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In this paper, we propose a mass transportation method to solving a parabolic p-biharmonic equations, which generalized the Cahn-Hilliard (CH) equations in R N , N ∈ N * . By using a time-step optimal approximation in the appropriate Wasserstein space, we define an approximate weak solution which converges to the exact solution of the problem. We also show that the solution under certain conditions may be unique. Therefore, we study the asymptotic behavior of the solution of the parabolic p-biharmonic problem.

Introduction

The Cahn-Hilliard (CH) equation in its original formulation, proposed in [START_REF] Cahn | Free energy of a nonuniform system, I. Interfacial free energy[END_REF][START_REF] Cahn | On spinodal decomposition[END_REF][START_REF] Allen | Ground state structures in ordered binary alloys with second neighbor interactions[END_REF] describes the dynamics of phase separation in binary alloys. It has been used also as a phenomenological model in several different areas, from the description of multicomponent polymeric systems in [START_REF] Mcmaster | Aspects of liquid-liquid phase transition phenomena in multicomponent polymeric systems[END_REF], and lithium-ion batteries in [START_REF] Zeng | Phase separation dynamics in isotropic ion-interaction particles[END_REF], to the modeling of nanoporosity during dealloying in [START_REF] Bertozzi | Inpainting of binary images using the Cahn-Hilliard equation[END_REF], or inpainting of binary images in [START_REF] Tremaine | On the origin of irregular structure in Saturn?s rings[END_REF], and even to the formation of Saturn rings in [START_REF] Khain | Generalized Cahn-Hilliard equation for biological applications[END_REF]. Recently, CH type equations have also been employed to describe pattern formation in biological systems (see, for instance, [START_REF] Khain | Generalized Cahn-Hilliard equation for biological applications[END_REF][START_REF] Liu | Phase separation explains a new class of self-organized spatial patterns in ecological systems[END_REF]) and diffuse interface tumor growth models, [START_REF] Oden | General diffuse-interface theories and an approach to predictive tumor growth modeling[END_REF][START_REF] Hilhorst | Formal asymptotic limit of a diffuse-interface tumor-growth model[END_REF]. In particular, a CH equation with degenerate mobility, obtained from the application of mixture theory to solid tumors, is described in [START_REF] Wise | Three-dimensional multispecies nonlinear tumor growth I: model and numerical method[END_REF]. The Cahn-Hilliard equation is indeed a fundamental equation and an essential building block in the phase field theory for moving interface problems (cf. [START_REF] Mcfadden | Phase field models of solidification[END_REF]), it Adaptive methods for the Cahn-Hilliard equation is often combined with other fundamental equations of mathematical physics such as the Navier-Stokes equation (cf. [START_REF] Feng | Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows[END_REF][START_REF] Jacqmin | Calculation of two-phase Navier-Stokes flows using phase-field modeling[END_REF][START_REF] Liu | A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method[END_REF] and the references therein) to be used as diffuse interface models for describing various interface dynamics, such as flow of two-phase fluids, from various applications.

In [START_REF] Miranville | The Cahn-Hilliard equation and some of its variants[END_REF], Alain Miranville studies the Cahn-Hilliard equation, as well as some of its variants. Such variants have applications in biology and image inpainting. A Wasserstein approach to the numerical solution of the one-dimensional has been analysed in [START_REF] Cavalli | A Wasserstein approach to the numerical solution of the one-dimensional Cahn-Hilliard equation[END_REF] and a non-local version in a two-component incompressible and immiscible mixture with linear mobilities has been studied in [START_REF] Cancès | A Two-phase two-fluxes degenrate Cahn-Hilliard model as constrained Wasserstein gradient flow[END_REF]. These authors have showed that time-discrete approximations by means of the incremental minimizing movement scheme converge to a weak solution in the limit. In the paper [START_REF] Sprekels | Optimal Distributed Control of a Cahn-Hilliard-Darcy System with Mass Sources[END_REF], an optimal control problem for a two-dimensional Cahn-Hilliard-Darcy system with mass sources that arises in the modeling of tumor growth has been analysed.

In this paper, we propose an approach based on optimal transportation, to study existence and uniqueness of solution for a class of non-linear parabolic biharmonic equations in the probability space under the Neumann boundary condition, say the problem:

     ∂ρ ∂t = -div x ρ|∇ x (∆ x (ρ) -ψ (ρ))| p-2 ∇ x (∆ x (ρ) -ψ (ρ)) , in [0, +∞) × Ω ρ(0, x) = ρ 0 (x) in Ω, ρ∇ x (ρ).ν = ρ|∇ x (∆ x (ρ) -ψ (ρ))| p-2 ∇ x (∆ x (ρ) -ψ (ρ)
).ν = 0 on [0, +∞) × ∂Ω.

(

) 1 
where p > 1 is a constant and ψ : [0, +∞) → R is a convex function of class C 2 , and Ω ⊂ R N , a bounded domain with smooth boundary ∂Ω. Here, the initial datum ρ 0 : Ω → (0, +∞) is a probability density function. Of course, depending on the features of ψ and p, equation ( 1) occurs in the modeling of the evolution of a broad range of physical and biological phenomena having nonhomogeneous properties such as, the interaction of particles, the flow of electrorheological fluids, fluids with temperature-depending viscosity, flow in porous non-homogeneous and anisotropic media and image processing [START_REF] Zhikov | Homogenization of differential operators and integral functionals[END_REF][START_REF] Zhan | The boundary value condition of an evolutionary p(x)-Laplacian equation[END_REF].

In a recent work, some authors established the existence and the uniqueness of weak solution of (1) for different values of N and p = 2, see [START_REF] Cahn | Free energy of a nonuniform system, I. Interfacial free energy[END_REF][START_REF] Cahn | On spinodal decomposition[END_REF][START_REF] Allen | Ground state structures in ordered binary alloys with second neighbor interactions[END_REF].

Optimal transportation method on the space of measures have demonstrated to be a valuable new approach in time-step approximation of nonlinear diffusion problems since the pioneer works of Otto [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] and Jordan-Kinderleher-Otto [START_REF] Jordan | The route to stability through Fokker? Planck dynamics[END_REF]. Today, a very broad fields on mathematics research such as, Partial Differential Equations, Fluids mechanics , Shape optimization to quote just a few, have been impacted by optimal transportation method. One can see for instance the works in ( [START_REF] Agueh | Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory[END_REF], [START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions Arch[END_REF], [START_REF] Benamou | Brenier A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF], [START_REF] Bouchitte | Seppecher Shape optimization via Monge-Kantorovich equation C[END_REF], [START_REF] Figalli | Parabolic equations involving a LagrangianAnn[END_REF], [START_REF] Gangbo | The geometry of optimal transport[END_REF], [START_REF] Gangbo | Optimal Maps in Monge's mass transport problem[END_REF], [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF], [START_REF] Jordan | The route to stability through Fokker? Planck dynamics[END_REF], [START_REF] Marcos | Soglo Existence of Positive Solutions and Asymptotic Behavior for Evolutionary q(x)-Laplacian Equations Discrete Dynamics in Nature and Society[END_REF], [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF]) . In [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF], Jordan, Kinderlehrer and Otto have studied existence of solutions of the heat equation:

∂ρ(t, x) ∂t = ∆ x ρ(t, x), in [0, +∞) × R N . (2) 
For their purpose, they use a descent algorithm in the probability space endowed with the 2-Wasserstein distance W 2 to construct the approximate solutions of (2). In [START_REF] Agueh | Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory[END_REF], M. Agueh used a variational approach similar as in [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] to prove existence of solutions for the p-parabolic equation

     ∂ρ(t,x) ∂t = div x ρ(t, x)|∇ x ψ (ρ(t, x))| p-2 ∇ x ψ (ρ(t, x)) , in [0, +∞) × Ω ρ(0, x) = ρ 0 (x) in Ω ρ(t, x)|∇ x ψ (ρ(t, x))| p-2 ∇ x ψ (ρ(t, x)) • ν = 0 on [0, +∞) × ∂Ω, (3) 
with p a constant, and p > 1.

Our purpose is to investigate at the light of some previous works of [START_REF] Agueh | Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory[END_REF], [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF], the case of nonhomogeneous equations induces by a p-biharmonic operator, using the optimal transportation approach. From the best of our knowledge, our approach contrasts with other treatments in the literature for the class of equations under consideration, which generalizes the work [START_REF] Cavalli | A Wasserstein approach to the numerical solution of the one-dimensional Cahn-Hilliard equation[END_REF][START_REF] Cancès | A Two-phase two-fluxes degenrate Cahn-Hilliard model as constrained Wasserstein gradient flow[END_REF].

