion 9.16. We can think of a von Neumann algebra A ⊂ B(H) as being
a kind of object belonging to “mathematical logic”, consisting of equivalence classes of
projections p ∈ A, ordered via the relation �, and producing A itself via transport by
partial isometries, and then linear combinations, and weak limits.

This was von Neumann’s original vision, still largely used nowadays. In what concerns
us, however, we will rather stick to our A = L∞(X) viewpoint, with X being a quantum
measured space, and the most often being a “quantum manifold”. This is more of a
“continuous” philosophy, and in order to keep it intact, and powerful, we will have to
take sometimes distances with the von Neumann philosophy, especially in what concerns
the terminology. In short, we will be definitely users of the von Neumann projection
technology, which is extremely powerful, and is quite often the only available tool, but
keeping in mind however that we are dealing with continuous objects X, and choosing
the terminology and notations accordingly, inspired from continuous geometry.

Getting back now to work, our next purpose will be that of understanding what
happens to the above, in the particular case of the factors. We will need:

Proposition 9.17. Given two projections p, q 6= 0 in a factor A, we have

puq 6= 0

for a certain unitary u ∈ A.
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Proof. Assume by contradiction puq = 0, for any unitary u ∈ A. This gives:

u∗puq = 0

By using this for all the unitaries u ∈ A, we obtain:( ∨
u∈UA

u∗pu

)
q = 0

On the other hand, from p 6= 0 we obtain, by factoriality of A:∨
u∈UA

u∗pu = 1

Thus, our previous formula is in contradiction with q 6= 0, as desired. �

Getteing back now to the order constructed in Theorem 9.15, and to the whole pro-
jection philosophy, in the case of factors things become very simple, as follows:

Theorem 9.18. Given two projections p, q ∈ A in a factor, we have

p � q or q � p

and so � is a total order on the equivalence classes of projections p ∈ A.

Proof. This basically follows from Proposition 9.17, and from the Zorn lemma, by
using standard functional analysis arguments. To be more precise:

(1) Consider indeed the following set of partial isometries:

S =
{
u
∣∣∣uu∗ ≤ p, u∗u ≤ q

}
We can order this set S by saying that u ≤ v when u∗u ≤ v∗v, and when u = v on

the initial domain u∗uH of u. With this convention made, the Zorn lemma applies, and
provides us with a maximal element u ∈ S.

(2) In the case where this maximal element u ∈ S satisfies uu∗ = p or u∗u = q, we are
led to one of the conditions p � q or q � p in the statement, and we are done.

(3) So, assume that we are in the case left, uu∗ 6= p and u∗u 6= q. By Proposition 9.17
we obtain a unitary v 6= 0 satisfying the following conditions:

vv∗ ≤ p− uu∗

v∗v ≤ q − u∗u
But these conditions show that the element u + v ∈ S is strictly bigger than u ∈ S,

which is a contradiction, and we are done. �

We will be back to all this in chapter 10 below, in the tracial setting, where a number
of simplifications appear, and where it is possible to go way beyond the above, with a
number of quite unexpected results, due to Murray and von Neumann.
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9c. States, isomorphism

One question that we met on several occasions, and that we would like to clarify
now, is the relation between abstract isomorphism and spatial isomorphism. To be more
precise, we would like to understand when two von Neumann algebras A ⊂ B(H) and
B ⊂ B(K) are isomorphic, in an algebraic and topological sense, but without reference
to H,K. Once this understood, we will be able to talk about the von Neumann algebras
A as being abstract objects, a bit as were the C∗-algebras, discussed in chapter 7.

In order to discuss this, let us start with a technical result, as follows:

Proposition 9.19. Given a von Neumann algebra A ⊂ B(H), and a positive linear
form f : A→ C, the following are equivalent:

(1) f is normal, in the sense that we have the formula

f

(
sup
i
xi

)
= sup

i
f(xi)

for any increasing sequence of positive elements xi ∈ A.
(2) f is completely additive, in the sense that we have

f

(∨
i

pi

)
=
∑
i

f(pi)

for any family of pairwise orthogonal projections {pi}.
(3) f is weakly continuous.

Proof. This is something very standard, as follows:

(1) =⇒ (2) Given a family of pairwise orthogonal projections {pi}, we can consider
the following increasing sequence of positive elements:

xn =
n∑
i=1

pi

By using now the formula in (1) for these elements we obtain, as desired:

f

(∨
i

pi

)
= f

(
sup
n
xn

)
= sup

n
f(xn)

= sup
n

n∑
i=1

f(pi)

=
∑
i

f(pi)
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(2) =⇒ (3) This is something more technical, that we will prove in several steps. Let
us fix a projection q ∈ A, and consider a vector ξ ∈ Im(q) such that:

< qξ, ξ >> 1

Our claim is that there exists a projection p ≤ q such that, for any x ∈ A:

f(pxp) ≤< pxpξ, ξ >

Indeed, let us pick, by using the Zorn lemma, a maximal family of pairwise orthogonal
projections {pi} ⊂ A such that, for any i, we have:

f(pi) ≥< piξ, ξ >

By using our complete additivity assumption, we have then:

f

(∨
i

pi

)
=

∑
i

f(pi)

≥
∑
i

< piξ, ξ >

=

〈(∨
i

pi

)
ξ, ξ

〉
Now consider the following projection, which is nonzero:

p = q −
∨
i

pi

By maximality of the family {pi}, for any nonzero projection r ≤ p, we have:

f(r) << rξ, ξ >

We therefore obtain the following estimate, valid for any x ∈ A+, as desired:

f(pxp) ≤< pxpξ, ξ >

Now by Cauchy-Schwarz we obtain that for any x ∈ A, ||x|| ≤ 1, we have:

|f(xp)|2 ≤ f(px∗xp)f(1)

≤ < px∗xpξ, ξ >

= ||xpξ||2

Thus the following linear form is strongly continuous on the unit ball of A:

x→ f(px)
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In order to finish now, once again by using the Zorn lemma, let us pick a maximal
family of pairwise orthogonal projections {pi} ⊂ A such that x → f(pix) is strongly
continuous on the unit ball of A, for any i. By maximality we have then:∑

i

f(pi) = f

(∑
i

pi

)
= f(1)

= 1

Now given ε > 0, let us choose a finite subset of our index set, F ⊂ I, such that for
all the finite subsets F ⊂ J ⊂ I, we have an inequality as follows:

1− f

(∑
j∈J

pj

)
≤ ε

By Cauchy-Schwarz we have then, for any x ∈ A, ||x|| = 1, the following estimate:∣∣∣∣∣f
(
x

(
1−

∑
j∈J

pj

))∣∣∣∣∣
2

≤ f

(
1−

∑
j∈J

pj

)
f(xx∗)

≤ ε

We conclude from this that we have the following estimate:∣∣∣∣∣
∣∣∣∣∣f − f

(
.

(
1−

∑
j∈J

pj

))∣∣∣∣∣
∣∣∣∣∣ ≤ √ε

Thus we obtain f ∈ A∗, as desired.

(3) =⇒ (1) This is something trivial, coming from definitions. �

We will need as well the following result:

Proposition 9.20. Given a von Neumann algebra A ⊂ B(H), a positive linear form
f : A→ C is completely additive, in the sense that

f

(∨
i

pi

)
=
∑
i

f(pi)

for any pairwise orthogonal projections {pi}, precisely when it is of the form

f(T ) =< Tx, x >

when suitably extended to the representation of A on the Hilbert space H ⊗ l2(N).

Proof. This is something quite standard, which can be proved by using our usual
tools, namely basic functional analysis, and amplification tricks. �
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The linear forms f : A → C appearing as above, namely f(T ) =< Tx, x > with
x ∈ H, taken with the normalization ||x|| = 1, are called vector states on A. With these
ingredients in hand, we can go back now to our original question, and we have:

Theorem 9.21. Given two von Neumann algebras A ⊂ B(H) and B ⊂ B(K), acting
on possibly different Hilbert spaces H,K, any algebraic isomorphism

Φ : A ' B

is spatial up to amplification, in the sense that we have a formula as follows,

Φ(T )⊗ 1 = U(T ⊗ 1)U∗

for a certain Hilbert space L, and a certain unitary U : H ⊗ L→ K ⊗ L.

Proof. This is something standard, coming from Proposition 9.20, as follows:

(1) As a first observation, assuming that a positive unital linear form f : A→ C is a
vector state, given by a certain vector x ∈ H, then by Proposition 9.20 the linear form
fΦ−1 is also a vector state, say given by a vector y ∈ K.

(2) We conclude from this that we have a unitary as follows, intertwining the corre-
sponding actions of the von Neumann algebras A and B:

Ux : Ax→ By

Now by making the above vector x ∈ H vary, and performing a direct sum, we obtain
with L = l2(N) an isometry as in the statement, namely:

U : H ⊗ L→ K ⊗ L
Our construction shows that U intertwines indeed the actions of the von Neumann

algebras A and B, and what is left to do is to study the unitarity of U .

(3) We will prove now that, up to a suitable replacement, the above operator U can
be taken to be unitary, still intertwining the actions of the von Neumann algebras A and
B. For this purpose, consider the action of von Neumann algebra A on the direct sum
Hilbert space (H ⊗ L)⊕ (K ⊗ L) given by the following matrices:

x′ =

(
x⊗ 1 0

0 Φ(x)⊗ 1

)
Since U intertwines the actions of the von Neumann algebras A and B, in terms of

2× 2 matrices, we are led to the following conclusion:(
0 0
U 0

)
∈ A′

Thus, the following happens inside the von Neumann algebra A′:(
1 0
0 0

)
�
(

0 0
0 1

)
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On the other hand, the same reasoning applied to the isomorphism Φ−1 shows that
we have as well, once again inside the von Neumann algebra A′:(

0 0
0 1

)
�
(

1 0
0 0

)
(4) We are now in position to finish. By combining the above two conclusions, we

obtain an equivalence of projections inside A′, as follows:(
1 0
0 0

)
'
(

0 0
0 1

)
Now pick a partial isometry implementing this equivalence. This partial isometry

must be of the following form, with U ′ being now a unitary:

V =

(
0 0
U ′ 0

)
Thus, we have now a certain unitary U ′ : H ⊗ L → K ⊗ L, which intertwines the

actions of A and B, which is the unitary we were looking for. �

The above result is something quite fundamental, allowing us to talk about von Neu-
mann algebras A as abstract objects, without reference to the exact Hilbert space H where
the elements a ∈ A live as operators a ∈ B(H), and with this being of course possible
modulo some functional analysis knowledge. We will heavily use this point of view in
chapter 10 below, and then in chapters 13-16 below, when talking about II1 factors.

9d. Predual theory

Going ahead now with more abstract functional analysis, that we will be using in what
follows, on several occasions, let us formulate:

Definition 9.22. Given a von Neumann algebra A ⊂ B(H), we set

A∗ =
{
f : A→ C, weakly continuous

}
regarded as a linear subspace, A∗ ⊂ A∗, of the usual dual, given by:

A∗ =
{
f : A→ C, norm continuous

}
Our first goal will be that of proving that we have the following duality formula,

between the linear space A∗ constructed above, and the algebra A itself:

A = (A∗)
∗

In order to do so, let us first discuss the case of the full operator algebra A = B(H)
itself. This is actually the key case, with the extension to the arbitrary von Neumann
algebras A ⊂ B(H) being something coming afterwards, quite straightforward.
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We will need some standard operator theory, developed in chapter 4 above. First, we
have the following result, regarding the trace class operators, established there:

Theorem 9.23. The space of trace class operators, which appears as an intermediate
space between the finite rank operators and the compact operators,

B0(H) ⊂ B1(H) ⊂ B∞(H)

is a two-sided ∗-ideal of B∞(H). The following is a Banach space norm on B1(H),

||T ||1 = Tr|T |

satisfying ||T || ≤ ||T ||1, and for T ∈ B1(H) and S ∈ B(H) we have:

||ST ||1 ≤ ||S|| · ||T ||1
Also, the subspace B0(H) is dense inside B1(H), with respect to this norm.

Proof. This is indeed something standard, explained in chapter 4. �

We will need as well the following result, regarding this time the Hilbert-Schmidt
operators, which is also from chapter 4:

Theorem 9.24. The space of Hilbert-Schmidt operators, which appears as an inter-
mediate space between the trace class operators and the compact operators,

B0(H) ⊂ B1(H) ⊂ B2(H) ⊂ B∞(H)

is a two-sided ∗-ideal of B∞(H). In terms of the singular values (λn), the Hilbert-Schmidt
operators are characterized by the following formula:∑

n

λ2
n <∞

Also, the following formula, taking as input two Hilbert-Schmidt operators,

< S, T >= Tr(ST ∗)

defines a scalar product of B2(H), making it a Hilbert space.

Proof. As before, this is something standard, explained in chapter 4. �

With these ingredients in hand, let us go ahead with the study of the space B(H)∗.
We will need the following technical result, regarding the Hilbert-Schmidt operators:

Proposition 9.25. We have the following formula,

Tr(ST ) = Tr(TS)

valied for any Hilbert-Schmidt operators S, T ∈ B2(H).
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Proof. We can prove this in two steps, as follows:

(1) Assume first that |S| is trace class. Consider the polar decomposition S = U |S|,
and choose an orthonormal basis {xi} for the image of U , suitably extended to an or-
thonormal basis of H. We have then the following computation, as desired:

Tr(ST ) =
∑
i

< U |S|Txi, xi >

=
∑
i

< |S|TUU∗xi, U∗xi >

= Tr(|S|TU)

= Tr(TU |S|)
= Tr(TS)

(2) Assume now that we are in the general case, where S is only assumed to be
Hilbert-Schmidt. For any finite rank operator S ′ we have then:

|Tr(ST )− Tr(TS)| = |Tr((S − S ′)T )− Tr(T (S − S ′))|
≤ 2||S − S ′||2 · ||T ||2

Thus by choosing S ′ with ||S − S ′||2 → 0, we obtain the result. �

With the above technical result in hand, and getting back now to von Neumann
algebras, and to our predual questions, we have the following result:

Theorem 9.26. The linear space B(H)∗ ⊂ B(H)∗ consisting of the linear forms
f : B(H)→ C which are weakly continuous is given by

B(H)∗ =
{
T → Tr(ST )

∣∣∣S ∈ B1(H)
}

and we have the following duality formula

B(H) = (B(H)∗)
∗

as a duality in the usual Banach space sense.

Proof. There are several things to be proved, the idea being as follows:

(1) First of all, any linear form of type T → Tr(ST ), with S being trace class, is
weakly continuous. Thus, if we denote by B(H)◦ the subspace of B(H) in the statement,
consisting of such linear forms, we have an inclusion as follows:

B(H)◦ ⊂ B(H)∗

(2) In order to prove the reverse inclusion, consider an arbitrary weakly continuous
linear form f ∈ B(H)∗. We can then find vectors (xi) and (yi) such that:

f(T ) =
∑
i

< Txi, yi >
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Let us consider now the following operators, going by definition from the Hilbert space
l2(N) to out Hilbert space H, and which are both Hilbert-Schmidt:

Q : ei → xi , R : ei → yi

In terms of these operators, our linear form can be written as follows:

f(T ) = Tr(R∗TQ)

On the other hand, by using Proposition 9.25 we obtain:

Tr(R∗TQ) = Tr(TQR∗)

Thus, with S = QR∗, which is trace class, we have the following formula:

f(T ) = Tr(TS)

Thus, we have proved that we have an inclusion as follows:

B(H)∗ ⊂ B(H)◦

(3) Summing up, from (1) and (2) we obtain that we have an equality as follows, which
proves the first assertion in the statement:

B(H)∗ = B(H)◦

(4) It remains to prove that B(H) is indeed the dual of B(H)∗. For this purpose, we
use the above identification, which ultimately identifies B(H)∗ with the space of trace
class operators B1(H). So, assume that we have a linear form, as follows:

f : B1(H)→ C
It is then routine to show that f must come from evaluation on a certain operator

T ∈ B(H), and this leads to the conclusion that B(H) is indeed the dual of B(H)∗. �

More generally now, for the arbitrary von Neumann algebras A ⊂ B(H), we have:

Theorem 9.27. Given a von Neumann algebra A ⊂ B(H), if we set

A∗ =
{
f : A→ C, weakly continuous

}
regarded as a linear subspace, A∗ ⊂ A∗, of the usual dual, given by:

A∗ =
{
f : A→ C, norm continuous

}
then we have the duality formula A = (A∗)

∗, in the usual Banach space sense.

Proof. This can be proved in several steps, as follows:

(1) First of all, we know from the above that the result holds for the von Neumann
algebra A = B(H) itself, in the sense that we have:

B(H) = (B(H)∗)
∗
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(2) The point now is that for any von Neumann subalgebra A ⊂ B(H), or more
generally for any weakly closed linear subspace A ⊂ B(H), we have an equality as follows,
coming as a consequence of the Hahn-Banach theorem:

A = A⊥⊥

(3) Thus, modulo some standard algebra, and some standard identifications for quo-
tient spaces and their duals, we are led to the conclusion in the statement. �

In fact, we have the following result, due to Sakai:

Theorem 9.28. The von Neumann algebras are exactly the C∗-algebras which have a
predual, in the above sense.

Proof. This is a variation of the above, which caps the above series of results, and
closes any further discussions, and for details here, we refer to Sakai’s book [74]. �

There are many other things that can be said, of purely abstract nature, on the von
Neumann algebras. We will be back to this, from time to time, in what follows.

9e. Exercises

Things have been quite tricky in this chapter, with a number of detours, and by
avoiding some difficulties, and as unique exercise, which is quite difficult, we have:

Exercise 9.29. Look up and learn von Neumann’s reduction theory, stating that given
a von Neumann algebra A ⊂ B(H), if we write its center as

Z(A) = L∞(X)

then we have a decomposition as follows, with the fibers Ax being factors,

A =

∫
X

Ax dx

and then write down a brief account of what you learned.

This is something very fundamental and instructive, because it provides us with a
whole new point of view on the factors, and in particular justifies the name “factors”. We
will be actually back to this later on in this book, but only under the assumption that
the algebra has a trace, tr : A→ C, which simplifies a number of things.



CHAPTER 10

Finite factors

10a. Type II factors

In this chapter we go for the real thing, namely the study of the II1 factors, following
the work of Murray and von Neumann [60], [61], [62], [86], [87], which is the basis
for everything more advanced, in relation with operator algebras. This material is old
and classical, beautiful, exciting, and well-understood, and can be learned from any von
Neumann algebra book. In what concerns us, we will only present the very basic theory
of the II1 factors, and with the idea in mind for using them later for doing subfactors a
la Jones, and we will mainly follow the simplified approach from Jones’ book [49], with
sometimes a look into Blackadar [20], both books that we recommend for more.

Let us first talk about factors. There are several possible ways of introducing them, and
dividing them into several classes, for further study. All this can be less or more technical,
depending on taste. In what concerns us, we will use a rather intuitive approach. To be
more precise, the general idea, which is quite natural, not based on anything advanced,
is that among the von Neumann algebras A ⊂ B(H), of particular interest are the “free”
ones, having trivial center, Z(A) = C. These algebras are called factors:

Definition 10.1. A factor is a von Neumann algebra A ⊂ B(H) whose center

Z(A) = A ∩ A′

which is a commutative von Neumann algebra, reduces to the scalars, Z(A) = C.

This notion is something that we already met, in chapter 9. As explained there, there
are several possible motivations for the study of factors, as follows:

(1) At the intuitive level, the condition Z(A) = C is somehow opposite to the condition
Z(A) = A defining the commutative von Neumann algebras. Thus, the factors are the
von Neumann algebras which are “free”, meaning as far as possible from the commutative
ones. Equivalently, when writing A = L∞(X), the quantum spaces X are “free”.

(2) At a more advanced level, all this comes as well from the reduction theory of
von Neumann [88], stating that when writing the center of a von Neumann algebra as
Z(A) = L∞(X), the whole algebra decomposes as A =

∫
X
Ax dx, with the fibers Ax being

factors. Thus, we can see why the factors are called factors. More on this later.

225
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Moving ahead now, as explained time and again throughout this book, for a variety
of reasons, which can be elementary or advanced, mathematical or physical, and also
objective and subjective, let us mention this too, we are mostly interested in the case
where our von Neumann algebras have traces, tr : A → C. And in relation with factors,
leaving aside the somewhat trivial case A = MN(C), we are led in this way to:

Definition 10.2. A II1 factor is a von Neumann algebra A ⊂ B(H) which:

(1) Is infinite dimensional, dimA =∞.
(2) Has trivial center, Z(A) = C.
(3) Has a trace tr : A→ C.

Here the order of the axioms is a bit random, with any of the possible 3! = 6 choices
making sense, and corresponding to a slightly different vision on what the II1 factors truly
are. The above order was chosen for futile, typographical reasons, in decreasing order of
what is to be said, but for the fun, let us interpret it, philosophically. With (1) we are
making it clear that we are not here for revolutionizing linear algebra. Then we (2) we
adhere to Definition 10.1, and to what was said next about it. And finally with (3) we
adhere to the above tricky principle, that von Neumann algebras must have traces.

More seriously now, and leaving aside anything subjective, the above definition is
motivated by the heavy classification work of Murray, von Neumann and Connes [24],
[25], [60], [61], [62], [86], [87], [88], whose conclusion is more or less that everything in
von Neumann algebra reduces, via some fairly complicated procedures, we should mention
that, to the study of the II1 factors. With the mantra here being:

Fact 10.3. The II1 factors are the building blocks of the whole von Neumann algebra
theory.

To be more precise, this mantra, that we will get to understand later on, is some-
thing widely agreed upon, at least among operator algebra experts who are familiar with
von Neumann algebras, and with this agreement being something great. What remains
controversial, however, is how to start playing with these Lego bricks that we have:

(1) A first option is that of adding the matrix algebras MN(C), not to be forgotten,
and then stacking together such Lego bricks. According to the von Neumann reduction
theory, this leads to the von Neumann algebras having traces, tr : A→ C.

(2) A second option, perhaps even more playful, is that of taking crossed products of
such Lego bricks by their automorphisms scaling the trace, or performing more general
constructions inspired by advanced ergodic theory. This leads to general factors.

(3) And the third option is that of being a bad kid, or perhaps some kind of nerd,
engineer in the becoming, and picking such a Lego brick, or a handful of them, and
breaking them, see what’s inside. Good option too, and more on this later.
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Getting to work now, in practice, and forgetting about reduction theory, which raises
the possibility of decomposing any tracial von Neumann algebra into factors, in order
to obtain explicit examples of II! factors, it is not even clear that such beasts exist.
Fortunately the group von Neumann algebras are there, and we have the following result,
which provides us with some examples of II1 factors, to start with:

Theorem 10.4. The center of a group von Neumann algebra L(Γ) is

Z(L(Γ)) =

{∑
g

λgg
∣∣∣λgh = λhg

}′′
and if Γ 6= {1} has infinite conjugacy classes, in the sense that∣∣∣{ghg−1|g ∈ G}

∣∣∣ =∞ , ∀h 6= 1

with this being called ICC property, the algebra L(Γ) is a II1 factor.

Proof. There are two assertions here, the idea being as follows:

(1) Consider a linear combination of group elements, which is in the weak closure of
C[Γ], and so defines an element of the group von Neumann algebra L(Γ):

a =
∑
g

λgg

By linearity, this element a ∈ L(Γ) belongs to the center of L(Γ) precisely when it
commutes with all the group elements h ∈ Γ, and this gives:

a ∈ Z(A) ⇐⇒ ah = ha

⇐⇒
∑
g

λggh =
∑
g

λghg

⇐⇒
∑
k

λkh−1k =
∑
k

λh−1kk

⇐⇒ λkh−1 = λh−1k

Thus, we obtain the formula for Z(L(Γ)) in the statement.

(2) We have to examine the 3 conditions defining the II1 factors. We already know,
from chapter 7 above, that the group algebra L(G) has a trace, given by:

tr(g) = δg,1

Regarding now the center, the condition λgh = λhg that we found is equivalent to the
fact that g → λg is constant on the conjugacy classes, and we obtain:

Z(L(Γ)) = C ⇐⇒ Γ = ICC

Finally, assuming that this ICC condition is satisfied, with Γ 6= {1}, then our group
Γ is infinite, and so the algebra L(Γ) is infinite dimensional, as desired. �
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In order to look now for more examples of II1 factors, an idea would be that of
attempting to decompose into factors the group von Neumann algebras L(Γ), but this is
something difficult, and in fact we won’t really exit the group world in this way. Difficult
as well is to investigate the factoriality of the von Neumann algebras of discrete quantum
groups L(Γ), because the basic computations from the proof of Theorem 10.4 won’t extend
to this setting, where the group elements g ∈ Γ become corepresentations g ∈MN(L(Γ)).
Despite years of efforts, it is presently not clear at all what the “quantum ICC” condition
should mean, and the problem comes from this. But more on this later.

In short, we have to stop here the construction of the examples, and Theorem 10.4
will be what we have, at least for the moment. With this being actually not a big issue,
the group factors L(Γ) being known to be quite close to the generic II1 factors.

Getting away now from the above difficulties, let us go back to the abstract II1 factors,
as axiomatized in Definition 10.2 above. In order to investigate them, the idea will be
that from chapter 9, namely looking at the projections, and their equivalence classes. In
the case of the II1 factors, as a first interesting remark, the presence of the trace trivializes
the proof of the main result that we know about projections, as follows:

Theorem 10.5. Given two projections p, q ∈ A in a II1 factor, we have

p � q or q � p

and so � is a total order on the equivalence classes of projections p ∈ A.

Proof. This is something that we know from chapter 9, which actually holds for any
factor, with the only non-trivial part being the following implication:

p � q, q � p =⇒ p ' q

But this is clear in the present II1 factor setting, by using the trace. �

The above theorem and proof, which is remarkable, was first in a series of mysteries,
in what concerns the special case of the II1 factors. More such mysteries to follow. In
order to study now the trace of the II1 factors, we will need:

Proposition 10.6. Given a weakly closed left ideal I ⊂ A in a von Neumann algebra,
there exists a unique projection p ∈ A such that:

I = Ap

Moreover, if I ⊂ A is assumed to be a two-sided ideal, then p ∈ Z(A).

Proof. We have several things to be proved, the idea being as follows:

(1) Given an ideal I ⊂ A as in the statement, consider the following intersection:

I ∩ I∗ ⊂ A
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This is a weakly closed non-unital ∗-subalgebra of A, so if we denote by p ∈ A its
largest projection, or unit, then we have an inclusion Ap ⊂ I.

(2) Conversely now, let us pick x ∈ I. By polar decomposition we can write x = u|x|,
and we have the following implications, which prove the reverse inclusion I ⊂ Ap:

x ∈ I =⇒ |x| = u∗x ∈ I
=⇒ |x| ∈ I ∩ I∗

=⇒ |x|p = |x|
=⇒ x = u|x| = u|x|p ∈ Ap

(3) The uniqueness assertion is clear from the comparison theorem for projections.

(4) Regarding now the last assertion, assume that I ⊂ A is a two-sided weakly closed
ideal. Then for any unitary u ∈ A we have:

I = uIu∗ =⇒ uIu∗ = Ap

=⇒ I = Aupu∗

Thus by uniqueness we obtain upu∗ = p, and so p ∈ Z(A), as desired. �

As a first main result now regarding the II1 factors, following the “number IV” paper
of Murray and von Neumann [62], which by the way is a must-read, we have:

Theorem 10.7. Given a II1 factor A, any weakly continuous positive trace

tr : A→ C
is automatically faithful.

Proof. Consider the null space of the trace, which is by definition:

I =
{
x ∈ A

∣∣∣tr(x∗x) = 0
}

We have the following inequality, which shows that I is a left ideal:

x∗a∗ax ≤ ||a||2x∗x
Now by using the trace condition tr(ab) = tr(ba), we conclude that I is a two-sided

ideal. Also, the Cauchy-Schwarz inequality gives:

tr(x∗x) = 0 ⇐⇒ tr(xy) = 0,∀y ∈ A
We conclude from this that I is an intersection of kernels of weakly closed functionals,

which are weakly closed, and so it is weakly closed. Thus the last assertion in Proposition
10.6 applies, and produces a projection p ∈ Z(A) such that:

I = Ap

Now since A was assumed to be a factor, we have Z(A) = C. Thus p = 0, and so the
null ideal of the trace is I = {0}, and so our trace tr is faithful, as desired. �
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Our goal now will be that of proving that the trace on a II1 factor is unique, and takes
on projections any value in [0, 1]. Let us start with a technical result, as follows:

Proposition 10.8. Given a II1 factor A, the traces of the projections

tr(p) ∈ [0, 1]

can take arbitrarily small values.

Proof. Consider the set formed by all values of the trace on the projections:

S =
{
tr(p)

∣∣∣p2 = p = p∗ ∈ A
}

We want to prove that the following number equals 0:

c = inf(S − {0})
In order to do so, assume by contradiction c > 0, pick ε > 0 small, and pick a

projection p ∈ A such that the following condition is satisfied:

tr(p) < c+ ε

Since we are in a II1 factor, this projection p ∈ A cannot be minimal, and so we can
find another projection q ∈ A satisfying q < p. Now observe that we have:

tr(p− q) = tr(p)− tr(q)
≤ tr(p)− c
≤ ε

Thus with ε < c we obtain a contradiction, and so c = 0, as desired. �

In order to prove our next main result, we will need as well:

Proposition 10.9. Given a II1 factor A on a Hilbert space H and a projection p ∈ A,
the von Neumann algebra pAp is a II1 factor on the Hilbert space pH.

Proof. We have to prove that the von Neumann algebra pAp has a trace, and is
infinite dimensional, and these two properties can be proved as follows:

(1) In what regards the trace, we know that the trace tr : A→ C restricts to a trace
tr : pAp→ C, which must be nonzero, as desired.

(2) In what regards the infinite dimensionality, this follows from the fact that a minimal
projection in pAp would be minimal in A, which is impossible. �

Still following the “number IV” paper of Murray and von Neumann [62], we can now
formulate a second main result regarding the II1 factors, as follows:

Theorem 10.10. Given a II1 factor A, the traces of the projections

tr(p) ∈ [0, 1]

can take any values in [0, 1].
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Proof. Given a number c ∈ [0, 1], consider the following set:

S =
{
p2 = p = p∗ ∈ A

∣∣∣tr(p) ≤ c
}

This set satisfies the assumptions of the Zorn lemma, and so by this lemma we can
find a maximal element p ∈ S. Assume by contradiction that we have:

tr(p) < c

The point now is that by using Proposition 10.8 and Proposition 10.9, we can slightly
enlarge the trace of p, and we obtain a contradiction, as desired. �

As a third and last main result regarding the II1 factors, also from [62], we have:

Theorem 10.11. The trace of a II1 factor

tr : A→ C

is unique.

Proof. This can be proved in many ways, a standard one being that of proving that
any two traces agree on the projections, as a consequence of the above results:

(1) Assume indeed that we have a second trace tr′ : A→ C. Since A is generated by
its projections, it is enough to show that we have tr = tr′ on projections.

(2) As a first observation, since traces on matrix algebras are unique, we obtain that
we have tr = tr′ on the projections p ∈ A having rational trace, tr(p) ∈ Q.

(3) So, let us pick p ∈ A having non-rational trace, tr(p) /∈ Q, and prove that we have
tr(p) = tr′(p). The idea will be that of using the result for the projections having rational
traces, applied to an infinite direct sum of projections, converging to p.

(4) To be more precise, assume that we have constructed our sequence pi → p up to
order n ∈ N, and let us try to construct pn+1. The idea is to use the following algebra:

An = (p− pn)A(p− pn)

(5) Indeed this algebra is a II1 factor, and we can choose inside it a projection pn+1

satisfying pn ≤ pn+1 ≤ p, such that tr = tr′ on it, and such that:

tr(p− pn+1) ≤ 1

2
· tr(p− pn)

(6) According to our choices for these projections pn, we have:

p =
∞∨
n=1

pn

Thus when evaluating tr, tr′ on p we obtain the same result, as desired. �
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In what regards the examples, we have so far the group von Neumann algebras L(Γ),
with Γ being an ICC group. In certain cases, it is possible to say more about all the
above, and in particular about the projections, for instance with quite explicit procedures
for constructing projections p ∈ L(Γ) having an arbitrary prescribed trace x ∈ [0, 1]. We
will be back to this later, in chapter 11 below, when dicussing more in detail the group
von Neumann algebras L(Γ), and their quantum group generalizations.

10b. Standard form

We have seen that the II1 factors are very interesting objects, naturally upgrading
the matrix algebras MN(C), which are type I factors. From this perspective, a II1 factor
A ⊂ B(H) is not really in need of the ambient Hilbert space H, and the question of
“representing” it appears. We will discuss this question, in two steps:

(1) A first question is that of understanding the possible embeddings A ⊂ B(H),
with H being a Hilbert space. The main result here will be the construction of
a numeric invariant dimAH, called coupling constant.

(2) A second question is that of understanding the possible embeddings A ⊂ B, with
B being another II1 factor. By using the coupling constant for both A,B we will
construct a numeric invariant [B : A], called index.

We will discuss here (1), and leave (2) for later, towards the end of this book. In order
to get started, let us formulate the following definition:

Definition 10.12. Given a von Neumann algebra A with a trace tr : A → C, the
emdedding

A ⊂ B(L2(A))

obtained by GNS construction is called standard form of A.

Here we use the GNS construction, explained in chapter 7 above. As the name in-
dicates, the standard representation is something “standard”, to be compared with any
other representation A ⊂ B(H), in order to understand this latter representation.

As already seen in chapter 7, the GNS construction has a number of unique features,
that can be exploited. In the present setting, the main result is as follows:

Theorem 10.13. In the context of the standard representation we have

A′ = JAJ

with J : L2(A)→ L2(A) being the antilinear map given by T → T ∗.

Proof. Observe first that any T ∈ A can be regarded as a vector T ∈ L2(A), to which
we can associate, in an antilinear way, the vector T ∗ ∈ L2(A). Thus we have indeed an



10B. STANDARD FORM 233

antilinear map J as in the statement. In terms of the standard cyclic and separating
vector Ω for the GNS representation, the formula of this formula J is:

J(xΩ) = x∗Ω

(1) Our first claim is that we have the following formula:

< Jξ, Jη >=< ξ, η >

Indeed, with ξ = xΩ and η = yΩ, we have the following computation:

< Jξ, Jη > = < yx∗Ω,Ω >

= tr(yx∗)

= < ξ, η >

(2) Our second claim is that we have the following formula:

JxJ(yΩ) = yx∗Ω

Indeed, this follows from the following computation:

JxJ(yΩ) = J(xy∗Ω)

= yx∗Ω

(3) Our claim now is that we have an inclusion as follows:

JAJ ⊂ A′

Indeed, this follows from the formula obtained in (2) above.

(4) In order to prove the reverse inclusion, our claim is that for x ∈ A′ we have:

JxΩ = x∗Ω

Indeed, this follows from the following computation, valid for any y ∈ A:

< JxΩ, yΩ > = < JyΩ, xΩ >

= < y∗Ω, xΩ >

= < Ω, xyΩ >

= < x∗Ω, yΩ >

(5) Our claim now is that the following formula defines a trace on A′:

Tr(x) =< xΩ,Ω >
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Indeed, for any two elements x, y ∈ A′ we have:

< xyΩ,Ω > = < yΩ, x∗Ω >

= < yΩ, JxΩ >

= < xΩ, JyΩ >

= < xΩ, y∗Ω >

= < yxΩ,Ω >

(6) We can now finish the proof. Indeed, by using the trace constructed in (5), we can
apply our results obtained so far to A′, and we obtain JA′J ⊂ A, as desired. �

As a basic illustration for the above result, we have:

Theorem 10.14. The commutant of a von Neumann group algebra L(Γ), which is
obtained by definition by using the left regular representation, is the von Neumann group
algebra R(Γ), obtained by using the right regular representation.

Proof. This is indeed clear from Theorem 10.13 above. Observe that, as a conse-
quence, the center of a group von Neumann algebra appears as follows:

Z(L(Γ)) = L(Γ) ∩R(Γ)

We will be back to this in chapter 11 below, when doing reduction theory. �

As another application of the standard representation, let us go back to the uniquess
of the trace, that we know from Theorem 10.11. There are as well several alternative
proofs for this fact, which are all instructive. As a first such statement and proof, which
is something quite beautiful, and also technically very useful, we have:

Theorem 10.15. Given a II1 factor A, and an element a ∈ A, we have the following
Dixmier averaging property:

span
{
uau∗

∣∣∣u ∈ UA}w

∩ C1 6= ∅

In particular, the II1 factor trace tr : A→ C is unique.

Proof. We use the basic theory of the regular representation A ⊂ L2(A), with respect
to the given trace tr : A→ C, explained above. The proof goes as follows:

(1) Given an element a ∈ A, consider the space in the statement, obtained as the weak
closure of the space spanned by the spinned versions of a, namely:

Ka = span
{
uau∗

∣∣∣u ∈ UA}w

This linear space Ka ⊂ A is by definition weakly closed, and it follows that the subset
KaΩ ⊂ L2(A), where Ω ∈ L2(A) is the canonical trace vector, is a weakly closed convex
subset. In particular, we see that KaΩ ⊂ L2(A) is a norm closed convex subset.
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(2) In view of this, we can consider the unique element b ∈ Ka having the property
that bΩ has a minimal norm. We have then the following formula, for any unitary u ∈ UA,
where J : L2(A)→ L2(A) is the standard antilinear map, given by T → T ∗:

||uJuJbΩ|| = ||bΩ||
By uniqueness of b, it follows that for any unitary u ∈ UA, we have:

uJuJbΩ = bΩ

But this shows that for any unitary u ∈ UA, we have:

ubu∗ = b

We conclude that we have b ∈ C1, and this proves the first assertion.

(3) Regarding now the second assertion, consider an arbitrary trace tr : A → C. By
using tr(uau∗) = tr(a), we conclude that this trace is constant on the following set:

Ka = span
{
uau∗

∣∣∣u ∈ UA}w

Now by using the first assertion, we conclude that we have the following formula:

span
{
uau∗

∣∣∣u ∈ UA}w

∩ C1 =
{
tr(a)1

}
Summarizing, we have obtained a purely algebraic formula for our trace tr : A → C,

and it follows that this trace is indeed unique, as claimed. �

In relation with the above, let us mention that there is as well a third proof for the
uniqueness of the trace, due to Yeadon, based on nothing or almost, meaning the definition
of the II1 factors, and some abstract functional analysis. For more on all this, basic theory
of the II1 factors, we refer to the standard operator algebra books, with some good choices
here being the books of Connes [26], Jones [49] and Blackadar [20].

In what concerns us, we will be back to more generalities regarding the II1 factors,
with this time some general theory regarding their representations inside other II1 factors,
A ⊂ B, after taking a short break, and looking for examples of such factors.

10c. Basic examples

Before developing more general theory for the II1 factors, let us discuss the examples.
We have so far only one class of examples, namely the group von Neumann algebras L(Γ),
which are II1 factors precisely when the discrete groups Γ have the ICC property. This
suggests doing several things, in order to have more examples, as follows:

(1) A first idea is that of looking at the von Neumann algebras of discrete quantum

groups, A = L(Γ). Indeed, we can write A = L∞(G), with G = Γ̂ being the compact
quantum group dual to Γ, and so we are into familiar territory, namely that of the
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Woronowicz algebras, or rather of their weak closures, developed in chapter 7. However,
despite years of efforts, no one really knows what “quantum ICC” should mean.

(2) Along the same lines, and a bit more modestly, a natural conjecture would be
that if a compact quantum Lie group G ⊂ U+

N appears as a “liberation” of a classical
group Gclass ⊂ UN , in the technical liberation sense explained in chapters 7-8, then the
corresponding von Neumann algebra A = L∞(G) should be a II1 factor. However, while
there are many known such results, no one knows how to do this in general.

(3) As a variation of the above freeness conjecture, which is more general, and takes
us away from the group algebras, a conjecture would be that if a homogeneous space
X = G/H, or more general manifold X, appears as a “liberation” of a homogeneous
space Xclass = Gclass/Hclass, or of a more general manifold Xclass, then the corresponding
von Neumann algebra A = L∞(X) should be a II1 factor. This is difficult as well.

(4) Along the same lines, but having this time von Neumann’s reduction theory results
in mind, we have the question of understanding how the various algebras considered above,

namely L(Γ) with Γ being a discrete group, or L(Γ) = L∞(G) with Γ = Ĝ being a discrete
quantum group, or L∞(X), with X = G/H being a quantum homogeneous space, or a
more general quantum manifold, decompose as sums of II1 factors. Difficult, again.

Summarizing, we have many interesting questions here, which are all related to each
other, and which are all difficult, and with the Holy Grail being the reduction theory for
the algebras of type A = L∞(X), with X being a quantum manifold. We will be back to
some of these questions in chapter 11 below, when talking about reduction theory.

Fortunately, the above questions (1-2-3-4), all difficult, are not the only possible ones,
and we have as well a series of alternative questions (5-6-7-8), also inspired by the group
von Neumann algebras L(Γ), and which are supposedly easier, as follows:

(5) A group von Neumann algebra L(Γ) can be thought of as coming from the trivial
action Γ y {.}, and the question is that of investigating von Neumann algebras associated
to more general actions, Γ y X, by using various crossed product techniques.

(6) There are many natural examples of compact groups G acting on von Neumann
algebras P , and the question is that of understanding under which exact assumptions on
the action Gy P , the corresponding fixed point algebra PG is a factor.

(7) There are as well many examples of discrete groups Γ acting on von Neumann
algebras R, and the question is that of understanding under which exact assumptions on
the action Gy R, the corresponding crossed product algebra Ro Γ is a factor.
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(8) Finally, the above questions are related to each other, and even more general
questions come by looking at actions of compact quantum groups G, or discrete quantum
groups Γ, on various quantum spaces X, or von Neumann algebras P or R.

All this is good news, so work for us to be done here. In what follows we will discuss
a bit the questions (1-2-3-4) above, with some general conjectures and comments. Then
we will discuss, a bit more in detail, (5-6-7-8), following some standard work of Popa,
Wassermann and others. In order to get started, in connection with (1-2-3-4), let us first
talk about free quantum groups, as a continuation of the material from chapters 7-8. The
various combinatorial considerations there lead to the following notion, from [16]:

Definition 10.16. Given an easy group G ⊂ UN , coming from a category of partitions

D = (D(k, l))

its free version is the easy quantum group G+ ⊂ U+
N coming from the following category:

D− = D ∩NC
In this case, we also say that the algebra L∞(G+) is the free version of L∞(G).

With this definition in hand, the conjecture would be that the von Neumann algebras
of type L∞(G+) are factors. However, although verifications of this conjecture abound,
it is not clear how to attack the question, in general. See [21], [79], [81], [82].

As a first observation, the easiness condition on G, as explained in chapter 7, implies
that this group appears as an intermediate object, as follows:

SN ⊂ G ⊂ UN

Regarding now its liberation G+, the categorial condition D− = D∩NC which defines
it tells us that this must appear as an intermediate object, as follows:

S+
N ⊂ G+ ⊂ U+

N

With this observation in hand, which is something quite trivial, it is tempting to
simply forget about easiness, and formulate the following definition:

Definition 10.17. A quantum group G ⊂ U+
N is called free when it appears as follows:

S+
N ⊂ G+ ⊂ U+

N

In this case, we also say that the algebra L∞(G) is free.

With this new definition in hand, the conjecture would be that the von Neumann
algebras L∞(G) which are free in the above sense are factors. But again, the subject
remains quite technical, and it is not clear how to attack the question, in general.

