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This study aims to describe a 6 th -grade student's progress in understanding written proof texts through participating in an individual teaching experiment. The same task was administered to the student twice in an interview setting, before and a year after the teaching experiment. The student was asked to evaluate four arguments aimed to prove a given conjecture. While in the pre-interview, the student accepted all four arguments based on her Naïve Experience; in the post-interview, she rejected empirical arguments and looked for General Procedures (or Abstract Structures) that necessarily apply to the whole set of numbers under investigation. In the post-interview, spontaneous changes occurred in the student's understanding of the given arguments after she constructed her own proof for the same conjecture. Instructional design elements used in the teaching experiment might have facilitated her understanding of the structure of deductive proof texts.

Introduction

Reliance on empirical reasoning for validating mathematical generalizations is a faulty way of thinking pervasive among students [START_REF] Harel | DNR perspective on mathematics curriculum and instruction: Focus on Proving, Part I[END_REF]. Many students, even after learning about secure methods of proving, are reported to retain an empirical proof scheme (Education Committee of the European Mathematical Society, 2011). Current efforts in mathematics education, therefore, aim to help students realize the limitations of empirical arguments and learn about reasoning deductively at the early grade levels [START_REF] Stylianides | Facilitating the transition from empirical arguments to proof[END_REF]. Another deficiency in students' learning about proof is holding a ritual proof scheme, in which the student judges the validity of an argument strictly by its appearance, rather than its underlying structure [START_REF] Harel | DNR perspective on mathematics curriculum and instruction: Focus on Proving, Part I[END_REF]. The same proof can be presented in verbal, pictorial, or symbolic forms [START_REF] Stylianides | Proof and proving in school mathematics[END_REF]. However, it is the logical structure of the argument that determines its validity [START_REF] Miyazaki | Students' understanding of the structure of deductive proof[END_REF]. This suggests, one aspect of learning about proof is to distinguish between the structure and form of the argument. This paper reports on the preliminary findings from an ongoing research study conducted in Turkey. The purpose of the study is to explore the processes by which a 6 th grade student (1) comes to understand deductive structure of mathematical proofs, and (2) develops the skills required to prove basic theorems, by use of an individual teaching experiment methodology. Even though the form of argument representation is an inseparable aspect of the instructional design approaches used in the teaching experiment, the main focus of the study is on helping the student understand deductive structure of mathematical proof. The purpose of the research reported here is to describe the student's progress in understanding written proof texts (within and between the two interviews conducted before and a year after the teaching experiment) by using a research-based model, which allows tracking changes in the students' understanding in terms of argument form and structure. Describing the student's dynamic experiences with proof texts might elucidate the strengths and weaknesses of the instructional design approaches used in the teaching experiment study.

The model: Students' ways of understanding a proof [START_REF] Ahmadpour | Students' ways of understanding a proof[END_REF] put forward a model of students' understanding of a written proof text. The model describes possible states of evolving understanding and the transitions between them. According to the model, students' understanding of a formally acceptable proof may develop into three different end-states: a Formulated Proof, a Procedural Proof, and a Formulaic Proof. If the reader is aware of the underlying deductive structure of a proof, the proof is said to be "read" as a Formulated Proof. If the reader perceives the proof "as a general procedure that can be applied to any number, as a sort of recipe for producing examples, rather than a deductive structure applicable to all numbers" (Ahmadpour et al., 2019, p. 87), the proof is said to be read as a Procedural Proof. And, if the reader considers only its surface-level form while reading a proof, it is said to be read as a Formulaic Proof. According to the model [START_REF] Ahmadpour | Students' ways of understanding a proof[END_REF], processes of learning towards the three end-states follow three different theoretical pathways. They are, respectively, the Path of Structure, Path of Procedure, and Path of Form. Switching between the path-ways is possible due to the potential shifts of attention in one's understanding. In this study, the main focus is on the Path of Structure, which describes the processes through which an individual comes to understand the deductive structure of a proof. In this path, through the transitions of generalization, abstraction, and formalization, the student develops from the state of Naïve Experience (in which existence of confirming examples are thought to validate generalizations) to those of General Procedure, Abstract Structure and Formulated Proof sequentially. The state of Abstract Structure was intended by the teaching experiment study reported here. [START_REF] Ahmadpour | Students' ways of understanding a proof[END_REF] consider understanding as a dynamic process. Accordingly, the model allows description of students' progression over time by linking form and structure, beyond merely marking the states of understanding at fixed points in time. Transitions of how one state of understanding develops into a next one is a major focus of the model. In this study, the pre-interview captures a fixed, consistent state of understanding a 6 th grade student demonstrates before participating in a teaching experiment study. The post-interview captures the dynamic changes in her understanding facilitated by her interaction with the interview task.