For the sake of completeness, we recall below some tools related to our approach and of interest for this work. Thus, let's consider the following Monge problem (M ) : inf

T # ρ1=ρ2 Ω |T (x) -x| q ρdx, (4) 
where ρ 1 , ρ 2 are two probability density on Ω and q = p p-1 satisfy 1 p + 1 q = 1. The condition T # ρ 1 = ρ 2 say that: For all continuous function φ : Ω → R, we have

Ω φ(x)ρ 2 dx = Ω φ(T (x))ρ 1 dx.
The Monge problem (4) can be associated to the Kantorovich problem

(K) : inf γ Ω×Ω |x -y| q dγ, γ ∈ Π(ρ 1 , ρ 2 ) (5)
which admits a solution γ 0 .

Here Π(ρ 1 , ρ 2 ) denote the set of all probability measures on Ω × Ω whose marginals are ρ 1 and ρ 2 . Both the Monge and Kantorovich's formulation play a central role in our approach of the time-step approximation of solutions of the problem [START_REF] Cahn | Free energy of a nonuniform system, I. Interfacial free energy[END_REF]. Indeed, we fix h > 0 to be a time step and assume that ρ 0 is a probability density on Ω. Define ρ k , k ∈ N * as a solution of the variational problem

(P k ) : inf ρ∈P (Ω) I(ρ) := E(ρ) + 1 qh q-1 W q q (ρ, ρ k-1 ) , (6) 
where

E(ρ) = Ω ψ(ρ) + 1 2 |∇ x (ρ)| 2 dx (7)
and W q is the q Wasserstein metric defined by

W q q (ρ, ρ k-1 ) := inf γ∈Π(ρ,ρ k-1 ) Ω×Ω |x -y| q dγ. (8) 
Here Π(ρ, ρ k-1 ) is the set of all probability measures on Ω × Ω whose marginals are ρ and ρ k-1 .

We prove in section (3) that the sequence (ρ k ) k , satisfies the equation

ρ k (x) -ρ k-1 (x) h + div x ρ k |∇ x (∆ x (ρ k ) -ψ (ρ k ))| p-2 ∇ x (∆ x (ρ k ) -ψ (ρ k )) = o(h), (9) 
weakly, where o(h) tends to 0 when h tends to 0. Accordingly equation [START_REF] Liu | Phase separation explains a new class of self-organized spatial patterns in ecological systems[END_REF] shows that the sequence (ρ k ) k is a time discretization of (1). We define ρ h as it follows

ρ h (t, x) = ρ k (x) if (t, x) ∈ [hk, h(k + 1)) × Ω ρ h (t, x) = ρ 0 (x) if (t, x) ∈ {0} × Ω (10) 
and we show that the sequence (ρ h ) h converges weakly to ρ = ρ(t, x) which solves the parabolic equation (1) weakly. Moreover, we use the transportation method to investigate the existence of local vanishing property of our problem. This paper is organized as it follows: section 2 is devoted to the preliminary tools useful throughout the paper and in section 3, we establish the existence and the uniqueness of solution for the variational problem (P k ) and next prove that the Euler-Lagrange equation ( 9) is satisfies. In section 4, we establish our convergence results and in section 5 the existence and the uniqueness results for (1) are stated. We study in section 6 the asymptotic behavior of the solution of the parabolic bi-harmonic problem. We offer our conclusion and the further works in section 7.

Preliminaries

2.1. Main assumptions. Throughout this work, we will assume the following :

(ψ 1 ) ψ : [0, +∞) → R is convex function such that ψ(0) = 0. (ψ 2 ) ψ ∈ C 2 ((0, +∞)). (ψ 3 ) t -→ t N ψ(t -N ) is convex and decreasing. (H ρ0 ) : ρ 0 is a probability density on Ω such that Ω ψ(ρ 0 ) + |∇ρ0| 2 2 dx < +∞.
2.2. Lebesgue-Sobolev spaces. We recall in this section some definitions and fundamental properties of the Lebesgue and Sobolev space. Definition 2.1. Let ρ be a probability measure on Ω, and p > 1 a constant. We denote by L p ρ (Ω) the Lebesgue space defined by :

L p ρ (Ω) := u : Ω → R; Ω |u(x)| p ρ(x)dx < +∞ , (11) 
with the norm

u L p ρ (Ω) = Ω |u(x)| p ρ(x)dx 1 p , (12) 
for all u ∈ L p ρ (Ω). We denote by W 1,p ρ (Ω) the Sobolev space defined by

W 1,p ρ (Ω) := u ∈ L p ρ (Ω), |∇u| ∈ L p ρ (Ω) (13) equipped with the norm u W 1,p ρ (Ω) := u L p ρ (Ω) + ∇u L p ρ (Ω) . (14) 
It is well known from the work in [START_REF] Diening | Lebesgue and Sobolev spaces with variable exponents[END_REF] that L p ρ (Ω) and W 1,p ρ (Ω) are Banach spaces respectively with the norms ( 12) and ( 14) . We denote by q the conjugate of p which is defined by

q = p p -1 .
Proposition 1. (Hölder inequality, [START_REF] Diening | Lebesgue and Sobolev spaces with variable exponents[END_REF]). Let ρ ∈ P (Ω) be a probability density and p > 1, q > 1 two constants such that

1 p + 1 q = 1 If u ∈ L p ρ (Ω) and v ∈ L q ρ (Ω), then: Ω |u(x)v(x)|ρ(x)dx ≤ u L p ρ (Ω) v L q ρ (Ω) .
Furthermore, if p 1 , p 2 , p 3 are such that

1 p1 = 1 p2 + 1 p3 , we have uv L p 1 ρ (Ω) ≤ 2 u L p 2 ρ (Ω) v L p 3 ρ (Ω) , for u ∈ L p2 ρ (Ω) and v ∈ L p3 ρ (Ω).
Proposition 2. (see [START_REF] Diening | Lebesgue and Sobolev spaces with variable exponents[END_REF]). Let ρ ∈ P (Ω) be a probability density and p 1 , p 2 two constants such that p 1 ≤ p 2 . Then, we have the following continuous injection:

L p2 ρ (Ω) → L p1 ρ (Ω). (15) 
Furthermore,

u L p 1 ρ (Ω) ≤ 2 u L p 2 ρ (Ω)
Theorem 2.1 ( [START_REF] Diening | Lebesgue and Sobolev spaces with variable exponents[END_REF]). Assume that p > 1. Then the Banach spaces L p ρ (Ω) and W 1,p ρ (Ω) are separable, reflexive and uniformly convex.

Mass transportation theory.

In this section, Ω ⊂ R N is a bounded domain, and P (Ω) denote the set of all probability density on Ω. Definition 2.2. Let ρ 1 , ρ 2 ∈ P (Ω) and γ a probability measure on Ω × Ω. We said that γ have ρ 1 and ρ 2 as its marginals, if one of the following equivalent condition holds:

(i) For all Borel set A ⊂ Ω,

γ(A × Ω) = ρ 1 (A), and γ(Ω × A) = ρ 2 (A). (ii) For (φ 1 , φ 2 ) ∈ L 1 ρ1 (Ω) × L 1 ρ2 (Ω), Ω×Ω [φ 1 (x) + φ 2 (y)]dγ(x, y) = Ω φ 1 (x)ρ 1 dx + Ω φ 2 (x)ρ 2 (y)dy
We denote by Π(ρ 1 , ρ 2 ), the set of all probability measures satisfying (i) or (ii).

Definition 2.3. Let ρ 1 , ρ 2 ∈ P (Ω). A borel map T : Ω -→ Ω is said to push ρ 1 forward to ρ 2 , if (i) For all Borel set A ⊂ Ω, ρ 2 (A) = ρ 1 (T -1 (A)). (ii) For φ 1 ∈ L 1 ρ1 (Ω), Ω φ 1 (y)ρ 2 (y)dy = Ω φ 1 (T (x))ρ 1 (x)dx.
When (i) or (ii) holds, we write that ρ 2 = T # ρ 1 and we said that T pushes ρ 1 forward to ρ 2 .