Yet another approach comes from the notion of free complexification. This is a quite
tricky operation, which makes sense for quantum groups only, as follows:
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Definition 10.18. The free complexification of a Woronowicz algebra (A, u) with

u ∈MN(A) is the Woronowicz algebra (Ã, ũ) obtained by setting

Ã =< zuij >⊂ C(T) ∗ A

ũ = zu ∈MN(Ã)

where z ∈ C(T) is the standard generator, given by x→ x for any x ∈ T.

The point indeed with this notion is that, in the context of the liberation operation
constructed in Definition 10.16, we usually have embeddings as follows:

G ⊂ G̃ ⊂ G+

Thus, we are led into a conjecture about free complexifications, as follows:

Conjecture 10.19. Given a closed subgroup G ⊂ U+
N , the von Neumann algebra

A = L∞(G̃)

of L∞ functions on its free complexification G̃ ⊂ U+
N is a factor.

Importantly, this latter conjecture is something far more general and flexible than
everything coming from easiness. For instance the conjecture makes sense for any group

dual G = Γ̂, and we even have a positive result here, as follows:

Theorem 10.20. The factoriality conjecture for free complexifications holds for any

group dual, G = Γ̂, with Γ =< g1, . . . , gN > being a discrete group.

Proof. Let us go back to the construction in Definition 10.18. By using discrete

quantum group notations for the algebras involved, namely A = C∗(Γ) and Ã = C∗(Γ̃),
and also by replacing the algebra C(T) with the algebra C∗(Z), which is isomorphic to it,
we conclude that the free complexification operation appears as follows:

C∗(Γ̃) =< zuij >⊂ C∗(Z) ∗ C∗(Γ)

ũ = zu ∈MN(C∗(Γ̃))

Now in the usual group dual case, where Γ =< g1, . . . , gN > is a usual discrete group,

this shows that Γ̃ is a usual discrete group as well, appearing as follows:

Γ̃ =< zgi >⊂ Z ∗ Γ

But such discrete groups are easily seen to have the ICC property, and so the corre-

sponding von Neumann algebras L(Γ̃) are factors, as claimed. �

In general, it is quite unclear how to approach Conjecture 10.19, but everything tends
to point to the free probability techniques from chapter 8. Indeed, by using standard
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results about the Haar functionals of free products we see that, in the context of Definition
10.18, we have an embedding of von Neumann algebras, as follows:

L∞(G̃) ⊂ L∞(T) ∗ L∞(G)

Alternatively, in terms of the associated discrete quantum groups, as in the proof of
Theorem 10.20, we have an embedding of von Neumann algebras, as follows:

L(Γ̃) ⊂ L(Z) ∗ L(Γ)

It is possible to further build along these lines, with a purely free probabilistic formula-
tion of the factoriality question. However, in practice, all this remains quite complicated.
Illustrating here is the simplest case, that of the group G = UN , with the free complexi-
fication and factoriality questions being noted since [5], but solved there only at N = 2,
and with the general case, N ∈ N, being solved only much later, in [82].

Finally, as a last topic regarding the factoriality of the free versions and free complex-
ifications, let us discuss now the general quantum manifold case. Generally speaking, the
conjecture here would be that if a quantum manifold X is free, in some suitable algebraic
sense, then its associated von Neumann algebra L∞(X) should be a factor.

However, things are quite tricky here, and even formulating a precise conjecture in this
sense turns to be a non-trivial task. Indeed, in order to talk about L∞(X) we must be
able to integrate over X, and so our quantum manifold X must be Riemannian, in some
suitable sense. But the most known and straightforward axiomatization of the quantum
Riemannian manifolds, due to Connes [26], does not apply to the free case, precisely, and
so we are left with some difficult axiomatization questions here.

Moving ahead from these difficulties, one idea, more modest, would be that of talking
about quotient spaces X = G/H only, with H ⊂ G being compact quantum groups,
because such spaces can be shown to have Haar measures, so at least our conjecture
would make sense. However, there are some difficulties here too, because the free spheres
discussed in chapter 7, which normally should be our main examples here, do not exactly
appear as such quotient spaces, due to a number of algebraic and analytic issues.

The solution to these difficulties, or at least the best solution known so far, comes
from the notion of affine homogeneous space, which is as follows:

Definition 10.21. An affine homogeneous space over a closed subgroup G ⊂ U+
N is a

closed subset X ⊂ SN−1
C,+ , together with an index set I ⊂ {1, . . . , N}, such that

α(xi) =
1√
|I|

∑
j∈I

uji , Φ(xi) =
∑
j

xj ⊗ uji

define morphisms of C∗-algebras, satisfying the condition (id⊗
∫
G

)Φ =
∫
G
α(.)1.
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This definition is something quite tricky. As a first obvservation, due to the above
explicit formulae for the maps α,Φ, the following conditions are satisfied:

(Φ⊗ id)Φ = (id⊗∆)Φ

(α⊗ id)Φ = ∆α

At the level of the examples, both the quotient spaces O+
N → SN−1

R,+ and U+
N → SN−1

C,+ ,
that we know from chapter 7, are affine in the above sense, with I = {1}. There are many
other examples, and things that can be said about the affine homogeneous spaces, and
getting back now to our von Neumann algebra questions, we can formulate:

Conjecture 10.22. Given an affine homogeneous space G→ X, the algebra

A = L∞(X̃)

of L∞ functions on its free complexification G̃→ X̃ is a factor.

This conjecture is something quite general, and having it formulated is certainly a
good thing. However, in what regards a potential proof, things are difficult here. For
more on all this, we refer to the noncommutative geometry book [7].

This was for our basic discussion of factoriality questions, in the free geometry setting.
There are some further things that can be said, on one hand in relation with reduction
theory, and on the other hand, in relation with various group actions, fixed point algebras,
and crossed products. We will be back to this on several occasions, in what follows.

10d. Coupling constant

Let us go back now to the general theory of the II1 factors, with the aim of talking
about representations of such II1 factors, inside the category of the II1 factors, A ⊂ B.
For this purpose we will need a key notion, called coupling constant.

In order to discuss the construction of the coupling constant, we will need some further
results on the type II factors, complementing those that we already have. The point indeed
is that the class of II factors, to be axiomatized later, and with this being not something
urgent, comprises, besides the II1 factors discussed above, the II∞ factors as well:

Definition 10.23. A II∞ factor is a von Neumann algebra of the form

B = A⊗B(H)

with A being a II1 factor, and with H being an infinite dimensional Hilbert space.

We should mention that there are several possible ways of defining the II∞ factors,
and the above definition is something rather intuitive, the point being that, once you
learn the theory of the II∞ factors, as we will do here, what you remember at the end of
the day is what has been said above, B = A⊗ B(H), with A being a II1 factor. Getting
started now, as a technically useful characterization of such factors, we have:
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Proposition 10.24. For an infinite factor B, the following are equivalent:

(1) There exists a projection p ∈ B such that pBp is a II1 factor.
(2) B is a II∞ factor.

Proof. This is something elementary, as follows:

(1) =⇒ (2) Assume indeed that p ∈ B is a projection such that pBp is a II1 factor.
We choose a maximal family of pairwise orthogonal projections {pi} ⊂ B satisfying pi ' p,
for any i, and we consider the following projection, which satisfies q � p:

q = 1−
∑
i

pi

Since the indexing set for our set of projections {pi} must be infinite, we can use a
strict embedding of this index set into itself, as to write a formula as follows:

1 = q +
∑
i

pi

� p0 +
∑
i 6=0

pi

� 1

Thus we have
∑

i pi ' 1, and we may further suppose that we have in fact:∑
i

pi = 1

Thus the family {pi} can be used in order to construct a copy B(H) ⊂ B, with
H = l2(N), and we must have B = A⊗B(H), with A being a II1 factor, as desired.

(2) =⇒ (1) This is clear, because when assuming B = A ⊗ B(H), as in Definition
10.23, we can take our projection p ∈ B to be of the form p = 1⊗ q, with q ∈ B(H) being
a rank 1 projection, and we have then pBp = A, which is a II1 factor, as desired. �

Getting back now to the original interpretation of the II∞ factors, from Definition
10.23, the tensor product writing there B = A⊗B(H) suggests tensoring the trace of the
II1 factor A with the usual operator trace of B(H). We are led in this way to:

Definition 10.25. Given a II∞ factor B, written as B = A⊗B(H), with A being a
II1 factor and with H being an infinite dimensional Hilbert space, we define a map

tr : B+ → [0,∞] , tr((xij)) =
∑
i

tr(xii)

where we have chosen a basis of H, as to have H ' l2(N), and so B(H) ⊂M∞(C).
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As an important observation, to start with, unlike in the II1 factor case, that of the
factor A, or in the I∞ factor case, that of the factor B(H), it is not possible to suitably
normalize the trace constructed above. This follows indeed from the results below.

On the positive side now, this trace that we constructed has all sorts of good properties,
that we can use for various purposes, which can be summarized as follows:

Proposition 10.26. The II∞ factor trace tr : B+ → [0,∞] constructed above has the
following properties:

(1) tr(x+ y) = tr(x) + tr(y), and tr(λx) = λtr(x) for λ ≥ 0.
(2) If xi ↗ x then tr(xi)→ tr(x).
(3) tr(xx∗) = tr(x∗x).
(4) tr(uxu∗) = tr(x) for any u ∈ UB.

Proof. All this is obvious, with (1) being clear from definitions, (2) and (3) being
elementary as well, and finally with (4) coming from (3), via uxu∗ = u

√
x ·
√
xu∗. �

As a main result now regarding the II∞ factor trace, we have:

Theorem 10.27. The II∞ factor trace tr : B+ → [0,∞] constructed above, when
restricted to the projections

tr : P (B)→ [0,∞]

induces an isomorphism between the totally ordered set of equivalence classes of projections
in B and the interval [0,∞].

Proof. We have several things to be checked here, as follows:

(1) Our first claim is that a projection p ∈ B is finite precisely when tr(p) <∞.

– Indeed, in one sense, assume that we have tr(p) <∞. If our projection p was to be
infinite, we would have a subprojection q ≤ p having the same trace as p, and so r = p−q
would be a projection of trace 0, which is impossible. Thus p is indeed finite.

– In the other sense now, assuming tr(p) =∞, we have to prove that p is infinite. For
this purpose, let us pick a projection q ≤ p having finite trace. Then r = p − q satisfies
tr(r) =∞, and so we can iterate the procedure, and we end up with an infinite sequence
of pairwise orthogonal projections, which are all smaller than p. But this shows that p
dominates an infinite projection, and so that p itself is infinite, as desired.

(2) Our second claim is that if p, q ∈ B are projections, with p finite, then:

p � q ⇐⇒ tr(p) = tr(q)

But this follows exactly as in the II1 factor case, discussed above.
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(3) Our third and final claim, which will finish the proof, is that any infinite projection
is equivalent to the identity. For this purpose, assume that p ∈ B is infinite. By definition,
this means that we can find a unitary u ∈ B such that:

uu∗ = p , u∗u ≤ p , uu∗ 6= p

But these conditions show that (un)iun is a strictly decreasing sequence of equivalent
projections, and by using this sequence we conclude that we have 1 � p, as desired. �

Moving ahead now, in order to further investigate the II∞ factors, we will need:

Theorem 10.28. Given a II1 factor A ⊂ B(H), there exists an isometry

u : H → L2(A)⊗ l2(N)

such that ux = (x⊗ 1)u, for any x ∈ A.

Proof. We use a standard idea, that we used many times before, namely an ampli-
fication trick. Given a II1 factor A ⊂ B(H), consider the following Hilbert space:

K = H ⊕ L2(A)⊗ l2(N)

Consider, as operators over this space K, the following projections:

p = id⊕ 0

q = 0⊕ id
Both these projections p, q belong then to A′, which is a type II∞ factor. Now since

q ∈ A′ is infinite, by Theorem 10.27 we can find a partial isometry u ∈ A′ such that:

u∗u = p

uu∗ ≤ q

Now let us represent this partial isometry u ∈ B(K) as a 2× 2 matrix, as follows:

u =

(
a b
c d

)
The above conditions u∗u = p and uu∗ ≤ q reformulate then as follows:

b∗b+ d∗d = 0

aa∗ + bb∗ = 0

We conclude that our partial isometry u ∈ B(K) has the following special form:

u =

(
0 0
c 0

)
But the operator c : H → l2(A)⊗ l2(N) that we found in this way must be an isometry,

and from u ∈ A′ we obtain ux = (x⊗ 1)u, for any x ∈ A, as desired. �
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As a basic consequence of the above result, which is something good to know, and
that we will use many times in what follows, we have:

Theorem 10.29. The commutant of a II1 factor is a II1 factor, or a II∞ factor.

Proof. This follows indeed from the explicit interpretation of the operator algebra
embedding A ⊂ B(H) of our II1 factor A, found in Theorem 10.28. �

Summarizing, we have an extension of the general theory of the II1 factors, developed
before, to the general case of the type II factors, which comprises by definition the II1

factors and the II∞ factors. All this is of course technically very useful.

With this discussion made, we are now in position of constructing the coupling con-
stant, which will eventually close the discussion regarding the representations of the II1

factors, and will lead as well to a whole number of new perspectives on the II1 factors.
The idea here will be that given a representation of a II1 factor A ⊂ B(H), we can try
to understand how far is this representation from the standard form, where H = L2(A),
from “above” or from “below”. In order to discuss this, let us start with:

Proposition 10.30. Given a II1 factor A ⊂ B(H), with its embedding into B(H)
being represented as above, in terms of an isometry

u : H → L2(A)⊗ l2(N) , ux = (x⊗ 1)u

the following quantity does not depend on the choice of this isometry u:

C = tr(uu∗)

Moreover, for the standard form, where H = L2(A), this constant takes the value 1.

Proof. Assume indeed that we have an isometry u as in the statement, and that we
have as well a second such isometry, of the same type, namely:

v : H → L2(A)⊗ l2(N)

vx = (x⊗ 1)v

We have then uu∗ = uv∗vu∗, and by using this, we obtain:

Cu = tr(uu∗)

= tr(uv∗vu∗)

= tr(vu∗uv∗)

= tr(vv∗)

= Cv

Thus, we are led to the conclusion in the statement. As for the last assertion, regarding
the standard form, this is clear from definitions, because here we can take u = 1. �
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As a conclusion to all this, given a II1 factor A ⊂ B(H), we know from Theorem 10.28
above that H must appear as an “inflated” version of L2(A). The corresponding inflation
constant is a certain number, that we can call coupling constant, as follows:

Definition 10.31. Given a representation of a II1 factor A ⊂ B(H), we can talk
about the corresponding coupling constant, as being the number

dimAH ∈ (0,∞]

constructed as follows, with u : H → L2(A)⊗ l2(N) isometry satisfying ux = (x⊗ 1)u:

dimAH = tr(uu∗)

For the standard form, where H = L2(A), this coupling constant takes the value 1.

This definition might seem a bit complicated, but things here are quite non-trivial,
and there is no way of doing something substantially simpler. Alternatively, we can define
the coupling constant via the following formula, after proving first that the number on
the right is indeed independent of the choice on a nonzero vector x ∈ H:

dimAH =
trA(PA′x)

trA′(PAx)

This latter formula was in fact the original definition of the coupling constant, by
Murray and von Neumann [62]. However, technically speaking, things are slightly easier
when using the approach in Definition 10.31. We will be back to this key formula of
Murray and von Neumann, with full explanations, in a moment. Let us start with:

Proposition 10.32. The coupling constant dimAH ∈ (0,∞] associated to a II1 factor
representation A ⊂ B(H) has the following properties:

(1) For the standard form, H = L2(A), we have dimAH = 1.
(2) For the usual representation on H = L2(A)⊗ l2(N), we have dimAH =∞.
(3) We have dimAH <∞ precisely when A′ is a II1 factor.
(4) We have additivity, dimA(⊕iHi) =

∑
i dimAHi.

(5) We have dimA(L2(A)p) = tr(p), for any projection p ∈ A.
(6) The coupling constant can take any value in (0,∞].

Proof. All these assertions are elementary, the idea being as follows:

(1) This is something that we already know, coming from definitions.

(2) This is something that comes from definitions too.

(3) This comes from the general properties of the II∞ factors, and their traces.

(4) Again, this is clear from the definition of the coupling constant.

(5) This follows by using u(x) = x⊗ ξ, with ξ ∈ l2(N) being of norm 1.

(6) This follows by starting with (5), and then making direct sums, as in (4). �
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At a more advanced level now, in relation with projections and compressions, and
getting towards the above-mentioned Murray-von Neumann approach, we have:

Proposition 10.33. We have the compression formula

dimpAp(pH) =
dimAH

trA(p)

valid for any projection p ∈ A.

Proof. We can prove this result in two steps, as follows:

(1) In the case where H = L2(A)q, with q ∈ A being a projection satisfying q ≤ p, we
can use the following unitary, intertwining the left and right actions of pAp:

L2(pAp)→ pL2(A)p , pxpΩ→ p(xΩ)p

Indeed, we obtain that the following algebras are unitarily equivalent:

pAp ⊂ B(pL2(A)q)

pAp ⊂ B(L2(pAp)q)

Thus, by using the formula (5) in Proposition 10.32 we obtain, as desired:

dimpAp(pH) = trpAp(q)

=
trA(q)

trA(p)

=
dimAH

trA(p)

(2) In the general case now, where H is arbitrary, the result follows from what we
proved above, and from the additivity property from Proposition 10.32 (4). �

With all these properties established, we can now recover, as a theorem, the original
definition of the coupling constant, due to Murray and von Neumann, as follows:

Theorem 10.34. Given a II1 factor A ⊂ B(H), with the commutant A′ ⊂ B(H)
assumed to be finite, the corresponding coupling constant is finite, given by

dimAH =
trA(PA′x)

trA′(PAx)

with the number on the right being independent of the choice on a nonzero vector x ∈ H.
In the case where A′ is infinite, the corresponding coupling constant is infinite.

Proof. There are several things to be proved here, the idea being as follows:

(1) We know from Proposition 10.32 (3) that we have dimAH < ∞ precisely when
the commutant A′ ⊂ B(H) is finite. Thus, we may assume that we are in this case.
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(2) Assuming so, we have the following formula, valid for any projection p ∈ A′, which
follows from the basic properties of the coupling constant, established above:

dimAp(pH) = trA′(p) dimAH

(3) Now with this formula in hand, the formula in the statement follows as well, once
again by doing a number of standard amplification and compression manipulations. �

As an illustration for all this, given an inclusion of ICC groups Λ ⊂ Γ, whose group
algebras are both II1 factors, we have the following formula:

dimL(Λ) L
2(Γ) = [Γ : Λ]

There are many other examples of explicit computations of the coupling constant, all
leading into interesting mathematics. We will be back to this.

Given a II1 factor A, let us discuss now the representations of type A ⊂ B, with
B being another II1 factor. This is a quite natural notion too, and perhaps even more
natural than the representations A ⊂ B(H) studied above, because we have previously
decided that the II1 factors B, and not the full operator algebras B(H), are the correct
infinite dimensional generalization of the usual matrix algebras MN(C).

This was for the philosophy, and one can of course agree or not with this. Or at least
agree or not at the present point of the presentation, because once we will get into the
structure of the subfactors A ⊂ B, which is something amazing, there is no way back.

Given an inclusion of II1 factors A ⊂ B, a first question is that of defining its index,
measuring how big is B compared to A. The first thought here goes into defining the
index of A ⊂ B as being a purely algebraic quantity, as follows:

N = dimAB

However, this is non-trivial, due to the fact that we are in the “continuous dimension”
setting, and so our algebraic intuition, where indices are always integers, will not help us
much. We will be back to this question later, with a technical solution to it.

In order to solve our index problem, a much better approach is by using the ambient
operator algebra B(H), or rather the ambient Hilbert space H, as follows:

Theorem 10.35. Given an inclusion of II1 factors A ⊂ B, the number

N =
dimAH

dimBH

is independent of the ambient Hilbert space H, and is called index.

Proof. The fact that the index of the subfactor A ⊂ B, as defined by the above
formula, is indeed independent of the ambient Hilbert space H, comes from the various
basic properties of the coupling constant, established in the above. �
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There are many examples of subfactors coming from groups, and every time we obtain
the intuitive index. More suprisingly now, Jones proved in [44] that the index, when
small, is in fact “quantized”, subject to the following unexpected restriction:

N ∈
{

4 cos2
(π
n

) ∣∣∣n ≥ 3
}
∪ [4,∞]

This is in fact part of a series of non-trivial results about the subfactors, due to Jones,
and also Ocneanu, Popa, Wassermann and others, and involving as well the Temperley-
Lieb algebra [80], and many more. We will be back to this later, with the whole last part
of the present book, chapters 13-16 below, being dedicated to subfactor theory.

10e. Exercises

In relation with the Murray-von Neumann theory, we have:

Exercise 10.36. Fully clarify the basic properties of the II∞ factors, and the related
construction of the coupling constant.

This is something that we already discussed in the above, but with a few details
missing, and the problem now is that of clarifying all this. You can either go through the
discussion which was made above, and come up with the missing details, or do something
alternative, based on the various historical comments given above.



CHAPTER 11

Reduction theory

11a. Preliminaries

Our purpose in this chapter is to discuss some key decomposition methods for the
von Neumann algebras, altogether called “reduction theory”. The whole subject is, quite
surprisingly, at the same time fundamental and very technical. Which makes the whole
thing, and the von Neumann algebra theory in general, stand as a bizarre discipline inside
pure mathematics, where fundamentals are either trivial, to be learned in undergraduate
or first year graduate school, or are longstanding conjectures, like the Riemann Hypoth-
esis. That is, reduction theory is not trivial, nor conjectural, and how can you think in a
healthy way about this. Probably by declaring yourself a physicist, only option.

To start with, the story with reduction theory is something complicated. Von Neu-
mann started to work on operator algebras in the 1930s, and became increasingly con-
vinced that these algebras should be subject to a reduction theory theorem, with his
interest in factors, which is obvious in his papers [60], [61], [62], [86], [87], basically com-
ing from this. However, he was not able to come at that time, during his prime years of
work, with a complete proof, and paper, on reduction theory. He only did that much later,
after a break involving other things, like the Manhattan Project, game theory, computers
and more, in his 1949 paper [88], written towards the end of his career.

Von Neumann’s main theorem in [88] is quite easy to formulate, as follows:

Fact 11.1 (Reduction theory). Given a von Neumann algebra A ⊂ B(H), if we write
its center Z(A) ⊂ A, which is a commutative von Neumann algebra, as

Z(A) = L∞(X)

with X being a measured space, then the whole algebra decomposes as

A =

∫
X

Ax dx

with the fibers Ax being von Neumann algebras with trivial center, Z(Ax) = C, or factors.

And isn’t this something which looks fundamental. As a first comment, we have
already seen an instance of such decomposition results in chapter 5, and with full details,

249
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when talking about finite dimensional algebras. Indeed, such algebras decompose, in
agreement with Fact 11.1, as direct sums of matrix algebras, as follows:

A =
⊕
x

Mnx(C)

More generally, it is possible to axiomatize a certain class of “type I algebras”, and
then show that these algebras appear as direct integrals of matrix algebras:

A =

∫
X

Mnx(C) dx

Observe in particular that in the case where the decomposition is isotypic, nx = N
for some N ∈ N, we obtain the random matrix algebras studied in chapter 6:

A = MN(L∞(X))

Beyond type I, however, things become quite complicated. Next in the hierarchy is
the general “finite case”, where the algebra is assumed to have a trace:

tr : A→ C
Here the existence of the trace simplifies a bit things, although these still remain

fairly complicated, and actually adds to the final result, in the form of the supplementary
formula, regarding its decomposition, the precise statement being as follows:

Fact 11.2 (Reduction theory, finite case). Given a von Neumann algebra A ⊂ B(H)
coming with a trace tr : A→ C, if we write its center Z(A) ⊂ A as

Z(A) = L∞(X)

with X being a measured space, then the whole algebra and its trace decompose as

A =

∫
X

Ax dx , tr =

∫
X

trx dx

with the fibers Ax being factors which are “finite”, in the sense that they have traces,
which in practice means that they can be usual matrix algebras, or II1 factors.

As already mentioned, while some tricks are potentially available here, coming from
the presence of the trace tr : A→ C, this remains something complicated. As for the most
general case, where the von Neumann algebra A ⊂ B(H) is taken arbitrary, corresponding
to Fact 11.1, this is something even more complicated, with the only possible tools coming
from advanced operator theory, and functional analysis.

So, this is the situation, and what to do now. We cannot explain the above, because
it is too complicated, but we cannot skip it either, because these are fundamentals. This
situation has been known to generations of mathematicians, starting with von Neumann
himself, who finished and published his reduction theory paper [88] long after developing
the basics of operator algebra theory. The various books written afterwards, including
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Blackadar [20], Connes [26], Dixmier [29], Jones [49], Kadison-Ringrose [52], Sakai [74],
Strătilă-Zsido [77] and Takesaki [78] did not arrange things, being either evasive, or way
too technical, not to say unreadable, on this subject.

The present book won’t be an exception to the rule. For the story, let me mention that
I learned myself reduction theory from Dixmier’s book [29], long ago, as a brave young
graduate student. But then I forgot. More recently, when starting writing the present
book, I tried to remember, but the literature on the subject, including von Neumann [88]
and Dixmier [29], with old notations, sytle and everything, including all that calligraphic
and Gothic letters, tons of subscripts, superscripts, bars, indices and so on, looks to me
quite unreadable. And so I tried to prove Fact 11.1 by myself, but failed. Then I tried to
prove the simpler Fact 11.2 by myself, and failed too. And finally I tried to prove Fact
11.2 in the particular case of quantum group algebras, and failed too.

Which is surely not a problem for me, during a lifetime career you certainly get used
to failures in research, and in teaching too, sometimes sleeping bad the night before,
and forgetting proofs in the middle of a class, and having to improvise. In what regards
you, however, the problem is considerably more serious, because if you want to do von
Neumann algebras, you will have to learn reduction theory from somewhere. And here,
I can only recommend reading the present chapter, which will be an introduction to all
this, from what old man remembers, and then doing what I did as a student, borrow
Dixmier [29] from the library, and read that by yourself. With all exercises done.

Getting back now to the present book and chapter, our plan in what follows will be
that of discussing a bit all this, reduction theory, notably with a study of examples:

(1) First we have the type I algebras, which are direct integrals of matrix algebras
Mnx(C), with the case nx = 1 corresponding to commutativity, the case nx ∈ N corre-
sponding to the “type I finite case”, and with the general case being nx ∈ N ∪ {∞}. At
the level of main examples, these come from finite groups and quantum groups.

(2) Then we have the type II algebras, where we can have both type I and type II
factors in the decomposition. Of particular interest is the “finite” case, where the algebra
is simply assumed to come with a trace, tr : A → C, and where the reduction theory
result is Fact 11.2, with the factors being matrix algebras MN(C), or II1 factors.

(3) Finally, we have the general type III case, with no assumption on the algebra
A ⊂ B(H), corresponding to Fact 11.1. Here the factors in the decomposition can be of
type I, or of type II, or neither of type I or II, which are called by definition of type III.
The interesting questions here regard the structure of the type III factors.

In order to get started, let us look at the commutative von Neumann algebras. Here
we have the following result, that we basically know from chapter 5:
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Theorem 11.3. The commutative von Neumann algebras are the algebras of type

A = L∞(X)

with X being a measured space. Thus, we formally have for them the formula

A =

∫
X

Ax dx

with the fibers Ax being trivial in this case, Ax = C, for any x ∈ X.

Proof. We have several assertions to be proved, the idea being as follows:

(1) In one sense, we must prove that given a measured space X, we can realize the
commutative algebra A = L∞(X) as a von Neumann algebra, on a certain Hilbert space
H. But this is something that can be done via multiplicity operators, as follows:

L∞(X) ⊂ B(L2(X))

(2) In the other sense, given a commutative von Neumann algebra A ⊂ B(H), we
must construct a certain measured space X, and an identification A = L∞(X). But this
can be done by writing our von Neumann algebra as follows:

A =< Ti >

Indeed, no matter what particular family of generators {Ti} we choose for our algebra
A, these generators Ti will be commuting normal operators. Thus the spectral theorem
for such families of operators, from chapter 3, applies and gives the result.

(3) In fact, by using the theory of projections from chapters 9-10, we can write our
commutative von Neumann algebra A ⊂ B(H) in singly generated form:

A =< T >

But this simplifies the situation, because the spectral theorem for normal operators,
from chapter 3, applies to our generator T , and gives the result.

(4) Finally, the last assertion, regarding the validity of the reduction theory result in
this case, is something trivial, and of course without much practical interest. �

Moving forward, the above result is not the end of the story with the commutative
von Neumann algebras, because we still have to understand how a given such algebra
A = L∞(X), or rather the weak topology isomorphism class of such an algebra, can be
represented as an operator algebra, over the various Hilbert spaces H:

L∞(X) ⊂ B(H)

But this can be again solved by writing our algebra as A =< T >, and then applying
the spectral theorem for normal operators, with the conclusion that the commutative von
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Neumann algebras are, up to spatial isomorphism, the algebras of the following form,
with X being a measured space, and with all this being up to a multiplicity:

L∞(X) ⊂ B(L2(X))

With these results in hand, we are now in position of better understanding the idea
behind von Neumann’s reduction theory. Indeed, given an arbitrary von Neumann algebra
A ⊂ B(H), the idea is to consider its center, and write it as follows:

Z(A) = L∞(X) ⊂ B(H)

The point is then that everything will decompose over the measured space X, and in
particular, the whole algebra A itself will decompose as a direct integral of fibers:

A =

∫
X

Ax dx

As already mentioned, we will only partly explain this in what follows, and by insisting
on examples. Also, we will do this slowly, following the type I, II, III hierarchy.

Before getting into this, however, let us explore some further perspectives opened by
the above results, which are quite sharp, regarding the commutative algebras. Given a
von Neumann algebra A ⊂ B(H), looking at the center Z(A) = A ∩ A′ is not the only
possible way of getting to commutative subalgebras, and we have as well:

Definition 11.4. Given a von Neumann algebra A ⊂ B(H), a commutative subalge-
bra B ⊂ A which is maximal, in the sense that there is no bigger commutative algebra

B ⊂ B′ ⊂ A

is called maximal commutative subalgebra (MCSA).

We should mention that it is quite common in the literature to call the commuta-
tive subalgebras “abelian”, and so the maximal commutative ones, MASA. However, the
term “abelian” is a bit unfortunate, with respect to our quantum space philosophy and
conventions in this book, and we will rather use instead the above terminology.

It is possible to say many interesting things about the MCSA, and skipping some
details here, if we want to further build on this notion, we are led to:

Definition 11.5. Given a von Neumann algebra A coming with a trace tr : A→ C,
assume that we have a pair of maximal commutative subalgebras

B,C ⊂ A

satisfying the following orthogonality condition, with respect to the trace:

(B 	 C1) ⊥ (C 	 C1)

We say then that B,C are orthogonal maximal commutative subalgebras.
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Here the scalar product is by definition < b, c >= tr(bc∗), and by taking into account
the multiples of the identity, the orthogonality condition reformulates as follows:

tr(bc) = tr(b)tr(c)

As explained by Popa in [68], the interest in Definition 11.5 comes from the fact that
a pair of orthogonal MCSA brings some sort of 2D orientation inside the von Neumann
algebra A, or at least inside the subalgebra < B,C >⊂ A generated by the MCSA. There
is also an obvious link with the notion of noncommutative independence discussed in
chapter 8. But more on all this later, in chapter 15 below, when doing subfactors.

As a “toy example”, we can try and see what happens for the simplest factor that we
know, namely the matrix algebra MN(C), endowed with its usual matrix trace. And in
this context, we have the following surprising result of Popa [68]:

Theorem 11.6. Up to a conjugation by a unitary, the pairs of orthogonal maximal
commutative subalgebras in the simplest factor, namely MN(C), are as follows,

A = ∆ , B = H∆H∗

with ∆ ⊂MN(C) being the diagonal matrices, and with H ∈MN(C) being Hadamard, in
the sense that |Hij| = 1 for any i, j, and the rows of H are pairwise orthogonal.

Proof. Any maximal commutative subalgebra in MN(C) being conjugated to ∆, we
can assume, up to conjugation by a unitary, that we have, with U ∈ UN :

A = ∆ , B = U∆U∗

Now observe that given two diagonal matrices D,E ∈ ∆, we have:

tr(D · UEU∗) =
1

N

∑
i

(DUEU∗)ii

=
1

N

∑
ij

DiiUijEjjŪij

=
1

N

∑
ij

DiiEjj|Uij|2

Thus, the orthogonality condition A ⊥ B reformulates as follows:

1

N

∑
ij

DiiEjj|Uij|2 =
1

N2

∑
ij

DiiEjj

Thus the rescaled matrix H =
√
NU must satisfy the following condition:

|Hij| = 1

Thus, we are led to the conclusion in the statement. �
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The Hadamard matrices appearing in Theorem 11.6 are well-known objects, appearing
in several branches of combinatorics, and quantum physics. The basic examples of such
matrices are the Fourier matrices of abelian groups, constructed as follows:

Theorem 11.7. Given a finite abelian group G, with dual group Ĝ = {χ : G → T},
consider the Fourier coupling FG : G× Ĝ→ T, given by (i, χ)→ χ(i).

(1) Via the standard isomorphism G ' Ĝ, this Fourier coupling can be regarded as a
square matrix, FG ∈MG(T), which is a complex Hadamard matrix.

(2) For the cyclic group G = ZN we obtain in this way, via the standard identification
ZN = {1, . . . , N}, the standard Fourier matrix, FN = (wij) with w = e2πi/N .

(3) In general, when using a decomposition G = ZN1 × . . .× ZNk , the corresponding
Fourier matrix is given by FG = FN1 ⊗ . . .⊗ FNk .

Proof. This follows indeed from some basic facts from group theory:

(1) With the identification G ' Ĝ made our matrix is given by (FG)iχ = χ(i), and the
scalar products between the rows are computed as follows:

< Ri, Rj > =
∑
χ

χ(i)χ(j)

=
∑
χ

χ(i− j)

= |G| · δij
Thus, we obtain indeed a complex Hadamard matrix.

(2) This follows from the well-known and elementary fact that, via the identifications

ZN = ẐN = {1, . . . , N}, the Fourier coupling here is as follows, with w = e2πi/N :

(i, j)→ wij

(3) We use here the following well-known formula, for the duals of products:

Ĥ ×K = Ĥ × K̂
At the level of the corresponding Fourier couplings, we obtain from this:

FH×K = FH ⊗ FK
Now by decomposing G into cyclic groups, as in the statement, and by using (2) for

the cyclic components, we obtain the formula in the statement. �

Summarizing, we have some interesting connections with finite group theory, and
with the associated Fourier matrices. However, there are as well many exotic examples of
Hadamard matrices, nor necessarily coming from finite groups, as in Theorem 11.7, and
all this is quite of interest for us, in connection with Theorem 11.6. We will be back to
this later, with more results on the subject, when talking about subfactors.
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11b. Type I algebras

Let us go back now to our reduction theory program. Our goal will be that of writing
any von Neumann algebra A ⊂ B(H) as a direct sum of factors, by decomposing every-
thing with respect to the center, Z(A) = L∞(X). In order to do so, we must first make
some upgrades to our terminology and notations regarding factors, as follows:

Definition 11.8. The von Neumann algebras having trivial center, also called factors,
can be divided into several types, as follows:

(1) The matrix algebra MN(C) is of type IN .
(2) The operator algebra B(H) is of type I∞.
(3) The factors which are infinite dimensional and have a trace are of type II1.
(4) The tensor products A⊗B(H), with A being a II1 factor, are of type II∞.
(5) As for the factors left, these are called of type III.

It is possible to be more abstract here, but in practice, this is how these factors are
best remembered. Now back to reduction theory, we will present it gradually, by following
the general type I, II, III hierarchy for the von Neumann algebras, coming from the above
classification of factors. Let us first discuss the type I case. Here as starting point we
have the following result, which is something that we know well, from chapter 5:

Theorem 11.9. The finite dimensional von Neumann algebras A ⊂ B(H) are exactly
the direct sums of matrix algebras,

A = Mr1(C)⊕ . . .⊕Mrk(C)

with the summands coming by decomposing the unit into central minimal projections,
1 = P1 + . . .+ Pk. Thus, the general reduction theory formula, namely

A =

∫
X

Ax dx

holds for them, with the measured space X, coming via the formula Z(A) = L∞(X), being
in this case a finite space, X = {1, . . . , k}, and with the fibers being matrix algebras.

Proof. This is something that we know well from chapter 5. The center of A is a
finite dimensional commutative von Neumann algebra, of the following form:

Z(A) = Ck

Now let Pi be the Dirac mass at i ∈ {1, . . . , k}. Then Pi ∈ B(H) is an orthogonal
projection, and these projections form a partition of unity. With Ai = PiAPi, it is
elementary to check that we have a non-unital ∗-algebra decomposition, as follows:

A = A1 ⊕ . . .⊕ Ak
On the other hand, it follows from the minimality of each of the projections Pi ∈ Z(A)

that we have Ai 'Mri(C). Thus, we are led to the conclusion in the statement. �
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It is possible to further build on the above result, in several directions, either by
allowing the factors in the decomposition to be type I∞ factors as well, Ax ' B(H), or by
allowing the center to be an infinite measured space, |X| =∞, or by allowing both. The
first possible generalization is not very interesting. The second possible generalization,
however, is something quite interesting, and we have here:

Fact 11.10 (Reduction theory, type I finite case). Given a von Neumann algebra
A ⊂ B(H) which is of discrete type, and has a trace tr : A→ C, we can write

A =

∫
X

Ax dx

with X coming via Z(A) = L∞(X), and the trace decomposes as well, as

tr =

∫
X

trx dx

with the fibers Ax being usual matrix algebras, Ax = Mnx(C), with nx ∈ N.

As a first observation, this statement generalizes both what we know about the com-
mutative algebras, and the finite dimensional ones. However, having these two things
jointly generalized is something quite technical, that we will not explain here in detail.
The idea is of course first that of axiomatizing what “discrete” should mean in the above,
say by looking at the finiteness properties of the projections p ∈ A, and then, once the
statement properly formulated, to prove it by jointly generalizing what we know about
the commutative algebras, and the finite dimensional ones.

Moving ahead, let us lift now the assumption that the factors in the decomposition
are of type IN , with N <∞. We are led in this way to a general result, as follows:

Fact 11.11 (Reduction theory, type I case). Given a von Neumann algebra A ⊂ B(H)
which is of type I, in the sense that it is of a suitable discrete type, we can write

A =

∫
X

Ax dx

with X coming via Z(A) = L∞(X), and with the fibers Ax being type I factors, meaning
Ax ' B(Hx), with each Hx being either finite dimensional, or separable.

As before with Fact 11.10, we will not attempt to explain this here. As a comment,
however, this can only follow from Fact 11.10 applied to the “finite” part of the alge-
bra, obtained by removing the infinite part, and after proving that this infinite part is
something of type L∞(Y )⊗B(H), with Y ⊂ X, and with H being separable.

All the above was quite abstract, and as something more concrete now, let us discuss
the reduction theory for the quantum group von Neumann algebras L(Γ), in the finite
case, |Γ| < ∞. For this purpose, it is convenient to change a bit our terminology and
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notations, making them more in tune with the quantum group formalism from chapter 7.
First, we will denote our finite group Γ, which is at the same time discrete and compact,

by F , and we will think of it as being the dual of a finite quantum group G = F̂ . Also,
since in the finite group case everything is automatically norm or weakly closed, we will
use the more familiar notation C∗(F ) for the associated von Neumann algebra L(F ).
With these conventions, we have the following result, which is standard:

Theorem 11.12. Given a finite group F , the center of the associated von Neumann
algebra is isomorphic to the algebra of central functions on F ,

Z(C∗(F )) ' C(F )central

and the reduction theory applied to this von Neumann algebra, which is a formula of type

C∗(F ) '
⊕
r∈X

Mnr(C)

appears by dualizing the Peter-Weyl decomposition of the usual function algebra

C(F ) '
⊕

r∈Irr(F )

Mdim(r)(C)

via the standard identification between representations r and their characters χr.

Proof. In what concerns the first assertion, regarding the center, this is something
that we already know, from chapter 10, coming from our study there of the general group
algebras L(Γ), with Γ being a discrete group. To be more precise, in the case where Γ = F
is a finite group, the computation there gives the following formula for the center:

Z(C∗(F )) =

{∑
g

λgg
∣∣∣λgh = λhg, ∀h ∈ F

}′′
Now since on the right we have central functions on our group, λ ∈ C(F )central, we

obtain the isomorphism in the statement, namely:

Z(C∗(F )) ' C(F )central

Regarding now the second assertion, let us first recall that the Peter-Weyl theory ap-
plied to the finite group F gives a direct sum decomposition as follows, which is technically
an isomorphism of linear spaces, which is in addition a ∗-coalgebra isomorphism:

C(F ) '
⊕

r∈Irr(F )

Mdim(r)(C)

Thus by dualizing, which is a standard functional analysis procedure, to be explained
more in detail below, in a more general setting, we obtain a direct sum decomposition of
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the group algebra, as follows, which is this time a ∗-algebra isomorphism:

C∗(F ) '
⊕

r∈Irr(F )

Mdim(r)(C)

Our claim now, which will finish the proof, is that this is exactly what comes out from
von Neumann’s reduction theory, applied to the von Neumann algebra L(F ) = C∗(F ).
Indeed, by using the standard identification between representations r and their characters
χr, which are central functions on F , the center computation that we did above reads:

Z(C∗(F )) ' L∞(Irr(F ))

We conclude that von Neumann’s reduction theory, applied to the von Neumann
algebra L(F ) = C∗(F ), gives a ∗-algebra isomorphism of the following type:

C∗(F ) '
⊕

r∈Irr(F )

Mnr(C)

But a careful examination of the fibers appearing in this decomposition, based on
their very definition, shows that these are precisely the above matrix blocks coming from
Peter-Weyl. That is, we have nr = dim(r) for any r ∈ Irr(F ), and we are done. �

Our next goal will be that of extending the above result to the finite quantum group
setting. For this purpose, we will not really need the general compact quantum group
formalism from chapter 7 above, and it is convenient to start with:

Definition 11.13. A finite dimensional Hopf algebra is a finite dimensional C∗-
algebra, with a comultiplication, counit and antipode maps, satisfying the conditions

(∆⊗ id)∆ = (id⊗∆)∆

(ε⊗ id)∆ = (id⊗ ε)∆ = id

m(S ⊗ id)∆ = m(id⊗ S)∆ = ε(.)1

along with the extra condition S2 = id. Given such an algebra we write

A = C(G) = C∗(F )

and call G,F finite quantum groups, dual to each other.

In this definition everything is standard, except for the last axiom, S2 = id. This
axiom corresponds to the fact that, in the corresponding quantum group, we have:

(g−1)−1 = g

It is possible to prove that this condition is automatic, in the present C∗-algebra
setting. However, this is something non-trivial, and since all this is just a preliminary
discussion, not needed later, we have opted for including S2 = id in our axioms.
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We say that an algebra A as above is cocommutative if Σ∆ = ∆, where Σ(a⊗b) = b⊗a
is the flip. With this convention made, we have the following result, which summarizes
the basic theory of finite quantum groups, and justifies the terminology and axioms:

Theorem 11.14. The following happen:

(1) If G is a finite group then C(G) is a commutative Hopf algebra, with

∆(ϕ) = (g, h)→ ϕ(gh)

ε(ϕ) = ϕ(1)

S(ϕ) = g → ϕ(g−1)

as structural maps. Any commutative Hopf algebra is of this form.
(2) If F is a finite group then C∗(F ) is a cocommutative Hopf algebra, with

∆(g) = g ⊗ g
ε(g) = 1

S(g) = g−1

as structural maps. Any cocommutative Hopf algebra is of this form.
(3) If G,F are finite abelian groups, dual to each other via Pontrjagin duality, then

we have an identification of Hopf algebras as follows

C(G) = C∗(F )

coming via a Fourier transform type operation.