Method Context and the participant of the study

In Turkey, students are not explicitly taught the concept of proof at the middle school. The mathematics curriculum (Ministry of National Education [MoNE], 2018) emphasizes students' explaining their reasoning and evaluating others' in the classroom. However, to what extent the abstract structures underlying valid arguments are explicated to the students is questionable, as no detailed prescriptions are provided for teachers. Hence, the 6 th grade student, Beren (pseudonym), participated in this study had no previous interaction with the notion of proof. Beren was approached based on her competence in four operations, her ability to express mathematical ideas, and her willingness to learn mathematics. She volunteered for the study along with her parents' consent.

The teaching experiment

The teaching experiment consisted of four major stages [START_REF] Steffe | Teaching experiment methodology: Underlying principles and essential elements[END_REF]. The first stage aimed to prepare the student about basic number theory concepts (such as modular structure, parity, and divisibility) that would be the objects of conjectures studied throughout the teaching experiment. The second stage challenged the student's extant source of conviction, Naïve Experience, by creating a cognitive conflict through using Monstrous Counterexample Illustration [START_REF] Stylianides | Facilitating the transition from empirical arguments to proof[END_REF]. This stage triggered an intellectual need [START_REF] Harel | DNR perspective on mathematics curriculum and instruction: Focus on Proving, Part I[END_REF] in the student for learning about secure methods of proving. The third stage aimed to satisfy this need by designing tasks for her to understand the deductive structure of mathematical proofs. Then, in the fourth stage, the student was encouraged to use this understanding to practice proving a set of theorems.

The first stage introduced to the student a way of representing modular structure of unknown quantities by using a short story, which later provided her a context for explaining mathematical arguments. In this story, an unknown number of cookies evenly distributed in identical cups with some remainders were used to represent the modular structure of an unknown quantity. Based on the story, the algebraic expression defining odd numbers, 2n+1 (where n is a non-negative integer), was represented as two cups containing the same number of cookies and a single cookie. A variation of the representation was used in the fourth stage, as in Figure 1, for the concept of consecutiveness (i.e., a cup of cookies standing for n items, and another cup and one more cookie representing n+1 items). Another instructional design component, the flow-chart proof format, adapted from [START_REF] Miyazaki | Students' understanding of the structure of deductive proof[END_REF], was introduced to the student in the third stage. The flow-chart proof format was used with the purpose of explicating the structure of deductive arguments. Figure 1 illustrates the flow-chart proof using the specific representation developed in this study. Large circles represent the cups containing an unknown number of cookies, while the small circles represent single cookies. The checkmark between the two leftmost boxes indicates that the two objects shown are related; that is, the cups contain exactly the same number of cookiesstand for the same unknown quantity. In other cases where the two objects are not related (for example in proving that the sum of two odd numbers is an even number) cups of different color or shape are used (invented by the student), and the checkpoints are filled with a cross mark (by the student).

Data collection and analysis

The pre-interview was conducted at the beginning of the teaching experiment study. At the time of the pre-interview, Beren had just completed the 6 th grade. The teaching experiment took 8 weeks. The post-interview was conducted a year after the completion of teaching experiment study. The task shown in Figure 2 was translated into Turkish. Beren was asked to think aloud while reading and making decisions about each of the arguments. Probing questions were used with the purpose of capturing details of her understandings. Pre-and post-interview data were analyzed based on the model of students' ways of understanding a proof [START_REF] Ahmadpour | Students' ways of understanding a proof[END_REF]. At the time of the pre-interview, Beren knew the meaning of algebraic expressions such as "2a+3", and was able to calculate the value of such expressions for specific values of the unknown "a". However, she did not know how to operate on algebraic expressions, which was essential for understanding Argument C. Such syntactical understanding was not among the goals of the teaching experiment and was not part of the instructional design. At the time of the post-interview, however, when Beren completed the 7 th grade, she possessed a greater understanding of the algebraic operations used in Argument C, because students learn these skills at the 7 th grade in Turkey (MoNE, 2018).

Findings

Two remarks are important to highlight. Although the concepts of divisibility are addressed in Turkish middle school mathematics curriculum, the learning objectives are restricted to the use of divisibility rules within arithmetic. Hence, the conjecture examined in this study was novel to Beren at the time of pre-interview. However, this was not the case in the post-interview. Beren was asked to evaluate validity of the exact same conjecture in the last episode of the teaching experiment study, as part of a proof-production assessment. She was able to produce a valid proof of the statement.

Pre-interview

Each of Beren's evaluations in the pre-interview were based on Naïve Experience. For instance, reading Argument A, she reviewed all the calculations and decided that the given examples were correct. After testing the conjecture for two other sets of three consecutive numbers, she stated:

Beren: I think the sentence is correct. I mean this option A is correct. It shows its truth definitely. It has already given examples, has done the division. I don't think there is a problem with option A.