Proposition 3. (see [START_REF] Agueh | Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory[END_REF]) Let c : R N → [0, +∞) be strictly convex and ρ 1 , ρ 2 ∈ P (Ω). Then,

(i) There is a function v : Ω → R such that T := id Ω -∇c * (∇u) pushes ρ 1 forward to ρ 2 , where c * is the Legendre transform of c and u(x) = inf x∈Ω {c(x -y) -v(y)}, for all x ∈ Ω. γ(A × Ω) = ρ 1 (A), and γ(Ω × A) = ρ 2 (A). (ii) T := id Ω -∇c * (∇u) is the unique minimizer of the Monge problem (M ) : inf T Ω c(T (x) -x)ρ 1 dx, T # ρ 1 = ρ 2 (16) 
(iii) The probability measure γ T := (id

Ω × T ) # ρ 1 defined by γ T (B) := ρ 1 ({x ∈ Ω, (x, T (x)) ∈ B}), for all Borel set B ⊂ Ω × Ω is the unique solution of Kantorovich problem (K) : inf γ Ω×Ω c(x -y)dγ, γ ∈ Π(ρ 1 , ρ 2 ) (17) 
(iv) If c(x) = |x| q , with q > 1. The Monge cost

W q (ρ 1 , ρ 2 ) := inf T Ω |T (x) -x| q ρ 1 dx, T # ρ 1 = ρ 2 1 q
is the q-Wasserstein metric.

Euler Lagrange equation of the problem (P k )

Here, we establish the existence and uniqueness of the solution of problem (P k ) and show that the sequence (ρ k ) k is a time discretization of (1). Proposition 4. Assume that hypotheses (H ρ0 ), (ψ 1 ), (ψ 2 ) and (ψ 3 ) are fulfilled. The problem

(P 1 ) : inf ρ∈P (Ω) I(ρ) := E(ρ) + 1 qh q-1 W q q (ρ, ρ 0 ) ( 18 
)
admits a unique solution ρ 1 and E(ρ 1 ) < +∞.

Proof. Let denote l the infimum of I over P (Ω). Show that l is finite. If ρ = ρ 0 , then I(ρ 0 ) = E(ρ 0 ). Then, by using hypothesis (H ρ0 ), we deduce that I(ρ 0 ) is finite. Let ρ is an probability density on Ω . Since ψ is convex, then by Jessen's inequality we obtain:

Ω ψ(ρ)dy ≥ |Ω|ψ( 1 |Ω| ). ( 19 
)
Therefore Ω |∇ρ| 2

2 dx ≥ 0 and W q q (ρ, ρ 0 ) ≥ 0. Consequently

I(ρ) ≥ |Ω|ψ( 1 |Ω| ). ( 20 
)
We conclude that l is finite. Let (ρ n ) n be a minimizing sequence of (P 1 ) in P (Ω).

Then the sequence (I(ρ n )) n is bounded in R. Thus, there exist a constant K ≥ 0 such that

I(ρ n ) ≤ K for all n ∈ N. Consequently Ω |∇ρ n | 2 2 dx ≤ K - Ω ψ(ρ n )dx - 1 qh q-1 W q q (ρ n , ρ 0 ) (21) 
Since W q q (ρ n , ρ 0 ) ≥ 0, then we use Jessen's inequality [START_REF] Cancès | A Two-phase two-fluxes degenrate Cahn-Hilliard model as constrained Wasserstein gradient flow[END_REF] to obtain

Ω |∇ρ n | 2 2 dx ≤ K -|Ω|ψ( 1 |Ω| ) (22) 
Consequently, the sequence (ρ n ) n is bounded in H 1 (Ω). Thus, (ρ n ) converge strongly to some ρ 1 in L 2 (Ω), (up to a subsequence) and ρ 1 is a probability density on Ω.

Since

ψ is C 1 , we have lim inf Ω ψ(ρ n )dx = Ω ψ(ρ 1 )dx (23) 
Therefore, since

ρ n → ρ strongly in L 2 (Ω), then lim inf Ω |∇ρ n | 2 2 dx ≥ Ω |∇ρ 1 | 2 2 dx ( 24 
)
Let γ n be a solution of Kantorovich problem

W q q (ρ n , ρ 0 ) = inf γ∈Π(ρn,ρ0) Ω×Ω |x -y| q dγ (25) 
Note that P (Ω×Ω) is tight, then (γ n ) n converges narrowly to a probability measure γ 1 in P (Ω×Ω), (up to a subsequence), and

γ 1 ∈ Π(ρ 1 , ρ 0 ).
Then we obtain that lim inf

Ω×Ω |x -y| q dγ n ≥ Ω×Ω |x -y| q dγ 1 . (26) 
Noting that W q q (ρ n , ρ 0 ) = Ω×Ω |x -y| q dγ n , and Ω×Ω |x -y| q dγ 1 ≥ W q q (ρ 1 , ρ 0 ). We conclude that

lim inf W q q (ρ n , ρ 0 ) ≥ W q q (ρ 1 , ρ 0 ). (27) 
From ( 26), ( 27), ( 24) and ( 23), we have

lim inf I(ρ n ) ≥ I(ρ 1 ). ( 28 
)
Then I(ρ 1 ) = inf ρ∈P (Ω) I(ρ). Consequently ρ 1 is a solution of the problem (P 1 ) and E(ρ 1 ) < +∞. We obtain uniqueness of ρ 1 by using the convexity of ρ -→ E(ρ) and the strict convexity of the map ρ -→ W q q (ρ, ρ 0 ).

By induction, we obtain existence and uniqueness of the sequence (ρ k ) k such that ρ k is a unique solution of the problem (P k ). Theorem 3.1. Assume that hypotheses (H ρ0 ), (ψ 1 ),(ψ 2 ) and (ψ 3 ) hold. The Kantorovich problem (K) : inf

γ∈Π(ρ k ,ρ k-1 ) Ω×Ω |x -y| q dγ ( 29 
)
admits a unique solution γ k , and

supp(γ k ) ⊂ (x, y) : y = x -h|∇ x [∆ x (ρ k ) -ψ (ρ k )]| p-2 ∇ x [∆ x (ρ k ) -ψ (ρ k )] .
Proof. Since, then cost function c(x, y) = |x -y| q is convex, then the Kantorovich problem (29) admit a unique solution γ k . Let φ ∈ C ∞ c (Ω, Ω) be a test function, and consider the flow map (T )

∈R in C ∞ c (R N , R N ), such that ∂T ∂ = φ • T T 0 = id . ( 30 
) Define: ρ = T # ρ k .
The function ρ is a probability density on Ω and satisfy ∂ρ ∂

| =0 = -div x (ρ k φ), see [21]. (31) 
Consequently, by using [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF], we obtain

d d Ω ψ(ρ (x))dx | =0 = Ω <∇ x (ψ (ρ k (x))), φ(x)>ρ k (x)dx, (32) 
and

d d Ω |∇ x (ρ )| 2 2 dx | =0 = - Ω <∇ x (∆ x (ρ k )), φ(x)>ρ k (x)dx. ( 33 
)
Let γ be a probability measure on Ω × Ω defined by

Ω×Ω Φ(x, y)dγ (x, y) = Ω×Ω Φ(T (x), y)dγ k (x, y), (34) 
for all Φ ∈ C 0 b (Ω × Ω). Then γ ∈ Π(ρ , ρ k-1 )
. By using the definition of γ , we have

d d Ω×Ω |x -y| q dγ | =0 = q Ω×Ω <|x -y| q-2 (x -y), φ(x)>dγ k (x, y). (35) 
The solution ρ k of the problem (P k ) satisfies

d d Ω (ψ(ρ ) + |∇ x (ρ )| 2 2 )dx + 1 qh q-1 W q q (ρ , ρ k-1 ) | =0 = 0. ( 36 
)
Note that γ is admissible for (P k ), then

W q q (ρ , ρ k-1 ) ≤ Ω×Ω |x -y| q dγ . ( 37 
)
By using the inequality (37), we obtain

I(ρ ) := E(ρ ) + 1 qh q-1 W q q (ρ , ρ k-1 ) ≤ (38) 
E(ρ ) + 1 qh q-1 Ω×Ω |x -y| q dγ .
So, for > 0, we have

I(ρ ) -I(ρ k ) := E(ρ ) -E(ρ k ) + W q q (ρ , ρ k ) -W q q (ρ k , ρ k-1 ) qh q-1 ≤ (39) E(ρ ) -E(ρ k ) + Ω×Ω |x -y| q dγ -Ω×Ω |x -y| q dγ k qh q-1 .
We use [START_REF] Zhan | The stability of evolutionary p(x)-Laplacian equation[END_REF], [START_REF] Diening | Lebesgue and Sobolev spaces with variable exponents[END_REF] , [START_REF] Marcos | Soglo Existence of Positive Solutions and Asymptotic Behavior for Evolutionary q(x)-Laplacian Equations Discrete Dynamics in Nature and Society[END_REF] and [START_REF] Rûžicka | Electrorheological fluids: modeling and Mathematical theory[END_REF] and we tend to 0

