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Student teachers’ proofs and refutations on cyclic quadrilaterals 

Magdalini Lada1 and Tore Alexander Forbregd2 
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We follow and analyze three teacher students’ behavior while they engage in a task with the goal of 

the reinvention of the characterization of cyclic quadrilaterals in terms of their opposite angles. We 

show how, during the exploration of the problem, the teacher students go through cycles of proofs 

and refutations, in the sense of Lakatos, and we discuss the role of the teacher educator in supporting 

and conceptualizing these processes. Our results may have the potential to be used in designing 

mathematical activities aiming at scaffolding teacher students´ knowledge for teaching proof. 
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Introduction. 

Lakatos’ Proofs and refutations (1976) marks the turn that Philosophy of Mathematics took towards 

fallibilism, the view that mathematical knowledge is corrigible and advances through a process of 

criticism and revision (Van Bendegem, 2018). Lakatos used the history of Euler’s formula for 

polyhedra and its proofs as a basis for describing the road to mathematical discovery and at the same 

time presenting different views, over time, on what a satisfactory result and a valid proof consist of.  

Besides its philosophical importance, Lakatos’ work is also significant from a pedagogical point of 

view since it provides us with a window to original mathematicians’ work presented in an educational 

setting. The idea of using Lakatosian notions in designing, implementing, and analyzing authentic 

mathematical activities is not new (Lampert, 1990). Several researchers have used Lakatos’ ideas to 

develop frameworks that can be used for analyzing students’ behavior in proving activities in various 

levels of mathematics education from primary (Komatsu, 2010), to secondary (Komatsu, 2012) and 

into undergraduate level (Larsen & Zandieh, 2008). Other studies have focused on designing 

activities that foster methods of proofs and refutations (Komatsu & Jones, 2017), or on teachers’ 

mathematical knowledge for teaching Lakatosian proof (Deslis et al., 2021). Our study adds to this 

growing body of research-based literature first by providing some more examples of Lakatosian 

notions and processes, this time from teacher education, and second, by suggesting elements of 

instructional design aiming to build teachers students’ mathematical knowledge for teaching 

Lakatosian proof. For the purpose of this article, we consider Lakatosian proof as it is described in 

(Deslis et al., 2021). However, discussed in the last section, authentic Lakatosian proving activities 

need to be further understood and defined. We seek to answer the following questions: 1) In which 

ways do teacher students’ attempts to reinvent a characterization of cyclic quadrilaterals parallel the 

methods of Lakatos’ proofs and refutations? And 2) How can teacher educators design and implement 

tasks that support teacher students’ mathematical knowledge for teaching Lakatosian proof? 

Theoretical background. 

With starting point the naive conjecture “All polyhedra satisfy the formula 𝑉 − 𝐸 + 𝐹 = 2”, where 

𝑉 stands for vertices, E for edges and 𝐹 for faces, and Cauchy’s proof (Lakatos, 1976, p. 7), and after 
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counterexamples are discovered, Lakatos described techniques for improving the conjecture and its 

proof. In this process crucial role is played by the type of counterexamples. Lakatos referred to 

counterexamples refuting the initial naive conjecture as global and to those refuting at least one step 

of the proof as local (ibid., p.11). According to the type of the encountered counterexample, a method 

was suggested that would lead to an improved conjecture or/and proof. We only mention here those 

methods that are needed for analyzing our findings.  

One of the first methods, exception barring, was proposed when the global and local counterexample 

of a picture-frame polyhedron was discovered and was initially described as restricting the domain 

of the conjecture to exclude the counterexample, without reference to the proof (ibid., p. 28). As 

opposed to this, lemma incorporation was suggested as investigating the proof to identify the step 

which is refuted by the counterexample and incorporating it as a condition in the domain of the 

conjecture (ibid., p. 35.) Later in the discussion the exception barring method is generalized to include 

“a whole continuum of exception barring attitudes” (ibid., p. 39), according to how much the proof 

is used to determine the domain of the conjecture, with lemma incorporation being the limiting case. 