Proof. These results are all elementary, the idea being as follows:

(1) The fact that ∆, ε, S satisfy the axioms is clear from definitions, and the converse
follows from the Gelfand theorem, by working out the details, regarding ∆, ε, S.

(2) Once again, the fact that ∆, ε, S satisfy the axioms is clear from definitions, with
the remark that the use of the opposite multiplication (a, b)→ a · b in really needed here,
in order for the antipode S to be an algebra morphism:

S(gh) = (gh)−1 = g−1 · h−1 = S(g) · S(h)

For the converse, we use a trick. Let A be an arbitrary finite dimensional Hopf algebra,
as in Definition 11.13, and consider its comultiplication, counit, multiplication, unit and
antipode maps. The transposes of these maps are then linear maps as follows:

∆t : A∗ ⊗ A∗ → A∗

εt : C→ A∗

mt : A∗ → A∗ ⊗ A∗

ut : A∗ → C
St : A∗ → A∗
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It is routine to check that these maps make A∗ into a Hopf algebra. Now assuming that
A is cocommutative, it follows that A∗ is commutative, so by (1) we obtain A∗ = C(G)
for a certain finite group G, which in turn gives A = C∗(G), as desired.

(3) This follows from the discussion in the proof of (2) above, and from the general
theory of Pontrjagin duality for finite abelian groups, explained in chapter 7. �

There are many other things that can be said about the finite dimensional Hopf
algebras, and in what follows we will be particularly interested in the notion of corepre-
sentation. These corepresentations can be introduced as follows:

Definition 11.15. A unitary corepresentation of a finite dimensional Hopf algebra A
is a unitary matrix u ∈Mr(A) satisfying the following conditions:

∆(uij) =
∑
k

uik ⊗ ukj

ε(uij) = δij

S(uij) = u∗ji

We say that u is irreducible, and we write u ∈ Irr(A), when it has no nontrivial inter-
twiners, in the sense that Tu = uT with T ∈Mn(C) implies T ∈ C1.

Observe the similarity with the notions introduced in chapter 7, for the Woronowicz
algebras. In fact, by using left regular representations we can see that any finite dimen-
sional Hopf algebra in the sense of Definition 11.13 is a Woronowicz algebra in the sense
of chapter 7. Thus, we can freely use here the results established in chapter 7, and in
particular, we can use the Peter-Weyl theory developed there.

In relation now with our von Neumann algebra questions, we have the following result,
coming from this Peter-Weyl theory, which generalizes Theorem 11.12:

Theorem 11.16. Given a finite quantum group F , the center of the associated von
Neumann algebra is isomorphic to the algebra of central functions on F ,

Z(C∗(F )) ' C(F )central

and the reduction theory applied to this von Neumann algebra, which is a formula of type

C∗(F ) '
⊕
u∈X

Mnu(C)

appears by dualizing the Peter-Weyl decomposition of the usual function algebra

C(F ) '
⊕

u∈Irr(F )

Mdim(u)(C)

via the standard identification between representations u and their characters χu.
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Proof. The proof here is nearly identical to the proof of Theorem 11.12. To be more
precise, with the more familiar notation A = C∗(F ), the proof goes as follows:

(1) In what concerns the first assertion, regarding the center, we recall from Worono-
wicz [99] that Acentral is by definition the subalgebra of A appearing as follows:

Acentral =
{
a ∈ A

∣∣∣∆a = a
}

But this shows, first by dualizing, and then by doing some computations similar to
those that we did in chapter 10, when computing the centers of the usual group von
Neumann algebras, that we have an isomorphism as in the statement, namely:

Z(A) ' (A∗)central

(2) Regarding now the second assertion, we recall that the Peter-Weyl theory applied
to Hopf algebra A∗ gives a direct sum decomposition as follows, which is technically an
isomorphism of linear spaces, which is in addition a ∗-coalgebra isomorphism:

A∗ '
⊕

u∈Irr(A∗)

Mdim(u)(C)

Thus by dualizing, we obtain a direct sum decomposition of the group algebra, as
follows, which is this time a ∗-algebra isomorphism:

A '
⊕

u∈Irr(A∗)

Mdim(u)(C)

(3) Our claim now, which will finish the proof, is that this is exactly what comes out
from von Neumann’s reduction theory, applied to the algebra A. Indeed, by using the
standard identification between corepresentations u of A∗ and their characters χu, which
belong to the algebra (A∗)central, the center computation that we did above reads:

Z(A) ' L∞(Irr(A∗))

We conclude that von Neumann’s reduction theory, applied to the von Neumann
algebra A, gives a ∗-algebra isomorphism of the following type:

A '
⊕

u∈Irr(A∗)

Mnu(C)

But a careful examination of the fibers shows that these are precisely the matrix blocks
coming from Peter-Weyl. That is, nu = dim(u) for any u ∈ Irr(A∗), and we are done. �

As a final comment here, the most interesting type I algebras are probably those
having an isotypic decomposition, and so which can be written as follows:

A = MN(L∞(X))

But these are precisely the random matrix algebras, that we investigated in great
detail in chapter 6, and we refer to that chapter for more about them.
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11c. Type II algebras

Let us discuss now the type II case, where the truly interesting problems are. The
central result here, that we already formulated in the beginning of this chapter, is:

Fact 11.17 (Reduction theory, finite case). Given a von Neumann algebra A ⊂ B(H)
coming with a trace tr : A→ C, if we write its center Z(A) ⊂ A as

Z(A) = L∞(X)

with X being a measured space, then the whole algebra and its trace decompose as

A =

∫
X

Ax dx , tr =

∫
X

trx dx

with the fibers Ax being either factors of type IN , with N <∞, or of type II1.

Regarding the proof, this is something quite technical, generalizing what we know, or
rather what we don’t, about the type I finite case, which is substantially easier. We refer
here to Dixmier [29], and with the comment that we will see soon examples of all this.

As before in the type I case, it is possible to add a bit of infinity in the above, and we
have the following result, which is a bit more technical, but more general too:

Fact 11.18 (Reduction theory, type II case). Given a von Neumann algebra A ⊂ B(H)
which is of type II, in a suitable sense, if we write its center Z(A) ⊂ A as

Z(A) = L∞(X)

with X being a measured space, then the whole algebra decomposes as

A =

∫
X

Ax dx

with the fibers Ax being von Neumann factors of type I or II.

As before with what happened in type I, the above results are particularly interesting
in the case of the von Neumann algebras of the discrete groups, A = L(Γ), and their
generalizations. In order to discuss these questions, let us recall that the center of an
arbitrary group von Neumann algebra A = L(Γ) consists, up to some standard identifica-
tions, of the functions which are constant on the finite conjugacy classes. This suggests
the following definition, which is something well-known in group theory:

Definition 11.19. A discrete group F is said to have the FC property if all its con-
jugacy classes are finite. In other words, for any g ∈ F , we must have:∣∣∣{hgh−1

∣∣∣h ∈ F}∣∣∣ <∞
If this finite conjugacy property is satisfied, we also say that F is a FC group.
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As basic examples of FC groups, we have the finite groups, the abelian groups, and
the products of such groups. Besides being stable under taking products, the class of FC
groups is stable under a number of other basic operations, such as taking subgroups, or
quotients. In connection now with our reduction theory questions, we have:

Theorem 11.20. Given a group F having the FC property, the center of the associated
von Neumann algebra is isomorphic to the algebra of central functions on F ,

Z(L(F )) ' C(F )central

and the reduction theory applied to this von Neumann algebra, which is a formula of type

L(F ) '
∫
r∈X

Ar

appears in relation with the representation theory of F .

Proof. In what concerns the first assertion, regarding the center, this is something
that we know from chapter 10. Indeed, we have the following formula for the center:

Z(L(F )) =

{∑
g

λgg
∣∣∣λgh = λhg, ∀h ∈ F

}′′
Now since on the right we have central functions on our group, λ ∈ C(F )central, we

obtain the isomorphism in the statement, namely:

Z(L(F )) ' C(F )central

Regarding now the second assertion, this is something more tricky, as follows:

(1) In the finite group case, we recall from Theorem 11.12 that, by using the stan-
dard identification between representations r and their characters χr, which are central
functions on F , the center computation that we did above reads:

Z(L(F )) ' L∞(Irr(F ))

In order to discuss now the reduction theory for L(F ), we recall that the Peter-Weyl
theory applied to F gives a direct sum decomposition as follows, which is technically an
isomorphism of linear spaces, which is in addition a ∗-coalgebra isomorphism:

L∞(F ) '
⊕

r∈Irr(F )

Mdim(r)(C)

Thus by dualizing, we obtain a direct sum decomposition of the group von Neumann
algebra as follows, which is this time a ∗-algebra isomorphism:

L(F ) '
⊕

r∈Irr(F )

Mdim(r)(C)

But this is exactly what comes out from von Neumann’s reduction theory, applied to
the algebra L(F ), and so we are fully done with the finite group case.
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(2) As a second key particular case, let us discuss now the case where F is abelian. In
the simplest infinite group case, where our group is F = Z, the group algebra is:

L(Z) ' L∞(T)

More generally, for the abelian groups F = ZN , which are those which are finitely
generated and without torsion, we obtain the algebras of functions on various tori:

L(ZN) ' L∞(TN)

In general now, assuming that F is finitely generated and abelian, here we know from
Pontrjagin duality that we have an isomorphism as follows:

L(F ) ' L∞(F̂ )

More explicitely now, let us write our finitely generated abelian group F as a product
of cyclic groups, possibly taken infinite, as follows:

F = ZN ×

(∏
i

Zni

)
The Pontrjagin dual of F is then the following compact abelian group:

F = TN ×

(∏
i

Zni

)
Thus, things are very explicit here, and we are done with the abelian case too.

(3) In the general case now, where our discrete group F is only assumed to have
the FC property, the reduction theory for the corresponding von Neumann algebra L(F )
appears somewhat as a mixture of what happens for the finite and for the abelian groups,
discussed in (1) and (2) above. For more on all this, we refer to Dixmier [29]. �

Regarding the corresponding problems for the discrete quantum groups, these are not
solved yet. In fact, the knowledge here stops at a very basic level, with the analogue of
the ICC property, leading to the factoriality of L(Γ), not being known yet.

Moving ahead from these difficulties, let us go back now to the usual group von
Neumann algebras L(Γ), and discuss what happens in general. Once again inspired by
the basic computation that we have, namely that of the center of an arbitrary group
algebra L(Γ), let us formulate the following purely group-theoretical definition:

Definition 11.21. Given a discrete group Γ, its FC subgroup F ⊂ Γ is the subgroup

F =
{
g ∈ Γ

∣∣∣ ∣∣∣{hgh−1
∣∣∣h ∈ Γ

}∣∣∣ <∞}
consisting of the elements in the finite conjugacy classes of Γ.
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Here the fact that F is indeed a subgroup is clear from definitions, with the fact that
F is stable under multiplication coming from the following trivial observation:

h(gk)h−1 = hgh−1 · hkh−1

Observe that Γ has the FC property, in the sense of Definition 11.19, precisely when
the inclusion F ⊂ Γ is an equality. As before with the FC groups, there are many known
things about the FC subgroups F ⊂ Γ, and we refer here to the group theory literature.
In connection now with our reduction theory questions, we have:

Theorem 11.22. Given a discrete group Γ, the center of the associated von Neumann
algebra is isomorphic to the algebra of central functions on its FC subgroup F ⊂ Γ,

Z(L(Γ)) ' C(F )central

and the reduction theory applied to this von Neumann algebra, which is a formula of type

L(Γ) '
∫
r∈X

Ar

appears in relation with the representation theory of Γ, and of its FC subgroup F ⊂ Γ.

Proof. In what concerns the first assertion, regarding the center, this is something
that we know from chapter 10, coming from our study there of the general group algebras
L(Γ), with Γ being a discrete group. To be more precise, we know from there that:

Z(L(Γ)) =

{∑
g

λgg
∣∣∣λgh = λhg,∀h ∈ F

}′′
Now since on the right we have central functions on the FC subgroup, λ ∈ C(F )central,

we obtain the isomorphism in the statement, namely:

Z(L(Γ)) ' C(F )central

Regarding now the second assertion, this is something more tricky, and we refer here
to the relevant group theory and operator algebra literature, including Dixmier [29]. �

Summarizing, things are quite well understood for the von Neumann algebras of dis-
crete groups L(Γ). The corresponding problems for discrete quantum groups are not
solved yet. In fact, the knowledge here stops at a very basic level, with the correct ana-
logue of the ICC property, guaranteeing the factoriality of L(Γ), not being known yet.
We will be back to this in chapter 12 below, in the context of hyperfiniteness, and also
later on in this book, in chapters 13-16, when talking about subfactors.

As a last topic regarding type II, let us discuss an interesting connection with type
I, coming from the notion of matrix model. One interesting method for the study of the
closed subgroups G ⊂ U+

N consists in modelling the coordinates uij ∈ C(G) by concrete
variables Uij ∈ B. Indeed, assuming that the model is faithful in some suitable sense, and
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that the target algebra B is something quite familiar, all questions about G would corre-
spond in this way to routine questions inside B. Regarding now the choice of the target
algebra B, some very convenient algebras are the random matrix ones, B = MK(C(T )),
with K ∈ N, and T being a compact space. We are led in this way to:

Definition 11.23. A matrix model for G ⊂ U+
N is a morphism of C∗-algebras

π : C(G)→MK(C(T ))

where T is a compact space, and K ≥ 1 is an integer.

There are many examples of such models, and will discuss them later on. For the
moment, let us develop some general theory. The question to be solved is that of under-
standing the suitable faithfulness assumptions needed on π, as for the model to “remind”
the quantum group. The simplest situation is when π is faithful in the usual sense. Let
us introduce the following notion, which is related to faithfulness:

Definition 11.24. A matrix model π : C(G)→MK(C(T )) is called stationary when∫
G

=

(
tr ⊗

∫
T

)
π

where
∫
T

is the integration with respect to a given probability measure on T .

Here the term “stationary” comes from a functional analytic interpretation of all this,
with a certain Cesàro limit being needed to be stationary, and this will be explained later.
Yet another explanation comes from a certain relation with the lattice models, but this
relation is rather something folklore, not axiomatized yet. We will be back to this. As a
first result now, which is something which is not exactly trivial, and whose proof requires
some functional analysis, the stationarity property implies the faithfulness:

Theorem 11.25. Assuming that G ⊂ U+
N has a stationary model,

π : C(G)→MK(C(T )) ,

∫
G

=

(
tr ⊗

∫
T

)
π

it follows that G is coamenable, and that the model is faithful, coming as:

C(G) ⊂ L∞(G) ⊂MK(L∞(T ))

Moreover, we can have such models only when the algebra L∞(G) is of type I.

Proof. We use the basic theory of compact and discrete quantum groups, developed
in chapter 7. Assume that we have a stationary model, as in the statement. By performing
the GNS construction with respect to

∫
G

, we obtain a factorization as follows, which
commutes with the respective canonical integration functionals:

π : C(G)→ C(G)red ⊂MK(C(T ))
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Thus, in what regards the coamenability question, we can assume that π is faithful.
With this assumption made, observe that we have embeddings as follows:

C∞(G) ⊂ C(G) ⊂MK(C(T ))

The point now is that the GNS construction gives a better embedding, as follows:

L∞(G) ⊂MK(L∞(T ))

Now since the von Neumann algebra on the right is of type I, so must be its subalgebra
A = L∞(G). This means that, when writing the center of this latter algebra as Z(A) =
L∞(X), the whole algebra decomposes over X, as an integral of type I factors:

L∞(G) =

∫
X

MKx(C) dx

In particular, we can see from this that C∞(G) ⊂ L∞(G) has a unique C∗-norm, and
so G is coamenable. Finally, the other assertions follow as well from the above, because
our factorization of π consists of the identity, and of an inclusion. �

More generally now, we can talk about matrix models for the algebraic submanifolds
X ⊂ SN−1

C,+ , in the obvious way, and we have the following result:

Theorem 11.26. Given a matrix model π : C(X)→MK(C(T )), with both X,T being
assumed to have integration functionals, the following are equivalent:

(1) π is stationary, in the sense that
∫
X

= (tr ⊗ ∫T )π.
(2) π produces an inclusion π′ : Cred(X) ⊂MK(X(T )).
(3) π produces an inclusion π′′ : L∞(X) ⊂MK(L∞(T )).

Moreover, in the quantum group case, these conditions imply that π is faithful.

Proof. Consider the following diagram, with all the solid arrows being by definition
the canonical maps between the various algebras concerned:

MK(C(T )) // MK(L∞(T ))

C(X)

π

OO

// Cred(X) //

π′

``

L∞(X)

π′′

OO

With this picture in hand, the equivalences (1) ⇐⇒ (2) ⇐⇒ (3) between the above
conditions (1,2,3) are all clear, coming from the basic properties of the GNS construction.
As for the last assertion, this is something that we know from Theorem 11.25. �

Moving ahead now, our claim is that our modelling philosophy, with type I algebras
as target, can perfectly apply, at least in the quantum group case, to type II algebras as
well. We have indeed the following result, which is something quite subtle:



11C. TYPE II ALGEBRAS 269

Theorem 11.27. Given a matrix model π : C(G) → MK(C(T )), with T being a
probability space, there exists a smallest subgroup G′ ⊂ G producing a factorization

π : C(G)→ C(G′)→MK(C(T ))

with the intermediate algebra C(G′) being called Hopf image of π. When π is inner faithful,
in the sense that we have G = G′, we have the formula∫

G

= lim
k→∞

k∑
r=1

ϕ∗r

where ϕ = (tr ⊗ ∫T )π is the matrix model trace, and where φ ∗ ψ = (φ ⊗ ψ)∆. Also, the
model π is stationary precisely when this latter convergence is stationary.

Proof. All this is well-known, the idea being as follows:

(1) The construction of the Hopf image can be done by dividing the algebra C(G) by
a suitable ideal, but for our purposes here it is more convenient to go via an alternative
proof. Let us denote by u = (uij) the fundamental corepresentation of G, and consider
the following vector spaces, taken in a formal sense, where Uij = π(uij):

Ckl = Hom(U⊗k, U⊗l)

Since the morphisms increase the intertwining spaces, when defined either in a repre-
sentation theory sense, or just formally, we have inclusions as follows:

Hom(u⊗k, u⊗l) ⊂ Hom(U⊗k, U⊗l)

More generally, we have such inclusions when replacing (G, u) with any pair producing
a factorization of π. Thus, by Woronowicz’s Tannakian duality [100], the Hopf image must
be given by the fact that the intertwining spaces must be the biggest, subject to the above
inclusions. But since u is biunitary, so is U , and it follows that the above spaces Ckl form
a Tannakian category, so have a quantum group (G′, v) given by:

Hom(v⊗k, v⊗l) = Hom(U⊗k, U⊗l)

By the above discussion, C(G′) follows to be the Hopf image of π, as claimed.

(2) The formula for
∫
G

follows by adapting Woronowicz’s construction of the Haar

integration functional, from [99], to the matrix model situation. If we denote by
∫ ′
G

the
limit in the statement, we must prove that this limit converges, and that we have:∫ ′

G

=

∫
G

It is enough to check this on the coefficients of corepresentations, and if we let w = u⊗k

be one of the Peter-Weyl corepresentations, we must prove that we have:(
id⊗

∫ ′
G

)
w =

(
id⊗

∫
G

)
w
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We know from chapter 7 that the matrix on the right is the orthogonal projection onto
Fix(w). Regarding now the matrix on the left, this is the orthogonal projection onto the
1-eigenspace of (id⊗ ϕπ)w. Now observe that, if we set Wij = π(wij), we have:

(id⊗ ϕπ)w = (id⊗ ϕ)W

Thus, exactly as in chapter 7, we conclude that the 1-eigenspace that we are interested
in equals Fix(W ). But, according to the proof of (1) above, we have:

Fix(W ) = Fix(w)

Thus, we have proved that we have
∫ ′
G

=
∫
G

, as desired. �

The above result, with contributions by many people, and we refer to [7] for the story,
is quite important, for many reasons, mainly coming from the following fact:

Fact 11.28. There is no known restriction on the quantum groups having a model

π : C(G)→MK(C(T ))

which is inner faithful, in the above sense.

Which is obviously something interesting, conjecturally making Theorem 11.27 a clever
way of passing from type II to type I. There are also connections here with the Connes
embedding problem, and with all sorts of questions from algebra, geometry, analysis and
probability, coming from both mathematics and physics. And there is even a connection
with the Hadamard matrices discussed earlier in this chapter, in the context of orthogonal
MCSA. But more on this later, in chapters 13-16 below, when doing subfactors.

In the general quantum algebraic manifold setting now, talking about inner faithfulness
is in general not possible, unless our manifold X ⊂ SN−1

C,+ has some extra special structure,
as for instance being an affine homogeneous space, in the technical sense discussed in
chapter 10. However, such a theory has not been developed yet. See [7].

11d. Type III algebras

In this final section we briefly discuss the reduction theory in the general case, type
III. In order to get started, we must discuss the type III factors, which are new to us.
According to our various conventions above, these factors are defined as follows:

Definition 11.29. A type III factor is a von Neumann algebra A ⊂ B(H) which is a
factor, Z(A) = C, and which satisfies one of the following equivalent conditions:

(1) A is not of type I, or of type II.
(2) A has no semifinite trace tr : A→ C.
(3) A has no trace tr : A→ C, and is not of type I∞ or II∞.
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In order to investigate such factors, the general idea will be that of looking at the
crossed products of type II factors, which can be lacking traces tr : A→ C, and so which
allow us to exit the type II world. In order to get started, however, we have:

Theorem 11.30. Any locally compact group G has a left invariant Haar measure λ,
and a right invariant Haar measure ρ,

dλ(x) = dλ(yx) , dρ(x) = dλ(xy)

which are unique up to multiplication by scalars. These two measures are absolutely con-
tinuous with respect to each other, and the Radon-Nikodym derivative

m : G→ R , m(x) =
dλ(x)

dρ(x)

well-defined up to multiplication by scalars, is called modulus of the group. The unimodular
groups, for which m = 1, include all compact groups, and all abelian groups.

Proof. There are many things here, with everything being very classical, and the
proof, along with comments, examples and more theory, especially in what regards the
unimodular groups, can be found in any good measure theory book. �

As it has become customary in this book, whenever talking about groups we must make
some comments about quantum groups too. Things are quite interesting in connection
with Theorem 11.30, because it is possible “twist” things in the compact case, as to have
a notion of modulus there as well. We refer here to Woronowicz [99] and related papers.
In relation now with our factor questions, we have the following result:

Theorem 11.31. The type III factors basically appear from the type II factors, via
various crossed product constructions, and their generalizations.

Proof. This statement is obviously something quite informal, and we will certainly
not attempt to explain the proof either. Here are however the main ideas, with the result
itself being basically due to Connes [24], along with some historical details:

(1) First of all, Murray and von Neumann knew of course about such questions, but
were quite evasive in their papers about type III, with the brief comment “we don’t know”.
Whether they really worked or not on these questions, we’ll never know.

(2) Inspired by Theorem 11.30, it is possible to develop a whole machinery for the
study of the non-tracial states ϕ : A→ C, the main results here being the Kubo-Martin-
Schwinger (KMS) condition, and the Tomita-Takesaki theory. See Takesaki [78].

(3) On the other hand, looking at type II factors and their crossed products by au-
tomorphisms, which are not necessarily of type II, leads to a lot of interesting theory as
well, leading to large classes of type III factors, appearing from type II factors.
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(4) The above results are basically from the 50s and 60s, and Connes was able to put
all this together, in the early 70s, via a series of quick, beautiful and surprising Comptes
Rendus notes, eventually leading to his paper [24], which is a must-read. �

In equivalent terms, and also by remaining a bit informal, we have:

Theorem 11.32. The von Neumann algebra factors can be classified as follows,

IN, I∞

II1, II∞
III0, IIIλ, III1

with the type II1 ones being the most important, basically producing the others too.

Proof. This follows by putting altogether what we have, results of Murray and von
Neumann in type I and II, and then of Connes in type III. The last assertion is of course
something quite informal, because the situation is not exactly as simple as that. �

Getting back now to our series of reduction theory results, we have:

Theorem 11.33. Given an arbitrary von Neumann algebra A ⊂ B(H), write its center
as follows, with X being a measured space:

Z(A) = L∞(X)

The whole algebra A decomposes then over this measured space X, as a direct sum of
fibers, taken in an appropriate sense,

A =

∫
X

Ax dx

with the fibers Ax being von Neumann factors, which can be of type I, II, III.

Proof. As before with other such results, this is something heavy, generalizing our
previous knowledge in type I, and type II. The proof however is quite similar, basically
using the same ideas. We refer here to the literature, for instance to Dixmier [29]. �

11e. Exercises

Things have been quite technical in this chapter, which was more of a survey than
something else, and as a unique exercise on all this, we have:

Exercise 11.34. Learn some more basic von Neumann algebra theory, from the papers
of von Neumann and Murray-von Neumann, then Tomita-Takesaki and Connes, and write
down a brief account of what you learned.

In what follows we will avoid ourselves this type of exercise, basically by getting back
to the material in chapter 10, and building on that, following Jones.



CHAPTER 12

Hyperfiniteness

12a. The factor R

In this chapter we go back to the functional analysis methods for general von Neumann
algebras developed in chapter 9, and to the theory of factors, and notably of the type II1

factors developed in chapter 10, with the aim of further building on this. Following old,
classical work of Murray-von Neumann [62], our main object of study will be the central
example of a II1 factor, namely the “smallest” one, the hyperfinite II1 factor R.

Once this factor R introduced, and its basic theory understood, we will go on a more
advanced discussion, including more theory of R, following Connes [25], then a discussion
of various quantum group aspects, as a continuation of what has been said in chapter 10,
and finally with a discussion of the connections with the material in chapter 11.

Needless to say, all this is quite advanced, and there will be not many proofs in all
this. This chapter will be a bit as a previous one, more of the survey. Also, let us mention
that in the final part of the book, chapters 13-16 below, we will go back to a more normal
pace, with a standard introduction to the Jones theory of the inclusions of II1 factors,
with full details. The notion of hyperfiniteness and the factor R will of course show up
there, every now and then, but usually at the end of each chapter, and most of the time
using actually only its basic theory, and not most of the advanced material below.

In order to get started now, let us formulate the following definition:

Definition 12.1. A von Neumann algebra A ⊂ B(H) is called hyperfinite when it
appears as the weak closure of an increasing limit of finite dimensional algebras:

A =
⋃
i

Ai
w

When A is a II1 factor, we call it hyperfinite II1 factor, and we denote it by R.

As a first observation, there are many hyperfinite von Neumann algebras, for instance
because any finite dimensional von Neumann algebra A = ⊕iMni(C) is such an algebra,
as one can see simply by taking Ai = A for any i, in the above definition.

Also, given a measured space X, by using a dense sequence of points inside it, we can
write X =

⋃
iXi with Xi ⊂ X being an increasing sequence of finite subspaces, and at

273
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the level of the corresponding algebras of functions this gives a decomposition as follows,
which shows that the algebra A = L∞(X) is hyperfinite, in the above sense:

L∞(X) =
⋃
i

L∞(Xi)
w

The interesting point, however, is that when trying to construct II1 factors which are
hyperfinite, all the possible constructions lead in fact to the same factor, denoted R. This
is an old theorem of Murray and von Neumann [62], that we will explain now.

In order to get started, we will need a number of technical ingredients. Generally
speaking, out main tool will be the expectation Ei : A → Ai from a hyperfinite von
Neumann algebra A onto its finite dimensional subalgebras Ai ⊂ A, so talking about such
conditional expectations will be our first task. Let us start with:

Proposition 12.2. Given an inclusion of finite von Neumann algebras A ⊂ B, there
is a unique linear map

E : B → A

which is positive, unital, trace-preserving and satisfies the following condition:

E(b1ab2) = b1E(a)b2

This map is called conditional expectation from B onto A.

Proof. We make use of the standard representation of the finite von Neumann alge-
bra B, with respect to its trace tr : B → C, as constructed in chapter 9:

B ⊂ L2(B)

If we denote by Ω the cyclic and separating vector of L2(B), we have an identification
of vector spaces AΩ = L2(A). Consider now the following orthogonal projection:

e : L2(B)→ L2(A)

It follows from definitions that we have an inclusion e(BΩ) ⊂ AΩ, and so our projec-
tion e induces by restriction a certain linear map, as follows:

E : B → A

This linear map E and the orthogonal projection e are then related by:

exe = E(x)e

But this shows that the linear map E satisfies the various conditions in the state-
ment, namely positivity, unitality, trace preservation and bimodule property. As for the
uniqueness assertion, this follows by using the same argument, applied backwards, the
idea being that a map E as in the statement must come from the projection e. �
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Following Jones [44], who was a heavy user of such expectations, we will be often
interested in what follows in the orthogonal projection e : L2(B)→ L2(A) producing the
expectation E : B → A, rather than in E itself. So, let us formulate:

Definition 12.3. Associated to any inclusion of finite von Neumann algebras A ⊂ B,
as above, is the orthogonal projection

e : L2(B)→ L2(A)

producing the conditional expectation E : B → A via the following formula:

exe = E(x)e

This projection is called Jones projection for the inclusion A ⊂ B.

We will heavily use Jones projections in chapters 13-16 below, in the context where
both the algebras A,B are II1 factors, when systematically studying the inclusions of
such II1 factors A ⊂ B, called subfactors. In connection with our present hyperfiniteness
questions, the idea, already mentioned above, will be that of using the conditional expec-
tation Ei : A→ Ai from a hyperfinite von Neumann algebra A onto its finite dimensional
subalgebras Ai ⊂ A, as well as its Jones projection versions ei : L2(A)→ L2(Ai). Let us
start with a technical approximation result, as follows:

Proposition 12.4. Assume that a von Neumann algebra A ⊂ B(H) appears as an
increasing limit of von Neumann subalgebras

A =
⋃
i

Ai
w

and denote by Ei : A→ Ai the corresponding conditional expectations.

(1) We have ||Ei(x)− x|| → 0, for any x ∈ A.
(2) If xi ∈ Ai is a bounded sequence, satisfying xi = Ei(xi+1) for any i, then this

sequence has a norm limit x ∈ A, satisfying xi = Ei(x) for any i.

Proof. Both the assertions are elementary, as follows:

(1) In terms of the Jones projections ei : L2(A) → L2(Ai) associated to the expec-
tations Ei : A → Ai, the fact that the algebra A appears as the increasing union of its
subalgebras Ai translates into the fact that the ei are increasing, and converging to 1:

ei ↗ 1

But this gives ||Ei(x)− x|| → 0, for any x ∈ A, as desired.

(2) Let {xi} ⊂ A be a sequence as in the statement. Since this sequence was assumed
to be bounded, we can pick a weak limit x ∈ A for it, and we have then, for any i:

Ei(x) = xi

Now by (1) we obtain from this ||x− xn|| → 0, which gives the result. �
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We have now all the needed ingredients for formulating a first key result, in connection
with the hyperfinite II1 factors, due to Murray-von Neumann [62], as follows:

Proposition 12.5. Given an increasing union on matrix algebras, the following con-
struction produces a hyperfinite II1 factor

R =
⋃
ni

Mni(C)
w

called Murray-von Neumann hyperfinite factor.

Proof. This basically follows from the above, in two steps, as follows:

(1) The von Neumann algebra R constructed in the statement is hyperfinite by defini-
tion, with the remark here that the trace on it tr : R→ C comes as the increasing union
of the traces on the matrix components tr : Mni(C) → C, and with all the details here
being elementary to check, by using the usual standard form technology.

(2) Thus, it remains to prove that R is a factor. For this purpose, pick an element
belonging to its center, x ∈ Z(R), and consider its expectation on Ai = Mni(C):

xi = Ei(x)

We have then xi ∈ Z(Ai), and since the matrix algebra Ai = Mni(C) is a factor, we
deduce from this that this expected value xi ∈ Ai is given by:

xi = tr(xi)1 = tr(x)1

On the other hand, Proposition 12.4 above applies, and shows that we have:

||xi − x|| = ||Ei(x)− x|| → 0

Thus our element is a scalar, x = tr(x)1, and so R is a factor, as desired. �

Next, we have the following substantial improvement of the above result, also due to
Murray-von Neumann [62], which will be our final saying on the subject:

Theorem 12.6. There is a unique hyperfinite II1 factor, called Murray-von Neumann
hyperfinite factor R, which appears as an increasing union on matrix algebras,

R =
⋃
ni

Mni(C)
w

with the isomorphism class of this union not depending on the exact sizes of the matrix
algebras involved, nor on the particular inclusions between them.

Proof. We already know from Proposition 12.5 that the union in the statement is a
hyperfinite II1 factor, for any choice of the matrix algebras involved, and of the inclusions
between them. Thus, in order to prove the result, it all comes down in proving the
uniqueness of the hyperfinite II1 factor. But this can be proved as follows:
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(1) Given a II1 factor A, a von Neumann subalgebra B ⊂ A, and a subset S ⊂ A, let

us write S ⊂ε B when the following condition is satisfied, with ||x||2 =
√
tr(x∗x):

∀x ∈ S,∃y ∈ B, ||x− y||2 ≤ ε

With this convention made, given a II1 factor A, the fact that this factor is hyperfinite
in the sense of Definition 12.1 tells us that for any finite subset S ⊂ A, and any ε > 0, we
can find a finite dimensional von Neumann subalgebra B ⊂ A such that:

S ⊂ε B

(2) With this observation made, assume that we are given a hyperfinite II1 factor A.
Let us pick a dense sequence {xk} ⊂ A, and let us set:

Sk = {x1, . . . , xk}

By choosing ε = 1/k in the above, we can find, for any k ∈ N, a finite dimensional
von Neumann subalgebra Bk ⊂ A such that the following condition is satisfied:

Sk ⊂1/k Bk

(3) Our first claim is that, by suitably choosing our subalgebra Bk ⊂ A, we can always
assume that this is a matrix algebra, of the following special type:

Bk = M2nk (C)

But this is something which is quite routine, which can be proved by starting with a
finite dimensional subalgebra Bk ⊂ A as above, and then perturbing its set of minimal
projections {ei} into a set of projections {e′i} which are close in norm, and have as traces
multiples of 2n, with n >> 0. Indeed, the algebra B′k ⊂ A having these new projections
{e′i} as minimal projections will be then arbitrarily close to the algebra Bk, and so will
still contain the subset Sk in the above approximate sense, and due to our trace condition,
will be contained in a subalgebra of type B′′k 'M2nk (C), as desired.

(4) Our next claim, whose proof is similar, by using standard perturbation arguments
for the corresponding sets of minimal projections, is that in the above the sequence of
subalgebras {Bk} can be chosen increasing. Thus, up to a rescaling of everything, we can
assume that our sequence of subalgebras {Bk} is as follows:

Bk = M2k(C)

(5) But this finishes the proof. Indeed, according to the above, we have managed to
write our arbitrary hyperfinite II1 factor A as a weak limit of the following type:

A =
⋃
k

M2k(C)
w

Thus we have uniqueness indeed, and our result is proved. �
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The above result is something quite fundamental, and adds to a series of similar results,
or rather philosophical conclusions, which are quite surprising, as follows:

(1) We have seen early on in this book that, up to isomorphism, there is only one
Hilbert to be studied, namely the infinite dimensional separable Hilbert space, which can
be taken to be, according to knowledge and taste, either H = L2(R), or H = l2(N).

(2) Regarding now the study of the operator algebras A ⊂ B(H) over this unique
Hilbert space, another somewhat surprising conclusion, from chapter 6 above, is that we
won’t miss much by assuming that A = MN(L∞(X)) is a random matrix algebra.

(3) And now, guess what, what we just found is that when trying to get beyond
random matrices, and what can be done with them, we are led to yet another unique von
Neumann algebra, namely the above Murray-von Neumann hyperfinite II1 factor R.

(4) And for things to be complete, we will see later that when getting beyond type
II1, things won’t change, because the other types of hyperfinite factors, not necessarily of
type II1, can be all shown to ultimately come from R, via various constructions.

All this is certainly quite interesting, philosophically speaking. All in all, always the
same conclusion, no need to go far to get to interesting algebras and questions: these
interesting algebras and questions are just there, the most obvious ones.

Now back to more concrete things, one question is about how to best think of R, with
Theorem 12.6 as stated not providing us with an answer. To be more precise, we would
like to know what is the “best model” for R, that is, what exact matrix algebras should
we use in practice, and with which inclusions between them. And here, a look at the
proof of Theorem 12.6 suggests that the “best writing” of R is as follows:

R =
⋃
k

M2k(C)
w

And we can in fact do even better, by observing that the inclusions between matrix
algebras of size 2k appear via tensor products, and formulating things as follows:

Proposition 12.7. The hyperfinite II1 factor R appears as

R =
⊗
r∈N

M2(C)
w

with the infinite tensor product being defined as an inductive limit, in the obvious way.

Proof. This follows from the above discussion, and with the remark that there is a
binary choice there, of left/right type, to be made when constructing the inductive limit.
And we prefer here not to make any choice, and leave things like this, because the best
choice here always depends on the precise applications that you have in mind. �
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Along the same lines, we can ask as well for precise group algebra models for the
hyperfinite II1 factor, R = L(Γ), and the canonical choice here is as follows:

Proposition 12.8. The hyperfinite II1 factor R appears as

R = L(S∞)

with S∞ =
⋃
r∈N Sr being the infinite symmetric group.

Proof. Consider indeed the infinite symmetric group S∞, which is by definition the
group of permutations of {1, 2, 3, . . .} having finite support. Since such an infinite permu-
tation with finite support must appear by extending a certain finite permutation σ ∈ Sr,
with fixed points outside {1, . . . , r}, we have then, as stated:

S∞ =
⋃
r∈N

Sr

But this shows that the von Neumann algebra L(S∞) is hyperfinite. On the other
hand S∞ has the ICC property, and so L(S∞) is a II1 factor. Thus, L(S∞) = R. �

There are of course some more things that can be said here, because other groups
of the same type as S∞, namely appearing as increasing limits of finite subgroups, and
having the ICC property, will produce as well the hyperfinite factor, L(Γ) = R, and so
there is some group theory to be done here, in order to fully understand such groups.
However, we prefer to defer the discussion for later, after learning about amenability,
which will lead to a substantial update of our theory, making such things obsolete.

As an interesting consequence of all this, however, let us formulate:

Proposition 12.9. Given two groups Γ,Γ′, each having the ICC property, and each
appearing as an increasing union of finite subgroups, we have

L(Γ) ' L(Γ′)

while the corresponding group algebras might not be isomorphic, C[Γ] 6= C[Γ′].

Proof. Here the first assertion follows from the above discusssion, the von Neumann
algebra in question being the hyperfinite II1 factor R. As for the last assertion, there are
countless counterexamples here, all coming from basic group theory. �

The point with the above result is that the isomorphisms of type L(Γ) ' L(Γ′) are
in general impossible to prove with bare hands. Thus, we can see here the power of the
Murray-von Neumann results in [62]. And we can also see the magic of the weak topology,
which by some kind of miracle, makes everyone equal in the end.
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12b. Amenability

The hyperfinite II1 factor R, which is a quite fascinating object, was heavily investi-
gated by Murray-von Neumann [62], and then by Connes [25]. There are many things
that can be said about it, which all interesting, but are usually quite technical as well. As
a central result, in what regards advanced hyperfiniteness theory, we have the following
theorem of Connes [25], arguably the deepest result in functional analysis:

Theorem 12.10. For a finite von Neumann algebra A, the following are equivalent:

(1) A is hyperfinite in the usual sense, namely it appears as the weak closure of an
increasing limit of finite dimensional algebras:

A =
⋃
i

Ai
w

(2) A amenable, in the sense that the standard inclusion A ⊂ B(H), with H = L2(A),
admits a conditional expectation E : B(H)→ A.

Proof. This result, due to Connes [25], is something fairly heavy, that only a handful
of people have really managed to understand, the idea being as follows:

(1) =⇒ (2) Assuming that the algebra A is hyperfinite, let us write it as the weak
closure of an increasing limit of finite dimensional subalgebras:

A =
⋃
i

Ai
w

Consider the inclusion A ⊂ B(H), with H = L2(A). In order to construct an expec-
tation E : B(H)→ A, let us pick an ultrafilter ω on N. Given T ∈ B(H), we can define
the following quantity, with µi being the Haar measure on the unitary group U(Ai):

ψ(T ) = lim
i→ω

∫
U(Ai)

UTU∗ dµi(U)

With this construction made, by using now the standard involution J : H → H, given
by the formula T → T ∗, we can further define a map as follows:

E : B(H)→ A , E(T ) = Jψ(T )J

But this is the expectation that we are looking for, with its left and right invariance
properties coming from the left and right invariance of each Haar measure µi.

(2) =⇒ (1) This is something heavy, using lots of advanced functional analysis, and
for details here, we refer to Connes’ original paper [25]. �

We should mention that Connes’ results in [25], besides proving the above implication
(2) =⇒ (1), provide also a considerable extension of Theorem 2.10, with a number
of further equivalent formulations of the notion of amenability, which are a bit more
technical, but all good to know. The story here, still a bit simplified, is as follows:



12B. AMENABILITY 281

Fact 12.11 (Connes). For a finite von Neumann algebra A, the following conditions
are in fact equivalent:

(1) A is hyperfinite, in the sense that it appears as the weak closure of an increasing
limit of finite dimensional algebras:

A =
⋃
i

Ai
w

(2) A amenable, in the sense that the standard inclusion A ⊂ B(H), with H = L2(A),
admits a conditional expectation:

E : B(H)→ A

(3) There exist unit vectors ξn ∈ L2(A)⊗ L2(A) such that, for any x ∈ A:

||xξn − ξnx||2 → 0 , < xξn, ξn >→ tr(x)

(4) For any x1, . . . , xk ∈ A and y1, . . . , yk ∈ A we have:∣∣∣∣∣tr
(∑

i

xiyi

)∣∣∣∣∣ ≤
∣∣∣∣∣
∣∣∣∣∣∑

i

xi ⊗ yoppi

∣∣∣∣∣
∣∣∣∣∣
min

Again, this is something that we won’t get into, in this book. Let us mention however
that (1) =⇒ (2) is elementary, as explained above, then (2) =⇒ (3) is something quite
tricky, but still doable, using an inequality due to Powers-Størmer, then (3) =⇒ (4) and
(4) =⇒ (2) are technical, but doable as well. The difficult thing remains, as before in
Theorem 12.10, that of proving (2) =⇒ (1), and with the difficulty coming of course
from the fact that, no matter what beautiful abstract functional analysis things you know
about A, at some point you will have to get to work, and construct that finite dimensional
subalgebras Ai ⊂ A, and it is not even clear where to start from. For a solution to this
problem, and for more, we refer to Connes’s article [25], and also to his book [26].

Getting back now to more everyday mathematics, the above results as stated remain
something quite abstract, and advanced, and understanding their concrete implications
will be our next task. In the case of the II1 factors, we have the following result:

Theorem 12.12. For a II1 factor R, the following are equivalent:

(1) R amenable, in the sense that we have an expectation, as follows:

E : B(L2(R))→ R

(2) R is the Murray-von Neumann hyperfinite II1 factor.