After going through similar procedures of Naïve Experience for Arguments B, C and D, Beren summarized her thoughts about the task:

Beren: I tried each of them [the four arguments] by doing different operations and three consecutive numbers hold.

[…] So, there is no reason for this, I find it by trying with numbers, again.

Post-interview

In the post-interview, Beren remembered the task from the last year and sequentially explained the four arguments. Unlike in the pre-interview, she did not accept Argument A as a proof:

Beren: Now, when I read, I do not directly understand because, now, it says 'The rest of the numbers [are the same]'. How can I know without trying it? Who has proven this and according to what? […]. I'm moving on to the other.

[…] This does not show for sure.

Continuing with Argument B, Beren thought that it could be a proof because it was not based on specific examples. However, she could not make sense of the representations used and hence the underlying ideas communicated. She could not articulate a consistent meaning out of the realistic situations she tried to make up, as she did not consider the relationship between the sizes of the three strips. Although she could not understand Argument B, her preliminary decision was not to eliminate this option. Beren seemed to think that Argument B might be arguing for all consecutive numbers.

Beren: I said it could be a proof because it does not give us a certain number here.

No matter how much you divide, it says, the three [strips]. But, still I want to look at the others. According to that… You know, I want to decide whether this is a proof or not and tell its reason based on that.

In Argument C again, Beren could not make sense of the given algebraic expression. Her focus was on the form rather than the structure. (Note that in Argument C, instead of "n", "a" was used as a variable, for the student's familiarity.)

Beren: Why it says this three? [points to '3a' in 'a + (a+1) + (a+2) = 3a + 3'] … There are three of a's, I see. […] Well, but it again gives us numbers here. It says one, two, … I mean. I think, I cannot prove with this.

Then, an instant shift of attention occurred in her understanding, marking a transition towards either a General Procedure or an Abstract Structure in her understanding. She associated the "+1" in the expression "(a+1)" with her previous understanding of how two consecutive numbers were related.

Beren: … like in the logic of a chart [the flow-chart proof]. Well, we were here [points to '(a+1)'] showing [this] 1 more, you know. In here, as well, I wonder, since it says a plus one, it is the extra… I mean we can transfer this into a schema. I, for this reason, think that this could be [a proof.] In fact, I think this shows certainly, as well. I think this has the logic of 'whatever number you try, it will work'.

Beren's comments about arguments B and C reveal that she was looking for General Procedures (or Abstract Structures) that would apply to all triples of consecutive numbers. She summarized her perception of the first three arguments and then continued with reading Argument D.

Beren: I know that this (Argument A) is not [a] 'for sure ' [argument], this (Argument B) could be, I said. But I think that this (Argument C) will be for sure.

At her first glance, Beren judged Argument D by the sentence "The rest of the numbers are the same".

Beren: I think rather than the operations, what is written here is important. Because 'The rest of the numbers are the same'. We want to proceed by… that shows for everything, any number, here, not one number ten, eleven, twelve.

[…] I think I would think a lot if it hadn't said that sentence. Researcher:

Well, let's pretend that this sentence is not there. Beren:

Still I don't think it is [a proof] […] It's not proven for every consecutive number.

[…] Here you have to try and find it.

The researcher asked Beren how she would "try" in order to see if she would make use of the structure "3 times the smallest number plus 3" illustrated in Argument D, in creating other examples. But, this unintentionally prompted Beren to construct her own proof for the statement, given in Figure 3 (left). What if that ten is replaced by another number? Beren:

Again, it will be the same thing, but it's saying it out of ten seems nonsense to me. For example, if it says x there, would be okay. If it says x, it would have proved for sure. It would have said 'whatever number came there... if any number comes in, it holds.' But I don't think this is okay, it's being ten.

Then, she produced the algebraic expression in Figure 3 (right). Her explanation of this expression suggests that she perceived 3x+3 as an Abstract Structure subject to the distributive law for division.

Beren: Three x plus three. Three x is already divisible by three. We understand that, it is […] x. When I distribute three also one by one, it comes out one x… x plus one. I can prove it this way.

She also considered Argument D to well emphasize Abstract Structure of three consecutive numbers:

Beren:

[Argument D] shows for ten, eleven, twelve, but it says ten plus one and plus two. It even proves more [compares to Argument A] that they are consecutive.

The above two scripts show that Beren understood the Abstract Structure behind Argument D. But, she did not accept this argument as a Formulated Proof, because these structures were not expressed in a formally acceptable way to her.

Beren In Argument B, she matched the three strips with the expressions x, x+1 and x+2. She explained the underlying deductive structure of the two arguments and read them as Formulated Proofs.