Lemma incorporation can also be used in the opposite way to expand the domain of a conjecture that 

has been previously restricted by exception barring. According to Lakatos this is the approach of the 

best exception-barrers and it involves starting with a restricted safe domain, devising a proof, 

examining the proof for imposed conditions that were not used, and generalizing the initial modest 

theorem by incorporating only those conditions that proof relies on (ibid., p. 40).  

Mathematicians’ views on satisfactory results are voiced via Lakatos’ fictional student Omega at a 

point where different proofs, corresponding to different domains had been proposed, like Gergonne’s 

(ibid., p. 63) and Legendre’s (ibid., p. 64) proofs, none of which was including the local but not global 

counterexample of the great stellated dodecahedron (ibid. p. 65). According to Omega, “a proof 

should explain the phenomenon of Eulerianness in its entire range” (ibid., p.67). Omega suggests that 

when encountering a local but not global counterexample, it might be needed to invent a “completely 

different, more embracing, deeper proof” (ibid., p. 62).  

Two opposite paths towards mathematical discovery are discussed in (Lakatos, 1976). The first one, 

which Lakatos calls analysis, involves starting with a naive conjecture, to which one arrives by trial 

and error, and testing it by drawing consequences (ibid., p. 80). This path we learn later, can be 

followed even without a conjecture to start with. One can pretend that “the result is there and device 

an analysis” (ibid., p. 83). The other direction, which Lakatos called synthesis (ibid., p. 81), is what 

we normally call a deductive proof. For this direction too, starting with a conjecture is not necessary. 

One can immediately “device a synthesis […] from a related proposition that is known to be true” 

(ibid., p. 83). In this way, synthesis corresponds to another term introduced by Lakatos, deductive 

guessing, as opposed to naive guessing, and to what Herbst (2004) refers to as building reasoned 

conjectures. As an aid to support students’ deductive guessing, Herbst proposes the generative mode 

of interaction between a student and a diagram which involves, among others, drawing new features 

on the diagram, transforming its shape and size, and changing location or orientation.  



 

 

Method. 

The course and the participants.  

This study was conducted within the context of a course titled Historical and Philosophical Aspects 

of Mathematics aimed at student teachers in their 4th year of a five-year master program for grades 5-

10 in a Norwegian university. Our informants are three of the courses participants and have gotten 

the fictional names Marie, Lars, and Siri. Our data consists of their solutions to a task included in one 

of the course’s mandatory assignments supplemented by semi-structured follow-up interviews. The 

assignment was given after the last teaching session, which had focus on proof and proving. During 

the session, after an introduction to Lakatos’ proofs and refutations were concepts like conjecture, 

proof analysis, global and local counterexample, and their role in proving were presented, the students 

discussed how Lakatos’ ideas could be used in the mathematics classroom and how a teacher can 

support pupils in engaging in Lakatosian proof. Their discussions were based on the papers by 

Komatsu (2012) and Larsen & Zandieh (2008) that the students had read in advance as preparation.  

Task selection.  

The task included in the students’ assignments was meant to function as a starting point for involving 

them in genuine mathematical activity by reinventing a mathematical result. For this purpose, we 

considered the following characteristics that the target result should be: 1) new for teacher students 

but within reach using tools from school mathematics, 2) analogous to previously established result 

known to teacher students, and 3) valid under certain conditions – necessary or/and sufficient. 

The characterization of quadrilaterals in terms of their opposite angles, which can be formulated as 

“A quadrilateral is cyclic if and only if its opposite angles are supplementary”, has all the above 

characteristics. It is not normally included in the school curriculum in Norway, but its proof is based 

on the inscribed angle theorem which is. Also, our students are familiar with the circumcircle of a 

triangle which can serve as the motivation for investigating a similar question for quadrilaterals. 

Nevertheless, we decided to include this as the first part of the task, which was formulated as follows: 

a. Prove that the three perpendicular bisectors on the side of a triangle meet at one point and that 

this point is the center of a circle that goes through the triangle’s vertices. 

b. Investigate if a similar result holds for quadrilaterals. State a conjecture and try to prove it.  

Three students, all having delivered different solutions, were chosen for the follow-up interviews.  