Proof. This follows indeed from Theorem 12.10, when coupled with the Murray-von
Neumann uniqueness result for the hyperfinite II1 factor, from Theorem 12.6. �
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As another application, getting back now to the general case, that of the finite von
Neumann algebras, from Theorem 12.10 as stated, a first question is about how all this
applies to the group von Neumann algebras, and more generally to the quantum group
von Neumann algebras L(Γ). In order to discuss this, let us start with the case of the
usual discrete groups Γ. We will need the following result, which is standard:

Theorem 12.13. For a discrete group Γ, the following two conditions are equivalent,
and if they are satisfied, we say that Γ is amenable:

(1) Γ admits an invariant mean m : l∞(Γ)→ C.
(2) The projection map C∗(Γ)→ C∗red(Γ) is an isomorphism.

Moreover, the class of amenable groups contains all the finite groups, all the abelian groups,
and is stable under taking subgroups, quotients and products.

Proof. This is something very standard, the idea being as follows:

(1) The equivalence (1) ⇐⇒ (2) is standard, with the amenability conditions (1,2)
being in fact part of a much longer list of amenability conditions, including well-known
criteria of Følner, Kesten and others. We will be back to this, with details, in a moment,
directly in a more general setting, that of the discrete quantum groups.

(2) As for the last assertion, regarding the finite groups, the abelian groups, and
then the stability under taking subgroups, quotients and products, this is something
elementary, which follows by using either of the above definitions of the amenability. �

Getting back now to operator algebras, we can complement Theorem 12.10 with:

Theorem 12.14. For a group von Neumann algebra A = L(Γ), the following condi-
tions are equivalent:

(1) A is hyperfinite.
(2) A amenable.
(3) Γ is amenable.

Proof. The group von Neumann algebras A = L(Γ) being by definition finite, The-
orem 12.10 above applies, and gives the equivalence (1) ⇐⇒ (2). Thus, it remains to
prove that we have (2) ⇐⇒ (3), and we can prove this as follows:

(2) =⇒ (3) This is something clear, because if we assume that A = L(Γ) is amenable,
we have by definition a conditional expectation E : B(L2(A))→ A, and the restriction of
this conditional expectation is the desired invariant mean m : l∞(Γ)→ C.

(3) =⇒ (2) Assume that we are given a discrete amenable group Γ. In view of
Theorem 12.13, this means that Γ has an invariant mean, as follows:

m : l∞(Γ)→ C
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Consider now the Hilbert space H = l2(Γ), and for any operator T ∈ B(H) consider
the following map, which is a bounded sesquilinear form:

ϕT : H ×H → C
(ξ, η)→ m

[
γ →< ργTρ

∗
γξ, η >

]
By using the Riesz representation theorem, we conclude that there exists a certain

operator E(T ) ∈ B(H), such that the following holds, for any two vectors ξ, η:

ϕT (ξ, η) =< E(T )ξ, η >

Summarizing, to any operator T ∈ B(H) we have associated another operator, denoted
E(T ) ∈ B(H), such that the following formula holds, for any two vectors ξ, η:

< E(T )ξ, η >= m
[
γ →< ργTρ

∗
γξ, η >

]
In order to prove now that this linear map E is the desired expectation, observe that

for any group element g ∈ Γ, and any two vectors ξ, η ∈ H, we have:

< ρgE(T )ρ∗gξ, η > = < E(T )ρ∗gξ, ρ
∗
gη >

= m
[
γ →< ργTρ

∗
γρ
∗
gξ, ρ

∗
gη >

]
= m

[
γ →< ρgγTρ

∗
gγξ, η >

]
= m

[
γ →< ργTρ

∗
γξ, η >

]
= < E(T )ξ, η >

Since this is valid for any ξ, η ∈ H, we conclude that we have, for any g ∈ Γ:

ρgE(T )ρ∗g = E(T )

But this shows that the element E(T ) ∈ B(H) is in the commutant of the right regular
representation of Γ, and so belongs to the left regular group algebra of Γ:

E(T ) ∈ L(Γ)

Summarizing, we have constructed a certain linear map E : B(H) → L(Γ). Now by
using the above explicit formula of it, in terms of m : l∞(Γ)→ C, which was assumed to
be an invariant mean, we conclude that E is indeed an expectation, as desired. �

As a very concrete application of all this technology, in relation now with the discrete
group algebras which are II1 factors, the results that we have lead to:

Theorem 12.15. For a discrete group Γ, the following conditions are equivalent:

(1) Γ is amenable, and has the ICC property.
(2) A = L(Γ) is the hyperfinite II1 factor R.

Proof. This follows indeed from Theorem 12.14, coupled with the standard fact, that
we know well from chapter 10, that a group algebra A = L(Γ) is a factor, and so a II1

factor, precisely when the group Γ has the ICC property. �
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As a comment here, this result, coming from Connes’ Theorem 12.10, is far better
than what we knew to come from Murray-von Neumann’s Theorem 12.6, and with the
statement itself being something elementary, not involving any kind of advanced functional
analysis, such as the notion of amenability for von Neumann algebras. In fact, Murray-von
Neumann knew about this statement, but their hunt for a proof proved to be unsuccessful,
with the only possible proof being the one above, via advanced functional analysis.

Summarizing, and to put things in context, Murray-von Neumann did great work
in the 30s with their papers [60], [61], [62], [86], [87], but were stuck with 3 questions,
namely reduction theory, type III factors, and solutions of L(Γ) = R. And these questions
were solved later by von Neumann himself [88], then Connes [24], and Connes again [25].
Beautiful times these must have been, and job for us, future generations, at least to write
a complete von Neumann algebra book, clearly explaining all this material.

But things go slowly here, with the standard story of the von Neumann algebra en-
thusiast being something predictable and repetitive, namely working 10 years or so on
the subject, with of course junior status and without writing a book, and then all of the
sudden discovering a “way out of this mess”, and doing something else. This is indeed
what happened to von Neumann himself, who discovered that games and computers are
more useful for the Manhattan Project than operator algebras, and then to Connes, Jones,
Voiculescu too, with their discoveries of noncommutative geometry, subfactor theory and
free probability, respectively. And things in modern times have not improved, with the
present-day sirens being things like ergodic theory, analytic group theory, free geometry,
free analysis, advanced linear algebra, quantum information, and many more.

So, this is the situation, and we are all hoping for you, young reader, to write at some
point in the future that modern von Neumann algebra book. And if that can benefit a
bit from the few modest improvements proposed here, such as naming the algebras A,
talking sometimes about the corresponding quantum spaces X, using for most matters
only 2 topologies, norm and weak, and so on, I would be personally very happy.

12c. Quantum groups

Back now to work, we would like to discuss all sorts of questions, for the most open,
or at least difficult, in relation with groups and quantum groups, taken finite, discrete or
compact, and with more general quantum manifolds and quantum spaces, in connection
with the Murray-von Neumann factor R, amenability and hyperfiniteness. As a first such
question, in relation with the considerations from chapter 10, we would like to understand
which discrete quantum groups Γ produce group algebras as follows:

L(Γ) ' R
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In terms of the compact quantum group duals G = Γ̂, the problem is that of under-
standing which compact quantum groups G produce group algebras as follows:

L∞(G) ' R

In order to discuss this, we must first talk about amenability. We have here the fol-
lowing result, basically due to Woronowicz [99], and coming from the Peter-Weyl theory,
extending to the discrete quantum groups the standard theory for discrete groups:

Theorem 12.16. Let (A, u) with u ∈MN(A) be a Woronowicz algebra, as axiomatized
before. Let Afull be the enveloping C∗-algebra of A =< uij >, and let Ared be the quotient
of A by the null ideal of the Haar integration. The following are then equivalent:

(1) The Haar functional of Afull is faithful.
(2) The projection map Afull → Ared is an isomorphism.
(3) The counit map ε : A→ C factorizes through Ared.
(4) We have N ∈ σ(Re(χu)), the spectrum being taken inside Ared.
(5) ||axk − ε(a)xk|| → 0 for any a ∈ A, for certain norm 1 vectors xk ∈ L2(A).

If this is the case, we say that the underlying discrete quantum group Γ is amenable.

Proof. Before starting, we should mention that amenability and the present result
are a bit like the spectral theorem, in the sense that knowing that the result formally holds
does not help much, and in practice, one needs to remember the proof as well. For this
reason, we will work out explicitely all the possible implications between (1-5), whenever
possible, adding to the global formal proof, which will be linear, as follows:

(1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (5) =⇒ (1)

In order to prove these implications, and the other ones too, the general idea is that
this is is well-known in the group dual case, A = C∗(Γ), with Γ being a usual discrete
group, and in general, the result follows by adapting the group dual case proof.

(1) ⇐⇒ (2) This follows from the fact that the GNS construction for the algebra
Afull with respect to the Haar functional produces the algebra Ared.

(2) =⇒ (3) This is trivial, because we have quotient maps Afull → A → Ared, and
so our assumption Afull = Ared implies that we have A = Ared.

(3) =⇒ (2) Assume indeed that we have a counit map, as follows:

ε : Ared → C
In order to prove Afull = Ared, we can use the right regular corepresentation. Indeed,

we can define such a corepresentation by the following formula:

W (a⊗ x) = ∆(a)(1⊗ x)

This corepresentation is unitary, so we can define a morphism as follows:

∆′ : Ared → Ared ⊗ Afull , a→ W (a⊗ 1)W ∗
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Now by composing with ε⊗ id, we obtain a morphism as follows:

(ε⊗ id)∆′ : Ared → Afull , uij → uij

Thus, we have our inverse for the canonical projection Afull → Ared, as desired.

(3) =⇒ (4) This implication is clear, because we have:

ε(Re(χu)) =
1

2

(
N∑
i=1

ε(uii) +
N∑
i=1

ε(u∗ii)

)
=

1

2
(N +N)

= N

Thus the element N −Re(χu) is not invertible in Ared, as claimed.

(4) =⇒ (3) In terms of the corepresentation v = u + ū, whose dimension is 2N and
whose character is 2Re(χu), our assumption N ∈ σ(Re(χu)) reads:

dim v ∈ σ(χv)

By functional calculus the same must hold for w = v + 1, and then once again by
functional calculus, the same must hold for any tensor power of w:

wk = w⊗k

Now choose for each k ∈ N a state εk ∈ A∗red having the following property:

εk(wk) = dimwk

By Peter-Weyl we must have εk(r) = dim r for any r ≤ wk, and since any irreducible
corepresentation appears in this way, the sequence εk converges to a counit map:

ε : Ared → C

(4) =⇒ (5) Consider the following elements of Ared, which are positive:

ai = 1−Re(uii)

Our assumption N ∈ σ(Re(χu)) tells us that a =
∑
ai is not invertible, and so there

exists a sequence xk of norm one vectors in L2(A) such that:

< axk, xk >→ 0

Since the summands < aixk, xk > are all positive, we must have, for any i:

< aixk, xk >→ 0

We can go back to the variables uii by using the following general formula:

||vx− x||2 = ||vx||2 + 2 < (1−Re(v))x, x > −1
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Indeed, with v = uii and x = xk the middle term on the right goes to 0, and so the
whole term on the right becomes asymptotically negative, and so we must have:

||uiixk − xk|| → 0

Now let Mn(Ared) act on Cn ⊗ L2(A). Since u is unitary we have:∑
i

||uijxk||2 = ||u(ej ⊗ xk)|| = 1

From ||uiixk|| → 1 we obtain ||uijxk|| → 0 for i 6= j. Thus we have, for any i, j:

||uijxk − δijxk|| → 0

Now by remembering that we have ε(uij) = δij, this formula reads:

||uijxk − ε(uij)xk|| → 0

By linearity, multiplicativity and continuity, we must have, for any a ∈ A, as desired:

||axk − ε(a)xk|| → 0

(5) =⇒ (1) This is something well-known, which follows via some standard functional
analysis arguments, exactly as in the usual group case.

(1) =⇒ (5) Once again this is something well-known, which follows via some standard
functional analysis arguments, exactly as in the usual group case. �

Before getting further, with advanced amenability and hyperfiniteness questions, and
as a first application of the above, we can now advance on a problem that we left open
before, in chapter 7, when talking about cocommutative Woronowicz algebras. Indeed,
we can now state and prove the following result, which clarifies the situation:

Proposition 12.17. The cocommutative Woronowicz algebras are the intermediate
quotients of the following type, with Γ =< g1, . . . , gN > being a discrete group,

C∗(Γ)→ C∗π(Γ)→ C∗red(Γ)

and with π being a unitary representation of Γ, subject to weak containment conditions of
type π ⊗ π ⊂ π and 1 ⊂ π, which guarantee the existence of ∆, ε.

Proof. We use the various findings from Theorem 12.16, following Woronowicz, the
idea being to proceed in several steps, as follows:

(1) Theorem 12.16 and standard functional analysis arguments show that the cocom-
mutative Woronowicz algebras should appear as intermediate quotients, as follows:

C∗(Γ)→ A→ C∗red(Γ)

(2) The existence of ∆ : A → A ⊗ A requires our intermediate quotient to appear as
follows, with π being a unitary representation of Γ, satisfying the condition π ⊗ π ⊂ π,
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taken in a weak containment sense, and with the tensor product ⊗ being taken here to
be compatible with our usual maximal tensor product ⊗ for the C∗-algebras:

C∗(Γ)→ C∗π(Γ)→ C∗red(Γ)

(3) With this condition imposed, the existence of the antipode S : A → Aopp is then
automatic, coming from the group antirepresentation g → g−1.

(4) The existence of the counit ε : A → C, however, is something non-trivial, related
to amenability, and leading to a condition of type 1 ⊂ π, as in the statement. �

Let us focus now on the Kesten amenability criterion, from Theorem 12.16 (4), which
brings connections with interesting mathematics and physics, and which in practice will
be our main amenability criterion. In order to discuss this, we will need:

Proposition 12.18. Given a Woronowicz algebra (A, u), with u ∈ MN(A), the mo-
ments of the main character χ =

∑
i uii are given by:∫

G

χk = dim
(
Fix(u⊗k)

)
In the case u ∼ ū the law of χ is a usual probability measure, supported on [−N,N ].

Proof. The first assertion follows from the Peter-Weyl theory, which tells us that we
have the following formula, valid for any corepresentation v ∈Mn(A):∫

G

χv = dim(Fix(v))

Indeed, with v = u⊗k we obtain the result. As for the second assertion, if we assume
u ∼ ū, then we have χ = χ∗, and so law(χ) is a real probability measure, supported by
the spectrum of χ. But, since the matrix u ∈MN(A) is unitary, we have:

uu∗ = 1 =⇒ ||uij|| ≤ 1,∀i, j
=⇒ ||χ|| ≤ N

Thus the spectrum of the character satisfies σ(χ) ⊂ [−N,N ], as desired. �

In relation now with the notion of amenability, we have:

Theorem 12.19. A Woronowicz algebra (A, u), with u ∈MN(A), is amenable when

N ∈ supp
(
law(Re(χ))

)
and the support on the right depends only on law(χ).

Proof. There are two assertions here, the proof being as follows:

(1) According to the Kesten amenability criterion, from Theorem 12.16 (4), the algebra
A is amenable when the following condition is satisfied:

N ∈ σ(Re(χ))
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Now since Re(χ) is self-adjoint, we know from spectral theory that the support of its
spectral measure law(Re(χ)) is precisely its spectrum σ(Re(χ)), as desired:

supp(law(Re(χ))) = σ(Re(χ))

(2) Regarding the second assertion, once again the variable Re(χ) being self-adjoint,
its law depends only on the moments

∫
G
Re(χ)p, with p ∈ N. But, we have:∫

G

Re(χ)p =

∫
G

(
χ+ χ∗

2

)p
=

1

2p

∑
|k|=p

∫
G

χk

Thus law(Re(χ)) depends only on law(χ), and this gives the result. �

Let us work out now in detail the group dual case. Here we obtain a very interesting
measure, called Kesten measure of the group, as follows:

Proposition 12.20. In the case A = C∗(Γ) and u = diag(g1, . . . , gN), and with the
normalization 1 ∈ u = ū made, we have the formula∫

Γ̂

χp = #
{
i1, . . . , ip

∣∣∣gi1 . . . gip = 1
}

counting the loops based at 1, having lenght p, on the corresponding Cayley graph.

Proof. Consider indeed a discrete group Γ =< g1, . . . , gN >. The main character of
A = C∗(Γ), with fundamental corepresentation u = diag(g1, . . . , gN), is then:

χ = g1 + . . .+ gN

Given a colored integer k = e1 . . . ep, the corresponding moment is given by:∫
Γ̂

χk =

∫
Γ̂

(g1 + . . .+ gN)k

= #
{
i1, . . . , ip

∣∣∣ge1i1 . . . gepip = 1
}

In the self-adjoint case, u ∼ ū, we are only interested in the moments with respect to
usual integers, p ∈ N, and the above formula becomes:∫

Γ̂

χp = #
{
i1, . . . , ip

∣∣∣gi1 . . . gip = 1
}

Assume now that we have in addition 1 ∈ u, so that the condition 1 ∈ u = ū in the
statement is satisfied. At the level of the generating set S = {g1, . . . , gN} this means:

1 ∈ S = S−1



290 12. HYPERFINITENESS

Thus the corresponding Cayley graph is well-defined, with the elements of Γ as vertices,
and with the edges g − h appearing when the following condition is satisfied:

gh−1 ∈ S
A loop on this graph based at 1, having lenght p, is then a sequence as follows:

(1)− (gi1)− (gi1gi2)− . . .− (gi1 . . . gip−1)− (gi1 . . . gip = 1)

Thus the moments of χ count indeed such loops, as claimed. �

In order to generalize the above result to arbitrary Woronowicz algebras, we can use
the discrete quantum group philosophy. The fundamental result here is as follows:

Theorem 12.21. Let (A, u) be a Woronowicz algebra, and assume, by enlarging if
necessary u, that we have 1 ∈ u = ū. The following formula

d(v, w) = min
{
k ∈ N

∣∣∣1 ⊂ v̄ ⊗ w ⊗ u⊗k
}

defines then a distance on Irr(A), which coincides with the geodesic distance on the
associated Cayley graph. In the group dual case we obtain the usual distance.

Proof. The fact that the lengths are finite follows from Woronowicz’s analogue of
Peter-Weyl theory, and the other verifications are as follows:

(1) The symmetry axiom is clear.

(2) The triangle inequality is elementary to establish as well.

(3) Finally, the last assertion is elementary as well.

In the group dual case now, where our Woronowicz algebra is of the form A = C∗(Γ),
with Γ =< S > being a finitely generated discrete group, our normalization condition
1 ∈ u = ū means that the generating set must satisfy:

1 ∈ S = S−1

But this is precisely the normalization condition for the discrete groups, and the fact
that we obtain the same metric space is clear. �

Summarizing, we have a good understanding of what a discrete quantum group is. We
can now formulate a generalization of Proposition 12.20, as follows:

Theorem 12.22. Let (A, u) be a Woronowicz algebra, with the normalization assump-
tion 1 ∈ u = ū made. The moments of the main character,∫

G

χp = dim
(
Fix(u⊗p)

)
count then the loops based at 1, having lenght p, on the corresponding Cayley graph.

Proof. Here the formula of the moments, with p ∈ N, is the one coming from Propo-
sition 12.18, and the Cayley graph interpretation comes from Theorem 12.21. �
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As an application of this, we can introduce the notion of growth, as follows:

Definition 12.23. Given a closed subgroup G ⊂ U+
N , with 1 ∈ u = ū, consider the

series whose coefficients are the ball volumes on the corresponding Cayley graph,

f(z) =
∑
k

bkz
k , bk =

∑
l(v)≤k

dim(v)2

and call it growth series of the discrete quantum group Ĝ. In the group dual case, G = Γ̂,
we obtain in this way the usual growth series of Γ.

There are many things that can be said about the growth, and we will be back to this.
As a first such result, in relation with the notion of amenability, we have:

Theorem 12.24. Polynomial growth implies amenability.

Proof. We recall from Theorem 12.21 that the Cayley graph of Ĝ has by definition
the elements of Irr(G) as vertices, and the distance is as follows:

d(v, w) = min
{
k ∈ N

∣∣∣1 ⊂ v̄ ⊗ w ⊗ u⊗k
}

By taking w = 1 and by using Frobenius reciprocity, the lenghts are given by:

l(v) = min
{
k ∈ N

∣∣∣v ⊂ u⊗k
}

By Peter-Weyl we have then a decomposition as follows, where Bk is the ball of radius
k, and where mk(v) ∈ N are certain multiplicities:

u⊗k =
∑
v∈Bk

mk(v) · v

By using now Cauchy-Schwarz, we obtain the following inequality:

m2k(1)bk =
∑
v∈Bk

mk(v)2
∑
v∈Bk

dim(v)2

≥

(∑
v∈Bk

mk(v) dim(v)

)2

= N2k

But shows that if bk has polynomial growth, then the following happens:

lim sup
k→∞

m2k(1)1/2k ≥ N

Thus, the Kesten type criterion applies, and gives the result. �

As a last topic regarding amenability, in a very basic, algebraic sense, let us discuss
now the recovery of this property out of the knowledge of the tori. We will need:
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Theorem 12.25. Given a closed subgroup G ⊂ U+
N and a matrix Q ∈ UN , we let

TQ ⊂ G be the diagonal torus of G, with fundamental representation spinned by Q:

C(TQ) = C(G)
/〈

(QuQ∗)ij = 0
∣∣∣∀i 6= j

〉
This torus is then a group dual, given by TQ = Λ̂Q, where ΛQ =< g1, . . . , gN > is the
discrete group generated by the elements

gi = (QuQ∗)ii

which are unitaries inside the quotient algebra C(TQ).

Proof. Let us first discuss the case Q = 1, corresponding to the quite familiar notion
of diagonal torus. Since u is unitary, its diagonal entries gi = uii are unitaries inside C(T1).
Moreover, from ∆(uij) =

∑
k uik ⊗ ukj we obtain, when passing inside the quotient:

∆(gi) = gi ⊗ gi
It follows that we have C(T1) = C∗(Λ1), modulo identifying the C∗-completions of the

various group algebras, and so that we have, as claimed:

T1 = Λ̂1

In the general case now, Q ∈ UN , the result follows too, because TQ is a certain
diagonal torus, namely that of G, with fundamental representation spinned by Q. �

Summarizing, associated to any closed subgroup G ⊂ U+
N is a whole family of tori,

indexed by the unitaries U ∈ UN , that we will call “standard tori”. As a first general
result now regarding these standard tori, coming from Woronowicz [99], we have:

Theorem 12.26. Any torus T ⊂ G appears as follows, for a certain Q ∈ UN :

T ⊂ TQ ⊂ G

In other words, any torus appears inside a standard torus.

Proof. Given a group dual, or torus T ⊂ G, we have inclusions as follows:

T ⊂ G ⊂ U+
N

On the other hand, the Peter-Weyl theory in [99] shows that each torus T ⊂ U+
N has

a fundamental corepresentation as follows, with Q ∈ UN being a certain unitary:

u = Q

g1

. . .
gN

Q∗

But this shows that we have T ⊂ TQ, and this gives the result. �
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There are many other things that can be said about the tori {TQ|Q ∈ UN}, which
altogether play the role of a “maximal torus” for G. Thus, the various properties of G
can be read in principle on these tori, and in what regards amenability, we have:

Conjecture 12.27. A closed subgroup G ⊂ U+
N is coamenable if and only if each of

the tori TQ is coamenable, in the usual discrete group sense.

In other words, the conjecture says that the discrete quantum group Γ = Ĝ is amenable

precisely when one of the usual discrete groups ΛQ = T̂Q is amenable. This conjecture
has been verified in a number of key cases, and notably for the main examples of easy
quantum groups, but in general, there is no idea so far on how to deal with it. For more
on all this, and for other basic amenability questions as well, we refer to [7].

To summarize now, we have a decent understanding of what a discrete quantum group
is, and also of what amenability means, in the discrete quantum group setting. However,
all this does not exactly solve the von Neumann algebra questions, and we have:

Question 12.28. Which discrete quantum groups Γ have the property L(Γ) ' R?
Equivalently, which compact quantum groups G have the property L∞(G) ' R?

Here the equivalence between the above two questions comes from the fact that, with

Γ = Ĝ, we have L(Γ) = L∞(G). As for the questions themselves, normally the hyperfinite-
ness part can be dealt with as in the classical group case, by using the amenability theory
developed above, and the problem is with the ICC property, guaranteeing factoriality,
with no one presently knowing what this “quantum ICC” property is.

As a funny comment here, the equation L(Γ) ' R is precisely the one Murray and
von Neumann were stuck with, in the classical group case, some 90 years ago. Some sort
of Connes is needed, coming and solving this problem, with new ideas.

Finally, let us mention that in connection with amenability and hyperfiniteness, we
have as well a series of further questions, in relation with the actions of quantum groups.
To be more precise, the problems that we would like to solve are as follows:

(1) We would like to understand, given a compact group or quantum group acting on
a von Neumann algebra, Gy P , when the fixed point algebra PG is a factor.

(2) More generally, we would like to understand under which assumptions on Gy P
the fixed point algebra (B ⊗ P )G is a factor, for any finite dimensional algebra B.

(3) In fact, we would like to understand when the fixed point algebra PG, or more
generally all the fixed point algebras (B ⊗ P )G, are the hyperfinite II1 factor R.

These questions are all of interest in subfactor theory, the idea being that a quite
standard construction of subfactors is (B0⊗P )G ⊂ (B1⊗P )G, coming from a von Neumann
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algebra P , an inclusion of finite dimensional algebras B0 ⊂ B1, and a compact quantum
group G acting on everything, provided that the fixed point algebras involved are indeed
factors. And then, once such a subfactor constructed and studied, the main problem is
that of understanding if this subfactor can be taken to be hyperfinite.

These are quite technical questions, to be discussed in chapters 13-16 below, when
doing subfactors. Let us mention however, coming a bit in advance, that we have:

Fact 12.29. Assuming that Γ = Ĝ has an outer action on the hyperfinite II1 factor

Γ y R

we can set P = Ro Γ, and the answer to the above questions is yes.

Which brings us into the very interesting question on whether we have such outer
actions Γ y R, with the status of the subject being as follows:

(1) All this goes back to work in the 80s of Ocneanu, and Wassermann too, with Oc-
neanu eventually conjecturing that any discrete group Γ, and more generally any discrete
quantum group Γ, should have such an action. This question is still open.

(2) In practice, the result is known in the finite case, |Γ| <∞, and more generally in
the case where C∗(Γ) has an inner faithful matrix model, in the sense of chapter 11, with
this being worked out in [5] and its follow-ups, and then by Vaes in [81].

(3) And there has been quite some work on this, since then. For the status of the
question, and relations with other questions, such as the Connes embedding problem,
Voiculescu microstates and more, we refer to Brannan-Chirvasitu-Freslon [21].

Summarizing, many things going on here, with the philosophy being somehow that,
once we want our factors or subfactors to be hyperfinite, isomorphic to R, we are all of
the sudden into all sorts of interesting questions, in relation with advanced mathematics
and physics. But more on this later, in chapters 13-16 below, when doing subfactors.

12d. Hyperfinite factors

Back to general theory, there are many other things that can be said, in relation with
hyperfiniteness. We first have a reduction theory result, as follows:

Theorem 12.30. Any tracial hyperfinite von Neumann algebra appears as

A =

∫
X

Ax dx

with the factors Ax being either usual matrix algebras, or the factor R.

Proof. This follows indeed by combining the von Neumann reduction theory from
[88] with the theory of R of Murray-von Neumann [62] and Connes [25]. �
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More generally, we have the following result, this time in arbitrary type:

Theorem 12.31. Given a hyperfinite von Neumann algebra A ⊂ B(H), write its
center as follows, with X being a measured space:

Z(A) = L∞(X)

The whole algebra A decomposes then over this measured space X, as follows,

A =

∫
X

Ax dx

with the fibers Ax being hyperfinite von Neumann factors, which can be of type I, II, III.

Proof. This is again something heavy, combining the general reduction theory results
of von Neumann with the work of Connes in the hyperfinite case. �

Which brings us into the question of classifying all hyperfinite factors. The result
here, due to Connes [25], with a key contribution by Haagerup [40], is as follows:

Theorem 12.32. The hyperfinite factors are as follows, with 1 factor in each class

IN, I∞

II1, II∞

III0, IIIλ, III1

and with the type II1 one R being the most important, basically producing the others too.

Proof. This is again heavy, based on early work of Murray-von Neumann in type II
[62], then on heavy work by Connes in type II and III [24], [25], basically finishing the
classification, and with a final contribution by Haagerup in type III1 [40]. �

Getting back now to the II1 factors, and beyond hyperfiniteness, where things are
understood, with R being the only example, there is a whole classification program here,
by Popa and others, going on. Let us mention that a main open problem is that of
deciding whether the free group factors L(F2) and L(F3) are isomorphic or not:

L(F2) '? L(F3)

This question can be of course asked in crossed product form, in the spirit of the
various crossed product results above, and of advanced ergodic theory in general, with
the space in question, producing the crossed product, being the point:

{.}o F2 '? {.}o F3

This formulation, used by Popa, has the advantage of putting the above problem into a
more conceptual framework, with lots of advanced machinery available around. However,
it is not clear whether this formulation simplifies or not the original problem.
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There are as well a number of alternative approaches to this question, and notably
the Voiculescu one, using free probability, the idea being that of recapturing the number
N ∈ N from the knowledge of the von Neumann algebra L(FN), via an entropy-type
invariant. This latter program, while not solving the original problem, due to technical
difficulties, is however very successful, in the sense that it has led to a lot of interesting
results and computations, in relation with a lot of mathematics and physics.

Is the free group factor problem something belonging to logic, as the difficult problems
in functional analysis usually end up being? No one really knows the answer here.

Interestingly, the question is difficult to the point where the conjectural answer, yes or
no, is not known. And even worse, excluding the many people who have spent considerable
time on the matter, years or more, working on yes or no, most people familiar with the
question don’t even really know what to wish for, yes or no, as an answer.

In what concerns us, we have been quite close in this book to the ideas of Voiculescu,
but, as a surprise, these very ideas of Voiculescu lead us into wishing for a yes answer to
the above question, which is opposite to his no wish, and work using free entropy. Indeed,
to put things in context, let us formulate the question in the following way:

Question 12.33. Is there a factor F , standing as a free counterpart for R?

And wouldn’t you wish for a yes answer to this question, with F being of course all
the free group factors L(FN) combined, and probably many more, coming from all sorts
of free quantum groups, free homogeneous spaces, or other free manifolds. It would be
good to know in free geometry that what we get by default is this factor F .

As a last comment here, later on, when doing subfactors, we will see that the particular
factor F = L(F∞) quite does the job there, in subfactors, being more of less the only “free
factor” that is needed, for that theory. But this does not really solve Question 12.33 in
the context of subfactor theory because, ironically, the main questions there, including
the “free” ones, rather concern the subfactors of the good old hyperfinite factor R.

12e. Exercises

Things have been extremely technical in this chapter, which was more of a survey
than something else, and as a unique exercise on all this, we have:

Exercise 12.34. Learn some more basic hyperfinite von Neumann algebra theory,
from the papers of von Neumann and Murray-von Neumann, then Connes, Haagerup and
others, and write down a brief account of what you learned.

In what follows we will avoid ourselves this type of exercise, basically by getting back
to the material in chapter 10, and building on that, following Jones.
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Maria, you’ve gotta see her
Go insane and out of your mind

Latina, Ave Maria
A million and one candle lights



CHAPTER 13

Subfactor theory

13a. The Jones tower

In this last part of the present book we discuss the basics of Jones’ subfactor theory
[44], [45], [46], [47], [48]. The idea is that subfactors are quite subtle objects, generalizing
various algebraic and combinatorial constructions from chapters 5-8, and coming from the
functional analysis and operator theory considerations from chapters 9-12. Their study
will bring us into a lot of advanced mathematics, mixing algebra, geometry, analysis and
probability, and with everything being of modern physics flavor, often in relation with
considerations from advanced statistical mechanics, and quantum mechanics.

We recall that a II1 factor is a von Neumann algebra A ⊂ B(H) which has trivial
center, Z(A) = C, is infinite dimensional, and has a trace tr : A → C. For a number of
reasons, ranging from simple and intuitive to fairly advanced, explained in chapters 9-12,
such algebras are the core at the whole von Neumann algebra theory.

The world of II1 factors is a bit similar to the world of the usual matrix algebras
MN(C), which are actually called type I factors, in the sense that it is “self-sufficient”,
with no need to go further than that. In particular, a nice representation theory for such
II1 factors can be obtained by staying inside the class of II1 factors, and we have the
following definition to start with, which will keep us busy for the rest of this book:

Definition 13.1. A subfactor is an inclusion of II1 factors A ⊂ B.

We will see later some examples of such inclusions, along with motivations for their
study. In order to get started now, the first thing to be done with such an inclusion is
that of defining its index, as a quantity of the following type:

[B : A] = dimAB

Since both A,B are infinite dimensional algebras, this is not exactly obvious. In
addition, in view of our previous experience with the II1 factors, and notably with their
“continuous dimension” features, we can only expect the index to range as follows:

[B : A] ∈ [1,∞]

In order to discuss this, let us recall from chapter 10 that given a representation of
a II1 factor A ⊂ B(H), we can construct a number as follows, called coupling constant,

299
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which for the standard form, where H = L2(A), takes the value 1, and which in general
mesures how far is A ⊂ B(H) from the standard form:

dimAH ∈ (0,∞]

Getting now to the subfactors, in the sense of Definition 13.1, we have the following
construction, that we know as well from chapter 10:

Theorem 13.2. Given a subfactor A ⊂ B, the number

N =
dimAH

dimBH
∈ [1,∞]

is independent of the ambient Hilbert space H, and is called index.

Proof. This is something that we know from chapter 10, the idea being that the
independence of the index from the choice of the ambient Hilbert space H comes from
the various basic properties of the coupling constant. �

There are many examples of subfactors, and we will discuss this gradually, in what
follows. Following Jones [44], the most basic examples of subfactors are as follows:

Proposition 13.3. Assuming that G is a compact group, acting on a II1 factor P in
a minimal way, in the sense that we have

(PG)′ ∩ P = C

and that H ⊂ G is a closed subgroup of finite index, we have a subfactor

PG ⊂ PH

having index N = [G : H], called Jones subfactor.

Proof. This is something standard, the idea being that the factoriality of PG, PH

comes from the minimality of the action, and that the index formula is clear. We will be
back with full details about this in a moment, directly in a more general setting. �

In order to study the subfactors, let us start with the following standard result:

Proposition 13.4. Given a subfactor A ⊂ B, there is a unique linear map

E : B → A

which is positive, unital, trace-preserving and satisfies the following condition:

E(b1ab2) = b1E(a)b2

This map is called conditional expectation from B onto A.
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Proof. We make use of the standard representation of the II1 factor B, with respect
to its unique trace tr : B → C, as constructed in chapter 10:

B ⊂ L2(B)

If we denote by Ω the standard cyclic and separating vector of L2(B), we have an
identification AΩ = L2(A). Consider now the following orthogonal projection:

e : L2(B)→ L2(A)

It follows from definitions that we have an inclusion as follows:

e(BΩ) ⊂ AΩ

Thus e induces by restriction a certain linear map E : B → A. This linear map E and
the orthogonal projection e are then related by:

exe = E(x)e

But this shows that the linear map E satisfies the various conditions in the state-
ment, namely positivity, unitality, trace preservation and bimodule property. As for the
uniqueness assertion, this follows by using the same argument, applied backwards, the
idea being that a map E as in the statement must come from the projection e. �

Following Jones [44], we will be interested in what follows in the orthogonal projection
e : L2(B)→ L2(A) producing the expectation E : B → A, rather than in E itself:

Definition 13.5. Associated to any subfactor A ⊂ B is the orthogonal projection

e : L2(B)→ L2(A)

producing the conditional expectation E : B → A via the following formula:

exe = E(x)e

This projection is called Jones projection for the subfactor A ⊂ B.

Quite remarkably, the subfactor A ⊂ B, as well as its commutant, can be recovered
from the knowledge of this projection, in the following way:

Proposition 13.6. Given a subfactor A ⊂ B, with Jones projection e, we have

A = B ∩ {e}′

A′ = (B′ ∩ {e})′′

as equalities of von Neumann algebras, acting on the space L2(B).

Proof. These formulae basically follow from exe = E(x)e, as follows:

(1) Let us first prove that we have A ⊂ B ∩ {e}′. Given x ∈ A, we have:

xe = E(x)e = exe

x∗e = E(x∗)e = ex∗e
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Thus, we obtain, as desired, that x commutes with e:

ex = (x∗e)∗ = (ex∗e)∗ = exe = xe

(2) Let us prove now that B ∩ {e}′ ⊂ A. Assuming ex = xe, we have:

E(x)e = exe = xe2 = xe

We conclude from this that we have the following equality:

(E(x)− x)Ω = (E(x)− x)eΩ = 0

Now since Ω is separating for B we have, as desired:

x = E(x) ∈ A

(3) In order to prove now A′ =< B′, e >, observe that we have:

A = B ∩ {e}′ = B′′ ∩ {e}′ = (B′ ∩ {e})′

Now by taking the commutant, we obtain A′ = (B′ ∩ {e})′′, as desired. �

Still following Jones [44], we are now ready to formulate a key definition:

Definition 13.7. Associated to any subfactor A ⊂ B is the basic construction

A ⊂e B ⊂ C

with C =< B, e > being the algebra generated by B and by the Jones projection

e : L2(B)→ L2(A)

acting on the Hilbert space L2(B).

The idea in what follows will be that B ⊂ C appears as a kind of “reflection” of
A ⊂ B, and also that the basic construction can be iterated, with all this leading to
nontrivial results. Let us start by further studying the basic construction:

Theorem 13.8. Given a subfactor A ⊂ B having finite index,

[B : A] <∞

the basic construction A ⊂e B ⊂ C has the following properties:

(1) C = JA′J .
(2) C = B +Beb.
(3) C is a II1 factor.
(4) [C : B] = [B : A].
(5) eCe = Ae.
(6) tr(e) = [B : A]−1.
(7) tr(xe) = tr(x)[B : A]−1, for any x ∈ B.
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Proof. All this is standard, the idea being as follows:

(1) We have JB′J = B and JeJ = e, which gives:

JA′J = J < B′, e > J

= < JB′J, JeJ >

= < B, e >

= C

(2) This follows from the fact that the vector space B + BeB is closed under multi-
plication, and from the fact that we have exe = E(x)e.

(3) This follows from the fact, that we know from chapter 10, that our finite index
assumption [B : A] < ∞ is equivalent to the fact that A′ is a factor. But this is in turn
equivalent to the fact that C = JA′J is a factor, as desired.

(4) We have indeed the folowing computation:

[C : B] =
dimB L

2(B)

dimC L2(B)

=
1

dimC L2(B)

=
1

dimJA′J L2(B)

=
1

dimA′ L2(B)

= dimA L
2(B)

= [B : A]

(5) This follows indeed from (2) and from the formula exe = E(x)e.

(6) We have the following computation:

1 = dimA L
2(A)

= dimA(eL2(B))

= trA′(e) dimA(L2(B))

= trA′(a)[B : A]

Now since C = JA′J and JeJ = e, we obtain from this, as desired:

tr(e) = trJA′J(JeJ)

= trA′(e)

= [B : A]−1
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(7) We already know from (6) that the formula in the statement holds for x = 1. In
order to discuss the general case, observe first that for x, y ∈ A we have:

tr(xye) = tr(yex) = tr(yxe)

Thus the linear map x→ tr(xe) is a trace on A, and by uniqueness of the trace on A,
we must have, for a certain constant c > 0:

tr(xe) = c · tr(x)

Now by using (6) we obtain c = [B : A]−1, so we have proved the formula in the
statement for x ∈ A. The passage to the general case x ∈ B can be done as follows:

tr(xe) = tr(exe)

= tr(E(x)e)

= tr(E(x))c

= tr(x)c

Thus, we have proved the formula in the statement, in general. �

The above result is quite interesting, so let us perform now twice the basic construction,
and see what we get. The result here, which is more technical, is as follows:

Proposition 13.9. Associated to A ⊂ B is the double basic construction

A ⊂e B ⊂f C ⊂ D

with e, f being the following orthogonal projections,

e : L2(B)→ L2(A)

f : L2(C)→ L2(B)

having the following properties:

fef = [B : A]−1f

efe = [B : A]−1e

Proof. We have two formulae to be proved, the idea being as follows:

(1) The first formula is clear, because we have:

fef = E(e)f

= tr(e)f

= [B : A]−1f

(2) Regarding now the second formula, it is enough to check it on the dense subset
(B +BeB)Ω. Thus, we must show that for any x, y, z ∈ B, we have:

efe(x+ yez)Ω = [B : A]−1e(x+ yez)Ω
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For this purpose, we will prove that we have, for any x, y, z ∈ B:

efexΩ = [B : A]−1exΩ

efeyezΩ = [B : A]−1eyezΩ

The first formula can be established as follows:

efexΩ = efexfΩ

= eE(ex)fΩ

= eE(e)xfΩ

= [B : A]−1exfΩ

= [B : A]−1exΩ

The second formula can be established as follows:

efeyezΩ = efeyezfΩ

= eE(eyez)fΩ

= eE(eye)zfΩ

= eE(E(y)e)zfΩ

= eE(y)E(e)zfΩ

= [B : A]−1eE(y)zfΩ

= [B : A]−1eyezfΩ

= [B : A]−1eyezΩ

Thus, we are led to the conclusion in the statement. �

We can in fact perform the basic construction by recurrence, and we obtain:

Theorem 13.10. Associated to any subfactor A0 ⊂ A1 is the Jones tower

A0 ⊂e1 A1 ⊂e2 A2 ⊂e3 A3 ⊂ . . . . . .

with the Jones projections having the following properties:

(1) e2
i = ei = e∗i .

(2) eiej = ejei for |i− j| ≥ 2.
(3) eiei±1ei = [B : A]−1ei.
(4) tr(wen+1) = [B : A]−1tr(w), for any word w ∈< e1, . . . , en >.

Proof. This follows from Theorem 13.8 and Proposition 13.9, because the triple basic
construction does not need in fact any further study. See Jones [44]. �
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13b. Temperley-Lieb

The relations found in Theorem 13.10 are in fact well-known, from the standard theory
of the Temperley-Lieb algebra. This algebra, discovered by Temperley and Lieb in the
context of statistical mechanics [80], has a very simple definition, as follows:

Definition 13.11. The Temperley-Lieb algebra of index N ∈ [1,∞) is defined as

TLN(k) = span(NC2(k, k))

with product given by vertical concatenation, with the rule

© = N

for the closed circles that might appear when concatenating.

In other words, the algebra TLN(k), depending on parameters k ∈ N and N ∈ [1,∞),
is the formal linear span of the pairings π ∈ NC2(k, k). The product operation is obtained
by linearity, for the pairings which span TLN(k) this being the usual vertical concatena-
tion, with the conventions that things go “from top to bottom”, and that each circle that
might appear when concatenating is replaced by a scalar factor, equal to N .

In order to make the connection with subfactors, let us start with:

Proposition 13.12. The Temperley-Lieb algebra TLN(k) is generated by the diagrams

ε1 = ∪
∩ , ε2 = | ∪∩ , ε3 = || ∪∩ , . . .

which are all multiples of projections, in the sense that their rescaled versions

ei = N−1εi

satisfy the abstract projection relations e2
i = ei = e∗i .