Ω <∇ x [-∆ x (ρ k )+ψ (ρ k )], φ(x)>ρ k dx+ 1 h q-1 Ω×Ω <|x-y| q-2 (x-y), φ(x)>dγ k (x, y) ≥ 0. (40)
Changing φ by -φ in [START_REF] Yamna | Study of solutions to a class of certain parabolic systems with variable exponents[END_REF], we obtain the desired equality

Ω <∇ x [-∆ x (ρ k ) + ψ (ρ k ), φ(x)>ρ k dx + 1 h q-1 Ω×Ω <|x -y| q-2 (x -y), φ(x)>dγ k (x, y) = 0 (41)
Finally, we obtain

y = x -h|∇ x [∆ x (ρ k ) -ψ (ρ k )]| p-2 ∇ x [∆ x (ρ k ) -ψ (ρ k )] -γ k a.e. (42) 
Now, let show that (ρ k ) k is a time discretization of the parabolic equation [START_REF] Cahn | Free energy of a nonuniform system, I. Interfacial free energy[END_REF]. Let Φ ∈ C ∞ c (Ω, R) be a test function. We define

T k : Ω → Ω by T k (x) = x -h|∇ x [∆ x (ρ k ) -ψ (ρ k )]| p-2 ∇ x [∆ x (ρ k ) -ψ (ρ k )]. ( 43 
)
We have

T k #ρ k = ρ k-1 , then Ω (ρ k (x) -ρ k-1 (x))Φ(x)dx = Ω×Ω (Φ(x) -Φ(T k (x)))ρ k (x)dx. ( 44 
)
Using Taylor's formula

Φ(T k (x)) = Φ(x) + (T k (x) -x).∇ x Φ(x) + (T k (x) -x) τ ∇ 2 x Φ(x + θ(T k (x) -x)).(T k (x) -x), ( 45 
) with θ ∈ [0, 1] and (T k (x) -x) τ is the transpose of T k (x) -x.
We use ( 45) and ( 43) in [START_REF] Zhan | The boundary value condition of an evolutionary p(x)-Laplacian equation[END_REF], then

Ω (ρ k -ρ k-1 )Φ(x)dx = h Ω <|∇ x [∆ x (ρ k ) -ψ (ρ k )]| p-2 ∇ x [∆ x (ρ k ) -ψ (ρ k )], ∇ x Φ(x)>dx + 1 2 Ω <(x -T k (x)) τ , ∇ 2 x Φ(x + θV k )(x -T k (x))>ρ k dx. ( 46 
)
Thus, by using Neumann boundary condition, we obtain

Ω (ρ k -ρ k-1 )Φ(x)dx = -h Ω div x |∇ x [∆ x (ρ k ) -ψ (ρ k )]| p-2 ∇ x [∆ x (ρ k ) -ψ (ρ k )] Φ(x)dx + 1 2 Ω <(x -T k (x)) τ , ∇ 2 x Φ(x + θV k )(x -T k (x))>ρ k (x)dx. (47) 
In (47),

V k := |∇ x [∆ x (ρ k ) -ψ (ρ k )]| p-2 ∇ x [∆ x (ρ k ) -ψ (ρ k )]. Define A k (Φ) = Ω <(x -T k (x)) τ , ∇ 2 x Φ(x + θV k )(x -T k (x)
)>ρ k dx and show that A k (Φ) tends to 0 when h tends to 0. We have

|A k (Φ)| ≤ sup x∈Ω |∇ 2 x Φ(x)| Ω |T k (x) -x| 2 ρ k (x)dx (48)
Since ρ k is the solution of (P k ), then I(ρ k ) ≤ I(ρ k-1 ). Consequently

E(ρ k ) -E(ρ k-1 ) ≥ 1 qh q-1 W q q (ρ k , ρ k-1 ) (49) 
Therefore, since γ k is the solution of (29), then

W q q (ρ k , ρ k-1 ) = Ω×Ω |x -y| q dγ k (50) = h q Ω ∇ x [∆ x (ρ k ) -ψ (ρ k )] p ρ k dx..
From (49) and (50), we obtain that

E(ρ k ) -E(ρ k-1 ) ≥ h q Ω ∇ x [∆ x (ρ k ) -ψ (ρ k )] p ρ k dx (51) 
Taking the sum over k = 1, ..., T h in (51), we get

E(ρ 0 ) -E(ρ T h ) ≥ h q T h k=1 Ω ∇ x [∆ x (ρ k ) -ψ (ρ k )] p ρ k dx ≥ h q Ω ∇ x [∆ x (ρ k ) -ψ (ρ k )] p ρ k dx. (52) 
We use Jensen's inequality in (52) and obtain:

E(ρ 0 ) -|Ω|ψ( 1 |Ω| ) ≥ h q Ω ∇ x [∆ x (ρ k ) -ψ (ρ k )] p ρ k dx (53) 
So, by using inequalities (53) and (50), we have

Ω×Ω |x -y| q dγ k ≤ qh q-1 E(ρ 0 ) -|Ω|ψ( 1 
|Ω|
) .

(54)

• If q ≤ 2, then Ω×Ω |x -y| 2 dγ k ≤ (diam(Ω)) 2-q Ω×Ω |x -y| q dγ k . ( 55 
) • If q ≥ 2, then Ω×Ω |x -y| 2 dγ k ≤ Ω×Ω |x -y| q dγ k 2 q . ( 56 
)
Consequently, by using (54) we obtain

Ω×Ω |x -y| 2 dγ k ≤ qh q-1 (diam(Ω)) 2-q E(ρ 0 ) -|Ω|ψ( 1 |Ω| ) , if q ≤ 2 (57) Ω×Ω |x -y| 2 dγ k ≤ q 2 q h 2 p E(ρ 0 ) -|Ω|ψ( 1 |Ω| ) 2 q , if q ≥ 2
Finally, we deduce that

|A(Φ)| ≤ qh q-1 (diam(Ω)) 2-q sup x∈Ω |∇ 2 x Φ(x)| E(ρ 0 ) -|Ω|ψ( 1 |Ω| ) , if q ≤ 2 (58) |A(Φ)| ≤ q 2 q h 2 p sup x∈Ω |∇ 2 x Φ(x)| E(ρ 0 ) -|Ω|ψ( 1 |Ω| ) 2 q , if q ≥ 2
The inequality (58) proves that A k (Φ) tends to 0 when h tends to 0. Hence, the sequence (ρ k ) k satisfies the Euler-Lagrange equation [START_REF] Liu | Phase separation explains a new class of self-organized spatial patterns in ecological systems[END_REF] .

Next, let's show that the sequence (ρ h ) h converges weakly (up to a subsequence) to a function ρ = ρ(t, x) which solves the parabolic equations (1).

Convergence results

In this section, we assume that the initial datum ρ 0 is a probability density which satisfies Ω |∇(ρ 0 )| 2 2 + ψ(ρ 0 ) dx is finite. Using the previous results, we prove that the sequence

(∇ x (ρ h ) h is bounded in L 2 ([0, T ] × Ω). Then, we deduce that ρ h converges strongly to ρ in L 2 ([0, T ] × Ω).
Finally, we use the strong convergence of (ρ h ) h to ρ, to prove the weak convergence of the nonlinear term {div

x {ρ h |∇ x [∆ x (ρ h ) -ψ(ρ h )]| p-2 ∇ x [∆ x (ρ h ) -ψ(ρ h )]}} h to div x {ρ|∇ x [∆ x (ρ) - ψ(ρ h )]| p-2 ∇ x [∆ x (ρ) -ψ(ρ)]}.
Theorem 4.1. Assume that ρ 0 satisfy m ≤ ρ 0 ≤ M and hypothesis (H ρ0 ), (ψ 1 ), (ψ 2 ) and (ψ 3 ) are fulfilled. Then i) The sequence (ρ h ) h converge strongly to some ρ in L

2 ([0, T ] × Ω). ii) The sequence (|∇ x (∆ x (ρ h ) -ψ(ρ h ))| p-2 ∇ x (∆ x (ρ h ) -ψ(ρ h ))) h converge weakly to some σ in (L q ([0, T ] × Ω)) N . iii) If t -→ u(t) is a positive test function whose support is in [-T, T ] for 0 < T < ∞. Then lim h→0 Ω T ∇ x (∆ x (ρ h ) -ψ(ρ h )) p ρ h u(t)dtdx = Ω T <σ, ∇ x (∆ x (ρ) -ψ(ρ))>ρ(t, x)u(t)dtdx, (59) 
where

Ω T := [0, T ] × Ω. Furthermore, div x {ρ h |∇ x (∆ x (ρ h ) -ψ(ρ h ))| p-2 ∇ x (∆ x (ρ h ) - ψ(ρ h ))} h converges weakly to div x (ρσ) in [C ∞ c (R×Ω)] , and div x (ρσ) = div x (ρ|∇ x (∆ x (ρ)- ψ(ρ))| p-2 ∇ x (∆ x (ρ) -ψ(ρ))) weakly.