The interviews.  

The three students were interviewed after the end of the course and before the exam. The interviews 

varied from 40 to 50 minutes and took place in a digital environment. The interviewers were the 

authors of the paper where the first author was, in addition, the teacher of the course. With the 

students’ different solutions as a starting point, we intended first to get an insight on how each one 

had arrived at their solution and then try to stimulate them to continue the investigation and reach a 

deeper result. Following Lakatos’ heuristic methods, we aimed to offer, or lead the students to 

discover, counterexamples to their claims or arguments, anticipating that this would lead them to 

modify the proposed claim or argument. The initial goal was to lead the students to formulate and 



 

 

prove the characterization of cyclic quadrilaterals as those that where opposite angles are 

supplementary. This goal soon showed to be too optimistic, so we ended all interviews once a 

necessary condition was conjectured by the students, namely “If a quadrilateral is cyclic, then its 

opposite angles are supplementary”. As a tool to assist in exploring the problem, we used the dynamic 

geometry software Geogebra on a shared screen. In Marie’s interview, the researcher controls the 

software and shares his screen, while in the other two interviews, the students do so. 

Analysis. 

In what follows, the first author is referred to as the teacher, the second as the researcher. The analysis 

is based on and structured over Marie’s interview, but supplementary comments based on data 

coming from the other two students are also included.  

Surrendering.  

Marie presents in her solution a random quadrilateral with two circles drawn, each one going through 

two of the vertices. She concludes that “it will therefore not work to make a circle that goes through 

all vertices at the same time, but one can make a set of circles so that all vertices lie on one of them”.  

                                      

Figure 1: Marie’s multiple circles and Lars’ two examples 

When asked if she had an initial feeling that led to her strategy the student replied that she thought it 

should not work (to have a circumscribed circle for a quadrilateral) since she had never heard of it. 

The drawing she presented was her first move towards dealing with the task and since it confirmed 

her suspicion, she decided to end the investigation following the method of surrender (Lakatos, p. 

14). She seemed to think that this was enough for what the problem was asking: “I got a result and I 

thought, ok, I found it out”.  

Another student, Lars, that had managed to come a bit further in his investigation and had concluded 

that some quadrilaterals are cyclic while others are not, explained in the interview that if he was to 

go any further and try to find out what all cyclic quadrilaterals have in common, this should have 

been explicitly asked for as the next part of the problem. He also felt that his conclusion was enough. 

The two ways of using lemma incorporation.  

In the interview, Marie admitted that she could have worked more with the task, which was the 

starting point for us to trigger her to investigate a bit further. The teacher asked the student if she 

could think of any quadrilateral that could be inscribed in a circle.  

Marie: If I had drawn a quadrilateral with right angles, and maybe equal sides, a square, 
then I would have gotten a center if I am right […] I just see that when the sides are 
equal you will get this diagonal’s cross and you can have the center there.  

Teacher: What is it that makes it work for squares? Can we find more classes?  



 

 

Marie: All rectangles then? Because then you will get that diagonal’s cross […] which is 
equally far [from the vertices] 

Marie retreats to quadrilaterals with right angles and equal sides, which includes only squares, as the 

safe domain of her theorem. She argues that, in this case, the diagonals’ intersection point can be used 

as a center for a circle that goes through all vertices. This argument can, of course, work for any 

quadrilateral having right angles, that is, any rectangle.  It can thus be incorporated as a condition 

expanding the domain of the theorem. Marie manages to do so as soon as the teacher turns the focus 

on the argument. This process parallels what Lakatos (1976) described as a combination of exception 

barring and lemma incorporation.  

Siri, another of our students, used lemma incorporation to restrict the domain of her claim. She had 

overgeneralized from rectangles the property that the perpendicular bisectors of opposite sides 

coincide and stated that “all parallelograms are cyclic” because of this reason. When encountering a 

local and global counterexample offered by the researcher - a random non-rectangular parallelogram 

- she restricted the domain to include this property as a condition ending up with only rectangles as 

the domain of the theorem. 

More local counterexamples and the need of a deeper proof.  