Discussion

Findings from the pre-interview revealed Beren's reliance on Naïve Experience, which was an expected situation for a 6 th grade student who had not received any instruction on proof. On the other hand, analysis of the states and transitions observed in her understanding of the given arguments during the post-interview highlighted important aspects of the instructional design elements used in the teaching experiment study. First, the student expressed a preference for non-empirical arguments. Unlike many others reported in the literature, who simultaneously possessed deductive and empirical proof schemes after learning about proof (Education Committee of the European Mathematical Society, 2011), she did not retain the empirical proof scheme. This suggests, the cognitive conflict approach used in the teaching experiment [START_REF] Stylianides | Facilitating the transition from empirical arguments to proof[END_REF] helped Beren achieve the intended discrimination between valid and invalid modes of reasoning.

Second, in the post-interview, Beren was not able to make sense of the Arguments B and C in her first attempts. She was not familiar with the forms of representation used. After constructing her own flow-chart proof for the given statement, Beren first formalized its Abstract Structure through studying Argument D (created her Formulated Proof by using a variable "x") and then, connected this Abstract Structure with the forms of representation used in Arguments B and C. Her understanding of the Arguments B and C reached to the level of Formulated Proof, which would be the ultimate goal of proof comprehension for a mathematics learner. We hypothesize that the flow-chart proofs used in the teaching experiment study helped Beren focus on Abstract Structures behind deductive arguments. For instance, divisibility of 3x+3 by three was visualized in the last action in Beren's proof, which was developed previously from the context of sharing 3 cups of and 3 single cookies among three people. Furthermore, the cups and cookies representation, evolved into the general notion of a collection and some single of the identical items, helped Beren to represent Abstract Structure of the property shared by every set of three consecutive numbers.

Beren demonstrated successful use of the Abstract Structures underlying her flow-chart proof (learned in the teaching experiment) in a novel task. This might be an indication of the strong aspects of the instructional design in supporting young students' learning of the structure of deductive proof. Also, note that Beren did not restrict proofs to necessarily have a flow-chart format or use cups and cookies representation. Examination of the aspect(s) of the teaching experiment (if any) that might have facilitated Beren's discrimination between argument form and structure is an issue of further investigation. Results may provide insights into the ways of preventing the development of a ritual proof scheme (one that is observed frequently among students) while teaching proof. It is also important to note how the administration of the interview task itself, after the teaching experiment, elevated the student's bringing together the structure (from the teaching experiment) and form (supported by the task) to understand unfamiliar proof texts. Nature of Beren's activity in the postinterview might offer directions in the design of tasks for enhancing student learning about proof.
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 1 Figure 1: A flow-chart proof of "The sum of two consecutive numbers is an odd number."
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 2 Figure 2: The task (Ahmadpour et al., 2019, p.89)
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 3 Figure 3: Beren's flow-chart proof for the statement "The sum of any three consecutive natural numbers is divisible by 3" (left) and her formalized expression for Argument D (right) While drawing the flow-chart, she explained her ideas in every step. Then she connected the Abstract Structure underlying this proof to that of Argument D. Beren: Well, three consecutive numbers. In fact, it [her flow-chart proof] is [the same as] the logic in here [Argument D]. But, in here [in Argument D] it evaluates over ten. Researcher:What if that ten is replaced by another number? Beren:Again, it will be the same thing, but it's saying it out of ten seems nonsense to me. For example, if it says x there, would be okay. If it says x, it would have proved for sure. It would have said 'whatever number came there... if any number comes in, it holds.' But I don't think this is okay, it's being ten.

  , has just formalized the Abstract Structure of her own flow-chart proof (through her independent activity). Also note that an equivalent of the expression was given in Argument C, out of which she was not able to perceive the same structure before. This suggests thinking with the flowchart proof format helped Beren focus on the Abstract Structure behind Argument D. She then transferred the same understanding of this structure to Arguments C and B. Argument C]. Because I myself expressed it here [in Argument D] by x. Here it uses not x, but a. Again, an algebraic expression it uses, I mean. It is not known what this number is, it could be 1, it could be ten or it could be a hundred. That is why, to me, this is a sufficient proof.

	:	I can prove it this way [by using x]. But when I look at here [Argument D]
		ten, eleven, twelve, since they are consecutive, are summed, divided by
		three. But, is this same thing valid for two, three, four?
	Researcher:	Let's start with such a number [instead of ten] that… what is done here is
		not correct. Is that possible?
	Beren:	I think, it is not [possible]. Because when I do the same by x, I could show
		it. It holds anyway.
	Note that Beren, when she created the algebraic expression "x + (x+1) + (x+2) = (x.3) +3 = 3x + 3"
	for Argument DBeren:	I accept [