Proof.

i) Since ρ k minimize I over P (Ω), then

Ω |∇ x (ρ k )| 2 2 + ψ(ρ k ) dx + 1 qh q-1 W q q (ρ k , ρ k-1 ) ≤ Ω |∇ x (ρ k-1 )| 2 2 + ψ(ρ k-1 ) dx. (60)
Thus, since W q q (ρ k , ρ k-1 ) ≥ 0 , we have

Ω |∇ x (ρ j )| 2 2 dx - Ω |∇ x (ρ j-1 )| 2 2 dx ≤ Ω ψ(ρ j-1 )dx - Ω ψ(ρ j )dx (61) 
By taking the sum for j = 1, ...., k in (61), we obtain that

Ω |∇ x (ρ k )| 2 2 dx - Ω |∇ x (ρ 0 )| 2 2 dx ≤ Ω ψ(ρ 0 )dx - Ω ψ(ρ k )dx. ( 62 
)
Consequently, by using definition of ρ h and the Jessen's inequality in previous relation, we have

Ω |∇ x (ρ h )| 2 2 dx ≤ Ω |∇ x (ρ 0 )| 2 2 + ψ(ρ 0 ) dx -|Ω|ψ( 1 |Ω| ). ( 63 
)
Consequently, the sequence (ρ h (t, .)) h is bounded in H 1 (Ω). We deduce that (ρ h (t, .)) h converge strongly to some ρ(t, .) in L 2 ([Ω), for all t ≥ 0. Since m ≤ ρ 0 ≤ M , then m ≤ ρ h ≤ M (see the maximum principle in [START_REF] Agueh | Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory[END_REF]). Consequently, we use dominate convergence theorem and we deduce that the sequence (ρ h ) h converge strongly to ρ in L 2 ([0, T ] × Ω). ii) We use (53), then

E(ρ 0 ) -|Ω|ψ( 1 |Ω| ) ≥ h q Ω ∇ x [∆ x (ρ k ) -ψ (ρ k )] p ρ k dx (64) 
We integrate (66) on [0, T ] and obtain that

[0,T ]×Ω ∇ x [∆ x (ρ h ) -ψ (ρ h )] p ρ h dtdx ≤ qT E(ρ 0 ) -|Ω|ψ( 1 |Ω| ) (65) 
By using the maximum principle m ≤ ρ h ≤ M , we conclude that

[0,T ]×Ω ∇ x [∆ x (ρ h ) -ψ (ρ h )] p dtdx ≤ qT m E(ρ 0 ) -|Ω|ψ( 1 |Ω| ) (66) Thus, the sequence (∇ x [∆ x (ρ h ) -ψ (ρ h )]) h is bounded in (L p ([0, T ] × Ω)) N and (|∇ x [∆ x (ρ h ) -ψ (ρ h )]| p-2 ∇ x [∆ x (ρ h ) -ψ (ρ h )]) h is bounded in (L q ([0, T ] × Ω)) N . Consequently, (|∇ x [∆ x (ρ h ) -ψ (ρ h )]| p-2 ∇ x [∆ x (ρ h ) -ψ (ρ h )]) h converge weakly to some σ in (L q ([0, T ] × Ω)) N .
iii) The proof of (59) will be derived from the three following lemmas Lemma 4.1. For 0 < T < +∞, we have

Ω T <σ, ∇ x [∆ x (ρ) -ψ (ρ)]>ρu(t)dtdx (67) ≤ lim inf h→0 Ω T |∇ x [∆ x (ρ h ) -ψ (ρ h )]| p ρ h u(t)dtdx with Ω T := [0, T ] × Ω.
Proof. Since u is positive and v -→ |v| p-2 v is monotone, we have

Ω T <σ h -|∇ x [∆ x (ρ)-ψ (ρ)]| p-2 ∇ x [∆ x (ρ)-ψ (ρ)], ∇ x [∆ x (ρ h )-ψ (ρ h )]-∇ x [∆ x (ρ)-ψ (ρ)]>ρ h u(t)dtdx ≥ 0, (68) with σ h = |∇ x [∆ x (ρ h ) -ψ (ρ h )]| p-2 ∇ x [∆ x (ρ h ) -ψ (ρ h )]
. By the previous inequality, we obtain

Ω T <σ h , ∇ x [∆ x (ρ h ) -ψ (ρ h )]>ρ h u(t)dtdx (69) ≥ Ω T <σ h , ∇ x [∆ x (ρ) -ψ (ρ)]>ρ h u(t)dtdx + Ω T <|∇ x [∆ x (ρ) -ψ (ρ)]| p-2 ∇ x [∆ x (ρ) -ψ (ρ)], ∇ x [∆ x (ρ h ) -ψ (ρ h )] -∇ x [∆ x (ρ) -ψ (ρ)]>ρ h u(t)dtdx.
Then, using the strong convergence of ρ h to ρ, the weak convergence of (σ h ) h to σ and the weak convergence of (∇

x [∆ x (ρ h ) -ψ (ρ h )]) h to ∇ x [∆ x (ρ) -ψ (ρ)], we have lim h→0 Ω T <σ h , ∇ x [∆ x (ρ) -ψ (ρ)]>ρ h u(t)dtdx = [0,T ]×Ω <σ, ∇ x [∆ x (ρ) -ψ (ρ)]>ρu(t)dtdx. (70) Also lim h→0 Ω T <|∇ x [∆ x (ρ)-ψ (ρ)]| p-2 ∇ x [∆ x (ρ)-ψ (ρ)], ∇ x [∆ x (ρ h )-ψ (ρ h )]-∇ x [∆ x (ρ)-ψ (ρ)]>ρ h u(t)dtdx = 0.
(71) By tending h to 0 in (69) and using ( 70) and (71), we obtain the proof of lemma (4.1). Lemma 4.2. For 0 < T < +∞, we have

lim sup h→0 Ω T ∇ x (∆ x (ρ h ) -ψ (ρ h )) p ρ h u(t)dtdx ≤ Ω ρ 0 ψ (ρ 0 ) -ψ * (ψ (ρ 0 )) u(0)dx + [0,T ]×Ω ρψ (ρ) -ψ * (ψ (ρ)) u (t)dtdx (72) + [0,T ]×Ω |∇ x (ρ)| 2 2 u (t)dtdx + Ω |∇ x (ρ 0 )| 2 2 u(0)dx
Proof. Since ρ k minimize I over P (Ω), we obtain energy-inequality

I(ρ k-1 ) -I(ρ k ) ≥ 1 qh q-1 W q q (ρ k , ρ k-1 ) (73) 
Consequently, using the expression of I and ( 43), we obtain

Ω [ |∇(ρ k-1 )| 2 2 + ψ(ρ k-1 )]dx - Ω [ |∇(ρ k )| 2 2 + ψ(ρ k )]dx ≥ h q Ω |∇ x (∆(ρ k ) -ψ(ρ k ))| p ρ k dx. ( 74 
)
Multiplying the previous inequality by u ≥ 0, we obtain after integration

T τ k=1 kτ (k-1)τ Ω ψ(ρ k-1 ) -ψ(ρ k ) τ u(t)dtdx + T τ k=1 kτ (k-1)τ Ω |∇ x (ρ k-1 )| 2 -|∇ x (ρ k )| 2 2τ u(t)dtdx ≥ [0,T ]×Ω |∇ x [∆ x (ρ τ ) -ψ (ρ τ )]| p u(t)ρ τ dtdx, ( 75 
)
where τ = h q and ρ τ is a approximate solution defined by