Proof. We have two assertions here, the idea being as follows:

(1) The fact that the algebra TLN(k) is indeed generated by the sequence of diagrams
ε1, ε2, ε3, . . . follows by drawing pictures, and more specifically by graphically decomposing
each basis element π ∈ NC2(k, k) as a product of such elements εi.

(2) Regarding now the projection assertion, when composing εi with itself we obtain
εi itself, times a circle. Thus, according to our multiplication conventions, we have:

ε2
i = Nεi

Also, when turning upside-down εi, we obtain εi itself. Thus, according to our invo-
lution convention for the Temperley-Lieb algebra, we have:

ε∗i = εi

We conclude that the rescalings ei = N−1εi satisfy e2
i = ei = e∗i , as desired. �

As a second result now, making the link with Theorem 13.10, we have:
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Proposition 13.13. The standard generators ei = N−1εi of the Temperley-Lieb al-
gebra TLN(k) have the following properties, where tr is the trace obtained by closing:

(1) eiej = ejei for |i− j| ≥ 2.
(2) eiei±1ei = [B : A]−1ei.
(3) tr(wen+1) = [B : A]−1tr(w), for any word w ∈< e1, . . . , en >.

Proof. This follows indeed by doing some elementary computations with diagrams,
in the spirit of those performed in the proof of Proposition 13.12. Indeed:

(1) This is clear from the definition of the diagrams εi.

(2) This is clear as well from the definition of the diagrams εi.

(3) This is something which is clear too, from the definition of εn+1. �

With the above results in hand, we can now reformulate our main finding about
subfactors, namely Theorem 13.10, into something more conceptual, as follows:

Theorem 13.14. Given a finite index subfactor A0 ⊂ A1, with Jones tower

A0 ⊂e1 A1 ⊂e2 A2 ⊂e3 A3 ⊂ . . . . . .

the rescaled sequence of projections e1, e2, e3, . . . ∈ B(H) produces a representation

TLN ⊂ B(H)

of the Temperley-Lieb algebra of index N = [A1 : A0].

Proof. The idea here is that Theorem 13.10, coming from the study of the basic con-
struction, tells us that the rescaled sequence of projections e1, e2, e3, . . . ∈ B(H) behaves
algebrically exactly as the sequence of diagrams ε1, ε2, ε3, . . . ∈ TLN given by:

ε1 = ∪
∩ , ε2 = | ∪∩ , ε3 = || ∪∩ , . . .

But these diagrams generate TLN , and so we have an embedding TLN ⊂ B(H), where
H is the Hilbert space where our subfactor A0 ⊂ A1 lives, as claimed. �

Before going further, with some examples, more theory, and consequences of Theorem
13.14, let us make the following key observation, also from Jones [44]:

Theorem 13.15. Given a finite index subfactor A0 ⊂ A1, the graded algebra

P = (Pk)

formed by the sequence of higher relative commutants

Pk = A′0 ∩ Ak
contains the copy of the Temperley-Lieb algebra constructed above:

TLN ⊂ P

This graded algebra P = (Pk) is called “planar algebra” of the subfactor.
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Proof. As a first observation, since the Jones projection e1 : A1 → A0 commutes
with A0, as was previously established in the above, we have:

e1 ∈ P ′2
By translation we obtain from this that we have, for any k ∈ N:

e1, . . . , ek−1 ∈ Pk
Thus we have indeed an inclusion of graded algebras TLN ⊂ P , as claimed. �

The point with the above result, which explains among others the terminology at
the end, is that, in the context of Theorem 13.14, the planar algebra structure of TLN ,
obtained by composing diagrams, extends into an abstract planar algebra structure of P .
See [46]. We will discuss all this, with full details, in the next chapter.

13c. Basic examples

Let us discuss now some basic examples of subfactors, with concrete illustrations for
all the above notions, constructions, and general theory. These examples will all come
from group actions Gy P , which are assumed to be minimal, in the sense that:

(PG)′ ∩ P = C
We will not provide proofs for the next few results to follow, the idea being that these

constructions can be unified, and that we would like to keep the proofs for the unifications
only. As a starting point, we have the following result, that we already know:

Proposition 13.16. Assuming that G is a compact group, acting minimally on a II1

factor P , and that H ⊂ G is a subgroup of finite index, we have a subfactor

PG ⊂ PH

having index N = [G : H], called Jones subfactor.

Proof. This is something that we know, the idea being that the factoriality of PG, PH

comes from the minimality of the action, and that the index formula is clear. �

Along the same lines, we have the following result:

Proposition 13.17. Assuming that G is a finite group, acting minimally on a II1

factor P , we have a subfactor as follows,

P ⊂ P oG

having index N = |G|, called Ocneanu subfactor.

Proof. This is standard as well, the idea being that the factoriality of P oG comes
from the minimality of the action, and that the index formula is clear. �

We have as well a third result of the same type, as follows:
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Proposition 13.18. Assuming that G is a compact group, acting minimally on a II1

factor P , and that G→ PUn is a projective representation, we have a subfactor

PG ⊂ (Mn(C)⊗ P )G

having index N = n2, called Wassermann subfactor.

Proof. As before, the idea is that the factoriality of PG, (Mn(C)⊗ P )G comes from
the minimality of the action, and the index formula is clear. �

The above subfactors look quite related, and indeed they are, due to:

Theorem 13.19. The Jones, Ocneanu and Wassermann subfactors are all of the same
nature, and can be written as follows,(

PG ⊂ PH
)
'
(
(C⊗ P )G ⊂ (l∞(G/H)⊗ P )G

)
(P ⊂ P oG) '

(
(l∞(G)⊗ P )G ⊂ (L(l2(G))⊗ P )G

)(
PG ⊂ (Mn(C)⊗ P )G

)
'
(
(C⊗ P )G ⊂ (Mn(C)⊗ P )G

)
with standard identifications for the various tensor products and fixed point algebras.

Proof. This is something very standard, modulo all kinds of standard identifications.
We will explain all this more in detail later, after unifying these subfactors. �

In order to unify now the above constructions of subfactors, the idea is quite clear.
Given a compact group G, acting minimally on a II1 factor P , and an inclusion of finite
dimensional algebras B0 ⊂ B1, endowed as well with an action of G, we would like to
construct a kind of generalized Wassermann subfactor, as follows:

(B0 ⊗ P )G ⊂ (B1 ⊗ P )G

In order to do this, we must talk first about the finite dimensional algebras B, and
about inclusions of such algebras B0 ⊂ B1. Let us start with the following definition:

Definition 13.20. Associated to any finite dimensional algebra B is its canonical
trace, obtained by composing the left regular representation with the trace of L(B):

tr : B ⊂ L(B)→ C
We say that an inclusion of finite dimensional algebras B0 ⊂ B1 is Markov if it comm-
mutes with the canonical traces of B0, B1.

In what regards the first notion, that of the canonical trace, this is something that we
know well, from chapter 5. Indeed, as explained there, we can formally write B = C(X),
with X being a finite quantum space, and the canonical trace tr : B → C is then precisely
the integration with respect to the “counting measure” on X.

In what regards the second notion, that of a Markov inclusion, this is something very
natural too, and as a first example here, any inclusion of type C ⊂ B is Markov. In
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general, if we write B0 = C(X0) and B1 = C(X1), then the inclusion B0 ⊂ B1 must come
from a certain fibration X1 → X0, and the inclusion B0 ⊂ B1 is Markov precisely when
the fibration X1 → X0 commutes with the respective counting measures.

We will be back to Markov inclusions and their various properties on several occasions,
in what follows. For our next purposes here, we just need the following result:

Proposition 13.21. Given a Markov inclusion of finite dimensional algebras B0 ⊂ B1

we can perform to it the basic construction, as to obtain a Jones tower

B0 ⊂e1 B1 ⊂e2 B2 ⊂e3 B3 ⊂ . . . . . .

exactly as we did in the above for the inclusions of II1 factors.

Proof. This is something quite routine, by following the computations in the above,
from the case of the II1 factors, and with everything extending well. It is of course
possible to do something more general here, unifying the constructions for the inclusions
of II1 factors A0 ⊂ A1, and for the inclusions of Markov inclusions of finite dimensional
algebras B0 ⊂ B1, but we will not need this degree of generality, in what follows. �

With these ingredients in hand, getting back now to the Jones, Ocneanu and Wasser-
mann subfactors, from Theorem 13.19, the point is that these constructions can be unified,
and then further studied, the final result on the subject being as follows:

Theorem 13.22. Let G be a compact group, and G → Aut(P ) be a minimal action
on a II1 factor. Consider a Markov inclusion of finite dimensional algebras

B0 ⊂ B1

and let G → Aut(B1) be an action which leaves invariant B0, and which is such that its
restrictions to the centers of B0 and B1 are ergodic. We have then a subfactor

(B0 ⊗ P )G ⊂ (B1 ⊗ P )G

of index N = [B1 : B0], called generalized Wassermann subfactor, whose Jones tower is

(B1 ⊗ P )G ⊂ (B2 ⊗ P )G ⊂ (B3 ⊗ P )G ⊂ . . .

where {Bi}i≥1 are the algebras in the Jones tower for B0 ⊂ B1, with the canonical actions
of G coming from the action G→ Aut(B1), and whose planar algebra is given by:

Pk = (B′0 ∩Bk)
G

These subfactors generalize the Jones, Ocneanu and Wassermann subfactors.

Proof. There are several things to be proved, the idea being as follows:

(1) As before on various occasions, the idea is that the factoriality of the algebras
(Bi ⊗ P )G comes from the minimality of the action G → Aut(P ), and that the index
formula is clear as well, from the definition of the coupling constant and of the index.
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(2) Regarding the Jones tower assertion, the precise thing to be checked here is that
if A ⊂ B ⊂ C is a basic construction, then so is the following sequence of inclusions:

(A⊗ P )G ⊂ (B ⊗ P )G ⊂ (C ⊗ P )G

But this is something standard, which follows by verifying the basic construction
conditions. We will be back to this in a moment, directly in a more general setting.

(3) Next, regarding the planar algebra assertion, we have to prove here that for any
indices i ≤ j, we have the following equality between subalgebras of Bj ⊗ P :

((Bi ⊗ P )G)′ ∩ (Bj ⊗ P )G = (B′i ∩BG
j )⊗ 1

But this is something which is routine too, following Wassermann [91], and we will
be back to this in a moment, with full details, directly in a more general setting.

(4) Finally, the last assertion, regarding the main examples of such subfactors, which
are those of Jones, Ocneanu, Wassermann, follows from Theorem 13.19. �

In addition to the Jones, Ocneanu and Wassermann subfactors, discussed and unified
in the above, we have the Popa subfactors, which are constructed as follows:

Proposition 13.23. Given a discrete group Γ =< g1, . . . , gn >, acting faithfully via
outer automorphisms on a II1 factor Q, we have the following “diagonal” subfactor

g1(q)
. . .

gn(q)

∣∣∣q ∈ Q
 ⊂Mn(Q)

having index N = n2, called Popa subfactor.

Proof. This is something standard, a bit as for the Jones, Ocneanu and Wassermann
subfactors, with the result basically coming from the work of Popa, who was the main
user of such subfactors. We will come in a moment with a more general result in this
direction, involving discrete quantum groups, along with a complete proof. �

In order to unify now Theorem 13.22 and Proposition 13.23, observe that the diagonal
subfactors can be written in the following way, by using a group dual:

(Qo Γ)Γ̂ ⊂ (Mn(C)⊗ (Qo Γ))Γ̂

Here the group dual Γ̂ acts on P = Qo Γ via the dual of the action Γ ⊂ Aut(Q), and
on Mn(C) via the adjoint action of the following representation:

⊕gi : Γ̂→ Cn

Summarizing, we are led into quantum groups. Our plan in what follows will be that
of discussing the quantum extension of Theorem 13.22, covering the diagonal subfactors
as well, and this time with full details, and with examples and illustrations as well.
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We follow [5], where this extension of the Wassermann construction [91] was devel-
oped. Let us start our discussion with some basic theory. We first have:

Definition 13.24. A coaction of a Woronowicz algebra A on a finite von Neumann
algebra P is an injective morphism Φ : P → P ⊗ A′′ satisfying the following conditions:

(1) Coassociativity: (Φ⊗ id)Φ = (id⊗∆)Φ.
(2) Trace equivariance: (tr ⊗ id)Φ = tr(.)1.
(3) Smoothness: P w

= P , where P = Φ−1(P ⊗alg A).

The above conditions come from what happens in the commutative case, A = C(G),
where they correspond to the usual associativity, trace equivariance and smoothness of
the corresponding action Gy P . Along the same lines, we have as well:

Definition 13.25. A coaction Φ : P → P ⊗ A′′ as above is called:

(1) Ergodic, if the algebra PΦ =
{
p ∈ P

∣∣Φ(p) = p⊗ 1
}

reduces to C.

(2) Faithful, if the span of
{

(f ⊗ id)Φ(P )
∣∣f ∈ P∗} is dense in A′′.

(3) Minimal, if it is faithful, and satisfies (PΦ)′ ∩ P = C.

Observe that the minimality of the action implies in particular that the fixed point
algebra PΦ is a factor. Thus, we are getting here to the case that we are interested in,
actions producing factors, via their fixed point algebras. More on this later.

In order to prove our subfactor results, we need of some general theory regarding the
minimal actions. Following Wassermann [91], let us start with the following definition:

Definition 13.26. Let Φ : P → P ⊗A′′ be a coaction. An eigenmatrix for a corepre-
sentation u ∈ B(H)⊗ A is an element M ∈ B(H)⊗ P satisfying:

(id⊗ Φ)M = M12u13

A coaction is called semidual if each corepresentation has a unitary eigenmatrix.

As a basic example here, the canonical coaction ∆ : A → A ⊗ A is semidual. We
will prove in what follows, following the work of Wassermann in the usual compact group
case, that the minimal coactions of Woronowicz algebras are semidual. We first have:

Proposition 13.27. If Φ : P → P ⊗ A′′ is a minimal coaction and u ∈ Irr(A) is a
corepresentation, then u has a unitary eigenmatrix precisely when P u 6= {0}.

Proof. Given u ∈Mn(A), consider the following unitary corepresentation:

u+ = (n⊗ 1)⊕ u =

(
1 0
0 u

)
∈M2(Mn(C)⊗A) = M2(C)⊗Mn(C)⊗A

It is then routine to check, exactly as in [91], with the computation being explained
in [5], that if the following algebra is a factor, then u has a unitary eigenmatrix:

Xu = (M2(C)⊗Mn(C)⊗ P )πu+
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So, let us prove that Xu is a factor. For this purpose, let x ∈ Z(Xu). We have then
1⊗ 1⊗ PΦ ⊂ Xu, and from the irreducibility of the inclusion P π ⊂ P we obtain that:

x ∈M2(C)⊗Mn(C)⊗ 1

On the other hand, we have the following formula:

Xu ∩M2(C)⊗Mn(C)⊗ 1 = (M2(C)⊗Mn(C))iu+ ⊗ 1

= End(u+)⊗ 1

Since our corepresentation u was chosen to be irreducible, it follows that x must be of
the following form, with y ∈Mn(C), and with λ ∈ C:

x =

(
y 0
0 λI

)
⊗ 1

Now let us pick a nonzero element p ∈ P u, and write:

Φ(p) =
∑
ij

pij ⊗ uij

Then Φ(pij) =
∑

k pkj⊗uki for any i, j, and so each column of (pij)ij is a u-eigenvector.
Choose such a nonzero column l and let mi be the matrix having the i-th row equal to l,
and being zero elsewhere. Then mi is a u-eigenmatrix for any i, and this implies that:(

0 mi

0 0

)
∈ Xu

The commutation relation of this matrix with x is as follows:(
y 0
0 λI

)(
0 mi

0 0

)
=

(
0 mi

0 0

)(
y 0
0 λI

)
But this gives (y − λI)mi = 0. Now by definition of mi, this shows that the i-th

column of y − λI is zero. Thus y − λI = 0, and so x = λ1, as desired. �

We can now prove a main result about minimal coactions, as follows:

Theorem 13.28. The minimal coactions are semidual.

Proof. Let K be the set of finite dimensional unitary corepresentations of A which
have unitary eigenmatrices. Then, according to the above, the following happen:

(1)K is stable under taking tensor products. Indeed, ifM,N are unitary eigenmatrices
for u,w, then M13N23 is a unitary eigenmatrix for u⊗ w.

(2) K is stable under taking sums. Indeed, if Mi are unitary eigenmatrices for ui, then
diag(Mi) is a unitary eigenmatrix for ⊕ui.

(3) K is stable under substractions. Indeed, if M is an eigenmatrix for U = ⊕ni=1ui,
then the first dim(u1) columns of M are formed by elements of P u1 , the next dim(u2)
columns of M are formed by elements of P u2 , and so on. Now if M is unitary, it is in
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particular invertible, so all P ui are different from {0}, and we may conclude that we can
indeed substract corepresentations from U , by using Proposition 13.27.

(4) K is stable under complex conjugation. Indeed, by the above results we may
restrict attention to irreducible corepresentations. Now if u ∈ Irr(A) has a nonzero
eigenmatrix M then M is an eigenmatrix for u. By Proposition 13.27 we obtain from this
that P u 6= {0}, and we may conclude by using again Proposition 13.27.

With this in hand, by using Peter-Weyl, we obtain the result. See [5]. �

Let us construct now the fixed point subfactors. We first have:

Proposition 13.29. Consider a Woronowicz algebra A = (A,∆, S), and denote by
Aσ the Woronowicz algebra (A, σ∆, S), where σ is the flip. Given coactions

β : B → B ⊗ A
π : P → P ⊗ Aσ

with B being finite dimensional, the following linear map, while not being multiplicative
in general, is coassociative with respect to the comultiplication σ∆ of Aσ,

β � π : B ⊗ P → B ⊗ P ⊗ Aσ
b⊗ p→ π(p)23((id⊗ S)β(b))13

and its fixed point space, which is by definition the following linear space,

(B ⊗ P )β�π =
{
x ∈ B ⊗ P

∣∣∣(β � π)x = x⊗ 1
}

is then a von Neumann subalgebra of B ⊗ P .

Proof. This is something standard, which follows from a straightforward algebraic
verification, explained in [5]. As mentioned in the statement, to be noted is that the
tensor product coaction β � π is not multiplicative in general. See [5]. �

Our first task is to investigate the factoriality of such algebras, and we have here:

Theorem 13.30. If β : B → B ⊗ A is a coaction and π : P → P ⊗ Aσ is a minimal
coaction, then the following conditions are equivalent:

(1) The von Neumann algebra (B ⊗ P )β�π is a factor.
(2) The coaction β is centrally ergodic, Z(B) ∩Bβ = C.

Proof. This is something standard, from [5], the idea being as follows:

(1) Our first claim, which is something whose proof is a routine verification, explained
in [5], based on the semiduality of the minimal coaction π, that we know from Theorem
13.28, is that the following diagram is a non-degenerate commuting square:

P ⊂ B ⊗ P
∪ ∪
P π ⊂ (B ⊗ P )β�π
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(2) In order to prove now the result, it is enough to check the following equality,
between von Neumann subalgebras of the algebra B ⊗ P :

Z((B ⊗ P )β�π) = (Z(B) ∩Bβ)⊗ 1

So, let x be in the algebra on the left. Then x commutes with 1⊗ P π, so it has to be
of the form b⊗ 1. Thus x commutes with 1⊗ P . But x commutes with (B ⊗ P )β�π, and
from the non-degeneracy of the above square, x commutes with B ⊗ P , and in particular
with B⊗ 1. Thus we have b ∈ Z(B)∩Bβ. As for the other inclusion, this is obvious. �

In view of the above result, we can talk about subfactors of type (B0⊗P )G ⊂ (B1⊗P )G.
In order to investigate such subfactors, we will need the following technical result:

Proposition 13.31. Consider two commuting squares, as follows:

F ⊂ E ⊂ D
∪ ∪ ∪
A ⊂ B ⊂ C

(1) If the square on the left and the big square are non-degenerate, then so is the
square on the right.

(2) If both squares are non-degenerate, F ⊂ E ⊂ D is a basic construction, and the
Jones projection e ∈ D for this basic construction belongs to C, then the square
on the right is the basic construction for the square on the left.

Proof. We have several things to be proved, the idea being as follows:

(1) This assertion is clear from the following computation:

D = spw CF = spw CBF = spw CE

(2) Let Ψ : D → C be the expectation. By non-degeneracy, we have that:

E = spw FB = spw BF

We also have D = spw EeE by the basic construction, so we get that:

C = Ψ(D)

= Ψ(spw EeE)

= Ψ(spw BFeFB)

= Ψ(spw BeFB)

= spw BeΨ(F )B

= spw BeAB

= spw BeB

Thus the algebra C is generated by B and e, and this gives the result. �

Next in line, we have the following key technical result:
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Proposition 13.32. If β : B → B ⊗ A is a coaction then

A ⊂ B ⊗ A
∪ ↑ β
C ⊂ B

is a non-degenerate commuting square.

Proof. From the β-equivariance of the trace we get that the inclusion on the left
commutes with the traces, so that the above is a commuting diagram of finite von Neu-
mann algebras. From the formula of the expectation Eβ = (id ⊗

∫
A

)β we get that this
diagram is a commuting square. Choose now an orthonormal basis {bi} of B, write
β : bi →

∑
j bj ⊗ uji, and consider the corresponding unitary corepresentation:

uβ =
∑

eij ⊗ uij

Then for any k and any a ∈ A we have the following computation:∑
i

β(bi)(1⊗ u∗kia) =
∑
ij

bj ⊗ ujiu∗kia

=
∑
ij

bj ⊗ δjka

= bk ⊗ a

Thus our commuting square is non-degenerate, as claimed. �

Getting now to the generalized Wassermann subfactors, we first have:

Proposition 13.33. Given a Markov inclusion of finite dimensional algebras B0 ⊂
B1, construct its Jones tower, and denote it as follows:

B0 ⊂ B1 ⊂e1 B2 =< B1, e1 >⊂e2 B3 =< B2, e2 >⊂e3 . . .

If β1 : B1 → B1 ⊗ A is a coaction/anticoaction leaving B0 invariant then there exists a
unique sequence {βi}i≥0 of coactions/anticoactions

βi : Bi → Bi ⊗ A

such that each βi extends βi−1 and leaves invariant the Jones projection ei−1.

Proof. By taking opposite inclusions we see that the assertion for anticoactions is
equivalent to the one for coactions, that we will prove now. The uniqueness is clear from
Bi =< Bi−1, ei−1 >. For the existence, we can apply Proposition 13.32 to:

A ⊂ B0 ⊗ A ⊂ B1 ⊗ A
∪ ↑ β0 ↑ β1

C ⊂ B0 ⊂ B1
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Indeed, we get in this way that the square on the right is a non-degenerate. Now by
performing basic constructions to it, we get a sequence as follows:

B0 ⊗ A ⊂ B1 ⊗ A ⊂ B2 ⊗ A ⊂ B3 ⊗ A ⊂ . . .
↑ β0 ↑ β1 ↑ β2 ↑ β3

B0 ⊂ B1 ⊂ B2 ⊂ B3 ⊂ . . .

It is easy to see from definitions that the βi are coactions, that they extend each other,
and that they leave invariant the Jones projections. But this gives the result. �

With the above technical results in hand, we can now formulate our main theorem
regarding the fixed point subfactors, of the most possible general type, as follows:

Theorem 13.34. Let G be a compact quantum group, and G→ Aut(P ) be a minimal
action on a II1 factor. Consider a Markov inclusion of finite dimensional algebras

B0 ⊂ B1

and let G → Aut(B1) be an action which leaves invariant B0 and which is such that its
restrictions to the centers of B0 and B1 are ergodic. We have then a subfactor

(B0 ⊗ P )G ⊂ (B1 ⊗ P )G

of index N = [B1 : B0], called generalized Wassermann subfactor, whose Jones tower is

(B1 ⊗ P )G ⊂ (B2 ⊗ P )G ⊂ (B3 ⊗ P )G ⊂ . . .

where {Bi}i≥1 are the algebras in the Jones tower for B0 ⊂ B1, with the canonical actions
of G coming from the action G→ Aut(B1), and whose planar algebra is given by:

Pk = (B′0 ∩Bk)
G

These subfactors generalize the Jones, Ocneanu, Wassermann and Popa subfactors.

Proof. We have several things to be proved, the idea being as follows:

(1) The first part of the statement, regarding the factoriality, the index and the Jones
tower assertions, is something that follows exactly as in the classical group case.

(2) In order to prove now the planar algebra assertion, consider the following diagram,
with i < j being arbitrary integers:

P ⊂ Bi ⊗ P ⊂ Bj ⊗ P
∪ ∪ ∪
P π ⊂ (Bi ⊗ P )βi⊗π ⊂ (Bj ⊗ P )βj⊗π

We know from Proposition 13.32 that the big square and the square on the left are
both non-degenerate commuting squares. Thus Proposition 13.31 applies, and shows that
the square on the right is a non-degenerate commuting square.
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(3) Consider now the following sequence of non-degenerate commuting squares:

B0 ⊗ P ⊂ B1 ⊗ P ⊂ B2 ⊗ P ⊂ . . .
∪ ∪ ∪

(B0 ⊗ P )β0⊗π ⊂ (B1 ⊗ P )β1⊗π ⊂ (B2 ⊗ P )β2⊗π ⊂ . . .

Since the Jones projections live in the lower line, Proposition 13.32 applies and shows
that this is a sequence of basic constructions for non-degenerate commuting squares. In
particular the lower line is a sequence of basic constructions, as desired.

(4) Finally, we already know from Theorem 13.22 that our construction generalizes
the Jones, Ocneanu and Wassermann subfactors. As for the Popa subfactors, the result
here follows from the discussion made after Proposition 13.23. �

13d. The index theorem

Let us go back now to the arbitrary subfactors, with Theorem 13.14 being our main
result. As an interesting consequence of the above results, somehow contradicting the
“continuous geometry” philosophy that has being going on so far, in relation with the II1

factors, we have the following surprising result, also from Jones’ original paper [44]:

Theorem 13.35. The index of subfactors A ⊂ B is “quantized” in the [1, 4] range,

N ∈
{

4 cos2
(π
n

) ∣∣∣n ≥ 3
}
∪ [4,∞]

with the obstruction coming from the existence of the representation TLN ⊂ B(H).

Proof. This comes from the basic construction, and more specifically from the com-
binatorics of the Jones projections e1, e2, e3, . . ., the idea being as folows:

(1) In order to best comment on what happens, when iterating the basic construction,
let us record the first few values of the numbers in the statement:

4 cos2
(π

3

)
= 1 , 4 cos2

(π
4

)
= 2

4 cos2
(π

5

)
=

3 +
√

5

2
, 4 cos2

(π
6

)
= 3

. . .

(2) When performing a basic construction, we obtain, by trace manipulations on e1:

N /∈ (1, 2)

With a double basic construction, we obtain, by trace manipulations on < e1, e2 >:

N /∈

(
2,

3 +
√

5

2

)
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With a triple basic construction, we obtain, by trace manipulations on < e1, e2, e3 >:

N /∈

(
3 +
√

5

2
, 3

)
Thus, we are led to the conclusion in the statement, by a kind of recurrence, involving

a certain family of orthogonal polynomials.

(3) In practice now, the most elegant way of proving the result is by using the
fundamental fact, explained in Theorem 13.14, that that sequence of Jones projections
e1, e2, e3, . . . ⊂ B(H) generate a copy of the Temperley-Lieb algebra of index N :

TLN ⊂ B(H)

With this result in hand, we must prove that such a representation cannot exist in
index N < 4, unless we are in the following special situation:

N = 4 cos2
(π
n

)
But this can be proved by using some suitable trace and positivity manipulations on

TLN , as in (2) above. For full details here, we refer to [37], [44], [51]. �

The above result raises the question of understanding if there are further restrictions
on the index of subfactors A ⊂ B, in the range found there, namely:

N ∈
{

4 cos2
(π
n

) ∣∣∣n ≥ 3
}
∪ [4,∞]

This question is quite tricky, because it depends on the ambient factor B ⊂ B(H),
and also on the irreducibility assumption on the subfactor, namely A′ ∩ B = C, which is
something quite natural, and can be added to the problem.

All this is quite technical, to be discussed later on, when doing more advanced sub-
factor theory. In the simplest formulation of the question, the answer is generally “no”,
as shown by the following result, also from Jones’ original paper [44]:

Theorem 13.36. Consider the Murray-von Neumann hyperfinite II1 factor R. Its
subfactors R0 ⊂ R are then as follows:

(1) They exist for all admissible index values, N ∈
{

4 cos2
(
π
n

)
|n ≥ 3

}
∪ [4,∞].

(2) In index N ≤ 4, they can be realized as irreducible subfactors, R′0 ∩R = C.
(3) In index N > 4, they can be realized as arbitrary subfactors.

Proof. This is something quite tricky, worked out in Jones’ original paper [44], and
requiring some advanced algebra methods, the idea being as follows:

(1) This basically follows by taking a copy of the Temperley-Lieb algebra TLN , and
then building a subfactor out of it, first by constructing a certain inclusion of inductive
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limits of finite dimensional algebras, A ⊂ B, and then by taking the weak closure, which
produces copies of the Murray-von Neumann hyperfinite II1 factor, A ' B ' R.

(2) This follows by examining and fine-tuning the construction in (1), which can be
performed as to have control over the relative commutant.

(3) This follows as well from (1), and with the simplest proof here being in fact quite
simple, based on a projection trick. �

As another application now, which is more theoretical, let us go back to the question
of defining the index of a subfactor in a purely algebraic manner, which was open since
chapter 10. The answer here, due to Pimsner and Popa [67], is as follows:

Theorem 13.37. Any finite index subfactor A ⊂ B has an algebraic orthonormal
basis, called Pimsner-Popa basis, which is constructed as follows:

(1) In integer index, N ∈ N, this is a usual basis, of type {b1, . . . , bN}, whose length
is exactly the index.

(2) In non-integer index, N /∈ N, this is something of type {b1, . . . , bn, c}, having
length n+ 1, with n = [N ], and with N − n ∈ (0, 1) being related to c.

Proof. This is something quite technical, which follows from the basic theory of the
basic construction. We refer here to the paper of Pimsner and Popa [67]. �

13e. Exercises

There has been a lot of exciting theory in this chapter, leading us from functional
analysis to concrete combinatorics, and as an exercise on all this, we have:

Exercise 13.38. Clarify all the details for the Jones index theorem, stating that

N ∈
{

4 cos2
(π
n

) ∣∣∣n ≥ 3
}
∪ [4,∞]

with the obstruction coming from the existence of the representation TLN ⊂ B(H).

This is something that we already discussed in the above, but with a few details
missing. Time to have this understood, along the above lines.



CHAPTER 14

Planar algebras

14a. Planar algebras

We have seen the foundations of subfactor theory, and the main examples of subfactors,
all having integer index. Following Jones’ paper [46], in this chapter we go into the core
of the theory, with the idea in mind of axiomatizing the combinatorics of a given subfactor
A0 ⊂ A1, via an object similar to the tensor categories for the quantum groups.

So, our starting point will be an arbitrary subfactor A0 ⊂ A1, assumed to have finite
index, [A1 : A0] < ∞. Let us first review first what can be said about it, by using the
Jones basic construction. We recall from chapter 13 that we have the following result:

Theorem 14.1. Given an inclusion of II1 factors A0 ⊂ A1, with Jones tower

A0 ⊂e1 A1 ⊂e2 A2 ⊂e3 A3 ⊂ . . . . . .

the sequence of projections e1, e2, e3, . . . ∈ B(H) produces a representation

TLN ⊂ B(H)

of the Temperley-Lieb algebra of index N = [A1 : A0]. Moreover, we have

TLN ⊂ P

where P = (Pk) is the graded algebra formed by the commutants Pk = A′0 ∩ Ak.

Proof. There are two statements here, both due to Jones [44], that we know from
chapter 13 above, the idea for this, in short, being as follows:

(1) A detailed study of the basic construction, performed in chapter 13, shows that the
rescaled sequence of Jones projections e1, e2, e3, . . . ∈ B(H) behaves algebrically exactly
as the sequence of standard generators ε1, ε2, ε3, . . . ∈ TLN . Thus we have an embedding
TLN ⊂ B(H), where H is the Hilbert space where our subfactor A0 ⊂ A1 lives.

(2) Once again by carefully looking at the Jones basic construction, the more precise
conclusion is that the image of the representation TLN ⊂ B(H) constructed above lives
indeed in the graded algebra P = (Pk) formed by the commutants Pk = A′0 ∩ Ak. �

Quite remarkably, the planar algebra structure of TLN , taken in an intuitive sense,
that of composing planar diagrams, extends to a planar algebra structure of P . In order

321
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to discuss this key result, let us start with the axioms for planar algebras. Following
Jones’ paper [46], we have the following definition:

Definition 14.2. The planar algebras are defined as follows:

(1) We consider rectangles in the plane, with the sides parallel to the coordinate axes,
and taken up to planar isotopy, and we call such rectangles boxes.

(2) A labelled box is a box with 2k marked points on its boundary, k on its upper side,
and k on its lower side, for some integer k ∈ N.

(3) A tangle is labelled box, containing a number of labelled boxes, with all marked
points, on the big and small boxes, being connected by noncrossing strings.

(4) A planar algebra is a sequence of finite dimensional vector spaces P = (Pk),
together with linear maps Pk1 ⊗ . . . ⊗ Pkr → Pk, one for each tangle, such that
the gluing of tangles corresponds to the composition of linear maps.

In this definition we are using rectangles, but everything being up to isotopy, we could
have used instead circles with marked points, as in [46], which is the same thing. Our
choice for using rectangles comes from the main examples that we have in mind, to be
discussed below, where the planar algebra structure is best viewed by using rectangles.

Let us also mention that Definition 14.2 is something quite simplified, based on [46].
As explained in [46], in order for subfactors to produce planar algebras and vice versa,
there are quite a number of supplementary axioms that must be added, and in view of
this, it is perhaps better to start with something stronger than Definition 14.2, as basic
axioms. However, as before with rectangles vs circles, our axiomatic choices here are
mainly motivated by the concrete examples that we have in mind.

As a basic example of a planar algebra, we have the Temperley-Lieb algebra:

Theorem 14.3. The Temperley-Lieb algebra TLN , viewed as sequence of finite di-
mensional vector spaces

TLN = (TLN(k))k∈N

is a planar algebra in the above sense, with the corresponding linear maps associated to
the planar tangles

TLN(k1)⊗ . . .⊗ TLN(kr)→ TLN(k)

appearing by putting the various TLN(ki) diagrams into the small boxes of the given tangle,
which produces a TLN(k) diagram.

Proof. This is something trivial, which follows from definitions:

(1) Assume indeed that we are given a planar tangle π in the sense of Definition 14.2,
consisting of a box having 2k marked points on its boundary, and containing r small
boxes, having respectively 2k1, . . . , 2kr marked points on their boundaries, and then a
total of k + Σki noncrossing strings, connecting the various 2k + Σ2ki marked points.
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(2) We want to associate to this planar tangle π a linear map as follows:

Tπ : TLN(k1)⊗ . . .⊗ TLN(kr)→ TLN(k)

For this purpose, by linearity, it is enough to construct elements as follows, for any
choice of Temperley-Lieb diagrams σi ∈ TLN(ki), with i = 1, . . . , r:

Tπ(σ1 ⊗ . . .⊗ σr) ∈ TLN(k)

(3) But constructing such an element is obvious, simply by putting the various di-
agrams σi ∈ TLN(ki) into the small boxes the given tangle π. Indeed, this procedure
produces a certain diagram in TLN(k), that we can call Tπ(σ1 ⊗ . . .⊗ σr), as above.

(4) Finally, we still have to check that everything is well-defined up to planar isotopy,
and that the gluing of tangles corresponds to the composition of linear maps. But both
these checks are trivial, coming from the definition of TLN , and we are done. �

As a conclusion, P = TLN is indeed a planar algebra, and of somewhat “trivial” type,
with the triviality coming from the fact that, in this case, the elements of P are planar
diagrams themselves, and so the planar structure appears trivially. The Temperley-Lieb
planar algebra TLN is however an important planar algebra, because it is the “smallest”
one, appearing inside the planar algebra of any subfactor. But more on this later, when
talking about the relation between planar algebras and subfactors.

Moving ahead, here is our second basic example of a planar algebra, due to Bisch-Jones
[19], which is still “trivial” in the above sense, with the elements of the planar algebra
being planar diagrams themselves, but which appears in a more complicated way:

Theorem 14.4. The Fuss-Catalan algebra FCN,M , which appears by coloring the
Temperley-Lieb diagrams with black/white colors, clockwise, as follows

◦ • • ◦ ◦ • • ◦ . . . . . . . . . ◦ • • ◦
and keeping those diagrams whose strings connect either ◦−◦ or •−•, is a planar algebra,
with again the corresponding linear maps associated to the planar tangles

FCN,M(k1)⊗ . . .⊗ FCN,M(kr)→ FCN,M(k)

appearing by putting the various FCN,M(ki) diagrams into the small boxes of the given
tangle, which produces a FCN,M(k) diagram.

Proof. The proof here is nearly identical to the proof of Theorem 14.3, with the only
change appearing at the level of the colors. To be more precise:

(1) Forgetting about upper and lower sequences of points, which must be joined by
strings, a Temperley-Lieb diagram can be thought of as being just a collection of strings,
say black strings, which compose in the obvious way, with the rule that the value of the
circle, which is now a black circle, is N . And it is this obvious composition rule that gives
the planar algebra structure, as explained in the proof of Theorem 14.3.
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(2) Similarly, forgetting about sequences of points, a Fuss-Catalan diagram can be
thought of as being a collection of strings, which come now in two colors, black and
white. These Fuss-Catalan diagrams compose in the obvious way, with the rule that the
value of the black circle is N , and the value of the white circle is M . And it is this obvious
composition rule that gives the planar algebra structure, as before for TLN . �

The same comments as those for TLN apply. On one hand, FCN,M is by definition
a “trivial” planar algebra, with the triviality coming from the fact that its elements are
planar diagrams themselves. On the other hand, FCN,M is an important planar algebra,
because it can be shown to appear inside the planar algebra of any subfactor A ⊂ B,
assuming that an intermediate subfactor A ⊂ C ⊂ B is present. But more on this later,
when talking about the relation between planar algebras and subfactors.

Getting back now to generalities, and to Definition 14.2, that of a general planar
algebra, we have so far two illustrations for it, which, while both important, are both
“trivial”, with the planar structure simply coming from the fact that, in both these
illustrations, the elements of the planar algebra are planar diagrams themselves.

In general, the planar algebras are more complicated than this, and we will see some
further examples in a moment. However, the idea is very simple, namely “the elements
of a planar algebra are not necessarily diagrams, but they behave like diagrams”.

Let us begin with the construction of the tensor planar algebra TN , which is the third
most important planar algebra, in our series of examples. This algebra is as follows:

Definition 14.5. The tensor planar algebra TN is the sequence of vector spaces

Pk = MN(C)⊗k

with the multilinear maps associated to the various k-tangles

Tπ : Pk1 ⊗ . . .⊗ Pkr → Pk

being given by the following formula, in multi-index notation,

Tπ(ei1 ⊗ . . .⊗ eir) =
∑
j

δπ(i1, . . . , ir : j)ej

with the Kronecker symbols δπ being 1 if the indices fit, and being 0 otherwise.

In other words, we are using here a construction which is very similar to the construc-
tion π → Tπ from easy quantum groups. We put the indices of the basic tensors on the
marked points of the small boxes, in the obvious way, and the coefficients of the output
tensor are then given by Kronecker symbols, exactly as in the easy case.

The fact that we have indeed a planar algebra, in the sense that the gluing of tangles
corresponds to the composition of linear maps, as required by Definition 14.2, is something
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elementary, in the same spirit as the verification of the functoriality properties of the
correspondence π → Tπ, discussed in chapter 8, and we refer here to Jones [46].

Let us discuss now a second planar algebra of the same type, which is important as
well for various reasons, namely the spin planar algebra SN . This planar algebra appears
somewhat as a “square root” of the tensor planar algebra TN , and its construction is quite
similar, but by using this time the algebra CN instead of the algebra MN(C).

There is one subtlety, however, coming from the fact that the general planar algebra
formalism, from Definition 14.2 above, requires the tensors to have even length. Note
that this was automatic for TN , where the tensors of MN(C) have length 2. In the case
of the spin planar algebra SN , we want the vector spaces to be:

Pk = (CN)⊗k

Thus, we must double the indices of the tensors, in the following way:

Definition 14.6. We write the standard basis of (CN)⊗k in 2× k matrix form,

ei1...ik =

(
i1 i1 i2 i2 i3 . . . . . .
ik ik ik−1 . . . . . . . . . . . .

)
by duplicating the indices, and then writing them clockwise, starting from top left.

Now with this convention in hand for the tensors, we can formulate the construction
of the spin planar algebra SN , also from Jones [46], as follows:

Definition 14.7. The spin planar algebra SN is the sequence of vector spaces

Pk = (CN)⊗k

written as above, with the multilinear maps associated to the various k-tangles

Tπ : Pk1 ⊗ . . .⊗ Pkr → Pk

being given by the following formula, in multi-index notation,

Tπ(ei1 ⊗ . . .⊗ eir) =
∑
j

δπ(i1, . . . , ir : j)ej

with the Kronecker symbols δπ being 1 if the indices fit, and being 0 otherwise.

In other words, we are using exactly the same construction as for the tensor planar
algebra TN , which was itself very related to the easy quantum group formalism, but with
MN(C) replaced by CN , with the indices doubled, as in Definition 14.6. As before with
the tensor planar algebra TN , the fact that the spin planar algebra SN is indeed a planar
algebra is something rather trivial, coming from definitions.

Observe however that, unlike our previous planar algebras TLN and FCN,M , which
were “trivial” planar algebras, their elements being planar diagrams themselves, the planar
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algebras TN and SN are not trivial, their elements being not exactly planar diagrams. Let
us also mention that the planar algebras TN and SN are important for a number of reasons,
in the context of the fixed point subfactors, to be discussed later on.

Getting back now to the planar algebra structure of TN and SN , which is something
quite fundamental, worth being well understood, let us have here some more discussion.
Generally speaking, the planar calculus for tensors is quite simple, and does not really
require diagrams. Indeed, it suffices to imagine that the way various indices appear,
travel around and dissapear is by following some obvious strings connecting them. Here
are some illustrations for this principle, for the spin planar algebra SN :

Example 14.8. Identity, multiplication, inclusion.

The identity 1k is the (k, k)-tangle having vertical strings only. The solutions of
δ1k(x, y) = 1 being the pairs of the form (x, x), this tangle 1k acts by the identity:

1k

(
j1 . . . jk
i1 . . . ik

)
=

(
j1 . . . jk
i1 . . . ik

)
The multiplication Mk is the (k, k, k)-tangle having 2 input boxes, one on top of the

other, and vertical strings only. It acts in the following way:

Mk

((
j1 . . . jk
i1 . . . ik

)
⊗
(
l1 . . . lk
m1 . . . mk

))
= δj1m1 . . . δjkmk

(
l1 . . . lk
i1 . . . ik

)
The inclusion Ik is the (k, k+ 1)-tangle which looks like 1k, but has one more vertical

string, at right of the input box. Given x, the solutions of δIk(x, y) = 1 are the elements
y obtained from x by adding to the right a vector of the form (ll), and so:

Ik

(
j1 . . . jk
i1 . . . ik

)
=
∑
l

(
j1 . . . jk l
i1 . . . ik l

)
Observe that Ik is an inclusion of algebras, and that the various Ik are compatible

with each other. The union of the algebras SN(k) is a graded algebra, denoted SN .

