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This study seeks to capitalize on the pedagogical potential of visual proof documents called Proof Without Words (PWWs) to advance proof learning in secondary mathematics. The data is drawn from design-based research (DBR), in which a PWW document was iteratively redesigned to lead students to generate more detailed and rigorous proof attempts. The gap-filling theoretical framework for proofs in mathematics education was used to evaluate students' written proof products when working on initial vs. redesigned PWW versions. The results reveal a substantial positive effect of the PWW redesigned version on the quality of students' products. They suggest the potentiality of five proposed PWW design principles in promoting secondary students' proficiency in proof-related activities.

Introduction

Mathematical proofs are fundamental in mathematics as they verify the truth of mathematical statements. Nevertheless, the importance of proofs goes beyond this function as they carry mathematical knowledge, ideas, and methods to propel further scientific developments [START_REF] Rav | Why do we prove theorems?[END_REF]. Notwithstanding the importance of proofs in mathematics, we witness a decline in proof-related activities in schools [START_REF] Kotelawala | The status of proving among US secondary mathematics teachers[END_REF], partly due to the difficulties students at the secondary level encounter in proof activities (e.g., [START_REF] Miyazaki | Students' understanding of the structure of deductive proof[END_REF]. This abdication of proofs at the secondary level widens the gap between school and university mathematics and may further reduce students' chances of pursuing and persisting in postsecondary STEM studies [START_REF] Clark | Understanding secondary-tertiary transition in mathematics[END_REF]. It is then imperative to develop new approaches to foster students' interest and success in learning mathematical proofs.

The approach used in this study relies on Proofs Without Words (PWWs)diagrammatic learning resources that allude to a proof process and scaffold its discovery. In PWW-based activities, students are given a PWW and requested to discover a proof and write it down. This paper focuses on a particular geometry PWW task of the Pythagorean Theorem, shown in Figure 1 (Garfield PWWadapted from Nelsen, 1993, p. 7): 

Theoretical underpinnings Proof Without Words (PWWs) activity at the secondary level

Ever since the seventies, PWWs have started to be published in journals like the Mathematics Magazine and The College Mathematics Journal, designated primarily for mathematicians. Given a PWW, an experienced mathematician can efficiently perform some mental actions to develop a formal proof: Translate diagrammatical information into verbal conjectures, construct a chain of justified arguments while filling in necessary gaps using prior knowledge. Without these mental actions, many mathematicians would not consider a PWW a proof in and of itself [START_REF] Biehler | Didaktisch orientierte beweiskonzepteeine analyse zur mathematikdidaktischen ideenentwicklung[END_REF]. Therefore, in this paper, we refer to PWWs as learning resources and not as proofs. Still, mathematicians value PWWs because of their elegance, mathematical beauty, and the insights they encapsulate [START_REF] Arcavi | The role of visual representations in the learning of mathematics[END_REF]. Mentioning these qualities, [START_REF] Nelsen | Proofs without words: Exercises in visual thinking[END_REF] advises math teachers to share PWWs with their students.

Nevertheless, are PWWs as accessible for secondary students as they are for experienced mathematicians? In other words, can secondary students develop proofs based on the visual clues given in a PWW? A previous exploratory case study demonstrated that the answer is not straightforward positive [START_REF] Marco | Mind the gaps: gap-filling in proving activities[END_REF]. On the one hand, providing a PWW led most students to generate proof attempts containing the proof's key idea(s). However, students' written proof attempts were meager, lacking details such as justifications, articulation of constructional procedures, and generality arguments. Figure 2 presents such a proof attempt that most mathematics educators will probably not accept as valid proof for the Pythagorean theorem. Therefore, we launched a design-based research program to find new ways to redesign PWWs to make students produce more detailed and rigorous proof attempts. 