ρ τ (t, x) = ρ k (x), if (t, x) ∈ [τ k, τ (k + 1)). ( 76 
)
Notice that

T τ k=1 kτ (k-1)τ Ω ψ(ρ k-1 ) -ψ(ρ k ) τ u(t)dtdx = [0,T ]×Ω ψ(ρ τ ) u(t) -u(t -τ ) τ dtdx + 1 τ τ 0 Ω ψ(ρ τ )u(t -τ )dtdx. ( 77 
)
We tend h to 0 in (77), and obtain

lim h→0 T τ k=1 kτ (k-1)τ Ω ψ(ρ k-1 ) -ψ(ρ k ) τ u(t)dtdx = [0,T ]×Ω ψ(ρ)u (t)dtdx + Ω ψ(ρ 0 )u(0)dx. (78) Therefore T τ k=1 kτ (k-1)τ Ω |∇ x (ρ k-1 )| 2 -|∇ x (ρ k )| 2 2τ u(t)dtdx = [0,T ]×Ω |∇ x (ρ τ )| 2 2 u(t) -u(t -τ ) τ dtdx + 1 τ τ 0 Ω |∇ x (ρ τ )| 2 2 u(t -τ )dtdx, (79) 
and

lim h→0 T τ k=1 kτ (k-1)τ Ω |∇ x (ρ k-1 )| 2 -|∇ x (ρ k )| 2 2τ u(t)dtdx = [0,T ]×Ω |∇ x (ρ)| 2 2 u (t)dtdx + Ω |∇ x (ρ 0 )| 2 2 u(0)dx. (80) 
We use ( 75) and ( 78), ( 79), ( 80) and obtain lim sup

h→0 [0,T ]×Ω |∇ x [∆ x (ρ h ) -ψ (ρ h )]| p ρ h u(t)dtdx (81) ≤ [0,T ]×Ω ψ(ρ)u (t)dtdx + Ω ψ(ρ 0 )u(0)dx + [0,T ]×Ω |∇ x (ρ)| 2 2 u (t)dtdx + Ω |∇ x (ρ 0 )| 2 2 u(0)dx.
From the definition of ψ * , we have ψ * (a) ≥ ab -ψ(b) for all a, b > 0 and we obtain the equality if a = ψ (b). Then, using ψ(ρ 0 ) = ρ 0 ψ (ρ 0 ) -ψ * (ψ (ρ 0 )) and ψ(ρ) = ρψ (ρ) -ψ * (ψ (ρ)) in (81), we obtain (72).

Lemma 4.3. For 0 < T < ∞, we have

[0,T ]×Ω <σ, ∇ x [∆ x (ρ) -ψ (ρ)]>ρu(t)dtdx ≥ Ω ρ 0 ψ (ρ 0 ) -ψ * (ψ (ρ 0 )) u(0)dx + [0,T ]×Ω ρψ (ρ) -ψ * (ψ (ρ)) u (t)dtdx + (82) [0,T ]×Ω |∇ x (ρ)| 2 2 u (t)dtdx + Ω |∇ x (ρ 0 )| 2 2 u(0)dx. Proof. Define Ψ(t, x) = [∆ x (ρ) -ψ (ρ(t, x))]u(t), Ψ(t, .) ∈ W 1,p (Ω). Approximating Ψ by C ∞ c ( 
Ω) functions and using (47), we have

Ω ρ k -ρ k-1 h Ψ(t, x)dx = Ω <|∇ x [∆ x (ρ k )-ψ (ρ k )]| p-2 ∇ x [∆ x (ρ k )-ψ (ρ k )], ∇ x [∆ x (ρ)-ψ (ρ)]>ρ k u(t)dtdx+0(h), (83) 
where 0(h) tends to 0 when h tends to 0. By using the definition of ρ h , we obtain after integration

T h k=1 kh (k-1)h Ω ρ k -ρ k-1 h Ψ(t, x)dtdx = (84) [0,T ]×Ω <|∇ x [∆ x (ρ h ) -ψ (ρ h )]| p-2 ∇ x [∆ x (ρ h ) -ψ (ρ h )], ∇ x [∆ x (ρ) -ψ (ρ)]>ρ h u(t)dtdx + 0(h).
Noting that

T h k=1 kh (k-1)h Ω ρ k -ρ k-1 h Ψ(t, x)dtdx = A(h) + B(h) (85) 
where

A(h) = T h k=1 kh (k-1)h Ω ρ k -ρ k-1 h ∆ x (ρ)u(t)dtdx = (86) - 1 h h 0 Ω ρ 0 ∆(ρ)u(t)dtdx - [0,T ]×Ω ρ h (t)∆ x (ρ(t + h))[ u(t + h) -u(t) h ]dtdx - [0,T ]×Ω ρ h (t, x)u(t) ∆ x (ρ(t + h)) -∆ x (ρ) h dtdx and 
B(h) = - T h k=1 kh (k-1)h Ω ρ k -ρ k-1 h ψ (ρ)u(t)dtdx = (87) 1 h h 0 Ω ρ 0 ψ (ρ)u(t)dtdx + [0,T ]×Ω ρ h (t)ψ (ρ(t + h))[ u(t + h) -u(t) h ]dtdx + [0,T ]×Ω ρ h (t, x)u(t) ψ (ρ(t + h)) -ψ (ρ) h dtdx.
Consequently, we tend h to 0 in (86) and we obtain that

lim h→0 A(h) = - Ω ρ 0 ∆ x (ρ 0 )u(0)dx - [0,T ]×Ω ρ∆ x (ρ)u (t)dtdx - [0,T ]×Ω ρu(t)∆ x ( ∂ρ(t) ∂t )dtdx. ( 88 
)
By using boundary condition ρ∇ x (ρ).ν = 0 on ∂Ω, we deduce that

lim h→0 A(h) = Ω |∇ x (ρ 0 )| 2 u(0)dx + [0,T ]×Ω |∇ x (ρ)| 2 2 u (t)dtdx ≥ (89) Ω |∇ x (ρ 0 )| 2 2 u(0)dx + [0,T ]×Ω |∇ x (ρ)| 2 2 u (t)dtdx
We rewrite B(h) as follow

B(h) = 1 h h 0 Ω ρ 0 ψ (ρ)u(t)dtdx + [0,T ]×Ω ρ h (t)ψ (ρ(t + h))[ u(t + h) -u(t) h ]dtdx (90) 
+ [0,T ]×Ω ρ(t + h, x)u(t) ψ (ρ(t + h)) -ψ (ρ) h dtdx + [0,T ]×Ω (ρ h (t, x) -ρ(t + h, x)) ψ (ρ(t + h)) -ψ (ρ) h u(t)dtdx.
Since the Legendre transform ψ * of ψ is convex, then

ψ * (ψ (ρ)) -ψ * (ψ (ρ(t + h, x))) ≥ ρ(t + h, x)[ψ (ρ) -ψ (ρ(t + h, x))] (91) 
Consequently

[0,T ]×Ω ρ(t+h, x) ψ (ρ(t + h)) -ψ (ρ) h u(t)dtdx ≥ [0,T ]×Ω ψ * (ψ (ρ(t + h, x))) -ψ * (ψ (ρ)) h u(t)dtdx
(92) From (92), we have

[0,T ]×Ω ψ * (ψ (ρ(t + h, x))) -ψ * (ψ (ρ)) h u(t)dtdx = (93) - [h,T +h]×Ω ψ * (ψ (ρ)) u(t) -u(t -h) h dtdx - 1 h h 0 Ω ψ * (ψ (ρ))u(t)dtdx + 1 h T +h T ψ * (ψ (ρ))u(t)dtdx
We combine (90) and (93). Then, B(h) is as follow

B(h) ≥ 1 h h 0 Ω ρ 0 ψ (ρ)u(t)dtdx + [0,T ]×Ω ρ h (t)ψ (ρ(t + h))[ u(t + h) -u(t) h ]dtdx (94) - [h,T +h]×Ω ψ * (ψ (ρ)) u(t) -u(t -h) h dtdx - 1 h h 0 Ω ψ * (ψ (ρ))u(t)dtdx + 1 h T +h T ψ * (ψ (ρ))u(t) + [0,T ]×Ω (ρ h (t, x) -ρ(t + h, x)) ψ (ρ(t + h)) -ψ (ρ) h u(t)dtdx.
Since (ρ h ) h converges strongly to ρ, then lim

h→0 [0,T ]×Ω (ρ h (t, x) -ρ(t + h, x)) ψ (ρ(t + h)) -ψ (ρ) h u(t)dtdx = 0. ( 95 
)
We tend h to 0 in (94), and using (95), we have

lim h→0 B(h) ≥ Ω ρ 0 ψ (ρ 0 ) -ψ * (ψ (ρ 0 )) u(0)dx + (96) [0,T ]×Ω ρψ (ρ) -ψ * (ψ (ρ)) u dtdx.
Finally, we combine relation (96),( 89) and (84) and we reach(82).