Along the same lines, some other important tangles are as follows:

Example 14.9. Expectation, Jones projection, trace.

The expectation Uk is the (k+1, k)-tangle which looks like 1k, but has one more string,
connecting the extra 2 input points, both at right of the input box:

Uk

(
j1 . . . jk jk+1

i1 . . . ik ik+1

)
= δik+1jk+1

(
j1 . . . jk
i1 . . . ik

)
Observe that Uk is a bimodule morphism with respect to Ik.
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The Jones projection Ek is a (0, k+2)-tangle, having no input box. There are k vertical
strings joining the first k upper points to the first k lower points, counting from left to
right. The remaining upper 2 points are connected by a semicircle, and the remaining
lower 2 points are also connected by a semicircle. We have the following formula:

Ek(1) =
∑
ijl

(
i1 . . . ik j j
i1 . . . ik l l

)
The elements ek = N−1Ek(1) are projections, and define a representation of the infinite

Temperley-Lieb algebra of index N inside the inductive limit algebra SN .

The trace Tk is the (k, 0) tangle which “closes the diagram”, by connecting upper
points with lower points with noncrossing strings at right, in the obvious way:

Tk

(
j1 . . . jk
i1 . . . ik

)
= δi1j1 . . . δikjk

This tangle implements a trace on the planar algebra, and the expectations Uk con-
structed above are then the conditional expectations with respect to this trace.

Finally, again along the same lines, we have the following two key tangles:

Example 14.10. Rotation, shift.

The rotation Rk is the (k, k)-tangle which looks like 1k, but the first 2 input points
are connected to the last 2 output points, and the same happens at right:

Rk =
e | | | ||
|| ||
|| | | | d

The action of Rk on the standard basis is by rotation of the indices, as follows:

Rk(ei1...ik) = ei2i3...iki1

Thus Rk acts by an order k linear automorphism of SN(k), also called rotation.

As for the shift Sk, this is the (k, k + 2)-tangle which looks like 1k, but has two more
vertical strings, at left of the input box. This tangle acts as follows:

Sk

(
j1 . . . jk
i1 . . . ik

)
=
∑
lm

(
l m j1 . . . jk
l m i1 . . . ik

)
Observe that Sk is an inclusion of algebras, which is different from Ik+1Ik.

There are many other interesting examples of k-tangles, but in view of our present
purposes, we can actually stop here, due to the following key fact, which basically reduces
everything to the study of the above particular tangles, and that we will use many times
in what follows, for the various planar algebra results that we will prove:
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Theorem 14.11. The following tangles generate the set of all tangles, via gluing:

(1) Multiplications, inclusions.
(2) Expectations, Jones projections.
(3) Rotations or shifts.

Proof. As a first observation, the tangles in the statement are exactly those in the
above examples, with the identity and trace tangles removed, due to the fact that these
tangles won’t bring anything new. Also, the statement itself consists in fact of 2 state-
ments, depending on whether rotations and shifts are chosen in (3), with this being
something technical, coming from the fact that we will need in what follows both these 2
statements. As for the proof, this is something elementary, obtained by “chopping” the
various planar tangles into small pieces, belonging to the above list. See Jones [46]. �

Finally, in order for things to be complete, we must talk as well about the ∗-structure.
Once again this is constructed as in the easy quantum group calculus, as follows:(

j1 . . . jk
i1 . . . ik

)∗
=

(
i1 . . . ik
j1 . . . jk

)
Summarizing, the sequence of vector spaces SN(k) = (CN)⊗k has a planar ∗-algebra

structure, called spin planar algebra of index N = |X|. See Jones [46].

As a conclusion to all this, we have so far an abstract definition for the planar algebras,
then two very basic examples, namely TLN and FCN,M , where the elements of the planar
algebra are actual diagrams, composing as the diagrams do, by gluing, and then two
examples which are slightly more complicated, namely TN and SN , where the planar
algebra elements are tensors, composing according to the usual rules for the tensors.

14b. Higher commutants

In relation now with subfactors, the result, which extends Theorem 14.1, and which
was found by Jones in [46], almost 20 years after [44], is as follows:

Theorem 14.12. Given a subfactor A0 ⊂ A1, the collection P = (Pk) of linear spaces

Pk = A′0 ∩ Ak
has a planar algebra structure, extending the planar algebra structure of TLN .

Proof. We know from Theorem 14.1 that we have an inclusion as follows, coming
from the basic construction, and with TLN itself being a planar algebra:

TLN ⊂ P

Thus, the whole point is that of proving that the planar algebra structure of TLN ,
obtained by composing diagrams, extends into a planar algebra structure of P . But
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this can be done via a long algebraic study, basically focusing on the basic tangles from
Theorem 14.11, the idea here being as follows:

(1) The multiplications and inclusions are the usual multiplications of the algebras
Pk = A′0 ∩ Ak, and the canonical inclusions Pk ⊂ Pk+1 between them.

(2) The expectations and Jones projections are the usual expectations and Jones
projections for the algebras Pk = A′0 ∩ Ak, that we know from chapter 13.

(3) As for rotations and shifts, things here are more tricky, the idea being that the
algebras Pk = A′0 ∩ Ak have indeed some natural rotation and shift operations.

In short, modulo some work needed for rotations and shifts, we know how the basic
tangles act. Then, in order to make all the tangles act, we can invoke Theorem 14.11,
along with a “bubbling” procedure in order to effectively construct the action, and to
prove its uniqueness. And this “bubbling” procedure, which is something quite routine,
but long and technical, taking about 10-20 pages, is explained in Jones’ paper [46]. �

So long for Jones’ main result in [46]. What has been said above is of course very far
from a proof, and for this we refer of course to Jones’ paper, but at least we have now
an idea on what the result in [46] really says. Regarding the reading of [46], which is a
must-do thing if you want to fully understand subfactors, a few pieces of advice:

(1) Examples, examples, and examples again. The notion of planar algebra is some-
thing extremely general, somehow the idea being that planar algebras are to quantum
groups what quantum groups are to groups, and 0 chances or almost to understand what
Jones is doing in [46], without spending some substantial time on examples.

(2) And I’m saying this with knowledge of the matter, because back in 1999 when
[46] came out, I was postdoc at Berkeley with Jones and Voiculescu, and I saw quite a
few young people severely struggling with [46]. For me things were easy because I was
already familiar with examples coming from groups, and quantum groups.

(3) So, that would be a first way of getting introduced to the subject, via groups and
quantum groups, and benefitting from what we already know from chapters 7-8, this is
what we will do here, work out some examples coming from groups and quantum groups,
as an introduction to Jones’ paper [46], that you can read afterwards.

(4) But this is not the only way. As mentioned above, the subtlety comes from
rotations and shifts, and understanding how these rotations and shifts work, directly in
the subfactor context, in the spirit of what we did in chapter 13, is something that you
can try too. Good references here are the texts of Ocneanu [65], [66].

Long story short, we are now into subtle mathematics, that takes some time to be
understood. Back to work now, as a first illustration for Theorem 14.12, we have:
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Theorem 14.13. We have the following universality results:

(1) The Temperley-Lieb algebra TLN appears inside the planar algebra of any sub-
factor A ⊂ B having index N .

(2) The Fuss-Catalan algebra FCN,M appears inside the planar algebra of any sub-
factor A ⊂ B, in the presence of an intermediate subfactor A ⊂ C ⊂ B.

Proof. Here the first assertion is something that we already know, from Theorem
14.1, and the second assertion is something quite standard as well, by carefully working out
the basic construction for A ⊂ B, in the presence of an intermediate subfactor A ⊂ C ⊂ B.
For details here, we refer to the paper of Bisch and Jones [19]. �

It is possible to prove as well that the tensor planar algebra TN and the spin planar
algebra SN have similar universality properties, but this time being the biggest possible
instead of the smallest possible, in the framework of some suitable fixed point subfactors.
We will discuss all this in a moment, in the general context of fixed point subfactors.

All the above results raise the question on whether any planar algebra produces a
subfactor. The answer here is yes, but with many subtleties, as follows:

Theorem 14.14. We have the following results:

(1) Any planar algebra with positivity produces a subfactor.
(2) In particular, we have TL and FC type subfactors.
(3) In the amenable case, and with A1 = R, the correspondence is bijective.
(4) In general, we must take A1 = L(F∞), and we do not have bijectivity.
(5) The axiomatization of P , in the case A1 = R, is not known.

Proof. All this is quite heavy, mainly coming from the work of Popa in the 90s,
using heavy functional analysis and operator theory [69], [70], [71], completed with other
papers like [39], [46], [72], which are not any simpler either. In fact, understanding all
this, with proofs, is a considerable investment, comparable to that of understanding the
heavy papers of von Neumann and Connes [24], [25], [62], that we are stumbling upon
all the time, in chapters 9-12. So, in the hope that you read that papers of von Neumann
and Connes, in this way, reading Popa will look like a routine task.

As an introduction to all this, following Ocneanu [65], [66], who first came upon such
ideas, in the mid 80s, let us first talk about the finite depth case. The higher relative
commutants Pk = A0 ∩ A′k form an increasing sequence of algebras, as follows:

P0 ⊂ P1 ⊂ P2 ⊂ . . .

The point now is that at each step, we have a copy of the basic construction which
appears, in the sense that Pk+1 consists of a copy of the basic construction for Pk−1 ⊂ Pk,
colloquially called “old stuff”, and of more things, called “new stuff”. In case there is no
new stuff inside Pk+1, there is no new stuff either inside Pk+2, Pk+3, . . . , and the subfactor
or planar algebra is called of “finite depth”. And there are many examples here, such as
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the Ocneanu subfactors, the general idea being that finite depth means that the underlying
“generalized quantum group”, whatever that beast might be, is finite.

The problem is now, given a planar algebra which has finite depth, how to construct
a subfactor out of it. Due to the finite depth assumption, our data is simply:

P0 ⊂ P1 ⊂ . . . ⊂ Pk

That is, our data is just a finite dimensional graded algebra Pk, and we are here into
usual algebra, be that of quite complicated type. And Ocneanu’s solution [65], [66] was
that of building out of this data, via various algebraic procedures, some further finite
dimensional algebras, then taking inductive limits and closing under the weak topology,
as to end up with a subfactor of type A0 ⊂ A1, with A0 ' A1 ' R.

This was for the general idea, in the finite depth case, but in practice, the above-
mentioned “various algebraic procedures” are something quite complicated, involving a
certain technical notion of “commuting square”, which is something specialized, that we
will discuss in chapter 15 below, and with the whole thing, complete theorem coming with
complete proof, being something done by Popa, some time after Ocneanu, in [69].

With this understood, and getting back to our theorem, all the items (1-5) there are
extensions of this construction of Ocneanu and Popa, the idea being as follows:

(1) As already mentioned in the comments after Definition 14.2, our planar algebra
axioms here are something quite simplified, based on [46]. However, by getting back
to Theorem 14.12, and carefully looking at the planar algebras there, appearing from
subfactors, the conclusion is that these subfactor planar algebras satisfy a number of
supplementary “positivity” conditions, basically coming from the positivity of the II1

factor trace. And the point now is that, with these positivity conditions axiomatized, we
reach to something which is equivalent to Popa’s axiomatization of the lattice of higher
relative commutants A′i ∩ Aj of the finite index subfactors [71], obtained in the 90s via
heavy functional analysis. For the story here, and details, we refer to Jones [46].

(2) We have been a bit quick in the above, and before anything, let us mention that our
4 main examples of planar algebras, namely TLN and FCN,M , and then TN and SN too,
do satisfy the positivity requirements needed in (1). Thus, there are subfactors associated
to all of them. In practice now, the existence of the TLN subfactors, also known as “A∞
subfactors”, is something which was known for some time, since some early work of Popa
on the subject. As for the existence of the FCN,M subfactors, this can be shown by using
the intermediate subfactor picture, A ⊂ C ⊂ B, by composing two A∞ subfactors of
suitable indices, A ⊂ C and C ⊂ B. For the story here, we refer to [19], [46].

(3) This is something fairly heavy, as it is always the case with operator algebra results
about hyperfiniteness and amenability, due to Popa [69], [70].
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(4) This is something more fashionable and recent, obtained by further building on
the above-mentioned old constructions of Popa, and we refer here to [72], [39].

(5) This is the big open question in subfactors. The story here goes back to Jones’
original paper [44], which contains at the end the question, due to Connes, of finding
the possible values of the index for the irreducible subfactors of R. This question, which
certainly looks much easier than (5) in the statement, is in fact still open, now 40 years
after its formulation, and with on one having any valuable idea of dealing with it. �

We refer to the original papers of Popa, and then to more recent papers by Jones,
Popa and their collaborators for details on the above, which is quite heavy material.

14c. Fixed points

We discuss now the connection of all the above with the main examples of subfactors.
We recall from chapter 13 that the main examples of subfactors are all of integer index,
and appear as fixed point subfactors, according to the following result:

Theorem 14.15. Let G be a compact quantum group, and G→ Aut(P ) be a minimal
action on a II1 factor. Consider a Markov inclusion of finite dimensional algebras

B0 ⊂ B1

and let G → Aut(B1) be an action which leaves invariant B0 and which is such that its
restrictions to the centers of B0 and B1 are ergodic. We have then a subfactor

(B0 ⊗ P )G ⊂ (B1 ⊗ P )G

of index N = [B1 : B0], called generalized Wassermann subfactor, whose Jones tower is

(B1 ⊗ P )G ⊂ (B2 ⊗ P )G ⊂ (B3 ⊗ P )G ⊂ . . .

where {Bi}i≥1 are the algebras in the Jones tower for B0 ⊂ B1, with the canonical actions
of G coming from the action G→ Aut(B1), and whose planar algebra is given by:

Pk = (B′0 ∩Bk)
G

These subfactors generalize the Jones, Ocneanu, Wassermann and Popa subfactors.

Proof. This is something that we know well from chapter 13, whose proof basically
comes by generalizing, several times, the results of Wassermann in [91]. �

In view of the above result, what we have to do in relation with such subfactors is to
further interpret the last formula there, that of the planar algebra, namely:

Pk = (B′0 ∩Bk)
G

To be more precise, we will show here that, under suitable assumptions on the original
inclusion B0 ⊂ B1, we can associate a certain combinatorial planar algebra P (B0 ⊂ B1)
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to this inclusion, and then the planar algebra associated to the fixed point subfactor itself
appears as a fixed point subalgebra of this planar algebra, as follows:

P = P (B0 ⊂ B1)G

This is something quite technical, and we will do this in two steps. First we will
explain, following Jones’ paper [47], how to associate a planar algebra P (B0 ⊂ B1) to an
inclusion of algebras B0 ⊂ B1. And then we will explain, following [5] and subsequent
papers, and notably [6], how to prove the above formula P = P (B0 ⊂ B1)G.

Getting started now, the idea will be that P (B0 ⊂ B1) appears as a joint generalization
of the spin and tensor planar algebras, discussed above, which appear as follows:

SN = P (C ⊂ CN)

TN = P (C ⊂MN(C))

Thus, our first task will be that of getting back to the Markov inclusions B0 ⊂ B1, from
chapter 13, and further discuss the combinatorics of their basic construction, with planar
algebra ideas in mind. As in chapter 13, it is most convenient to denote such inclusions
by A ⊂ B, at least at a first stage of their study. Following the book of Goodman, de la
Harpe and Jones [37], which is the standard reference for such things, we first have:

Definition 14.16. Associated to an inclusion A ⊂ B of finite dimensional algebras
are the following objects:

(1) The column vector (ai) ∈ Ns given by A = ⊕si=1Mai(C).
(2) The column vector (bj) ∈ Nt given by B = ⊕tj=1Mbj(C).
(3) The inclusion matrix (mij) ∈Ms×t(N), satisfying mta = b.

To be more precise here, in what regards the inclusion matrix, each minimal idem-
potent in Mai(C) ⊂ A splits, when regarded as an element of B, as a sum of minimal
idempotents of B, and mij ∈ N is the number of such idempotents from Mbj(C). We have
the following result, bringing traces into picture:

Proposition 14.17. For an inclusion A ⊂ B, the following are equivalent:

(1) A ⊂ B commutes with the canonical traces.
(2) We have mb = ra, where r = ||b||2/||a||2.

Proof. The weight vectors of the canonical traces of A,B are given by:

τi =
a2
i

||a||2
, τj =

b2
j

||b||2

We can plug these values into the following standard compatibility formula:
τi
ai

=
∑
j

mij ·
τj
bj

We obtain in this way the condition in the statement. �
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We will need as well the following basic facts, also from [37]:

Definition 14.18. Associated to an inclusion of finite dimensional algebras A ⊂ B,
with inclusion matrix m ∈Ms×t(N), are:

(1) The Bratteli diagram: this is the bipartite graph Γ having as vertices the sets
{1, . . . , s} and {1, . . . , t}, the number of edges between i, j being mij.

(2) The basic construction: this is the inclusion B ⊂ A1 obtained from A ⊂ B by
reflecting the Bratteli diagram.

(3) The Jones tower: this is the tower of algebras A ⊂ B ⊂ A1 ⊂ B1 ⊂ . . . obtained
by iterating the basic construction.

We know that for a Markov inclusion A ⊂ B we have mta = b and mb = ra, and so
mmta = ra, which gives an eigenvector for the square matrix mmt ∈ Ms(N). When this
latter matrix has positive entries, by Perron-Frobenius we obtain:

||mmt|| = r

This equality holds in fact without assumptions on m, and we have:

Theorem 14.19. Let A ⊂ B be Markov, with inclusion matrix m ∈Ms×t(N).

(1) r = dim(B)/ dim(A) is an integer.
(2) ||m|| = ||mt|| =

√
r.

(3) || . . .mmtmmt . . . || = rk/2, for any product of lenght k.

Proof. Consider the vectors a, b, as in Definition 14.16. We know from definitions
and from Proposition 14.17 that we have:

b = mta , mb = ra , r = ||b||2/||a||2

(1) If we construct as above the Jones tower for A ⊂ B, we have, for any k:

dimBk

dimAk
=

dimAk
dimBk−1

= r

On the other hand, we have as well the following well-known formula:

lim
k→∞

(dimAk)
1/2k = lim

k→∞
(dimBk)

1/2k = ||mmt||

By combining these two formulae we obtain the following formula:

||mmt|| = r

But from r ∈ Q and (mmt)ka = rka for any k ∈ N, we get r ∈ N, and we are done.

(2) This follows from the above equality ||mmt|| = r, and from the following standard
equalities, for any real rectangular matrix r:

||m||2 = ||mt||2 = ||mmt||



14C. FIXED POINTS 335

(3) Let n be the length k word in the statement. First, by applying the norm and by
using the formula ||m|| = ||mt|| =

√
r, we obtain the following inequality:

||n|| ≤ rk/2

For the converse inequality, assume first that k is even. Then n has either a or b as
eigenvector, depending on whether n begins with a m or with a mt, in both cases with
eigenvalue rk/2, and this gives the desired inequality, namely:

||n|| ≥ rk/2

Assume now that k is odd, and let ◦ ∈ {1, t} be such that n′ = m◦n is alternating.
Since n′ has even length, we already know that we have:

||n′|| = r(k+1)/2

On the other hand, we have as well the following estimate:

||n′|| ≤ ||m◦|| · ||n|| =
√
r||n||

But this gives the reverse inequality ||n|| ≥ rk/2, as desired. �

The point now is that for a Markov inclusion, the basic construction and the Jones
tower have a particularly simple form. Let us first work out the basic construction:

Proposition 14.20. The basic construction for a Markov inclusion i : A ⊂ B of
index r ∈ N is the inclusion j : B ⊂ A1 obtained as follows:

(1) A1 = Mr(C)⊗ A, as an algebra.
(2) j : B ⊂ A1 is given by mb = ra.
(3) ji : A ⊂ A1 is given by (mmt)a = ra.

Proof. With notations from the above, the weight vector of the algebra A1 appearing
from the basic construction is mb = ra, and this gives the result. �

We fix a Markov inclusion i : A ⊂ B. We have the following result:

Proposition 14.21. The Jones tower associated to a Markov inclusion i : A ⊂ B,
denoted as follows, with alternating letters,

A ⊂ B ⊂ A1 ⊂ B1 ⊂ . . .

is given by the following formulae:

(1) Ak = Mr(C)⊗k ⊗ A.
(2) Bk = Mr(C)⊗k ⊗B.
(3) Ak ⊂ Bk is idk ⊗ i.
(4) Bk ⊂ Ak+1 is idk ⊗ j.

Proof. This follows from Proposition 14.20, with the remark that if i : A ⊂ B is
Markov, then so is its basic construction j : B ⊂ A1. �
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Regarding now the relative commutants for this tower, we have here:

Proposition 14.22. The relative commutants for the Jones tower

A ⊂ B ⊂ A1 ⊂ B1 ⊂ . . .

associated to a Markov inclusion A ⊂ B are given by:

(1) A′s ∩ As+k = Mr(C)⊗k ⊗ (A′ ∩ A).
(2) A′s ∩Bs+k = Mr(C)⊗k ⊗ (A′ ∩B).
(3) B′s ∩ As+k = Mr(C)⊗k ⊗ (B′ ∩ A).
(4) B′s ∩Bs+k = Mr(C)⊗k ⊗ (B′ ∩B).

Proof. The above assertions are all elementary, as follows:

(1,2) These assertions both follow from Proposition 14.21.

(3) In order to prove the formula in the statement, observe first that we have:

B′ ∩ A1 = (B′ ∩B1) ∩ A1

= (Mr(C)⊗ Z(B)) ∩ (Mr(C)⊗ A)

= Mr(C)⊗ (B′ ∩ A)

But this proves the assertion at s = 0, k = 1, and the general case follows from it.

(4) This is again clear, once again coming from Proposition 14.21. �

In order to further refine all this, let us formulate the following key definition:

Definition 14.23. We say that a Markov inclusion A ⊂ B is abelian if [A,B] = 0,
with the commutant being computed inside B.

In other words, we are asking for the commutation relation ab = ba, for any a ∈ A
and b ∈ B. Note that this is the same as asking that B is an A-algebra, A ⊂ Z(B). As
basic examples, observe that all inclusions with A = C or with B = Cn are abelian. The
point with this notion is that it leads to the following simple statement:

Proposition 14.24. With B̃k = Mr(C)⊗k ⊗ Z(B), the relative commutants for the
Jones tower A ⊂ B ⊂ A1 ⊂ B1 ⊂ . . . of an abelian inclusion are given by:

(1) A′s ∩ As+k = Ak.
(2) A′s ∩Bs+k = Bk.
(3) B′s ∩ As+k = Ak.
(4) B′s ∩Bs+k = B̃k.

Proof. This follows from the fact that for an abelian inclusion we have:

Z(A) = A , A′ ∩B = B , B′ ∩ A = A

Thus, we are led to the conclusion in the statement. �
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Getting back now to the fixed point subfactors, from Theorem 14.15, we can improve
the planar algebra computation there, in the abelian case, as follows:

Theorem 14.25. The commutants for the tower N ⊂M ⊂ N1 ⊂M1 ⊂ . . . associated
to an abelian fixed point subfactor (A⊗ P )G ⊂ (B ⊗ P )G are:

(1) N ′s ∩Ns+k = AGk .
(2) N ′s ∩Ms+k = BG

k .
(3) M ′

s ∩Ns+k = AGk .

(4) M ′
s ∩Ms+k = B̃G

k .

Proof. This follows indeed by combining the planar algebra computation from The-
orem 14.15 with the result about abelian inclusions from Proposition 14.24. �

In order to further advance now, the idea will be that of associating to the original
inclusion B0 ⊂ B1 a certain combinatorial planar algebra P (B0 ⊂ B1), as for the planar
algebra associated to the fixed point subfactor itself to appear as follows:

P = P (B0 ⊂ B1)G

As already mentioned, the idea will be that P (B0 ⊂ B1) appears as a joint general-
ization of the spin and tensor planar algebras, which appear as follows:

SN = P (C ⊂ CN)

TN = P (C ⊂MN(C))

In practice now, we will need for all this the notion of planar algebra of a bipartite
graph, generalizing the algebras SN , TN , constructed by Jones in [47]. So, let Γ be a
bipartite graph, with vertex set Γa ∪ Γb. It is useful to think of Γ as being the Bratteli
diagram of an inclusion A ⊂ B, in the sense of Definition 14.16. Our first task is to define
the graded vector space P . Since the elements of P will be subject to a planar calculus,
it is convenient to introduce them “in boxes”, as follows:

Definition 14.26. Associated to Γ is the abstract vector space Pk spanned by the
2k-loops based at points of Γa. The basis elements of Pk will be denoted

x =

(
e1 e2 . . . ek
e2k e2k−1 . . . ek+1

)
where e1, e2, . . . , e2k is the sequence of edges of the corresponding 2k-loop.

Consider now the adjacency matrix of Γ, which is of the following type:

M =

(
0 m
mt 0

)
We pick an M -eigenvalue γ 6= 0, and then a γ-eigenvector, as follows:

η : Γa ∪ Γb → C− {0}
With this data in hand, we have the following construction, due to Jones [47]:
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Definition 14.27. Associated to any tangle is the multilinear map

T (x1 ⊗ . . .⊗ xr) = γc
∑
x

δ(x1, . . . , xr, x)
∏
m

µ(em)±1x

where the objects on the right are as follows:

(1) The sum is over the basis of Pk, and c is the number of circles of T .
(2) δ = 1 if all strings of T join pairs of identical edges, and δ = 0 if not.
(3) The product is over all local maxima and minima of the strings of T .
(4) em is the edge of Γ labelling the string passing through m (when δ = 1).

(5) µ(e) =
√
η(ef )/η(ei), where ei, ef are the initial and final vertex of e.

(6) The ± sign is + for a local maximum, and − for a local minimum.

This looks quite similar to the calculus for the tensor and spin planar algebras. Let
us work out the precise formula of the action, for 6 carefully chosen tangles:

(1) Let us look first at the identity 1k. This tangle acts by the identity:

1k

(
f1 . . . fk
e1 . . . ek

)
=

(
f1 . . . fk
e1 . . . ek

)
(2) The multiplication tangle Mk acts as follows:

Mk

((
f1 . . . fk
e1 . . . ek

)
⊗
(
h1 . . . hk
g1 . . . gk

))
= δf1g1 . . . δfkgk

(
h1 . . . hk
e1 . . . ek

)
(3) Regarding now the inclusion Ik, the formula here is:

Ik

(
f1 . . . fk
e1 . . . ek

)
=
∑
g

(
f1 . . . fk g
e1 . . . ek g

)
(4) The expectation tangle Uk acts with a spin factor, as follows:

Uk

(
f1 . . . fk h
e1 . . . ek g

)
= δghµ(g)2

(
f1 . . . fk
e1 . . . ek

)
(5) For the Jones projection Ek, the formula is as follows:

Ek(1) =
∑
egh

µ(g)µ(h)

(
e1 . . . ek h h
e1 . . . ek g g

)
(6) As for the shift Jk, its action is given by:

Jk

(
f1 . . . fk
e1 . . . ek

)
=
∑
gh

(
g h f1 . . . fk
g h e1 . . . ek

)
Summarizing, we have here formulae which are quite similar to those for the tensor

and spin planar algebras. We have the following result, from Jones’ paper [47]:
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Theorem 14.28. The graded linear space P = (Pk), together with the action of the
planar tangles given above, is a planar algebra.

Proof. This is something which is quite routine, starting from the above study of the
main planar algebra tangles, which can be proved by using Theorem 14.11. Also, let us
mention that all this generalizes the previous constructions of the spin and tensor planar
algebras SN , TN , which appear respectively from the Bratteli diagrams of the inclusions
C ⊂ CN and C ⊂MN(C). For full details on all this, we refer to Jones [47]. �

Let us go back now to the Markov inclusions A ⊂ B, as before. We have here the
following result, regarding such inclusions, also from Jones’ paper [47]:

Theorem 14.29. The planar algebra associated to the graph of A ⊂ B, with eigenvalue
γ =
√
r and eigenvector η(i) = ai/

√
dimA, η(j) = bj/

√
dimB, is as follows:

(1) The graded algebra structure is given by P2k = A′ ∩ Ak, P2k+1 = A′ ∩Bk.
(2) The elements ek are the Jones projections for A ⊂ B ⊂ A1 ⊂ B1 ⊂ . . .
(3) The expectation and shift are given by the above formulae.

Proof. As a first observation, η is indeed a γ-eigenvector for the adjacency matrix
of the graph. Indeed, we have the following formulae:

mta = b , mb = ra ,
√
r = ||b||/||a||

By using these formulae, we have the following computation:(
0 m
mt 0

)(
a/||a||
b/||b||

)
=

(
γ2a/||b||
b/||a||

)
= γ

(
γa/||b||
b/γ||a||

)
= γ

(
a/||a||
b/||b||

)
Since the algebra A was supposed abelian, the Jones tower algebras Ak, Bk are simply

the span of the 4k-paths, respectively 4k + 2-paths on Γ, starting at points of Γa. With
this description in hand, when taking commutants with A we have to just have to restrict
attention from paths to loops, and we obtain the above spaces P2k, P2k+1. See [47]. �

In the particular case of the inclusions satisfying [A,B] = 0, we have:

Proposition 14.30. The “bipartite graph” planar algebra P (A ⊂ B) associated to an
abelian inclusion A ⊂ B can be described as follows:

(1) As a graded algebra, this is the Jones tower A ⊂ B ⊂ A1 ⊂ B1 ⊂ . . .
(2) The Jones projections and expectations are the usual ones for this tower.
(3) The shifts correspond to the canonical identifications A′1 ∩ Pk+2 = Pk.
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Proof. The first assertion is a reformulation of Theorem 14.28 in the abelian case,
by using the identifications A′ ∩Ak = Ak and A′ ∩Bk = Bk from Proposition 14.24. The
assertion on Jones projections follows as well from Theorem 14.28, and the assertion on
expectations follows from the fact that their composition is the usual trace. Regarding
now the third assertion, let us recall first from Proposition 14.24 that we have indeed
identifications A′1 ∩ Ak+1 = Ak and A′1 ∩ Bk+1 = Bk. By using the path model for these
algebras, as in the proof of Theorem 14.28, we obtain the result. �

In order to formulate now our main result, regarding the subfactors associated to the
compact quantum groups G, we will need a few abstract notions. Let us start with:

Definition 14.31. Let P1, P2 be two finite dimensional algebras, coming with coac-
tions αi : Pi → Pi ⊗ L∞(G), and let T : P1 → P2 be a linear map.

(1) We say that T is G-equivariant if (T ⊗ id)α1 = α2T .
(2) We say that T is weakly G-equivariant if T (PG

1 ) ⊂ PG
2 .

Consider now a planar algebra P = (Pk). The annular category over P is the collection
of maps T : Pk → Pl coming from the “annular” tangles, having at most one input box.
These maps form sets Hom(k, l), and these sets form a category. We have:

Definition 14.32. A coaction of L∞(G) on P is a graded algebra coaction

α : P → P ⊗ L∞(G)

such that the annular tangles are weakly G-equivariant.

This is something a bit technical, coming out of the known examples that we have.
In fact, as we will show below, the examples are basically those coming from actions of
quantum groups on Markov inclusions A ⊂ B, under the assumption [A,B] = 0. For the
moment, at the generality level of Definition 14.31, we have:

Proposition 14.33. If G acts on a planar algebra P , then PG is a planar algebra.

Proof. The weak equivariance condition tells us that the annular category is con-
tained in the suboperad P ′ ⊂ P consisting of tangles which leave invariant PG. On the
other hand the multiplicativity of α gives Mk ∈ P ′, for any k. Now since P is generated
by multiplications and annular tangles, we get P ′ = P , and we are done. �

Let us go back now to the abelian inclusions. We have the following key result:

Proposition 14.34. If G acts on an abelian inclusion A ⊂ B, the canonical extension
of this coaction to the Jones tower is a coaction of G on the planar algebra P (A ⊂ B).

Proof. We know from the above that, as a graded algebra, P = P (A ⊂ B) coincides
with the Jones tower for our inclusion, denoted as follows:

A ⊂ B ⊂ A1 ⊂ B1 ⊂ . . .
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Thus the coaction in the statement can be regarded as a graded coaction, as follows:

α : P → P ⊗ L∞(G)

In order to finish, we have to prove that the annular tangles are weakly equivariant,
as in Definition 14.31, and this can be done as follows:

(1) First, since the annular category is generated by Ik, Ek, Uk, Jk, we just have to
prove that these 4 particular tangles are weakly equivariant. Now since Ik, Ek, Uk are
plainly equivariant, by construction of the coaction of G on the Jones tower, it remains
to prove that the shift Jk is weakly equivariant.

(2) We know that the image of the fixed point subfactor shift J ′k is formed by the G-
invariant elements of the relative commutant A′1∩Pk+2 = Pk. Now since this commutant is
the image of the planar shift Jk, we have Im(Jk) = Im(J ′k), and this gives the result. �

With the above result in hand, we can now prove:

Proposition 14.35. Assume that G acts on an abelian inclusion A ⊂ B. Then the
graded vector space of fixed points P (A ⊂ B)G is a planar subalgebra of P (A ⊂ B).

Proof. This follows indeed from Proposition 14.33 and Proposition 14.34. �

We are now in position of stating and proving a main result, from [6]:

Theorem 14.36. In the abelian case, the planar algebra of the fixed point subfactor

(A⊗ P )G ⊂ (B ⊗ P )G

is the fixed point algebra P (A ⊂ B)G of the bipartite graph algebra P (A ⊂ B).

Proof. This basically follows from what we have, as follows:

(1) Let P = P (A ⊂ B), and let Q be the planar algebra of the fixed point subfactor.
We know that we have an equality of graded algebras Q = PG. Thus, it remains to prove
that the planar algebra structure on Q coming from the fixed point subfactor agrees with
the planar algebra structure of P , coming from Proposition 14.30.

(2) Since P is generated by the annular category A and by the multiplication tangles
Mk, we just have to check that the annular tangles agree on P,Q. Moreover, since A is
generated by Ik, Ek, Uk, Jk, we just have to check that these tangles agree on P,Q.

(3) We know that Q ⊂ P is an inclusion of graded algebras, that all the Jones pro-
jections for P are contained in Q, and that the conditional expectations agree. Thus the
tangles Ik, Ek, Uk agree on P,Q, and the only verification left is that for the shift Jk.

(4) Now by using either the axioms of Popa in [71], or the construction of Jones in
[47], it is enough to show that the image of the subfactor shift J ′k coincides with that of
the planar shift Jk. But this follows as in the proof of Proposition 14.34. �
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14d. Tannakian results

We discuss here some converses to the above results, which are rather specialized
results, of Tannakian nature. We will first prove that any quantum permutation group
G ⊂ S+

N produces a planar subalgebra of SN . In order to do so, we first have:

Theorem 14.37. Given a quantum permutation group G ⊂ S+
N , consider the associ-

ated coaction map on C(X), where X = {1, . . . , N},

Φ : C(X)→ C(X)⊗ C(G) , ej →
∑
j

ej ⊗ uji

and then consider the tensor powers of this coaction, which are the following linear maps:

Φk : C(Xk)→ C(Xk)⊗ C(G) , ei1...ik →
∑
j1...jk

ej1...jk ⊗ uj1i1 . . . ujkik

The fixed point spaces of these latter coactions are then given by the formula

Pk = Fix(u⊗k)

and form a planar subalgebra of the spin planar algebra SN .

Proof. This can be done in several steps, as follows:

(1) Since the map Φ is a coaction, its tensor powers Φk are coactions too, and at the
level of the fixed point algebras we have the following formula, which is standard:

Pk = Fix(u⊗k)

(2) In order to prove now the planar algebra assertion, we use the presentation result
for the spin planar algebras established before, involving the multiplications, inclusions,
expectations, Jones projections and rotations.

(3) Consider the rotation Rk. Rotating, then applying Φk, and rotating backwards by
R−1
k is the same as applying Φk, then rotating each k-fold product of coefficients of Φ.

(4) Thus the elements obtained by rotating, then applying Φk, or by applying Φk, then
rotating, differ by a sum of Dirac masses tensored with commutators in A = C(G):

ΦkRk(x)− (Rk ⊗ id)Φk(x) ∈ C(Xk)⊗ [A,A]

(5) Now let
∫
A

be the Haar functional of A, and consider the conditional expectation
onto the fixed point algebra Pk, which is given by the following formula:

φk =

(
id⊗

∫
A

)
Φk

The square of the antipode being the identity, the Haar integration
∫
A

is a trace, so
it vanishes on commutators. Thus Rk commutes with φk:

φkRk = Rkφk
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(6) The commutation relation φkT = Tφl holds in fact for any (l, k)-tangle T . These
tangles are called annular, and the proof is by verification on generators of the annular
category. In particular we obtain, for any annular tangle T :

φkTφl = Tφl

(7) We conclude from this that the annular category is contained in the suboperad
P ′ ⊂ P of the planar operad consisting of tangles T satisfying the following condition,
where φ = (φk), and where i(.) is the number of input boxes:

φTφ⊗i(T ) = Tφ⊗i(T )

On the other hand the multiplicativity of Φk gives Mk ∈ P ′. Since P is generated by
multiplications and annular tangles, it follows that we have:

P ′ = P

(8) Thus for any tangle T the corresponding multilinear map between spaces Pk(X)
restricts to a multilinear map between spaces Pk. In other words, the action of the planar
operad P restricts to P , and makes it a subalgebra of SN , as claimed. �

As a second result now, completing our study, we have:

Theorem 14.38. Given a subalgebra Q ⊂ SN , there is a unique quantum group

G ⊂ S+
N

whose associated planar algebra is Q.

Proof. The idea is that this will follow by applying Tannakian duality to the annular
category over Q. Let n,m be positive integers. To any element Tn+m ∈ Qn+m we can
associate a linear map Lnm(Tn+m) : Pn(X)→ Pm(X) in the following way:

Lnm

 | | |Tn+m

| | |

 :

 |an
|

→

| | ∩
Tn+m|
| | | |
an| | |
∪ | |


That is, we consider the planar (n, n + m,m)-tangle having an small input n-box, a

big input n + m-box and an output m-box, with strings as on the picture of the right.
This defines a certain multilinear map, as follows:

Pn(X)⊗ Pn+m(X)→ Pm(X)

Now let us put the element Tn+m in the big input box. We obtain in this way a certain
linear map Pn(X)→ Pm(X), that we call Lnm. Now let us set:

Qnm =
{
Lnm(Tn+m) : Pn(X)→ Pm(X)

∣∣∣Tn+m ∈ Qn+m

}
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These spaces form a Tannakian category, and so by [100] we obtain a Woronowicz
algebra (A, u), such that the following equalities hold, for any m,n:

Hom(u⊗m, u⊗n) = Qmn

We prove that u is a magic unitary. We have Hom(1, u⊗2) = Q02 = Q2, so the unit of
Q2 must be a fixed vector of u⊗2. But u⊗2 acts on the unit of Q2 as follows:

u⊗2(1) =
∑
kl

(
k k
l l

)
⊗ (uut)kl

From u⊗2(1) = 1 ⊗ 1 ve get that uut is the identity matrix, and together with the
unitarity of u, this gives ut = u∗ = u−1. Consider now the Jones projection E1 ∈ Q3. The
linear map M = L21(E1) is the multiplication δi ⊗ δj → δijδi, and we have:

(M ⊗ id)u⊗2

((
i i
j j

)
⊗ 1

)
=
∑
k

(
k
k

)
δk ⊗ ukiukj

u(M ⊗ id)

((
i i
j j

)
⊗ 1

)
=
∑
k

(
k
k

)
δk ⊗ δijuki

Thus ukiukj = δijuki for any i, j, k, and we deduce from this that u is a magic unitary.
Now if P is the planar algebra associated to u, we have Hom(1, v⊗n) = Pn = Qn, as
desired. As for the uniqueness, this is clear from the Peter-Weyl theory from [99]. �

The above results, following old papers from the early 00s, subsequent to [5], regarding
the subgroups G ⊂ S+

N , have several generalizations, to the subgroups G ⊂ O+
N and

G ⊂ U+
N , as well as subfactor versions, going beyond the purely combinatorial level. For

the modern story, we refer here to Tarrago-Wahl [79] and related papers.

14e. Exercises

Things have been quite complicated in this chapter, and as a main exercise on all this,
focusing on topics which were beyond our scope here, we have:

Exercise 14.39. Look up the theorem stating that any planar algebra produces a sub-
factor, and write down a brief account of what you learned.

As already mentioned in the above, there are several theorems here, which are all
non-trivial. And there is a big open question too, concerning hyperfiniteness.



CHAPTER 15

Commuting squares

15a. Commuting squares

In this chapter and in the next one we discuss a number of more specialized aspects of
subfactor theory, making the link with several advanced topics, such as quantum groups,
noncommutative geometry, free probability, and more. We will mainly insist on the
connections with quantum groups, and with the material from chapters 7-8.

A first question, to be discussed in the present chapter, is the explicit construction
of subfactors by using some suitable combinatorial data, encoded in a structure called
“commuting square”. Let us start with the following definition:

Definition 15.1. A commuting square in the sense of subfactor theory is a commuting
diagram of finite dimensional algebras with traces, as follows,

C01
// C11

C00

OO

// C10

OO

having the property that the conditional expectations C11 → C01 and C11 → C10 commute,
and their product is the conditional expectation C11 → C00.

This notion is in fact something that we already talked about, in chapter 14, when
discussing the classification of the finite depth subfactors, following the work of Ocneanu
[65], [66] and Popa [69], [70]. To be more precise, it is possible to prove that any finite
depth subfactor of R appears from a commuting square, and vice versa. And as a well-
known consequence of this, the subfactors of R having index < 4, which are all of finite
depth, can be shown to be classified by ADE diagrams. But more on this later.

Getting back now to Definition 15.1 as it is, something quite simple, not obviously
subfactor related, the idea is that there are many examples of such commuting squares,
always coming from subtle combinatorial data. As an illustration for this principle, we
have for instance commuting squares associated to the complex Hadamard matrices, that
we met in chapter 11, in the maximal commutative subalgebra (MCSA) context. In order
to discuss this, let us recall from there that, following Popa [68], we have:

345
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Theorem 15.2. Up to a conjugation by a unitary, the pairs of orthogonal MCSA in
the simplest factor, namely MN(C), are as follows,

A = ∆ , B = H∆H∗

with ∆ ⊂MN(C) being the diagonal matrices, and with H ∈MN(C) being Hadamard, in
the sense that |Hij| = 1 for any i, j, and the rows of H are pairwise orthogonal.

Proof. Any maximal commutative subalgebra in MN(C) being conjugated to ∆, we
can assume, up to conjugation by a unitary, that we have, with U ∈ UN :

A = ∆ , B = U∆U∗

But a straightforward computation, explained in chapter 11, shows that the orthogo-
nality condition reformulates as |Uij| = 1/

√
N , which gives the result. �

As explained in chapter 11, while being something quite trivial, this result remains
a statement which is fundamental, surprising, and very interesting, making the link be-
tween the general theory of von Neumann algebras, usually associated to rather lugubrious
functional analysis computations, and the complex Hadamard matrices, which are a to-
tally opposite beast, belonging to a wild area of linear algebra and combinatorics. As an
illustration here, check the following matrix out, with w = e2πi/N :

FN =


1 1 1 . . . 1
1 w w2 . . . wN−1

1 w2 w4 . . . w2(N−1)

...
...

...
...