Gap-filling theoretical framework

The idea of gap-filling was introduced in literary theory. Gap-filling is a reader-oriented theory that emphasizes the reader's role in sense-making when reading a text. It conceptualizes any text as a system of gaps, which the reader constantly needs to fill by adding information to construct meaning [START_REF] Perry | The king through ironic eyes: Biblical narrative and the literary reading process[END_REF]. In a passage from literary theory to mathematics education, we suggested gap-filling as a theoretical framework for activities around mathematical proof-document [START_REF] Marco | The effects of a proof comprehension test on comprehending proofs without words[END_REF]. We defined a gap in a proof document as missing information essential for a specific reader's understanding. Accordingly, gap-filling is any action the reader takes to add information to complete what she identifies as a gap. For example, in Figure 1, the connection between the diagram and the equation

(𝑎+𝑏) 2 2 = 𝑐 2 2 + 2 𝑎𝑏 2
is not indicated and constitutes a gap. In Figure 2, the student takes action to fill this gapshe brings in the notion of area calculations only implicitly represented in the PWW. After a first DBR iteration, we listed nine gap-filling actions, presented in Table 1, that we expected students to perform while working on the Garfield PWW in consequent iterations (Marco, Palatnik & Schwarz, under review): 

G1

Identifying what is given (an arbitrary right triangle with sides a, b, andc) and what should be proved (𝑎 2 + 𝑏 2 = 𝑐 2 ).

G2

Specifying the construction procedures through which the trapezoid is obtained.

G3

Justifying the congruence of the two triangles with sides a, b, and c (SAS congruence theorem)

G4

Verifying that the third middle triangle is isosceles and right-angled (by angle calculations).

G5

Proving that the whole figure is a right trapezoid (by definition).

G6

Recognizing the theorem can be derived from calculating the trapezoid's areas in two different ways.

G7

Calculating the areas of all the different figures (using area formulas) and writing an equation such as

(𝑎+𝑏) 2 2 = 𝑐 2 2 + 2 𝑎𝑏 2.

G8

Simplifying the equation to 𝑎 2 + 𝑏 2 = 𝑐 2 (algebraic manipulations)

G9

Explaining why the proof that is constructed based on a particular case can be seen as general proof.

Note that not all the gap-filling actions in Table 1 are of the same nature. We divided the gap-filling actions into four categories: Constructional (G2), justification of a figure's properties (G3, G4, and G5), key-idea (G6, G7, and G8), and generalization frame gaps (G1 and G9). As mentioned above, in early DBR iterations, almost all students filled key-idea gaps, but only a few identified or filled gaps from the other three categories [START_REF] Marco | The effects of a proof comprehension test on comprehending proofs without words[END_REF][START_REF] Marco | Mind the gaps: gap-filling in proving activities[END_REF][START_REF] Marco | When is less more? Investigating gapfilling in Proofs Without Words activities[END_REF].

The five PWW design principles

In our three-year DBR, we probed for practical design principles that invite the filling of subtler gaps other than the key-idea gaps (Marco et al., under review). After three DBR iterations, we came up with five tentative PWW design principles with which we redesigned Garfield PWW (Figure 3). The process through which these principles were recognized and established cannot be expounded within the limits of this paper (for more details, see Marco et al. under review). Also, we do not claim these five principles are exhaustive and are yet to be considered hypothetical ( [START_REF] Van Den Akker | Curricular development research as specimen of educational design research[END_REF][START_REF] Bakker | Design research in education: A practical guide for early career researchers[END_REF]. We investigate if when these principles are enacted in a PWW's redesign, more gapfilling from Table 1 takes place. The five principles are:

1. Key idea discoverability -Ensure the discovery of the proof's key-idea(s) with minimal scaffolding. We showed that students tend to fill key-idea gaps of PWWs even if no adjustments are inserted. This finding is an encouraging one that we wish not to impair. So, all changes in the PWW must not risk the discoverability of the key ideas. 2. Theorem's conditions distinctiveness -Distinguish theorem's givens from other elements of the proof. [START_REF] Herbst | Interactions with diagrams and the making of reasoned conjectures in geometry[END_REF] observed that students are not used for producing a proof "unless the conclusion to be proved, and the conditions under which that conclusion is true, are stated for them" (p. 133). Therefore, the visual grammar should indicate which parts of the diagram are given and conceived through construction. In this manner, the distinction creates a timeline [START_REF] Dimmel | The semiotic structure of geometry diagrams: How textbook diagrams convey meaning[END_REF] in which the given parts precede the constructed ones. 3. Constructional visibility -Present construction procedures. Construction procedures have a significant epistemic role in geometry proofs. Without verifying how a diagram is conceived, no general truth can be established. If a teacher aspires students to generate rigorous proofs based on PWWs, we suggest the diagram to tell the construction story. In line with [START_REF] Dimmel | The semiotic structure of geometry diagrams: How textbook diagrams convey meaning[END_REF] and [START_REF] Alshwaikh | Diagrams as communication in mathematics discourse: A social semiotic account[END_REF], we found dashed lines and arrows to be well understood as representing constructional procedures. 4. Figure's properties concealment -Avoid marking figures' properties. [START_REF] Hewitt | Arbitrary and necessary part 1: A way of viewing the mathematics curriculum[END_REF] warns teachers not to inform students with necessary mathematical properties that can be deduced.