To get the proof of (59), we use the results in the three previous lemmas . Now, let show that

div x ρ h |∇ x [∆ x (ρ h ) -ψ (ρ h )]| p-2 ∇ x [∆ x (ρ h ) -ψ (ρ h )] h converges to div x (ρσ) = div x ρ|∇ x [∆ x (ρ) -ψ (ρ)]| p-2 ∇ x [∆ x (ρ) -ψ (ρ)] in [C ∞ c ([0, T ] × Ω)] .
Let > 0 be small and φ ∈ C ∞ c (Ω) be a test function. Define Ψ (t, x) = ∆ x (ρ)-ψ (ρ)-φ(x). Ψ ∈ W 1,p ([0, T ] × Ω). We use the fact that v -→ v|v| p-2 is monotone to derive

[0,T ]×Ω <σ h -|∇ x (Ψ )| p-2 ∇ x (Ψ ), ∇ x [∆ x (ρ h ) -ψ (ρ h )] -∇ x Ψ >ρ h u(t)dtdx ≥ 0, ( 97 
)
where σ h is defined above. Thus

[0,T ]×Ω |∇ x [∆ x (ρ h ) -ψ (ρ h )]| p ρ h u(t)dtdx (98) - [0,T ]×Ω <σ h , ∇ x Ψ >ρ h u(t)dtdx - [0,T ]×Ω <|∇ x (Ψ )| p-2 ∇ x (Ψ ), ∇ x [∆ x (ρ h ) -ψ (ρ h )] -∇ x Ψ >u(t)dtdx ≥ 0.
We tend h to 0 in the previous inequality, and we use (59), to get

[0,T ]×Ω <σ, ∇ x [∆ x (ρ) -ψ (ρ)]>ρu(t)dtdx (99) - [0,T ]×Ω <σ, ∇ x Ψ >ρu(t)dtdx - [0,T ]×Ω <|∇ x (Ψ )| p-2 ∇ x (Ψ ), ∇ x [∆(ρ) -ψ (ρ)] -∇ x Ψ >ρu(t)dtdx ≥ 0.
By using definition of Ψ , the previous inequality becomes

[0,T ]×Ω <σ, ∇ x φ(x)>ρu(t)dtdx ≥ [0,T ]×Ω <|∇ x (Ψ )| p-2 ∇ x (Ψ ), ∇ x φ(x)>ρu(t)dtdx. ( 100 
)
We tend to 0 , and we have

[0,T ]×Ω <σ, ∇ x φ(x)>ρu(t)dtdx ≥ [0,T ]×Ω <|∇ x (∆ x (ρ)-ψ (ρ))| p-2 ∇ x (∆ x (ρ)-ψ (ρ)), ∇ x φ(x)>ρu(t)dtdx.
(101) Replacing φ by -φ in the previous inequality, we obtain the equality:

[0,T ]×Ω <σ, ∇ x φ(x)>ρu(t)dtdx = [0,T ]×Ω <|∇ x (∆ x (ρ)-ψ (ρ))| p-2 ∇ x (∆ x (ρ)-ψ (ρ)), ∇ x φ(x)>ρu(t)dtdx.
(102) Finally, we deduce that the sequence

div x ρ h |∇ x [∆ x (ρ h ) -ψ (ρ h )]| p-2 ∇ x [∆ x (ρ h ) -ψ (ρ h )] h converges to div x (ρσ) = div x ρ|∇ x [∆ x (ρ) -ψ (ρ)]| p-2 ∇ x [∆ x (ρ) -ψ (ρ)] in [C ∞ c ([0, T ] × Ω)] .

Existence and uniqueness of solution

In this section, we show the existence and thank to additional assumption the uniqueness of weak solutions of the parabolic biharmonic equation (1).

Theorem 5.1. Assume that hypothesis (H ρ0) , (ψ 1 ), (ψ 2 ) and (ψ 3 ) are fulfilled. Then , the sequence (ρ h ) h converges strongly to a positive function ρ(t, x) and ρ ∈ L ∞ ([0, ∞[×Ω). Also ρ is a weak solution of the equation [START_REF] Cahn | Free energy of a nonuniform system, I. Interfacial free energy[END_REF]. That is, for all φ(t, x) ∈ C ∞ c ([0, ∞[×Ω), suppφ(., x) ⊂ [-T, T ], for 0 < T < ∞, we have:

[0,T ]×Ω ρ ∂φ(t, x) ∂t + <|∇ x [∆ x (ρ) -ψ (ρ)]| p-2 ∇ x [∆ x (ρ) -ψ (ρ)], ∇ x φ(t, x)> dtdx = - Ω ρ 0 φ(0, x)dx. (103) 
Proof. Using (44):

T h k=1 [(k-1)h,kh]×Ω ρ k -ρ k-1 h φ(t, x)dtdx = [0,T ]×Ω <|∇ x [∆ x (ρ h ) -ψ (ρ h )]| p-2 ∇ x [∆ x (ρ h ) -ψ (ρ h )], ∇ x φ(t, x)>ρ h dtdx + 0(h),
where 0(h) tends to 0 when h tends to 0. Note that:

T h k=1 [(k-1)h,kh]×Ω ρ k -ρ k-1 h φ(t, x)dtdx = [0,T ]×Ω ρ h φ(t -h, x) -φ(t, x) h dtdx- 1 h h 0 Ω ρ h φ(t-h, x)dtdx.
(104) Replacing the previous relation in (104), we have:

[0,T ]×Ω ρ h φ(t -h, x) -φ(t, x) h dtdx - 1 h h 0 Ω ρ h φ(t -h)dtdx - ( 105 
) [0,T ]×Ω <|∇ x [∆ x (ρ h ) -ψ (ρ h )]| p-2 ∇ x [∆ x (ρ h ) -ψ (ρ h )], ∇ x φ(t, x)>ρ h dtdx = 0(h).
We tend h to 0 in (105) and use theorem (4.1) to obtain:

[0,T ]×Ω ρ ∂φ(t, x) ∂t dtdx+ [0,T ]×Ω <|∇ x [∆ x (ρ)-ψ (ρ)]| p-2 ∇ x [∆ x (ρ)-ψ (ρ)], ∇ x φ(t, x)>ρdtdx = - Ω ρ 0 φ(0, x)dx.
(106) We conclude that ρ is a weak solution of the parabolic equation (1). Theorem 5.2. Assume that hypothesis (H ρ0 ),(ψ 1 ), (ψ 2 ) and (ψ 3 ) are fulfilled. Let ρ 1 and ρ 2 be two weak solutions of (1) satisfying ∂ρ i ∂t ∈ L 1 (Ω), for i = 1, 2, with initial datum ρ 1 (0, .) and ρ 2 (0, .) respectively satisfying m ≤ ρ 1 (0, .), ρ 2 (0, .) ≤ M . Then

Ω [ρ 1 (T, x) -ρ 2 (T, x)] + dx ≤ 0, (107) 
for all T ≥ 0.

Proof. Define θ δ : R → [0, 1], by:

θ δ (s) =    0 if s ≤ 0 s δ if 0 ≤ s ≤ δ 1 if s ≥ δ. , (108) 
By using definition of the weak solution, we have:

[0,T ]×Ω φ ∂ ∂t (ρ 1 (t, x) -ρ 2 (t, x))dtdx = [0,T ]×Ω <ρ 1 A(ρ 1 ) -ρ 2 A(ρ 2 ), ∇ x φ>dtdx. (109) 
where

A(ρ) = |∇ x [∆ x (ρ) -ψ (ρ)]| p-2 ∇ x [∆ x (ρ) -ψ (ρ)]. We use θ δ ([-∆(ρ 1 ) + ψ (ρ 1 )] -[-∆(ρ 2 ) + ψ (ρ 2 
)) in (109); we have:

Ω T θ δ ([-∆ x (ρ 1 ) + ψ (ρ 1 )] -[-∆ x (ρ 2 ) + ψ (ρ 2 )]) ∂ ∂t (ρ 1 (t, x) -ρ 2 (t, x))dtdx = Ω T <ρ 1 A(ρ 1 ) -ρ 2 A(ρ 2 ), ∇ x (θ δ ([-∆ x (ρ 1 ) + ψ (ρ 1 )] -[-∆ x (ρ 2 ) + ψ (ρ 2 )])>dtdx = - 1 δ Ω T ,δ < -A(ρ 1 ) + A(ρ 2 ), ∇ x [-∆ x (ρ 1 ) + ψ (ρ 1 )] -∇ x [-∆ x (ρ 2 ) + ψ (ρ 2 )]>ρ 2 dtdx + 1 δ Ω T ,δ <(ρ 1 -ρ 2 )A(ρ 1 ), ∇ x [-∆ x (ρ 1 ) + ψ (ρ 1 )] -∇ x [-∆ x (ρ 2 ) + ψ (ρ 2 )]>ρ 2 dtdx Where Ω T,δ := Ω T ∩ {0 < -∆ x (ρ 1 ) + ∆ x (ρ 2 ) + ψ (ρ 1 ) -ψ (ρ 2 ) ≤ δ} and Ω T := [0, T ] × Ω. Since v → v|v| p-2 is monotone, we have - 1 δ Ω T ,δ < -A(ρ 1 ) + A(ρ 2 ), ∇ x [-∆ x (ρ 1 ) + ψ (ρ 1 )] -∇ x [-∆ x (ρ 2 ) + ψ (ρ 2 )]>ρ 2 dtdx ≤ 0. If δ → 0 + , then |Ω T,δ | → 0 and θ δ (-∆ x (ρ 1 )+∆ x (ρ 2 )+ψ (ρ 1 )-ψ (ρ 2 )) → sign + (-∆ x (ρ 1 )+∆ x (ρ 2 )+ψ (ρ 1 )-ψ (ρ 2 )) = sign + (ρ 1 - ρ 2 ); with sign(s) = s |s| for all s ∈ R * . Then, [0,T ]×Ω ∂(ρ 1 -ρ 2 ) + ∂t = [0,T ]×Ω sign + (ρ 1 -ρ 2 ) ∂ ∂t (ρ 1 -ρ 2 ) ≤ 0. ( 110 
)
This implies

Ω (ρ 1 (T, x) -ρ 2 (T, x)) + dx ≤ 0 (111) 
for all T ≥ 0. Then the solution of equation ( 1) is unique.