1 wN−1 w2(N−1) . . . w(N−1)2


This matrix, which is obviously a very beautiful one, hope you agree with me, is

called Fourier matrix, and is the most basic example of a complex Hadamard matrix. As
explained in chapter 11, this is the matrix of the Fourier transform over the cyclic group
ZN , and by taking tensor products of such matrices, we obtain the matrices of the Fourier
transforms over arbitrary finite abelian groups G = ZN1 × . . .× ZNk :

FG = FN1 ⊗ . . .⊗ FNk
But the story does not stop here, with discrete Fourier analysis. The complex Hada-

mard matrices, which can be thought of as being “generalized Fourier matrices”, can be
far wilder than that. And among others, above everything, we have:

Conjecture 15.3 (Hadamard Conjecture). There is a real Hadamard matrix

H ∈MN(±1)

for any N ∈ 4N.
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Here the condition at the end comes from the fact that, assuming N ≥ 3, the orthogo-
nality conditions between the first 3 rows give N ∈ 4N. Observe that the Fourier matrices
solve this conjecture only at values N = 2k, by tensoring F2 ∈ M2(±1) with itself. For
anything else, N = 12, 20, 24, 28, 36, 40, 44, 48, 52, . . . , all sorts of clever constructions are
needed, whose complexity grows with N , and with open questions at N > 666.

And the conjecture is more than 100 years old, seemingly undoable. Which puts us
in a quite delicate situation with our general von Neumann algebra philosophy:

(1) Generally speaking, classical mathematics looks simpler than quantum mathemat-
ics, because you start learning one in high school, and the other one in graduate school.
And exactly the same goes with classical mechanics vs quantum mechanics.

(2) At a more advanced level, however, classical mathematics turns to be something
extremely complicated, wild and unpredictable, with all sorts of notorious no-go areas,
such as the Riemann Hypothesis, the Jacobian Conjecture, and so on.

(3) Also at the more advanced level, quantum mathematics, like von Neumann alge-
bras, while certainly difficult, looks plainly doable. Open problems always end up being
solved, and you can always dismiss the few no-go areas as being “uninteresting”.

(4) And so, we have here evidence that quantum mathematics, while being something
complicated of course, is probably simpler than classical mathematics. Again, things
difficult, but peaceful horizons, with no black holes like the Riemann Hypothesis.

(5) Which agrees with what happens in physics too, where advanced classical mechan-
ics is the hell on Earth, as opposed to quantum mechanics, where the landscape is rather
relaxed, with beautiful results promised to everyone willing to give a serious try.

And so, what to do with these Hadamard matrices, which come via Theorem 15.2
to perturb our philosophy. All of the sudden, our von Neumann algebra theory, or even
foundations, have a hole in them. Job for us to find a way of dealing with these beasts
in a conceptual way, and then either solving Conjecture 15.3, or dismissing it as being
“uninteresting”. In what regards the first task, subfactors come to the rescue, via:

Theorem 15.4. Given an Hadamard matrix H ∈MN(C), the diagram formed by the
associated pair of orthogonal maximal commutative subalgebras of MN(C),

∆ // MN(C)

C

OO

// H∆H∗

OO

where ∆ ⊂MN(C) are the diagonal matrices, is a commuting square.
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Proof. The expectation E∆ : MN(C)→ ∆ is the operation M →M∆ which consists
in keeping the diagonal, and erasing the rest. Consider now the other expectation:

EH∆H∗ : MN(C)→ H∆H∗

It is better to identify this with the following expectation, with U = H/
√
N :

EU∆U∗ : MN(C)→ U∆U∗

This must be given by a formula of type M → UX∆U
∗, with X satisfying:

< M,UDU∗ >=< UX∆U
∗, UDU∗ > , ∀D ∈ ∆

The scalar products being given by < a, b >= tr(ab∗), this condition reads:

tr(MUD∗U∗) = tr(X∆D
∗) , ∀D ∈ ∆

Thus X = U∗MU , and the formulae of our two expectations are as follows:

E∆(M) = M∆

EU∆U∗(M) = U(U∗MU)∆U
∗

With these formulae in hand, we have the following computation:

(E∆EU∆U∗M)ij = δij(U(U∗MU)∆U
∗)ii

= δij
∑
k

Uik(U
∗MU)kkŪik

= δij
∑
k

1

N
· (U∗MU)kk

= δijtr(U
∗MU)

= δijtr(M)

= (ECM)ij

As for the other composition, the computation here is similar, as follows:

(EU∆U∗E∆M)ij = (U(U∗M∆U)∆U
∗)ij

=
∑
k

Uik(U
∗M∆U)kkŪjk

=
∑
kl

UikŪlkMllUlkŪjk

=
1

N

∑
kl

UikMllŪjk

= δijtr(M)

= (ECM)ij

Thus, we have indeed a commuting square, as claimed. �
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To summarize our discussion so far, we had a big scare coming from Popa’s Theorem
15.2, but Theorem 15.4, also due to Popa [68], puts our von Neumann algebra theory
back on tracks. We are doing things which are certainly difficult, but somehow “trivial”,
meaning never undoable in the long run, and that feared Hadamard matrices are simply
particular cases of commuting squares. And so, further studying commuting squares will
tell us what’s interesting and what’s not, regarding these matrices, and so on.

Getting back now to Definition 15.1 as it is, there are many other explicit examples
of commuting squares, all coming from subtle combinatorial data, and more on this later.
So, leaving aside now examples, let us explain the connection with subfactors. For this
purpose, consider an arbitrary commuting square, as in Definition 15.1:

C01
// C11

C00

OO

// C10

OO

The point is that, under some suitable extra mild assumptions, any such square C
produces a subfactor of the hyperfinite II1 factor R. Indeed, by performing the basic
construction, in finite dimensions, we obtain a whole array, as follows:

A0 A1 A2

C02
//

OO

C12
//

OO

C22
//

OO

B2

C01
//

OO

C11
//

OO

C21
//

OO

B1

C00

OO

// C10

OO

// C20

OO

// B0

To be more precise, by performing the basic construction in both possible directions,
namely to the right and upwards, we obtain a whole array of finite dimensional algebras
with traces, that we can denote (Cij)i,j≥0, as above. Once this done, we can further
consider the von Neumann algebras obtained in the limit, via GNS construction, on each
vertical and horizontal line, and denote them Ai, Bj, as above.

With this convention, we have the following result, due to Ocneanu [65], [66]:
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Theorem 15.5. In the context of the above diagram, the limiting von Neumann alge-
bras Ai, Bj are all isomorphic to the hyperfinite II1 factor R, and:

(1) A0 ⊂ A1 is a subfactor, and {Ai} is the Jones tower for it.
(2) The corresponding planar algebra is given by A′0 ∩ Ak = C ′01 ∩ Ck0.
(3) A similar result holds for the “horizontal” subfactor B0 ⊂ B1.

Proof. This is something very standard, with the factoriality of the limiting von
Neumann algebras Ai, Bj coming as a consequence of the general commutant computation
in (2), which is independent from it, with the hyperfiniteness of the same Ai, Bj algebras
being clear by definition, and with the idea for the rest being as follows:

(1) This is somewhat clear from definitions, or rather from a quick verification of the
basic construction axioms, as formulated in chapter 13, because the tower of algebras
{Ai} appears by definition as the j →∞ limit of the towers of algebras {Cij}, which are
all Jones towers. Thus the limiting tower {Ai} is also a Jones tower.

(2) This is the non-trivial result, called Ocneanu compactness theorem, and whose
proof is by doing some linear algebra. To be more precise, in one sense the result is clear,
because by definition of the algebras {Ai}, we have inclusions as follows:

A′0 ∩ Ak ⊃ C ′01 ∩ Ck0

In the other sense things are more tricky, mixing standard linear algebra with some
functional analysis too, and we refer here to Ocneanu’s lecture notes [65], [66].

(3) This follows from (1,2), by transposing the whole diagram. Indeed, given a com-
muting square as in Definition 15.1, its transpose is a commuting square as well:

C10
// C11

C00

OO

// C01

OO

Thus we can apply (1,2) above to this commuting square, and we obtain in this way
Jones tower and planar algebra results for the “horizontal” subfactor B0 ⊂ B1. �

In relation with the examples of commuting squares that we have so far, namely those
coming from the Hadamard matrices, from Theorem 15.4, we can upgrade what we have
so far into something more conceptual, due to Jones [46], as follows:
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Theorem 15.6. Given a complex Hadamard matrix H ∈MN(C), the diagram formed
by the associated pair of orthogonal maximal commutative subalgebras, namely

∆ // MN(C)

C

OO

// H∆H∗

OO

is a commuting square in the sense of subfactor theory, and the associated planar algebra
P = (Pk) is given by the following formula, in terms of H itself,

T ∈ Pk ⇐⇒ T ◦G2 = Gk+2T ◦

where the objects on the right are constructed as follows:

(1) T ◦ = id⊗ T ⊗ id.

(2) Gjb
ia =

∑
kHikH̄jkH̄akHbk.

(3) Gk
i1...ik,j1...jk

= G
jkjk−1

ikik−1
. . . Gj2j1

i2i1
.

Proof. We have several assertions here, the idea being as follows:

(1) The fact that we have indeed a commuting square is something quite elementary,
that we already know, from Theorem 15.4 above.

(2) The computation of the associated planar algebra, directly in terms of H, is some-
thing which is definitely possible, thanks to the formula in Theorem 15.5 (2).

(3) As for the precise formula of the planar algebra, which emerges by doing the
computation, we will be back to it, with full details, later on.

(4) The point indeed is that we want to first develop some better methods in dealing
with the Hadamard matrices, and leave the computation of P for later. �

Summarizing, we have so far an interesting combinatorial notion, that of a commuting
square, and a method of producing subfactors and planar algebras out of it. We will
further explore all the possibilities that this opens up, in what follows:

(1) In the remainder of this chapter we will keep working on the Hadamard matrix
problem, following [5] and subsequent papers. This might look of course a bit like ma-
nia, focusing just like that on a single class of commuting squares, but we are strongly
motivated by all that has being said after Theorem 15.2 and Conjecture 15.3, with this
being a matter of life and death to us. And don’t worry, we will learn in this way useful
techniques, that will apply to other commuting squares too. And also, following Jones
[45], [46] and others, all this is potentially related to some interesting physics too.

(2) And in chapter 16 below we will go back to general commuting squares, and to
their more traditional usage, for classification problems for small index subfactors.
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15b. Matrix models

Our objective now is to clarify the planar algebra computation for the commuting
squares coming from Hadamard matrices, from Theorem 15.6. Our claim is that all this
is related, and in a beautiful way, to the quantum permutation groups that we met in
chapters 7-8, and at the end of chapter 14 as well. In order to discuss this, and to present
as well some generalizations, we will need some preliminaries on the quantum permutation
groups, and their matrix models. Let us recall from chapter 11 that we have:

Definition 15.7. A matrix model for a Woronowicz algebra A = C(G) is a morphism
of C∗-algebras of the following type,

π : C(G)→MK(C(T ))

with T being a compact space, and K ≥ 1 being an integer.

As explained in chapter 11, assuming that π is faithful leads to the conclusion that
C(G) must be a type I algebra, and so that G must be coamenable, and with this being
something quite restrictive, excluding for instance all the free quantum groups.

The solution to this problem comes from a weaker notion of faithfulness, called “inner
faithfulness”, which still allows to recover the combinatorics of G from the combinatorics
of the model, but does not potentially exclude any quantum group. The theory here,
briefly explained in chapter 11 too, starts with the following definition:

Definition 15.8. Let π : C(G)→MK(C(T )) be a matrix model.

(1) The Hopf image of π is the smallest quotient Hopf C∗-algebra C(G) → C(H)
producing a factorization of type π : C(G)→ C(H)→MK(C(T )).

(2) When the inclusion H ⊂ G is an isomorphism, i.e. when there is no non-trivial
factorization as above, we say that π is inner faithful.

As explained in [10], the existence and uniqueness of the Hopf image come by dividing
C(G) by a suitable ideal, although we will come in a moment with an explicit Tannakian
construction as well, also from [10]. As a basic illustration for these notions, we have two
main examples, which are somehow dual to each other, as follows:

(1) In the case where G = Γ̂ is a group dual, π must come from a group representation
ρ : Γ → C(T, UK). We conclude that in this case, the minimal factorization constructed
in Definition 15.8 is simply the one obtained by taking the image:

ρ : Γ→ Λ ⊂ C(T, UK)

Thus π is inner faithful when our group satisfies Γ ⊂ C(T, UK). And we can see here

that π, while not being faithful, clearly reminds all of Γ, and so of G = Γ̂ too.
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(2) As a second illustration, given a compact group G, and elements g1, . . . , gK ∈ G,
we have a representation π : C(G)→ CK , given by f → (f(g1), . . . , f(gK)). The minimal
factorization of π is then via C(H), with H ⊂ G being the following subgroup:

H = < g1, . . . , gK >

Thus π is inner faithful precisely when G = < g1, . . . , gK >. Again, we can see here

that π, while not being faithful, clearly reminds all of G, and so of Γ = Ĝ too.

Summarizing, our notion of inner faithfulness does the job, reminding the quantum

groups G and Γ = Ĝ, and not excluding anything on functional analysis grounds. Which
brings us into the question of recapturing the algebraic and analytic properties of G and

Γ = Ĝ out the combinatorics of the model. Regarding algebra, we have here:

Theorem 15.9. Assuming G ⊂ U+
N , with fundamental corepresentation u = (uij), the

Hopf image of π : C(G)→MK(C(T )) comes from the following Tannakian category,

Ckl = Hom(U⊗k, U⊗l)

where Uij = π(uij), and where the spaces on the right are taken in a formal sense.

Proof. This is something that we know from chapter 11, but we will recall the proof
here. Since the morphisms increase the intertwining spaces, when defined either in a
representation theory sense, or just formally, we have inclusions as follows:

Hom(u⊗k, u⊗l) ⊂ Hom(U⊗k, U⊗l)

More generally, we have such inclusions when replacing (G, u) with any pair producing
a factorization of π. Thus, by Tannakian duality, the Hopf image must be given by the
fact that the intertwining spaces must be the biggest, subject to the above inclusions. On
the other hand, since u is biunitary, so is U , and it follows that the spaces on the right
form a Tannakian category. Thus, we have a quantum group (H, v) given by:

Hom(v⊗k, v⊗l) = Hom(U⊗k, U⊗l)

By the above discussion, C(H) follows to be the Hopf image of π, as claimed. �

In what regards now analysis, the result here is as follows:

Theorem 15.10. Given an inner faithful model π : C(G)→MK(C(T )), we have∫
G

= lim
k→∞

1

k

k∑
r=1

∫ r

G

where
∫ r
G

= (ϕ ◦ π)∗r, with ϕ = tr ⊗
∫
T

being the random matrix trace.
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Proof. Again, this is something that we know from chapter 11. If we denote by
∫ ′
G

the limit in the statement, we must prove that this limit converges, and that we have:∫ ′
G

=

∫
G

It is enough to check this on the coefficients of corepresentations, and if we let v = u⊗k

be one of the Peter-Weyl corepresentations, we must prove that we have:(
id⊗

∫ ′
G

)
v =

(
id⊗

∫
G

)
v

We know from chapter 7 that the matrix on the right is the orthogonal projection onto
Fix(v). Regarding now the matrix on the left, this is the orthogonal projection onto the
1-eigenspace of (id⊗ ϕπ)v. Now observe that, if we set Vij = π(vij), we have:

(id⊗ ϕπ)v = (id⊗ ϕ)V

Thus, as in chapter 7, we conclude that the 1-eigenspace that we are interested in
equals Fix(V ). But, according to Theorem 15.9, we have:

Fix(V ) = Fix(v)

Thus, we have proved that we have
∫ ′
G

=
∫
G

, as desired. �

15c. Hadamard models

With this theory in hand, let us go back now to our von Neumann algebra and sub-
factor questions. In relation with the complex Hadamard matrices, the connection with
the quantum permutations is immediate, coming from the following observation:

Proposition 15.11. If H ∈MN(C) is Hadamard, the rank one projections

Pij = Proj

(
Hi

Hj

)
where H1, . . . , HN ∈ TN are the rows of H, form a magic unitary.

Proof. This is clear, the verification for the rows being as follows:〈
Hi

Hj

,
Hi

Hk

〉
=

∑
l

Hil

Hjl

· Hkl

Hil

=
∑
l

Hkl

Hjl

= Nδjk
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As for the verification for the columns, this is similar, as follows:〈
Hi

Hj

,
Hk

Hj

〉
=

∑
l

Hil

Hjl

· Hjl

Hkl

=
∑
l

Hil

Hkl

= Nδik

Thus, we have indeed a magic unitary, as claimed. �

We are led in this way into the following notion:

Definition 15.12. To any Hadamard matrix H ∈ MN(C) we associate the quantum
permutation group G ⊂ S+

N given by the following Hopf image factorization,

C(S+
N)

π //

$$

MN(C)

C(G)

::

where π(uij) = Proj(Hi/Hj), with H1, . . . , HN ∈ TN being the rows of H.

Our claim now is that this construction H → G is something really useful, with the
quantum group G encoding the combinatorics of H. To be more precise, the idea will be
that “H can be thought of as being a kind of Fourier matrix for G”. As an illustration
for this principle, we first have the following result:

Theorem 15.13. The construction H → G has the following properties:

(1) For a Fourier matrix H = FG we obtain the group G itself, acting on itself.
(2) For H 6∈ {FG}, the quantum group G is not classical, nor a group dual.
(3) For a tensor product H = H ′ ⊗H ′′ we obtain a product, G = G′ ×G′′.

Proof. All this material is standard, and elementary, as follows:

(1) Let us first discuss the cyclic group case, H = FN . Here the rows of H are given
by Hi = ρi, where ρ = (1, w, w2, . . . , wN−1). Thus, we have the following formula:

Hi

Hj

= ρi−j

It follows that the corresponding rank 1 projections Pij = Proj(Hi/Hj) form a cir-
culant matrix, all whose entries commute. Since the entries commute, the corresponding
quantum group must satisfy G ⊂ SN . Now by taking into account the circulant property
of P = (Pij) as well, we are led to the conclusion that we have G = ZN , as claimed.
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In the general case now, where H = FG, with G being an arbitrary finite abelian
group, the result can be proved either by extending the above proof, of by decomposing
G = ZN1 × . . .× ZNk and using (3) below, whose proof is independent from the rest.

(2) This is something more tricky, needing some general study of the representations
whose Hopf images are commutative, or cocommutative. For details here, along with a
number of supplementary facts on the construction H → G, we refer to [10].

(3) Assume that we have a tensor product H = H ′ ⊗ H ′′, and let G,G′, G′′ be the
associated quantum permutation groups. We have then a diagram as follows:

C(S+
N ′)⊗ C(S+

N ′′)
// C(G′)⊗ C(G′′) // MN ′(C)⊗MN ′′(C)

��
C(S+

N)

OO

// C(G) // MN(C)

Here all the maps are the canonical ones, with those on the left and on the right
coming from N = N ′N ′′. At the level of standard generators, the diagram is as follows:

u′ij ⊗ u′′ab // w′ij ⊗ w′′ab // P ′ij ⊗ P ′′ab

��
uia,jb

OO

// wia,jb // Pia,jb

Now observe that this diagram commutes. We conclude that the representation asso-
ciated to H factorizes indeed through C(G′)⊗ C(G′′), and this gives the result. �

In order to discuss now the relation with the commuting squares and the subfactors,
we can use Theorem 15.9, and we are led to the following result:

Theorem 15.14. The Tannakian category of the quantum group G ⊂ S+
N associated

to a complex Hadamard matrix H ∈MN(C) is given by

T ∈ Hom(u⊗k, u⊗l) ⇐⇒ T ◦Gk+2 = Gl+2T ◦

where the objects on the right are constructed as follows:

(1) T ◦ = id⊗ T ⊗ id.

(2) Gjb
ia =

∑
kHikH̄jkH̄akHbk.

(3) Gk
i1...ik,j1...jk

= G
jkjk−1

ikik−1
. . . Gj2j1

i2i1
.

Proof. According to Theorem 15.9, and with the notations there, we have the fol-
lowing formula for the Tannakian category that we are interested in:

Hom(u⊗k, u⊗l) = Hom(U⊗k, U⊗l)
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The vector space on the right, that we will compute now, consists by definition of the
complex N l ×Nk matrices T satisfying the following relation:

TU⊗k = U⊗lT

If we denote this equality by L = R, the left term L is given by:

Lij = (TU⊗k)ij

=
∑
a

TiaU
⊗k
aj

=
∑
a

TiaUa1j1 . . . Uakjk

As for the right term R, this is given by a similar formula, as follows:

Rij = (U⊗lT )ij

=
∑
b

U⊗lib Tbj

=
∑
b

Ui1b1 . . . UilblTbj

Consider now the vectors ξij = Hi/Hj. Since these vectors span the ambient Hilbert
space, the equality L = R is equivalent to the following equality:

< Lijξpq, ξrs >=< Rijξpq, ξrs >

We use now the following well-known formula, expressing a product of rank one pro-
jections P1, . . . , Pk in terms of the corresponding image vectors ξ1, . . . , ξk:

< P1 . . . Pkx, y >=< x, ξk >< ξk, ξk−1 > . . . . . . < ξ2, ξ1 >< ξ1, y >

This gives the following formula for the left term L:

< Lijξpq, ξrs > =
∑
a

Tia < Pa1j1 . . . Pakjkξpq, ξrs >

=
∑
a

Tia < ξpq, ξakjk > . . . < ξa1j1 , ξrs >

=
∑
a

TiaG
qjk
pak
Gjkjk−1
akak−1

. . . Gj2j1
a2a1

Gj1s
a1r

=
∑
a

TiaG
k+2
rap,sjq

= (T ◦Gk+2)rip,sjq
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As for the right term R, this is given by the following formula:

< Rijξpq, ξrs > =
∑
b

< Pi1b1 . . . Pilblξpq, ξrs > Tbj

=
∑
b

< ξpq, ξilbl > . . . < ξi1b1 , ξrs > Tbj

=
∑
b

Gqbl
pil
G
blbl−1

ilil−1
. . . Gb2b1

i2i1
Gb1s
i1r
Tbj

=
∑
b

Gl+2
rip,sbqTbj

= (Gl+2T ◦)rip,sjq

Thus, we obtain the formula in the statement. �

The point now is that, with k = 0, we obtain in this way precisely the planar algebra
spaces Pl computed by Jones in [46], for the corresponding commuting square, described
in Theorem 15.6. Thus, we are led in this way to the following result:

Theorem 15.15. Let H ∈MN(C) be a complex Hadamard matrix.

(1) The planar algebra associated to H is given by the formula

Pk = Fix(u⊗k)

where G ⊂ S+
N is the associated quantum permutation group.

(2) The Poincaré series
∑

k dim(Pk)z
k equals the Stieltjes transform

f(z) =

∫
G

1

1− zχ

of the law of the main character χ =
∑

i uii.

Proof. This follows as indicated above, by putting together what we have:

(1) As already mentioned above, this simply follows by comparing Theorem 15.14 with
the subfactor computation in [46], discussed in Theorem 15.6.

(2) This follows from (1) and from the Peter-Weyl theory, with the statement itself
being a nice and concrete application of our main result, (1) above. �

Summarizing, in connection with the commuting square problematics from the be-
ginning of this chapter, the conclusion is that for the simplest such commuting squares,
namely those coming from Hadamard matrices, the combinatorics ultimately comes from
quantum permutation groups. This is something nice, and exploring improvements and
generalizations of this will be our main purpose, in the remainder of this chapter.
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15d. Fixed points

We know that the planar algebra associated to an Hadamard matrix H ∈ MN(C)
appears in fact as the planar algebra associated to a certain related quantum permutation
group G ⊂ S+

N . In view of the various results from chapters 13-14, this suggests that the
subfactor itself associated to H should appear as a fixed point subfactor associated to G.
We will prove here that this is indeed the case. To be more precise, following [5] and
subsequent papers, regarding the subfactor itself, the result here is as follows:

Theorem 15.16. The subfactor associated to H ∈MN(C) is of the form

AG ⊂ (CN ⊗ A)G

with A = Ro Ĝ, where G ⊂ S+
N is the associated quantum permutation group.

Proof. This is something more technical, the idea being that the basic construction
procedure for the commuting squares, explained before Theorem 15.5, can be performed
in an “equivariant setting”, for commuting squares having components as follows:

D ⊗G E = (D ⊗ (E o Ĝ))G

To be more precise, starting with a commuting square formed by such algebras, we ob-
tain by basic construction a whole array of commuting squares as follows, with {Di}, {Ei}
being by definition Jones towers, and with D∞, E∞ being their inductive limits:

D0 ⊗G E∞ D1 ⊗G E∞ D2 ⊗G E∞

D0 ⊗G E2

OO

// D1 ⊗G E2

OO

// D2 ⊗G E2

OO

// D∞ ⊗G E2

D0 ⊗G E1

OO

// D1 ⊗G E1

OO

// D2 ⊗G E1

OO

// D∞ ⊗G E1

D0 ⊗G E0

OO

// D1 ⊗G E0

OO

// D2 ⊗G E0

OO

// D∞ ⊗G E0

The point now is that this quantum group picture works in fact for any commuting
square having C in the lower left corner. In the Hadamard matrix case, that we are
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interested in here, the corresponding commuting square is as follows:

C⊗G CN // CN ⊗G CN

C⊗G C

OO

// CN ⊗G C

OO

Thus, the subfactor obtained by vertical basic construction appears as follows:

C⊗G E∞ ⊂ CN ⊗G E∞
But this gives the conclusion in the statement, with the II1 factor appearing there

being by definition A = E∞ o Ĝ, and with the remark that we have E∞ ' R. �

All the above was of course quite brief, but we will discuss now all this with more
details, directly in a more general setting, covering the Hadamard matrix situation. To
be more precise, our claim is that the above fixed point subfactor techniques apply, more
generally, to the commuting squares having C in the lower left corner:

E // X

C

OO

// D

OO

In order to discuss this, let us go back to the fixed point subfactors, from chapter 13.
In what concerns the fixed point factors, we know from there that we have:

Theorem 15.17. Consider a Woronowicz algebra A = (A,∆, S), and denote by Aσ
the Woronowicz algebra (A, σ∆, S), where σ is the flip. Given coactions

β : B → B ⊗ A

π : P → P ⊗ Aσ
with B being finite dimensional, the following linear map, while not being multiplicative
in general, is coassociative with respect to the comultiplication σ∆ of Aσ,

β � π : B ⊗ P → B ⊗ P ⊗ Aσ
b⊗ p→ π(p)23((id⊗ S)β(b))13

and its fixed point space, which is by definition the following linear space,

(B ⊗ P )β�π =
{
x ∈ B ⊗ P

∣∣∣(β � π)x = x⊗ 1
}

is then a von Neumann subalgebra of B⊗P . Moreover, such algebras can be used in order
to construct the generalized Wassermann subfactors, (B0 ⊗ P )G ⊂ (B1 ⊗ P )G.
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Proof. This is something that we know from chapter 13, and for details, and com-
ments in relation with the non-multiplicativity of β�π, we refer to the material there. �

Let
∫
A

: A→ C be the Haar functional, let l2(A) be its l2-space and let Â ⊂ B(l2(A))

be the dual algebra. If α : E → E ⊗ Â is a coaction of Â on a finite von Neumann

algebra E, the crossed product E oα Â is the von Neumann subalgebra of E ⊗ B(l2(A))

generated by α(E) and by 1⊗A. There exists a unique coaction α̂ of A on E oα Â such

that (E oα Â)α̂ = α(E), and such that the copy 1 ⊗ A of A is equivariant. With these
conventions, again following [5] and subsequent papers, we have the following result:

Proposition 15.18. Let A be a Woronowicz algebra. If β : D → D⊗A is a coaction

on a finite dimensional finite von Neumann algebra and α : E → E⊗ Âσ is a coaction on
a finite von Neumann algebra then we have the equality

(D ⊗ (E oα Âσ))β�α̂ = spw
{
β(D)13 · α(E)23

}
as linear subspaces of D ⊗ E ⊗B(l2(Aσ)). Moreover, the following diagram

α(E)23 ⊂ (D ⊗ (E oα Âσ))β�α̂

∪ ∪
C ⊂ β(D)13

is a non-degenerate commuting square of finite von Neumann algebras.

Proof. By definition of the crossed product Eoα Âσ, we have the following equalities
between subalgebras of D ⊗ E ⊗B(l2(Aσ)):

D ⊗ (E oα Âσ) = D ⊗ (spw{α(E) · (1⊗ Aσ)})
= spw{(D ⊗ Aσ)13 · α(E)23}

On the other hand, since the coactions on the finite dimensional algebras are auto-
matically non-degenerate, we have as well the following equality:

D ⊗ Aσ = sp{(1⊗ Aσ) · β(D)}

Thus, we have the following equality of algebras:

D ⊗ (E oα Aσ) = spw{(1⊗ 1⊗ Aσ) · β(D)13 · α(E)23}

Let us compute now the restriction of the map β� α̂ to the algebra 1⊗ 1⊗Aσ, to the
algebra β(D)13, and to the algebra α(E)23. This can be done as follows:

(1) The restriction of β � α̂ to the algebra 1⊗ 1⊗Aσ is 1⊗ 1⊗ σ∆. In particular the
map β � α̂ has no fixed points in this algebra 1⊗ 1⊗ Aσ.

(2) The algebra α(E)23 is by definition fixed by β � α̂.
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(3) We prove now that the algebra β(D)13 is also fixed by β� α̂. For this purpose, let
{uij} be an orthonormal basis of l2(Aσ) consisting of coefficients of irreducible corepre-
sentations of Aσ. Since we have β(D) ⊂ D⊗algAσ, for any b ∈ D we can use the notation
β(b) =

∑
uij b

u
ij ⊗ uij. From the coassociativity of β we obtain:∑

uij

β(buij)⊗ uij =
∑
uijk

buij ⊗ ukj ⊗ uik

Thus we have β(buik) =
∑

j b
u
ij ⊗ ukj for any u, i, k, and so:

(id⊗ S)β(buij) = (id⊗ S)

(∑
s

buis ⊗ ujs

)
=

∑
s

buis ⊗ u∗sj

Also, we have α̂(1⊗ uij) =
∑

k 1⊗ uik ⊗ ukj, and we obtain from this that we have:

(β � α̂)(β(b)13) =
∑
uij

(∑
k

1⊗ 1⊗ uik ⊗ ukj

)(∑
s

buis ⊗ 1⊗ 1⊗ u∗sj

)
=

∑
uijks

buis ⊗ 1⊗ uik ⊗ ukju∗sj

By summing over j the last term is replaced by (uu∗)ks = δk,s1. Thus we obtain, as
desired, that our algebra consists indeed of fixed points:

(β � α̂)(β(b)13) =
∑
uik

buik ⊗ 1⊗ uik ⊗ 1

= (β(b)13)⊗ 1

In order to finish now, observe that (1,2,3) above show that (D⊗(Eoα Âσ))β�α̂, which
is the fixed point algebra of spw{(1⊗ 1⊗Aσ) ·β(D)13 ·α(E)23} under the coaction β� α̂,
is equal to spw{β(D)13 ·α(E)23}. This finishes the proof of the first assertion, and proves
as well the non-degeneracy of the diagram in the statement.

Finally, observe that the diagram in the statement is the dual of the square on the

left in the following diagram, where P = E oα Âσ and π = α̂:

D ⊂ (D ⊗ P )β�π ⊂ D ⊗ P
∪ ∪ ∪
C ⊂ P π ⊂ P

Since π is dual, the square on the right is a non-degenerate commuting square. We
also know that the rectangle is a non-degenerate commuting square. Thus if we denote by
EX : D⊗P → D⊗P the conditional expectation onto X, for any X, then for any b ∈ D
we have EPπ(b) = EP (b) = EC(b), and this proves the commuting square condition. �
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Let us denote now by Alg the category having as objects the finite dimensional C∗-
algebras and having as arrows the inclusions of C∗-algebras which preserve the canonical
traces. The above result suggests the following abstract definition:

Definition 15.19. Given objects (D, β) ∈ A−Alg and (E,α) ∈ Âσ −Alg, we let

D�AE = (D ⊗ (E oα Âσ))β�α̂

be the object in Alg, constructed as in Proposition 15.18 above.

If (D′, β′) ⊂ (D, β) is an arrow in A−Alg and (E ′, α′) ⊂ (E,α) is an arrow in Âσ−Alg,
then we have a canonical embedding, as follows:

D′�AE
′ ⊂ D�AE

Now since both D′�AE ′ and D�AE are endowed with their canonical traces, this
inclusion is Markov. Thus, we have constructed a bifunctor, as follows:

�A : A−Alg × Âσ −Alg → Alg

With this convention, we have the following result:

Theorem 15.20. For any two arrows D0 ⊂ D1 in A−Alg and E0 ⊂ E1 in Âσ−Alg,

D0�AE1 ⊂ D1�AE1

∪ ∪
D0�AE0 ⊂ D1�AE0

is a non-degenerate commuting square of finite dimensional von Neumann algebras.

Proof. This can be proved in several steps, as follows:

Step I. In the simplest case, D0 = E0 = C, this follows from the above.

Step II. We prove now the result in the general E0 = C case. Indeed, let E = E1, and
consider the following diagram:

E ⊂ D0�AE ⊂ D1�AE
∪ ∪ ∪
C ⊂ D0 ⊂ D1

By the result of Step I, both the square on the left and the rectangle are non-degenerate
commuting squares. We want to prove that the square on the right is a non-degenerate
commuting square. But the non-degeneracy condition follows from:

D1�AE = sp{E ·D1} ⊂ sp{D0�AE ·D1}
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Now let x ∈ D0�AE and write x =
∑

i biai with bi ∈ D0 and ai ∈ E. Then:

ED1(x) =
∑
i

biED1(ai)

=
∑
i

biEC(ai)

=
∑
i

biED0(ai)

= ED0(x)

But this proves the commuting square condition, and we are done.

Step III. A similar argument shows that the result holds in the case D0 = C.

Step IV. General case. We will use many times the following diagram, in which all
the rectangles and all the squares, except possibly for the square in the statement, are
non-degenerate commuting squares, cf. the conclusions of Steps I, II, III:

E1 ⊂ D0�AE1 ⊂ D1�AE1

∪ ∪ ∪
E0 ⊂ D0�AE0 ⊂ D1�AE0

∪ ∪ ∪
C ⊂ D0 ⊂ D1

The non-degeneracy condition follows from:

D1�AE1 = sp{E1 ·D1} ⊂ sp{D0�AE1 ·D1�AE0}

Now let x ∈ D0�AE1 and write x =
∑

i biai with bi ∈ D0 and ai ∈ E1. Then:

ED1�AE0(x) =
∑
i

biED1�AE0(ai)

=
∑
i

biEE0(ai)

=
∑
i

biED0�AE0(ai)

= ED0�AE0(x)

But this proves the commuting square condition, and we are done. �

We show now that the bifunctor �A behaves well with respect to basic constructions.
If A is a Woronowicz algebra, a sequence of two arrows D0 ⊂ D1 ⊂ D2 in A − Alg is
called a basic construction if D0 ⊂ D1 ⊂ D2 is a basic construction in Alg and if its Jones
projection e ∈ D2 is a fixed by the coaction D2 → D2 ⊗ A. An infinite sequence of basic
constructions in A−Alg is called a Jones tower in A−Alg. We have:
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Proposition 15.21. If D0 ⊂ D1 ⊂ D2 ⊂ D3 ⊂ . . . is a Jones tower in A−Alg and

E0 ⊂ E1 ⊂ E2 ⊂ E3 ⊂ . . . is a Jones tower in Âσ −Alg then

...
...

...
∪ ∪ ∪

D0�AE2 ⊂ D1�AE2 ⊂ D2�AE2 ⊂ · · ·
∪ ∪ ∪

D0�AE1 ⊂ D1�AE1 ⊂ D2�AE1 ⊂ · · ·
∪ ∪ ∪

D0�AE0 ⊂ D1�AE0 ⊂ D2�AE0 ⊂ · · ·

is a lattice of basic constructions for non-degenerate commuting squares.

Proof. We prove only that the rows are Jones towers, the proof for the columns
being similar. By restricting the attention to a pair of consecutive inclusions, it is enough
to prove that if D0 ⊂ D1 ⊂ D2 is a basic construction in A −Alg and E is an object of

Âσ −Alg then D0�AE ⊂ D1�AE ⊂ D2�AE is a basic construction in Alg.

For this purpose, we will use many times the following diagram, in which all squares
and rectangles are non-degenerate commuting squares:

E ⊂ D0�AE ⊂ D1�AE ⊂ D2�AE
∪ ∪ ∪ ∪
C ⊂ D0 ⊂ D1 ⊂ D2

We will use the abstract characterization of the basic construction, stating that N ⊂
M ⊂ P is a basic construction, with Jones projection e ∈ P , precisely when:

(1) P = sp{M · e ·M}.

(2) [e,N ] = 0.

(3) exe = EN(x)e for any x ∈M .

(4) tr(xe) = λtr(x) for any x ∈M , where λ is the inverse of the index of N ⊂M .

Let e ∈ D2 be the Jones projection for the basic construction D0 ⊂ D1 ⊂ D2. With
N = D0, M = D1 and P = D2 the verification of (1-4) is as follows:

(1) This follows from the following computation:

D2�AE = sp{D2 · E}
= sp{D1 · e ·D1 · E}
= sp{D1 · e ·D1�AE}

(2) This follows from D0�AE = sp{D0 · E}, from [e, E] = 0 and from [e,D0] = 0.
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(3) Let x ∈ D1�AE, and write x =
∑

i biai with bi ∈ D1 and ai ∈ E. Then:

exe =
∑
i

ebiaie

=
∑
i

ebieai

=
∑
i

ED0(bi)eai

=
∑
i

ED0(bi)aie

On the other hand, we have as well the following computation:

ED0�AE(x)e =
∑
i

ED0�AE(biai)e

=
∑
i

ED0�AE(bi)aie

=
∑
i

ED0(bi)aie

(4) With the above notations, we have that:

ED2(xe) =
∑
i

ED2(biaie)

=
∑
i

biED2(ai)e

=
∑
i

biEC(ai)e

We also have biEC(ai) ∈ D1 for every i, and so:

trD2�AE(xe) = trD2(ED2(xe))

= λ
∑
i

trD1(biEC(ai))

On the other hand, we have as well the following computation:

trD1�AE(x) = trD1(ED1(x))

=
∑
i

trD1(biED1(ai))

=
∑
i

trD1(biEC(ai))

Thus, the fourth condition for a basic construction is verified, as desired. �
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With standard coaction conventions, from chapter 13, we have:

Proposition 15.22. Given a corepresentation and a representation, as follows,

v ∈Mn(C)⊗ A , π : Aσ →Mk(C)

consider, via some standard identifications, the associated objects

(Mn(C), ιv) ∈ A−Alg , (Mk(C), ιπ̌) ∈ Âσ −Alg
and form the corresponding algebra Mn(C)�AMk(C). Then there exists an isomorphismMk(C) ⊂ Mn(C)�AMk(C)

∪ ∪
C ⊂ Mn(C)

 '
C⊗Mk(C) ⊂ Mn(C)⊗Mk(C)

∪ ∪
C ⊂ u(Mn(C)⊗ C)u∗


sending z → 1⊗ z for z ∈Mk(C) and y → ιu(y) for y ∈Mn(C), where u = (id⊗ π)v.

Proof. Consider the following ∗-morphism of algebras:

Φ : Mn(C)⊗Mk(C)→Mn(C)⊗Mk(C)⊗B(l2(Aσ))

x→ ad(v13π̌23u
∗
12)(x⊗ 1)

Since both the squares in the statement are non-degenerate commuting squares, all
the assertions are consequences of the following formulae, that we will prove now:

Φ(1⊗ z) = ιπ̌(z)23 , Φ(ιu(y)) = ιv(y)13

The second formula follows from the following computation:

Φ(u(y ⊗ 1)u∗) = v13(y ⊗ 1⊗ 1)v∗13 = (v(y ⊗ 1)v∗)13

For the first formula, what we have to prove is that:

v13π̌23u
∗
12(1⊗ z ⊗ 1)u12π̌

∗
23v
∗
13 = (π̌(z ⊗ 1)π̌∗)23

By moving the unitaries to the left and to the right we have to prove that:

π̌∗23v13π̌23u
∗
12 ∈ (C⊗Mk(C)⊗ C)′ = Mn(C)⊗ C⊗B(l2(Hσ))

Let us call this unitary U . Since π̌ = (π ⊗ id)V ′ we have:

U = (id⊗ π ⊗ id)(V ∗23v13V23v
∗
12)

The comultiplication of Hσ is given by ∆(y) = V ∗(1⊗ y)V . On the other hand since
v∗ is a corepresentation of Hσ, we have (id⊗∆)(v∗) = v∗12v

∗
13. We get that:

V ∗23v13V23 = (V ∗23v
∗
13V23)∗

= ((id⊗∆)(v∗))∗

= (v∗12v
∗
13)∗

= v13v12

Thus we have U = v13, and we are done. �
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We are now ready to formulate our main result, as follows:

Theorem 15.23. Any commuting square having C in the lower left corner,

E ⊂ X
∪ ∪
C ⊂ D

must appear as follows, for a suitable Woronowicz algebra A, with actions on D,E,

E ⊂ D�AE
∪ ∪
C ⊂ D

and the vertical subfactor associated to it is isomorphic to

R ⊂ (D ⊗ (Roγπ Âσ))βv�γ̂π

which is a fixed point subfactor, in the sense of chapter 13 above.

Proof. This is something quite technical, which basically follows by combining the
above results, and for full details on this, we refer to [5] and related papers. �

Summarizing, all the commuting squares having C in the lower left corner are described
by quantum groups. This is of course something quite special, and we will study more
general commuting squares, not coming from quantum groups, in the next chapter.

15e. Exercises

Things have been quite technical here, and as an exercise on this, we have:

Exercise 15.24. Given a commuting square of finite dimensional algebras

C01
// C11

C00

OO

// C10

OO

establish, with full details, the Ocneanu compactness formula

A′0 ∩ Ak = C ′01 ∩ Ck0

for the associated vertical subfactor A0 ⊂ A1.

This is something quite fundamental, that we discussed in the above, but with the
details missing. Time to have this done, by working out the linear algebra.



CHAPTER 16

Spectral measures

16a. Small index

We have seen so far the foundations of Jones’ subfactor theory, along with results
regarding the most basic classes of such subfactors, namely those coming from compact
groups, discrete group duals, and more generally compact quantum groups. These subfac-
tors all have integer index, N ∈ N, and appear as subfactors of the Murray-von Neumann
hyperfinite II1 factor R, either by definition, or by theorem, or by conjecture.

This suggests looking into the classification of subfactors of integer index, or into the
classification of the subfactors of R, or into the classification of the subfactors of R having
integer index. These are all good questions, that we will discuss here.

Before starting, however, and in order to have an idea on what we want to do, we
should discuss the following question: should the index N ∈ [1,∞) be small, or big? This
is something quite philosophical, and non-trivial, the situation being as follows:

(1) Mathematics and basic common sense suggest that subfactors should fall into
two main classes, “series” and “exceptional”. From this perspective, the series,
corresponding to uniform values of the index, must be investigated first.

(2) In practice now, passed a few simple cases, such as the FC or TL subfactors,
we cannot hope for the index to take full uniform values. The more reasonable
question here is that of looking at the case where N ∈ N is uniform.

(3) The problem now is that, in the lack of theory here, this basically brings us back
to groups, group duals, and more generally compact quantum groups, whose
combinatorics is notoriously simpler than that of the arbitrary subfactors.