In our study, when a property was marked, most students perceived it as a given and did not justify it. So, if the diagram conceals a figure's property, it prompts students to conjecture it is true. Students are then more likely to gap-fill it by constructing a sub-proof. In this manner, the PWW-based activity combines conjecturing and proving that are regularly applied by geometry teachers as separate proof-related activities [START_REF] Aaron | The teacher's perspective on the separation between conjecturing and proving in high school geometry classrooms[END_REF]. 5. Human agency -Present the diagram as obtained by human activity. [START_REF] Morgan | Studying the role of human agency in school mathematics[END_REF] upholds that presenting mathematics as abstract, symbolic, and the absence of human agency may prevent students from accessing mathematics. Following this line, [START_REF] Alshwaikh | Diagrams as communication in mathematics discourse: A social semiotic account[END_REF] argues that when diagrams tell a story and include human agency, they communicate better with learners.

Research questions

What impact does a PWW, redesigned according to these five design principles, have on students' gap-filling actions?

Method

This section introduces the redesign version of Garfield PWW and explains how the design principles are implemented. Taking a quantitative approach, we seek to evaluate and compare students' gapfilling actions when working on the initial PWW version (Figure 3, left) vs. on the final redesigned version (Figure 3, right). We then present the participants and describe how we collected and analyzed the data for this study during the second and fourth DBR iterations.

Material Figure 3: Garfield PWW initial version (left) and redesigned version (right)

How does this redesign implement the five design principles? Due to space restrictions, we will only focus on the third and the fourth principles, which are dominant in this redesign.

Constructional visibility: For denoting construction procedures, we used dashed lines, handmade inscriptions, gray-color arrows, and a drawing hand icon. We used continuous bold strokes only for the leftmost arbitrary triangle and printed letters a, b, and c, to indicate that these are the only givens in this diagram. We prolonged the perpendicular dashed lines more than needed to appear as rays created with a straightedge. The newly assigned segments a and b are denoted in gray handwritten letters and arrows on these perpendicular dashed lines. We escaped using the square notation for the rightmost right angle because it could lead students to perceive it as one of the theorem's givens. Instead, we used a circular arrow with a handmade inscription of "90°". This notation signifies that this measure stems from a deliberate human construction activity.

Figure's properties concealment:

We left the middle right angle unmarked and omitted the "c" notation from the rightmost triangle hypotenuse since both can be inferred from triangles' congruence.

Participants

144 Israeli students of ages 15-16 participated in four DBR iterations. In the second DBR iteration, 37 Grade 10 students from two mathematically advanced classes from the same school participated. In the fourth DBR iteration, 72 Grade 10 students from another school participated. The fourth DBR iteration occurred at the beginning of the school year before students were grouped into different mathematics streams. All students were familiar with the Pythagorean Theorem since Grade 8 and had experience solving proof-related exercises in geometry. Most of the students in our study were not introduced to any proof of the Pythagorean theorem when they were eighth-graders, and the vast majority were not familiar with PWWs.

Procedure

The PWW-activity consisted of three phases: (1) Students collaborated in small groups to discover a proof while having the Garfield PWW at hand. (2) Each student individually wrote and submitted a proof attempt and (3) completed a proof comprehension test. In this paper, we only report on the students' submitted written proofs produced in phase (2). To assess students' written proofs, we used the notion of gap-filling. The quality of proofs was based on the number of gaps, from Table 1, that students identified and correctly filled. When grading students' written proofs, we marked 1 for any identified and correctly filled gap, 0 for overlooked gaps, and 0.5 for identified gaps that were not adequately filled (i.e., partially or inaccurately filled). We then calculated the mean gap-filling rate (GFR) for each gap in each version. To answer our research question and assess the impact of the redesigned version on students' gap-filling actions, we undertook a two-tailed t-test assuming unequal variance. The null hypothesis was that there would be no differences in gap-filling rates between the initial and redesign version of Garfield PWW.