Asymptotic behavior

In this section, we study the asymptotic behavior of the solution of the parabolic bi-harmonic equation [START_REF] Cahn | Free energy of a nonuniform system, I. Interfacial free energy[END_REF]. We establish the regularity of the solution in this lemma. Lemma 6.1. Assume that hypothesis (H ρ0) , (ψ 1 ), (ψ 2 ) and (ψ 3 ) hold. Let ρ be a solution of parabolic p-biharmonic equation (1). Then, there exist a constant λ > 0 such that

Ω A ρ (φ 1 )ρdx - Ω A ρ (φ 2 )ρdx ≥ Ω <∇ x (A ρ )(φ 2 ), φ 1 (x) -φ 2 (x)>ρdx + λ Ω |φ 1 (x) -φ 2 (x)| q ρdx. (112) for all φ 1 , φ 2 ∈ [L q (Ω)] N , where A ρ := -∆ x (ρ) + ψ (ρ).
Proof. Since ρ is a solution of the equation (1), then there exist a sequence (ρ k ) k defined in (6) which converge to ρ. Therefore, the optimal map whose push ρ k forward to ρ k-1 is defined by

T k (x) = x + h|∇ x [-∆ x (ρ k ) + ψ (ρ k )]| p-2 ∇ x [-∆ x (ρ k ) + ψ (ρ k )] (113) 
Consequently

∇ x [-∆ x (ρ k ) + ψ (ρ k )] = | T k (x) -x h | q-2 ( T k (x) -x h ) (114) 
In [START_REF] Agueh | Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory[END_REF], it is know that the map T k is differentiable and ∇ x T k = id -(p -1)|∇ x u k | p-2 D 2 u k , where u k is a semi-concave function. We deduce that ∇ x [-∆ x (ρ k ) + ψ (ρ k )] is differentiable and

D 2 [-∆ x (ρ k ) + ψ (ρ k )] = -(q -1)(p -1)h 3-p-q |T k (x) -x| q-2 |∇u k | p-2 D 2 u k (115) 
Since u k is semi-concave, then -D 2 u k is diagonalizable with non-negative eigenvalues (see [START_REF] Agueh | Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory[END_REF]). Consequently <D 2 [-∆ x (ρ k ) + ψ (ρ k )]z, z> ≥ λ|z| q-2 , (116) for all z ∈ R N and for some λ > 0. From (116), we obtain that

A ρ k (z 1 ) -A ρ k (z 2 ) ≥ <∇ x A ρ k (z 2 ), z 1 -z 2 > + λ|z 1 -z 2 | q .
(117) By using, the fact that A ρ k converge weakly to A ρ , we obtain (117).

Theorem 6.1. Assume that hypothesis (H ρ0) , (ψ 1 ), (ψ 2 ) and (ψ 3 ) are fulfilled. Let ρ be a solution of parabolic p-biharmonic equation [START_REF] Cahn | Free energy of a nonuniform system, I. Interfacial free energy[END_REF]. Then [E(ρ(t, .)) -E(ρ ∞ )] ≤ e -p(λq) p t [E(ρ 0 ) -E(ρ ∞ )] (118) and W q q (ρ(t, .), ρ ∞ ) ≤

1 λ e -p(λq) p t [E(ρ 0 ) -E(ρ ∞ )], (119) 
where λ > 0 is a constant and ρ ∞ is a probability density on Ω whose satisfy

ρ ∞ ∇ x [-∆ x (ρ ∞ ) + ψ (ρ ∞ ] = 0 in Ω. ( 120 
)
Proof. Let ρ 1 and ρ 2 two probability density on Ω and T : Ω → Ω the map whose push ρ 1 forward to ρ 2 in the Monge-Kantorovich problem (M ) : inf

T # ρ1=ρ2 Ω |T (x) -x| q q ρ 1 dx. ( 121 
)
Since ψ is convex, then 

Using ( 124), (122) and lemma (6.1), we obtain that

E(ρ 2 ) -E(ρ 1 ) ≥ Ω <T (x) -x, ∇ x [-∆ x ρ 1 + ψ (ρ 1 )]>ρ 1 dx + λ Ω |T (x) -x| q ρ 1 dx. ( 125 
)
where

E(ρ) = Ω [ψ(ρ) + |∇xρ| 2 2
]dx. Noting that Ω |T (x) -x| q ρ 1 dx ≥ W q q (ρ 1 , ρ 2 ), where W q is the q-Wasserstein metric. Consequently

E(ρ 2 ) -E(ρ 1 ) ≥ Ω <T (x) -x, ∇ x [-∆ x ρ 1 + ψ (ρ 1 )]>ρ 1 dx + λW q q (ρ 1 , ρ 2 ). (126) 
If ρ 1 = ρ ∞ satisfy ρ ∞ ∇ x [-∆ x ρ ∞ + ψ (ρ ∞ )] = 0 and ρ 2 = ρ then (126) becomes W q q (ρ(t, .), ρ ∞ ) ≤ Combining ( 131) and (127), we conclude that W q q (ρ(t, .), ρ ∞ ) ≤ 1 λ e -p(λq) p t [E(ρ 0 ) -E(ρ ∞ )].

(132)

Ω ψ(ρ 2 <∇ x ρ 1 ,

 21 )dx -Ω ψ(ρ 1 )dx ≥ Ω <ψ (ρ 1 ), ρ 2 -ρ 1 >dx. ∇ x (ρ 2 ) -∇ x (ρ 1 )>dx (123)By using boundary condition ρ∇ x ρ.ν = 0 on ∂Ω, we obtain that,Ω <∇ x ρ 1 , ∇ x (ρ 2 ) -∇ x (ρ 1 )>dx = Ω (-∆ x ρ 1 )ρ 2 dx -Ω (-∆ x ρ 1 )ρ 1 dx.

  ρ(t, .)) -E(ρ ∞ )]. (127)We use Young inequality in (126) and obtainE(ρ 2 )-E(ρ 1 ) ≥ -1 qµ Ω |T (x)-x| q ρ 1 dx-µ p p Ω |∇ x [-∆ x ρ 1 +ψ (ρ 1 )| p ρ 1 dx+λ Ω |T (x)-x| q ρ 1 dx.(128) By using in the previous relation µ =1 λq , ρ 1 = ρ and ρ 2 = ρ ∞ , we obtainE(ρ ∞ ) -E(ρ) ≥ -λ Ω |T (x) -x| q ρdx -1 p(λq) p Ω |∇ x [-∆ x ρ + ψ (ρ)| p ρdx + λ Ω |T (x) -x| q ρdx ≥ -1 p(λq) p Ω |∇ x [-∆ x ρ + ψ (ρ)]| p ρdx. (129) By using d dt [E(ρ)-E(ρ ∞ )] = -Ω |∇ x [-∆ x ρ+ψ (ρ)]| p ρdx, and the previous inequality, we obtain thatd dt [E(ρ) -E(ρ ∞ ] ≤ -p(λq) p [E(ρ) -E(ρ ∞ )].(130)From (130), we deduce that [E(ρ) -E(ρ ∞ )] ≤ e -p(λq) p t [E(ρ 0 ) -E(ρ ∞ )].(131)

Summary

In this work, we have developed a new approach based on optimal transportation, to study existence and uniqueness of solutions for a class of non-linear parabolic biharmonic equations in the probability space under the Neumann boundary condition. We established a regularity result to analyze the asymtotic behavior of the solution. In a forthcoming paper [START_REF] Koffi | Error Estimation of Euler Method for the Instationary Stokes-Biot Coupled Problem[END_REF], we will discretize the problem using the finite element method. An a priori and a posteriori estimator will be performed to study the convergence of the method.
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