Recognizing that the argument concerning the intersection point of the quadrilateral cannot be used 

to include other classes than rectangles the educators suggest that we look at the problem in another 

way, namely starting with a quadrilateral that lies on a circle. All drawings and their manipulations 

are performed and shared by the researcher as the discussion goes on.  

Researcher: If you start at the opposite end can you draw a quadrilateral that lies on a circle?  
Marie: … (seems confused) 
Teacher: so if you start by drawing a circle 
Marie: then I can set two random…, if you want to have a rectangle then, parallel lines 

anywhere on the circle so that you get four intersection points 

Marie aims at constructing an inscribed rectangle, but her instructions lead to a non-rectangular 

isosceles trapezoid. This is a local counterexample since it refutes her argument but still supports the 

conclusion of her theorem. At first, Marie gets surprised with the outcome and resists in expanding 

the domain of the theorem.  

Researcher: Was this a rectangle now? 
Marie: No, it wasn’t ... (laughs) 
Researcher: What does this tell us? 
Marie: That it is possible to draw a quadrilateral in a circle. But it doesn’t say anything 

about the center, the intersection point of the perpendicular bisectors. 

The researcher draws the perpendicular bisectors to confirm that the intersection point coincides with 

the circle’s center. This seems to confuse her even more. 

Marie: Now I am so confused that I don’t know anymore 
Researcher: What did you get confused about? 
Marie: About what I have done in the problem 

The researcher explains the steps that led us from starting with a circle to drawing an inscribed 

isosceles trapezoid and eventually Marie accepts that the domain should be expanded. 



 

 

Marie: So, while it works for trapezoids and rectangles and squares, it is just for my odd 
quadrilateral that it doesn’t work…that it doesn’t have any parallel sides. 

Here, there is a missed opportunity of offering or leading the student to discover another 

counterexample. Maria has not noticed that the trapezoids need to be isosceles. This could have led 

to focusing on investigating earlier and more naturally the properties of the angles of cyclic 

quadrilaterals. Instead, the researcher chooses to focus on the parallel sides’ condition imposed by 

the student and draws a random inscribed quadrilateral with no pair of parallel sides to offer as a 

counterexample. The student gets surprised once more.  

Marie: It works here too  
Researcher: You seem surprised 
Marie: I am confused 
Researcher: Why are you so surprised? If you think what we have done until now… 
Marie: Here it makes sense because we have kept us in a circle, but when I tried to do it 

the opposite way it didn’t work, or at least I couldn’t make it work 

Assuming that the conclusion is true for a random quadrilateral – that is, the quadrilateral is cyclic - 

and drawing consequences was particularly challenging for all three students that we interviewed. 

This heuristic method, which parallels what Lakatos called analysis (Lakatos, 1976, p. 80), can, in 

our case lead to discovering the necessary and sufficient conditions so that a quadrilateral is cyclic, 

and synthesizing the proof arriving in a final theorem. However, the student here does not seem to be 

aware of this possibility. Similar reactions were observed with the other two students we interviewed. 

The teacher educator, at this point, paused and explained how taking this direction can help us explore 

the properties that all cyclic quadrilaterals have in common.  

Arriving to a conjecture by generative interaction with diagrams.  

The researcher now sets it as a goal to describe all quadrilaterals inscribed in the same circle and asks 

the student how she would go on towards this goal.  

Marie: it was easy to start with the squares because all vertices are equally far from a 
center…but in such rare quadrilaterals it is hard to find a center.  

Because of symmetry, it is easy to visualize the center for the case of squares and rectangles. The 

student knows that the diagonals’ intersection point is equally far from the vertices of a square and 

reasoned from this to get her initial conjecture/theorem. Even with the diagram showing a “rare” 

quadrilateral inscribed in a circle the student hesitates to take further action. 

At this point the researcher interacts with the diagrams to lead the student to arrive at a new 

conjecture. In what follows, we describe some of the actions the researcher took. 