Results

Table 2 presents the GFRs in the initial and redesigned version of the Garfield PWW. In the three gaps from the category of proof's key ideas, we see no significant differences between the two PWW versions. However, in the categories of constructional gaps (G2) and justification of a figure's properties gaps (G3, G4, and G5), the GFR are significantly distinct, with the redesigned version having much higher GFRs with substantial effect sizes. Note that increasing GFR in G2 stemmed from more information about the construction that the redesigned version provides. Contrastingly, each justification of a figure's properties gaps, G3, G4, and G5, increased even though the clues about this property were omitted. For instance, the middle triangle was marked right-angled in the initial version, and in the redesigned version, it was not. Remarkably, significantly more students filled G4 given the redesigned version.

Figure 1 :

 1 Figure 1: "discover and write down the proof implied by this diagram"

Figure 2 :

 2 Figure 2: A student's proof attempt based on Garfield PWW

Table 1 : The gap-filling actions we expected students to perform in the Garfield PWW

 1 

#

Description of the gap-filling action(s)

Table 2 : The average gap-filling rates (GFR) in the initial (I-V) and redesigned (R-V) versions

 2 

		G2:	G3: Why	G4: Why	G5: Why	G6:	G7:	G8:
		Explaining the construction	are the triangles congruent	the middle triangle right	the whole figure a right trapezoid	Calculating area in two different ways	Assigning an area formula for each figure	Algebraic operation to obtain the theorem
	I-V GFR	.02	.17	.18	.24	.92	.89	.78
	(SD), N=37	(.34)	(.23)	(.3)	(.43)	(0.28)	(.24)	(.4)
	R-V GFR	.34	.61	.50	.45	.94	.93	.91
	(SD), N=72	(.48)	(.48)	(.47)	(.48)	(0.22)	(0.24)	(.25)
	t-test TE2	𝑝 < .0001	𝑝 < .0001	𝑝 < .001	𝑝 < .05	N/S	N/S	N/S
	vs. TE4							
	Effect size	0.887	1.002	0.756	0.462	/	/	/
	Hedge's g							

Discussion

Testing the redesigned version of the Garfield PWW, we found that more secondary students filled constructional gaps if the construction procedure was displayed in the diagram. Contrastingly, students were more likely to fill gaps associated with the justification of a figure's properties when the property was not explicitly evident in the diagram. We assume that behind the latter finding lies students' need to remove doubts about figure properties when interacting with the diagram. If a PWW leaves doubt about the truth of a figure's property (i.e., not marking a right-angle mark), students will try to verify it by constructing a sub-proof. Removing a mark that reassures a figure's property invites students to conjecture this property is true. After conjecturing, they naturally turn to prove it out of their own epistemic need for certainty [START_REF] Marco | Mind the gaps: gap-filling in proving activities[END_REF]. By doing so, they engage in an authentic mathematical inquiry in which conjecturing leads to formal proving [START_REF] Aaron | The teacher's perspective on the separation between conjecturing and proving in high school geometry classrooms[END_REF].

In our redesigned version of Garfield PWW, we implement five design principles that we gleaned from the data of a broader DBR (Marco et al., under review). We elaborated here on two of these principles and showed their unequivocal effect on students' written proof attempts. As usual, the list of principles remains hypothetical and non-exhaustive (Van den Akker, 2013). Further research with students from different age groups and various PWWs could lead to their development. These design principles have proved beneficial in leading students to fill more gaps in the case of Garfield PWW and are likely to be generalized for other geometry PWW-activities. However, they can serve as a starting point for more research on the use of PWWs in mathematics education. Investigating to what extent these principles are helpful in redesigning PWWs in other domains of mathematics (i.e., progressions, algebra, and calculus) is an exciting avenue for future research. We used the notion of gap-filling to assess students' written products and compare the effectiveness of two versions of the same PWW. Gap-filling theory can change our perspective about how students learn from mathematical texts and shift our focus when designing them. Instead of exposing all the information we wish the student to engage with and understand, we need to carefully present the minimal information that still enables identifying and filling certain gaps. So, designing a proof document is not just about designing what it contains but also designing what it lacks. Well-adjusted gaps in proof-documents may help rekindle proving activities as central in mathematics education.