(4) In short, naivity and pure mathematics tell us to investigate the “big index” case
first, but with the remark however that we are missing something, and so that
we must do in parallel some study in the “small index” case too.

All this does not look very clear, and so after this discussion, we are basically still in
the dark. So, should the answer come then from physics, and applications?

Unfortunately, things here are quite complicated too, basically due to our current poor
understanding of quantum mechanics, and of what precisely is to be done, in order to
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370 16. SPECTRAL MEASURES

have things in physics moving. And in fact, things here are in fact split too, a bit in the
same way as above, the situation being basically as follows:

(1) The very small index range, N ∈ [1, 4], is subject to the remarkable “quantiza-
tion” result of Jones, stating that we should have N = 4 cos2(π

n
), and has strong

ties with a number of considerations in conformal field theory.

(2) In what concerns the other end, N >> 0, this is in relation with statistical
mechanics, once again following work of Jones on the subject, and with the index
itself corresponding to physicists’ famous “big N” variable.

In short, no hope for an answer here. At least with our current knowledge of the
subject. Probably most illustrating here is the fact that the main experts, starting with
Jones himself, have always being split, working on both small and big index.

Getting away now from these philosophical difficulties, and back to our present book,
which is rather elementary and mathematical, in this final chapter we will survey the
main structure and classification results available, both in small and big index.

As already mentioned, we will focus on the subfactors of the Murray-von Neumann
hyperfinite II1 factor R, by taking for granted the fact that these subfactors are the most
“important”, and related to physics. With the side remark, however, that this is actually
subject to debate too, with many mathematicians opting for bigger factors like L(F∞),
and with some physicists joining them too. But let us not get into this here.

In order to get started now, in order to talk about classification, we need invariants
for our subfactors. Which brings us into a third controversy, namely the choice between
algebraic and analytic invariants. The situation here is as follows:

Definition 16.1. Associated to any finite index subfactor A ⊂ B, having planar
algebra P = (Pk), are the following invariants:

(1) Its principal graph X, which describes the inclusions P0 ⊂ P1 ⊂ P2 ⊂ . . . , with
the reflections coming from basic constructions removed.

(2) Its fusion algebra F , which describes the fusion rules for the various types of
bimodules that can appear, namely A− A, A−B, B − A, B −B.

(3) Its Poincaré series f , which is the generating series of the graded components of
the planar algebra, f(z) =

∑
k dim(Pk)z

k.
(4) Its spectral measure µ, which is the probability measure having as moments the

dimensions of the planar algebra components,
∫
xkdµ(x) = dim(Pk).

This definition is of course something a bit informal, and there is certainly some work
to be done, in order to fully define all the above invariants X,F, f, µ, and to work out the
precise relation between them. We will be back to this later, but for the moment, let us
keep in mind the fact that associated to a given subfactor A ⊂ B are several combinatorial
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invariants, which are not exactly equivalent, but are definitely versions of the same thing,
the “combinatorics of the subfactor”, and which come in algebraic or analytic flavors.

So, what to use? As before, in relation with the previous controversies, the main
experts, starting with Jones himself, have always being split themselves on this question,
working with both algebraic and analytic invariants. Generally speaking, the algebraic
invariants, which are (1) and (2) in the above list, tend to be more popular in small index,
while the analytic invariants, (3) and (4), are definitely more popular in big index.

In order to get started now, let us first discuss the question of classifying the subfactors
of the hyperfinite II1 factor R, up to isomorphism, having index N ≤ 4.

This is something quite tricky, and the main idea here will be the fact, coming from
the proof of the Jones index restriction theorem, explained in chapter 13 above, that the
index N ∈ (1, 4] must be the squared norm of a certain graph:

N = ||X||2

Now with this observation in hand, the assumption N ≤ 4 forces X to be one of the
Coxeter-Dynkin graphs of type ADE, and then a lot of work, both of classification and
exclusion, leads to an ADE classification for the subfactors of R having index N ≤ 4.

This was for the idea. More in detail now, let us begin by explaining in detail how
our subfactor invariant here, which will be the principal graph X, is constructed.

Consider first an arbitrary finite index irreducible subfactor A0 ⊂ A1, with associated
planar algebra Pk = A′0 ∩ Ak, and let us look at the following system of inclusions:

P0 ⊂ P1 ⊂ P2 ⊂ . . .

By taking the Bratelli diagram of this system of inclusions, and then deleting the
reflections coming from basic constructions, which automatically appear at each step,
according to the various results from chapter 13, we obtain a certain graph X, called
principal graph of A0 ⊂ A1. The main properties of X can be summarized as follows:

Theorem 16.2. The principal graph X has the following properties:

(1) The higher relative commutant Pk = A′0 ∩Ak is isomorphic to the abstract vector
space spanned by the 2k-loops on X based at the root.

(2) In the amenable case, where A1 = R and when the subfactor is “amenable”, the
index of A0 ⊂ A1 is given by N = ||X||2.

Proof. This is something standard, the idea being as follows:

(1) The statement here, which explains among others the relation between the principal
graph X, and the other subfactor invariants, from Definition 16.1 above, comes from the
definition of the principal graph, as a Bratelli diagram, with the reflections removed.
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(2) This is actually a quite subtle statement, but for our purposes here, we can take
the equality N = ||X||2, which reminds a bit the Kesten amenability condition for dis-
crete groups, as a definition for the amenability of the subfactor. With the remark that
for the Popa diagonal subfactors what we have here is precisely the Kesten amenability
condition for the underlying discrete group Γ, and that, more generally, for the arbitrary
generalized Popa or Wassermann subfactors, what we have here is precisely the Kesten
type amenability condition for the underlying discrete quantum group Γ. �

As a consequence of the above, in relation with classification questions, we have:

Theorem 16.3. The principal graph of a subfactor having index N ≤ 4 must be one
of the Coxeter-Dynkin graphs of type ADE.

Proof. This follows indeed from the formula N = ||X||2 from the above result, and
from the considerations from the proof of the Jones index restriction theorem, explained
in chapter 13 above. For full details on all this, we refer for instance to [37]. �

More in detail now, the usual Coxeter-Dynkin graphs are as follows:

An = • − ◦ − ◦ · · · ◦ − ◦ − ◦ A∞ = • − ◦ − ◦ − ◦ · · ·

Dn = • − ◦ − ◦ · · · ◦ −

◦
|
◦ − ◦

Ã2n =

◦− ◦ − ◦ · · · ◦ − ◦ −◦
| |
• − ◦ − ◦ − ◦ − ◦ − ◦ A−∞,∞ =

◦− ◦ − ◦ − ◦ · · ·
|
•− ◦ − ◦ − ◦ · · ·

D̃n = • −

◦
|
◦ − ◦ · · · ◦ −

◦
|
◦ − ◦ D∞ = • −

◦
|
◦ − ◦ − ◦ · · ·

Here the graphs An with n ≥ 2 and Dn with n ≥ 3 have by definition n vertices each,
Ã2n with n ≥ 1 has 2n vertices, and D̃n with n ≥ 4 has n + 1 vertices. Thus, the first
graph in each series is by definition as follows:

A2 = • − ◦ D3 =

◦
|
• − ◦ Ã2 =

◦
||
• D̃4 = • −

◦ ◦
\ /
◦ − ◦
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There are also a number of exceptional Coxeter-Dynkin graphs. First we have:

E6 = • − ◦ −

◦
|
◦ − ◦ − ◦

E7 = • − ◦ − ◦ −

◦
|
◦ − ◦ − ◦

E8 = • − ◦ − ◦ − ◦ −

◦
|
◦ − ◦ − ◦

Also, we have as well index 4 versions of the above exceptional graphs, as follows:

Ẽ6 = • − ◦ −

◦
|
◦
|
◦− ◦ − ◦

Ẽ7 = • − ◦ − ◦ −

◦
|
◦ − ◦ − ◦ − ◦

Ẽ8 = • − ◦ − ◦ − ◦ − ◦ −

◦
|
◦ − ◦ − ◦

Getting back now to Theorem 16.3, with this list in hand, the story is not over here,
because we still have to understand which of these graphs can really appear as principal
graphs of subfactors. And, for those graphs which can appear, we must understand the
structure and classification of the subfactors of R, having them as principal graphs.

In short, there is still a lot of work to be done, as a continuation of Theorem 16.3.
The subfactors of index ≤ 4 were intensively studied in the 80s and early 90s, and about
10 years after Jones’ foundational paper [44], a complete classification result was found,
with contributions by many authors. A simplified form of this result is as follows:

Theorem 16.4. The principal graphs of subfactors of index ≤ 4 are:

(1) Index < 4 graphs: An, Deven, E6, E8.
(2) Index 4 finite graphs: Ã2n, D̃n, Ẽ6, Ẽ7, Ẽ8.
(3) Index 4 infinite graphs: A∞, A−∞,∞, D∞.

Proof. As already mentioned, this is something quite heavy, with contributions by
many authors, and among the main papers to be read here, let us mention [44], [65],
[66], [69]. Observe that the graphs Dodd and E7 don’t appear in the above list. This is
one of the subtle points of subfactor theory. For a discussion here, see [32]. �
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There are many other things that can be said about the subfactors of index N ≤ 4,
both at the theoretical level, of the finite depth and more generally of the amenable
subfactors, and at the level of the ADE classification, which makes connections with
other ADE classifications. We refer here to [32], [37], [65], [66], [69], [70].

Regarding now the subfactors of index N ∈ (4, 5], and also of small index above 5,
these can be classified, but this is a long and complicated story. Let us just record here
the result in index 5, which is something quite easy to formulate, as follows:

Theorem 16.5. The principal graphs of the irreducible index 5 subfactors are:

(1) A∞, and a non-extremal perturbation of A
(1)
∞ .

(2) The McKay graphs of Z5, D5, GA1(5), A5, S5.
(3) The twists of the McKay graphs of A5, S5.

Proof. This is a heavy result, and we refer to [50] for the whole story. The above
formulation is the one from [50], with the subgroup subfactors there replaced by fixed
point subfactors, and with the cyclic groups denoted as usual by ZN . �

As a comment here, the above N = 5 result was much harder to obtain than the
classification in index N = 4, obtained as a consequence of Theorem 16.4. However, at
the level of the explicit construction of such subfactors, things are quite similar at N = 4
and N = 5, with the fixed point subfactors associated to quantum permutation groups
G ⊂ S+

N providing most of the examples. We refer here to [11] and related papers.

In index N = 6 now, the subfactors cannot be classified, at least in general, due
to several uncountable families, coming from groups, group duals, and more generally
compact quantum groups. The exact assumption to be added is not known yet.

Summarizing, the current small index classification problem meets considerable diffi-
culties in index N = 6, and right below. In small index N > 6 the situation is largely
unexplored. We refer here to [56] and the recent literature on the subject.

16b. Spectral measures

Before getting into the case where the index is big, N >> 0, let us comment on one
of the key ingredients for the above classification results, at N < 6. This is the Jones
annular theory of subfactors, which is something very beautiful and useful, regarding the
case where the index is arbitrary, N ∈ [1,∞). The main result is as follows:

Theorem 16.6. The theta series of a subfactor of index N > 4, which is given by

Θ(q) = q +
1− q
1 + q

f

(
q

(1 + q)2

)
with f =

∑
k dim(Pk)z

k being the Poincaré series, has positive coefficients.
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Proof. This is something quite advanced, the idea being that Θ is the generating
series of a certain series of multiplicities associated to the subfactor, and more specifically
associated to the canonical inclusion TLN ⊂ P . We refer here to Jones’ paper [48]. �

In relation to this, and to some questions from physics as well, coming from conformal
field theory, an interesting question is that of computing the “blowup” of the spectral
measure of the subfactor, via the Jones change of variables, namely:

z → q

1 + q2

This question makes sense in any index, meaning both N ∈ [1, 4], where Theorem 16.6
does not apply, and N ∈ (4,∞), where Theorem 16.6 does apply. We will discuss in what
follows both these questions, by starting with the small index one, N ∈ [1, 4].

Following [12] and related papers, it is convenient to stay, at least for the beginning,
at a purely elementary level, and associate such series to any rooted bipartite graph. Let
us start with the following definition, which is something straightforward, inspired by the
definition of the Poincaré series of a subfactor, and by Theorem 16.2:

Definition 16.7. The Poincaré series of a rooted bipartite graph X is

f(z) =
∞∑
k=0

loopX(2k)zk

where loopX(2k) is the number of 2k-loops based at the root.

In the case where X is the principal graph of a subfactor A0 ⊂ A1, this series f is the
Poincaré series of the subfactor, in the usual sense:

f(z) =
∞∑
k=0

dim(A′0 ∩ Ak)zk

In general, the Poincaré series should be thought of as being a basic representation
theory invariant of the underlying group-like object. For instance for the Wassermann
type subfactor associated to a compact Lie group G ⊂ UN , the Poincaré series is:

f(z) =

∫
G

1

1− Tr(g)z
dg

Regarding now the theta series, this can introduced as a version of the Poincaré series,
via the change of variables z−1/2 = q1/2 + q−1/2, as follows:

Definition 16.8. The theta series of a rooted bipartite graph X is

Θ(q) = q +
1− q
1 + q

f

(
q

(1 + q)2

)
where f is the Poincaré series.



376 16. SPECTRAL MEASURES

The theta series can be written as Θ(q) =
∑
arq

r, and it follows from the above
formula, via some simple manipulations, that its coefficients are integers:

ar ∈ Z

In fact, we have the following explicit formula from Jones’ paper [48], relating the
coefficients of Θ(q) =

∑
arq

r to those of the Poincaré series f(z) =
∑
ckz

k:

ar =
r∑

k=0

(−1)r−k
2r

r + k

(
r + k
r − k

)
ck

In the case where X is the principal graph of a subfactor A0 ⊂ A1 of index N > 4, it
is known from [48] that the numbers ar are certain multiplicities associated to the planar
algebra inclusion TLN ⊂ P , as explained in Theorem 16.6 and its proof. In particular,
the coefficients of the theta series are in this case positive integers:

ar ∈ N

Before getting into computations, let us discuss as well the measure-theoretic versions
of the above invariants. Once again, we start with an arbitrary rooted bipartite graph X.
We can first introduce a measure µ, whose Stieltjes transform is f , as follows:

Definition 16.9. The real measure µ of a rooted bipartite graph X is given by

f(z) =

∫ ∞
0

1

1− xz
dµ(x)

where f is the Poincaré series.

In the case where X is the principal graph of a subfactor A0 ⊂ A1, we recover in
this way the spectral measure of the subfactor, as introduced in Definition 16.1, with
the remark however that the existence of such a measure µ was not discussed there. In
general, and so also in the particular subfactor case, clarifying the things here, the fact
that µ as above exists indeed comes from the following simple fact:

Proposition 16.10. The real measure µ of a rooted bipartite graph X is given by the
following formula, where L = MM t, with M being the adjacency matrix of the graph,

µ = law(L)

and with the probabilistic computation being with respect to the expectation

A→< A >

with < A > being the (∗, ∗)-entry of a matrix A, where ∗ is the root.
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Proof. With the conventions in the statement, namely L = MM t, with M being the
adjacency matrix, and with < A > being the (∗, ∗)-entry of a matrix A, we have:

f(z) =
∞∑
k=0

loopX(2k)zk

=
∞∑
k=0

〈
Lk
〉
zk

=

〈
1

1− Lz

〉
But this shows that we have the formula µ = law(L), as desired. �

In the subfactor case some further interpretations are available as well. For instance in
the case of the fixed point subfactors coming from of a compact group G ⊂ UN , discussed
after Definition 16.7 above, µ is the spectral measure of the main character:

µ = law(χ)

In relation now with the theta series, things are more tricky, in order to introduce its
measure-theoretic version. Following [12], let us introduce the following notion:

Definition 16.11. The circular measure ε of a rooted bipartite graph X is given by

dε(q) = dµ((q + q−1)2)

where µ is the associated real measure.

In other words, the circular measure ε is by definition the pullback of the usual real
measure µ via the following map, coming from the theory of the theta series in [48]:

R ∪ T→ R+

q → (q + q−1)2

As we will see, all this best works in index N ∈ [1, 4], with the circular measure ε
being here the best-looking invariant, among all subfactor invariants. In index N > 4
things will turn to be quite complicated, but more on this later.

As a basic example for all this, assume that µ is a discrete measure, supported by n
positive numbers x1 < . . . < xn, with corresponding densities p1, . . . , pn:

µ =
n∑
i=1

piδxi
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For each i ∈ {1, . . . , n} the equation (q + q−1)2 = xi has four solutions, that we can
denote qi, q

−1
i ,−qi,−q−1

i . With this notation, we have:

ε =
1

4

n∑
i=1

pi

(
δqi + δq−1

i
+ δ−qi + δ−q−1

i

)
In general, the basic properties of ε can be summarized as follows:

Proposition 16.12. The circular measure has the following properties:

(1) ε has equal density at q, q−1,−q,−q−1.
(2) The odd moments of ε are 0.
(3) The even moments of ε are half-integers.
(4) When X has norm ≤ 2, ε is supported by the unit circle.
(5) When X is finite, ε is discrete.
(6) If K is a solution of L = (K +K−1)2, then ε = law(K).

Proof. These results can be deduced from definitions, the idea being that (1-5) are
trivial, and that (6) follows from the formula of µ from Proposition 16.10. �

In addition to the above, we have the following key formula, which gives the even
moments of ε, and makes the connection with the Jones theta series:

Theorem 16.13. We have the Stieltjes transform type formula

2

∫
1

1− qu2
dε(u) = 1 + T (q)(1− q)

where the T series of a rooted bipartite graph X is by definition given by

T (q) =
Θ(q)− q

1− q
with Θ being the associated theta series.

Proof. This follows by applying the change of variables q → (q + q−1)2 to the fact
that f is the Stieltjes transform of µ. Indeed, we obtain in this way:

2

∫
1

1− qu2
dε(u) = 1 +

1− q
1 + q

f

(
q

(1 + q)2

)
= 1 + Θ(q)− q
= 1 + T (q)(1− q)

Thus, we are led to the conclusion in the statement. �

As a final theoretical result about all these invariants, which is this time something
non-trivial, in the subfactor case, we have the following result, due to Jones [48]:

Theorem 16.14. In the case where X is the principal graph of an irreducible subfactor
of index > 4, the moments of ε are positive numbers.
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Proof. This follows indeed from the result in [48] that the coefficients of Θ are
positive numbers, as explained in Theorem 16.6, via the formula in Theorem 16.13. �

Summarizing, we have a whole menagery of subfactor, planar algebra and bipartite
graph invariants, which come in several flavors, namely series and measures, and which
can be linear or circular, and which all appear as versions of the Poincaré series.

Our claim now is that the circular measure ε is the “best” invariant. As a first
justification for this claim, let us compute ε for the simplest possible graph in the index
range N ∈ [1, 4], namely the graph Ã2n. We obtain here something nice, as follows:

Theorem 16.15. The circular measure of the basic index 4 graph, namely

◦− ◦ − ◦ · · · ◦ − ◦ −◦
Ã2n = | |

• − ◦ − ◦ − ◦ − ◦ − ◦

is the uniform measure on the 2n-roots of unity.

Proof. Let us identify the vertices of X = Ã2n with the group {wk} formed by the
2n-th roots of unity in the complex plane, where w = eπi/n. The adjacency matrix of X
acts then on the functions f ∈ C(X) in the following way:

Mf(ws) = f(ws−1) + f(ws+1)

But this shows that we have M = K +K−1, where K is given by:

Kf(ws) = f(ws+1)

Thus we can use the last assertion in Proposition 16.12, and we get ε = law(K), which
is the uniform measure on the 2n-roots of unity. See [12] for details. �

In order to discuss all this more systematically, and for all the ADE graphs, the idea
will be that of looking at the combinatorics of the roots of unity. Let us introduce:

Definition 16.16. The series of the form

ξ(n1, . . . , ns : m1, . . . ,mt) =
(1− qn1) . . . (1− qns)
(1− qm1) . . . (1− qmt)

with ni,mi ∈ N are called cyclotomic.

It is technically convenient to allow as well 1 + qn factors, to be designated by n+

symbols in the above writing. For instance we have, by definition:

ξ(2+ : 3) = ξ(4 : 2, 3)

Also, it is convenient in what follows to use the following notations:

ξ′ =
ξ

1− q
, ξ′′ =

ξ

1− q2
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The Poincaré series of the ADE graphs are given by quite complicated formulae.
However, the corresponding T series are all cyclotomic, as follows:

Theorem 16.17. The T series of the ADE graphs are as follows:

(1) For An−1 we have T = ξ(n− 1 : n).
(2) For Dn+1 we have T = ξ(n− 1+ : n+).
(3) For Ã2n we have T = ξ′(n+ : n).
(4) For D̃n+2 we have T = ξ′′(n+ 1+ : n).
(5) For E6 we have T = ξ(8 : 3, 6+).
(6) For E7 we have T = ξ(12 : 4, 9+).
(7) For E8 we have T = ξ(5+, 9+ : 15+).
(8) For Ẽ6 we have T = ξ(6+ : 3, 4).
(9) For Ẽ7 we have T = ξ(9+ : 4, 6).

(10) For Ẽ8 we have T = ξ(15+ : 6, 10).

Proof. These formulae were obtained in [12], by counting loops, then by making the
change of variables z−1/2 = q1/2+q−1/2, and factorizing the resulting series. An alternative
proof for these formulae can be obtained by using planar algebra methods. �

Our purpose now will be that of converting the above technical results, regarding the
T series, into some final results, regarding the corresponding circular measures ε. For this
purpose, we will use the conversion formula in Theorem 16.13.

In order to formulate our results, we will need some more theory. First, we have:

Definition 16.18. A cyclotomic measure is a probability measure ε on the unit circle,
having the following properties:

(1) ε is supported by the 2n-roots of unity, for some n ∈ N.
(2) ε has equal density at q, q−1,−q,−q−1.

It follows from Theorem 16.17 that the circular measures of the finite ADE graphs are
supported by certain roots of unity, hence are cyclotomic. We will be back to this.

At the general level now, let us introduce as well the following notion:

Definition 16.19. The T series of a cyclotomic measure ε is given by:

1 + T (q)(1− q) = 2

∫
1

1− qu2
dε(u)

Observe that this formula is nothing but the one in Theorem 16.13, written now in
the other sense. In other words, if the cyclotomic measure ε happens to be the circular
measure of a rooted bipartite graph, then the T series as defined above coincides with the
T series as defined before. This is useful for explicit computations.
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We are now ready to discuss the circular measures of the various ADE graphs. The
idea is that these measures are all cyclotomic, of level ≤ 3, and can be expressed in terms
of the basic polynomial densities of degree ≤ 6, namely:

α = Re(1− q2)

β = Re(1− q4)

γ = Re(1− q6)

To be more precise, we have the following result, with α, β, γ being as above, with dn
being the uniform measure on the 2n-th roots of unity, and with d′n = 2d2n − dn being
the uniform measure on the odd 4n-roots of unity:

Theorem 16.20. The circular measures of the ADE graphs are given by:

(1) An−1 → αn.
(2) Ã2n → dn.
(3) Dn+1 → α′n.
(4) D̃n+2 → (dn + d′1)/2.
(5) E6 → α12 + (d12 − d6 − d4 + d3)/2.
(6) E7 → β′9 + (d′1 − d′3)/2.
(7) E8 → α′15 + γ′15 − (d′5 + d′3)/2.
(8) Ẽn+3 → (dn + d3 + d2 − d1)/2.

Proof. This follows from the T series formulae in Theorem 16.17, via some routine
manipulations, based on the general conversion formulae given above. �

It is possible to further build along the above lines, with a combinatorial refinement
of the formulae in Theorem 16.20, making appear a certain connection with the Deligne
work on the exceptional series of Lie groups, which is not understood yet.

16c. Measure blowup

All the above, which was quite nice, was about index N ∈ [1, 4], where the Jones
annular theory result from [48] does not apply. In higher index now, N ∈ (4,∞), where
the Jones result does apply, the precise correct “blowup” manipulation on the spectral
measure is not known yet. The known results here are as follows:

(1) One one hand, there is as a computation for some basic Hadamard subfactors,
with nice blowup, on a certain noncommutative manifold [10].

(2) On the other hand, there are many computations by Evans-Pugh, with quite
technical blowup results, on some suitable real algebraic manifolds [33].

We will discuss in what follows (1), and to be more precise the computation of the
spectral measure, and then the blowup problem, for the subfactors coming from the
deformed Fourier matrices. Let us start with the following definition:
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Definition 16.21. Given two finite abelian groups G,H, we consider the correspond-
ing deformed Fourier matrix, given by the formula

(FG ⊗Q FH)ia,jb = Qib(FG)ij(FH)ab

and we factorize the associated representation πQ of the algebra C(S+
G×H),

C(S+
G×H)

πQ //

$$

MG×H(C)

C(GQ)

π

::

with C(GQ) being the Hopf image of this representation πQ.

Explicitely computing the above quantum permutation group GQ ⊂ S+
G×H , as function

of the parameter matrix Q ∈ MG×H(T), will be our main purpose, in what follows. In
order to do so, we first have the following elementary result:

Proposition 16.22. We have a factorization as follows,

C(S+
G×H)

πQ //

%%

MG×H(C)

C(H o∗ G)

π

99

given on the standard generators by the formulae

U
(i)
ab =

∑
j

Wia,jb , Vij =
∑
a

Wia,jb

independently of b, where W is the magic matrix producing πQ.

Proof. With K = FG, L = FH and M = |G|, N = |H|, the formula of the magic
matrix W ∈MG×H(MG×H(C)) associated to H = K ⊗Q L is as follows:

(Wia,jb)kc,ld =
1

MN
· QicQjd

QidQjc

· KikKjl

KilKjk

· LacLbd
LadLbc

=
1

MN
· QicQjd

QidQjc

·Ki−j,k−lLa−b,c−d
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Our claim now is that the representation πQ constructed in Definition 16.21 can be
factorized in three steps, up to the factorization in the statement, as follows:

C(S+
G×H)

πQ //

��

MG×H(C)

C(S+
H o∗ S

+
G) //

55

C(S+
H o∗ G) //

;;

C(H o∗ G)

OO

Indeed, the construction of the map on the left is standard. Regarding the second
factorization, this comes from the fact that since the elements Vij depend on i − j, they
satisfy the defining relations for the quotient algebra C(S+

G)→ C(G). Finally, regarding
the third factorization, observe that Wia,jb depends only on i, j and on a−b. By summing

over j we obtain that the elements U
(i)
ab depend only on a− b, and we are done. �

We have now all needed ingredients for refining Proposition 16.22, as follows:

Proposition 16.23. We have a factorization as follows,

C(S+
G×H)

πQ //

&&

MG×H(C)

C∗(ΓG,H) o C(G)

ρ

88

where the group on the bottom is given by:

ΓG,H = H∗G
/〈

[c
(i1)
1 . . . c(is)

s , d
(j1)
1 . . . d(js)

s ] = 1
∣∣∣∑

r

cr =
∑
r

dr = 0

〉
Proof. Assume that we have a representation, as follows:

π : C∗(Γ) o C(G)→ML(C)

Let Λ be a G-stable normal subgroup of Γ, so that G acts on Γ/Λ, and we can form
the product C∗(Γ/Λ) o C(G), and assume that π is trivial on Λ. Then π factorizes as:

C∗(Γ) o C(G)
π //

''

ML(C)

C∗(Γ/Λ) o C(G)

ρ

99

With Γ = H∗G, this gives the result. �
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We have now all the needed ingredients for proving a main result, as follows:

Theorem 16.24. When Q is generic, the minimal factorization for πQ is

C(S+
G×H)

πQ //

&&

MG×H(C)

C∗(ΓG,H) o C(G)

π

88

where on the bottom
ΓG,H ' Z(|G|−1)(|H|−1) oH

is the discrete group constructed above.

Proof. Consider the factorization in Proposition 16.23, which is as follows, where L
denotes the Hopf image of πQ:

θ : C∗(ΓG,H) o C(G)→ L

To be more precise, this morphism produces the following commutative diagram:

C(S+
G×H)

πQ //

''

##

MG×H(C)

L

77

C∗(ΓG,H) o C(G)

θ

OO
π

BB

The first observation is that the injectivity assumption on C(G) holds by construction,
and that for f ∈ C(G), the matrix π(f) is “block scalar”. Now for r ∈ ΓG,H with
θ(r ⊗ 1) = θ(1 ⊗ f) for some f ∈ C(G), we see, using the commutative diagram, that
π(r ⊗ 1) is block scalar. Thus, modulo some standard algebra, we are done. �

Summarizing, we have computed the quantum permutation groups associated to the
Diţă deformations of the tensor products of Fourier matrices, in the case where the de-
formation matrix Q is generic. For some further computations, in the case where the
deformation matrix Q is no longer generic, we refer to the follow-ups of [10].

Let us compute now the Kesten measure µ = law(χ), in the case where the deformation
matrix is generic, as before. Our results here will be a combinatorial moment formula, a
geometric interpretation of it, and an asymptotic result. We first have:
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Theorem 16.25. We have the moment formula∫
χp =

1

|G| · |H|
#

{
i1, . . . , ip ∈ G
d1, . . . , dp ∈ H

∣∣∣ [(i1, d1), (i2, d2), . . . , (ip, dp)]
= [(i1, dp), (i2, d1), . . . , (ip, dp−1)]

}
where the sets between square brackets are by definition sets with repetition.

Proof. According to the various formulae above, the factorization found in Theorem
16.24 is, at the level of standard generators, as follows:

C(S+
G×H) → C∗(ΓG,H)⊗ C(G) → MG×H(C)

uia,jb → 1
|H|
∑

c Fb−a,cc
(i) ⊗ vij → Wia,jb

Thus, the main character of the quantum permutation group that we found in Theorem
16.24 is given by the following formula:

χ =
1

|H|
∑
iac

c(i) ⊗ vii

=
∑
ic

c(i) ⊗ vii

=

(∑
ic

c(i)

)
⊗ δ1

Now since the Haar functional of C∗(Γ) o C(H) is the tensor product of the Haar
functionals of C∗(Γ), C(H), this gives the following formula, valid for any p ≥ 1:∫

χp =
1

|G|

∫
Γ̂G,H

(∑
ic

c(i)

)p

Consider the elements Si =
∑

c c
(i). With standard notations, we have:

Si =
∑
c

(bi0 − bic, c)

Now observe that these elements multiply as follows:

Si1 . . . Sip =
∑
c1...cp

 bi10 − bi1c1 + bi2c1 − bi2,c1+c2

+bi3,c1+c2 − bi3,c1+c2+c3 + . . . . . . , c1 + . . .+ cp
. . . . . .+ bip,c1+...+cp−1 − bip,c1+...+cp


In terms of the new indices dr = c1 + . . .+ cr, this formula becomes:

Si1 . . . Sip =
∑
d1...dp

bi10 − bi1d1 + bi2d1 − bi2d2
+bi3d2 − bi3d3 + . . . . . . , dp
. . . . . .+ bipdp−1 − bipdp


Now by integrating, we must have dp = 0 on one hand, and on the other hand:

[(i1, 0), (i2, d1), . . . , (ip, dp−1)] = [(i1, d1), (i2, d2), . . . , (ip, dp)]
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Equivalently, we must have dp = 0 on one hand, and on the other hand:

[(i1, dp), (i2, d1), . . . , (ip, dp−1)] = [(i1, d1), (i2, d2), . . . , (ip, dp)]

Thus, by translation invariance with respect to dp, we obtain:∫
Γ̂G,H

Si1 . . . Sip =
1

|H|
#

{
d1, . . . , dp ∈ H

∣∣∣ [(i1, d1), (i2, d2), . . . , (ip, dp)]
= [(i1, dp), (i2, d1), . . . , (ip, dp−1)]

}
It follows that we have the following moment formula:∫

Γ̂G,H

(∑
i

Si

)p

=
1

|H|
#

{
i1, . . . , ip ∈ G
d1, . . . , dp ∈ H

∣∣∣ [(i1, d1), (i2, d2), . . . , (ip, dp)]
= [(i1, dp), (i2, d1), . . . , (ip, dp−1)]

}
Now by dividing by |G|, we obtain the formula in the statement. �

The formula in Theorem 16.25 can be further interpreted as follows:

Theorem 16.26. With M = |G|, N = |H| we have the formula

law(χ) =

(
1− 1

N

)
δ0 +

1

N
law(A)

where the matrix

A ∈ C(TMN ,MM(C))

is given by A(q) = Gram matrix of the rows of q.

Proof. According to Theorem 16.25, we have the following formula:∫
χp =

1

MN

∑
i1...ip

∑
d1...dp

δ[i1d1,...,ipdp],[i1dp,...,ipdp−1]

=
1

MN

∫
TMN

∑
i1...ip

∑
d1...dp

qi1d1 . . . qipdp
qi1dp . . . qipdp−1

dq

=
1

MN

∫
TMN

∑
i1...ip

(∑
d1

qi1d1
qi2d1

)(∑
d2

qi2d2
qi3d2

)
. . .

∑
dp

qipdp
qi1dp

 dq

Consider now the Gram matrix in the statement, namely:

A(q)ij =< Ri, Rj >

Here R1, . . . , RM are the rows of the following matrix:

q ∈ TMN 'MM×N(T)
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We have then the following computation:∫
χp =

1

MN

∫
TMN

< Ri1 , Ri2 >< Ri2 , Ri3 > . . . < Rip , Ri1 >

=
1

MN

∫
TMN

A(q)i1i2A(q)i2i3 . . . A(q)ipi1

=
1

MN

∫
TMN

Tr(A(q)p)dq

=
1

N

∫
TMN

tr(A(q)p)dq

But this gives the formula in the statement, and we are done. �

In general, the moments of the Gram matrix A are given by a quite complicated
formula, and we cannot expect to have a refinement of Theorem 16.26, with A replaced
by a plain, non-matricial random variable, say over a compact abelian group.

However, this kind of simplification does appear at M = 2, and since this phenomenon
is quite interesting, we will explain this now. We first have:

Proposition 16.27. For F2 ⊗Q FH , with Q ∈M2×N(T) generic, we have

N

∫ ( χ
N

)p
=

∫
TN

∑
k≥0

(
p

2k

) ∣∣∣∣a1 + . . .+ aN
N

∣∣∣∣2k da
where the integral on the right is with respect to the uniform measure on TN .

Proof. In order to prove the result, consider the following quantity, which appeared
in the proof of Theorem 16.26:

Φ(q) =
∑
i1...ip

∑
d1...dp

qi1d1 . . . qipdp
qi1dp . . . qipdp−1

We can “half-dephase” the matrix q ∈M2×N(T) if we want to, as follows:

q =

(
1 . . . 1
a1 . . . aN

)
Let us compute now the above quantity Φ(q), in terms of the numbers a1, . . . , aN . Our

claim is that we have the following formula:

Φ(q) = 2
∑
k≥0

Np−2k

(
p

2k

) ∣∣∣∣∣∑
i

ai

∣∣∣∣∣
2k

Indeed, the idea is that:

(1) The 2Nk contribution will come from i = (1 . . . 1) and i = (2 . . . 2).
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(2) Then we will have a p(p−1)Nk−2|
∑

i ai|2 contribution coming from indices of type
i = (2 . . . 21 . . . 1), up to cyclic permutations.

(3) Then we will have a 2
(
p
4

)
Np−4|

∑
i ai|4 contribution coming from indices of type

i = (2 . . . 21 . . . 12 . . . 21 . . . 1).

(4) And so on.

In practice now, in order to prove our claim, in order to find the Np−2k|
∑

i ai|2k
contribution, we have to count the circular configurations consisting of p numbers 1, 2,
such that the 1 values are arranged into k non-empty intervals, and the 2 values are
arranged into k non-empty intervals as well. Now by looking at the endpoints of these 2k
intervals, we have 2

(
p
2k

)
choices, and this gives the above formula.

Now by integrating, this gives the formula in the statement. �

Observe now that the integrals in Proposition 16.27 can be computed as follows:∫
TN
|a1 + . . .+ aN |2kda =

∫
TN

∑
i1...ik

∑
j1...jk

ai1 . . . aik
aj1 . . . ajk

da

= #
{
i1 . . . ik, j1 . . . jk

∣∣∣[i1, . . . , ik] = [j1, . . . , jk]
}

=
∑

k=
∑
ri

(
k

r1, . . . , rN

)2

We obtain in this way the following “blowup” result, for our measure:

Proposition 16.28. For F2 ⊗Q FH , with Q ∈M2×N(T) generic, we have

µ =

(
1− 1

N

)
δ0 +

1

2N

(
Ψ+
∗ ε+ Ψ−∗ ε

)
where ε is the uniform measure on TN , and where the blowup function is:

Ψ±(a) = N ±

∣∣∣∣∣∑
i

ai

∣∣∣∣∣
Proof. We use the formula found in Proposition 16.27, along with the following

standard identity, coming from the Taylor formula:∑
k≥0

(
p

2k

)
x2k =

(1 + x)p + (1− x)p

2

By using this identity, Proposition 16.27 reformulates as follows:

N

∫ ( χ
N

)p
=

1

2

∫
TN

(
1 +

∣∣∣∣∑i ai
N

∣∣∣∣)p +

(
1−

∣∣∣∣∑i ai
N

∣∣∣∣)p da
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Now by multiplying by Np−1, we obtain the following formula:∫
χk =

1

2N

∫
TN

(
N +

∣∣∣∣∣∑
i

ai

∣∣∣∣∣
)p

+

(
N −

∣∣∣∣∣∑
i

ai

∣∣∣∣∣
)p

da

But this gives the formula in the statement, and we are done. �

We can further improve the above result, by reducing the maps Ψ± appearing there
to a single one, and we are led to the following statement:

Theorem 16.29. For F2 ⊗Q FH , with Q ∈M2×N(T) generic, we have

µ =

(
1− 1

N

)
δ0 +

1

N
Φ∗ε

where ε is the uniform measure on Z2 × TN , and where the blowup map is:

Φ(e, a) = N + e

∣∣∣∣∣∑
i

ai

∣∣∣∣∣
Proof. This is clear indeed from Proposition 16.28. �

As already mentioned, the above results at M = 2 are something quite special. In the
general case, M ∈ N, it is not clear how to construct a nice blowup of the measure.

Asymptotically, things are however quite simple. Let us go back indeed to the general
case, where M,N ∈ N are both arbitrary. The problem that we would like to solve now
is that of finding the good regime, of the following type, where the measure in Theorem
16.25 converges, after some suitable manipulations:

M = f(K) , N = g(K) , K →∞

In order to do so, we have to do some combinatorics. Let NC(p) be the set of
noncrossing partitions of {1, . . . , p}, and for π ∈ P (p) we denote by |π| ∈ {1, . . . , p} the
number of blocks. With these conventions, we have the following result:

Proposition 16.30. With M = αK,N = βK, K →∞ we have:

cp
Kp−1

'
p∑
r=1

#
{
π ∈ NC(p)

∣∣∣|π| = r
}
αr−1βp−r

In particular, with α = β we have:

cp '
1

p+ 1

(
2p

p

)
(αK)p−1
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Proof. We use the combinatorial formula in Theorem 16.25. Our claim is that, with
π = ker(i1, . . . , ip), the corresponding contribution to cp is:

Cπ '

{
α|π|−1βp−|π|Kp−1 if π ∈ NC(p)

O(Kp−2) if π /∈ NC(p)

As a first observation, the number of choices for a multi-index (i1, . . . , ip) ∈ Xp satis-
fying ker i = π is:

M(M − 1) . . . (M − |π|+ 1) 'M |π|

Thus, we have the following estimate:

Cπ 'M |π|−1N−1#
{
d1, . . . , dp ∈ Y

∣∣∣[dα|α ∈ b] = [dα−1|α ∈ b], ∀b ∈ π
}

Consider now the following partition:

σ = ker d

The contribution of σ to the above quantity Cπ is then given by:

∆(π, σ)N(N − 1) . . . (N − |σ|+ 1) ' ∆(π, σ)N |σ|

Here the quantities on the right are as follows:

∆(π, σ) =

{
1 if |b ∩ c| = |(b− 1) ∩ c|,∀b ∈ π,∀c ∈ σ
0 otherwise

We use now the standard fact that for π, σ ∈ P (p) satisfying ∆(π, σ) = 1 we have:

|π|+ |σ| ≤ p+ 1

In addition, the equality case is well-known to happen when π, σ ∈ NC(p) are inverse
to each other, via Kreweras complementation. This shows that for π /∈ NC(p) we have:

Cπ = O(Kp−2)

Also, this shows that for π ∈ NC(p) we have:

Cπ ' M |π|−1N−1Np−|π|−1

= α|π|−1βp−|π|Kp−1

Thus, we have obtained the result. �

We denote by D the dilation operation, given by:

Dr(law(X)) = law(rX)

With this convention, we have the following result:
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Theorem 16.31. With M = αK,N = βK, K →∞ we have:

µ =

(
1− 1

αβK2

)
δ0 +

1

αβK2
D 1

βK
(πα/β)

In particular with α = β we have:

µ =

(
1− 1

α2K2

)
δ0 +

1

α2K2
D 1

αK
(π1)

Proof. At α = β, this follows from Proposition 16.30. In general now, we have:
cp

Kp−1
'

∑
π∈NC(p)

α|π|−1βp−|π|

=
βp

α

∑
π∈NC(p)

(
α

β

)|π|
=

βp

α

∫
xpdπα/β(x)

When α ≥ β, where dπα/β(x) = ϕα/β(x)dx is continuous, we obtain:

cp =
1

αK

∫
(βKx)pϕα/β(x)dx

=
1

αβK2

∫
xpϕα/β

(
x

βK

)
dx

But this gives the formula in the statement. When α ≤ β the computation is similar,
with a Dirac mass as 0 dissapearing and reappearing, and gives the same result. �

We refer to [10] and related papers for more on the above.

16d. Big index

In big index now, the philosophy is that the index of subfactors N ∈ [1,∞) should be
regarded as being the famous N variable from physics, which must be big:

N →∞
More precisely, the idea is that the constructions involving groups, group duals, or

more generally compact quantum groups, producing subfactors of integer index, N ∈ N,
can be used with “uniform objects” as input, and so produce an asymptotic theory.

The problem however is how to axiomatize the uniformity notion which is needed,
in order to have some control on the resulting planar algebra P = (Pk). The answer
here comes from the notion of easiness, that we already met in chapter 8, and its various
technical extensions, which are in fact not currently unified, or even fully axiomatized.
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The main technical questions here are the classification of the easy quantum groups
on one hand, and the axiomatization of the super-quizzy quantum groups on the other
hand. We also have the question of better understanding the relation between easiness,
subfactors, planar algebras, noncommutative geometry and free probability, and we refer
here to [13], [14], [15], [18], [23], [27], [56], [63], [79], [95], [98].

Summarizing, we have many interesting questions, both in small and big index. As
a common ground here, both these questions happen inside the Murray-von Neumann
factor R, although this is conjectural in big index, related to existence questions for outer
actions and matrix models. Thus, as a good problem to finish with, which is from Jones’
original subfactor paper [44], and is due to Connes, we have the question of axiomatizing
the finite index subfactors of the Murray-von Neumann hyperfinite factor R.

As already mentioned on several occasions, this longstanding question is in need of
some new, brave functional analysis input, in relation with the notion of hyperfiniteness,
which is probably of quite difficult type, beyond what the current experts can do.

16e. Exercises

Congratulations for having read this book, and no exercises here. But, as mentioned
above, some good, difficult questions regarding R are waiting for input from you.
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