 

Figure 2: Generative mode of interaction 

The researcher removes both the circle and circle’s center from the drawing to move the focus away 

from the circle’s center. To show to the student that the argument must be about something different 

from the diagonals the researcher draws the diagonals and the perpendicular bisectors and shows that 



 

 

it is only in the case of the rectangles that the intersection points of those coincide. To turn the focus 

to the angles, he marks and measures a pair of opposite angles, moves around the vertices, and lets 

the student observe what happens to the angles and make a hypothesis. After discussing what changes 

and what remains the same the student manages to arrive at the conjecture: “if a quadrilateral is cyclic 

their opposite angles are supplementary”, which ended our investigation.  

Although the mode of interaction with the diagram is generative, the way the student reaches the 

conclusion is rather empirical. The conjecture lays on observations, while the reason it works is still 

hidden and, to get closer to what Lakatos would call deductive guessing, one needs to make it visible.  

Discussion and conclusions. 

Several methods Lakatos (1976) described were observed during our students’ explorations. A 

difference between our task and the problem the fictional students of Lakatos were investigating is 

that while for the Euler formula the number of supportive examples, together with what was then 

thought to be a polyhedron, made it natural to consider all polyhedra as the domain of the naive 

conjecture, in the case of quadrilaterals one quickly realizes that most of them are not cyclic. This 

resulted in our students restricting the domains of their theorems too much. Then, counterexamples 

like the isosceles trapezoid that Marie came upon or a random quadrilateral inscribed in a given circle, 

although local in the sense that they refuted her main argument, cannot be considered as non-global 

since they were not included in the domain of the conjecture/theorem. For the same reason, the 

method of analysis as exemplified in our investigation which lacks a broad naive conjecture, would 

be starting by assuming that a quadrilateral is cyclic and drawing consequences. Another deviation is 

that in Lakatos’ classroom the counterexamples stem from the definition of a polyhedron and how 

this changed over time while theorizing. In our activity, this interplay between defining and proving, 

is absent. Although the criteria under which our task was designed were adequate for capturing some 

Lakatosian processes, authentic Lakatosian activities should also invite for exploring the role of 

definitions in proving and, in the opposite way, the role of proving in concept formation.  

Our students’ solutions showed that they stopped their investigation before reaching a mathematically 

satisfactory result. From the interviews, it became clear that presenting a partial solution like Marie’s 

and Lars’, as shown in figure 2, was experienced by the students as satisfactory enough for the 

purpose of the problem. Besides the students’ reluctance to further investigate the problem, it was 

also revealed that they might lack the techniques for doing so. This became apparent when we 

suggested working with the problem in the opposite way, starting with a circle and drawing an 

inscribed quadrilateral to determine necessary conditions for a random quadrilateral to be cyclic. The 

students seemed confused and could not anticipate what this would lead to. These findings, call for 

negotiating the didactical contract and offering more tasks that demand taking on responsibility in 

mathematical discovery in general and in exploring necessary conditions in particular. The same 

conclusion regarding instructional norms is also supported by analyzing how students interacted with 

the diagrams. The dynamic software environment that we used during the interviews, and which the 

students also used spontaneously when working independently with the problem, proved to be a 

useful tool for finding examples, counterexamples, and possible arguments. But just offering this as 

a tool was not enough to build reasoned conjectures. As Herbst (2004) also concluded, norms have 



 

 

to be breeched in engaging students in generative interaction. A reformulation of the task may also 

be needed to assist students in deductive guessing. Last, conducting the study in a physical classroom 

environment may enable the students to interact more independently with the diagrams.  

Our analysis gave insight into our students’ mathematical knowledge for teaching Lakatosian proof, 

particularly the component Deslis et al. (2021) called knowledge of content.  It revealed that the 

students could not always use examples in ways that would lead them to a satisfactory mathematical 

result, without further guidance. This, in turn, might translate into students’ low competency in 

guiding pupils in using examples in productive ways, which is associated with the students’ 

knowledge of teaching (Deslis et al., 2021). These observations suggest that besides exposing 

students to tasks that would naturally engage them in Lakatosian proof, instruction that aims to build 

their mathematical knowledge for teaching should also include discussions centered on specific 

Lakatosian techniques that can be followed after a supportive/counter example has been encountered.  
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