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Abstract

       Dispersion and electrostatic interactions both contribute significantly to the tight

assembly  of  macromolecular  chains  within  crystalline  polysaccharides.  Using  dispersion-

corrected density functional theory (DFT) calculation, we estimated the elastic tensor of the

four crystalline cellulose allomorphs whose crystal  structures that  are hitherto available,

namely, cellulose I𝛂, I𝛃, II, IIII. Comparison between calculations with and without dispersion

correction  allows  quantification  of  the  exact  contribution  of  dispersion  to  stiffness  at

molecular level. 

Introduction

       Hydrogen  bonding,  London  dispersion,  and  other  electrostatic  multipole

interactions all play important roles in the spatial organization of molecules in crystalline

polysaccharides, such as cellulose, chitin, and chitosan, which are composed of long linear

ribbon-like sugar  chains where hydroxyl  groups are all  in equatorial  direction.  Hydrogen

bonds  between  hydroxyl  groups  are  essentially  electrostatic  interaction  between

electronegative  oxygen  lone-pair  electrons  and  slightly  electropositive  hydrogen  whose

electron were pulled by neighbor oxygen and can be considered as interaction between

dipoles  (Ramos-Cordoba  et  al.  2011).  London  dispersion  interaction  originates  from

synchronized polarization of atomic nuclei  and is always attractive. Atoms in a molecule
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have different electronegativity, and thus the sum of all pair-wise electrostatic interactions

can be considered as multipole interactions. This is usually considered in modern molecular

modeling as interaction between partial charges, which are primarily calculated  using  DFT

method.

       Understanding  these  interactions  is  of  interest  in  the  perspective  of  the

fundamental  properties of  cellulose materials.  One example is  the process of  dispersing

native cellulose fiber aggregates into isolated nanofibrils or into individual polymer chains,

that is, dissolution. It has often been stated that it is the “many” and “strong” inter- and

intra-molecular hydrogen bonds that hinder defibrillation and dissolution of cellulose (Wang

et al. 2016). A parallel can be found in the stability of double stranded DNA, which has often

been explained based on the regular hydrogen bonds between opposing nucleobases in a

pair. The justification to that is that a typical interaction energy of a base pair is about one

order  of  magnitude  higher  than  dispersion  energy  from  an  atom  pair (Gooch  2007).

However,  recent  experiments  and  simulations  give  more  weight  to  the  contribution  of

dispersion interaction on the stability of double helical structure, to the point that it may

even exceed the hydrogen bond interaction (Černý et al. 2008; Kolář et al. 2011; Jahiruddin

and Datta 2015;  Perumal  and Subramanian  2017;  Kumar  and Patwari  2019;  Feng et  al.

2019).

       For  cellulose,  the  industrially  most  important  crystalline  polysaccharide,  the

interest  in  how  dispersion  interaction  influences  structural  stability  has  been  revived,

especially in aqueous systems where hydrophobic effects would dominate and hydrogen

bonds become insignificant (Bergenstråhle et al. 2010; Medronho et al. 2012; Glasser et al.

2012).  Moreover, it has been shown that the dispersion energy contribution to molecular

cohesion  can  be  twice  the  hydrogen  bond  contribution  in  the  native  cellulose  crystal

(Nishiyama 2018). Therefore, the influence of the different interactions on the structure and

properties of cellulose needs to be re-examined. 

       Another  example  of  where  the  relative  contributions  of  different  molecular

interaction has been considered is the intrinsic mechanical properties of cellulose, which has

also sometimes been attributed specifically to hydrogen bonds (Eichhorn and Davies 2006).

In this case too, a parallel can be made with other biomolecules. Recently, by combining DFT

calculations and nanoindentation experiments, both the types and direction of hydrogen

bond were found to be correlated to the anisotropic modulus of amino acids  (Azuri et al.
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2015). It was concluded that the planar hydrogen bonding network co-contributed to the

molecular  stiffness,  resulting in  unusually  large Young’s  moduli  of  amino acid  molecular

crystals  along certain  crystal  facets.  A  similar  trend for  crystalline  amino acid  hydrogen

maleates was reported, where the moduli can differ up to 5-fold between certain facets.

(Matveychuk et al.  2018) Furthermore,  by comparing DFT calculations with and without

dispersion correction, the dispersion interaction was found to induce similar enhancement

as hydrogen bonds to the rigidity of diphenylalanine based peptide. (Azuri et al. 2014) 

       The effect of hydrogen bonds on the elastic moduli of cellulose I𝛃 has been studied

using molecular mechanics and/or molecular dynamics by switching the explicit hydrogen

bond term on and off  (Tashiro and Kobayashi 1985; Eichhorn and Davies 2006), in force

fields that define such terms. The effect of dispersion interactions has not been studied in

isolation, but the contribution from the Lennard-Jones potential, where the dispersion term

is one part,  was shown to be at  least twice that of  the contribution from electrostatics

(Wohlert et al. 2012; Djahedi et al. 2015), depending on which force field that was used. The

elastic  tensor  has  been  studied  using  first  principles  approach  using  density  functional

theory  (Dri  et al.  2013) and with thermal vibration corrections  (Dri  et al.  2014),  but the

contribution of dispersion interaction on mechanical properties has not been calculated. In

quantum mechanical calculations, one cannot switch the hydrogen bonding off, but here the

dispersion interaction can be simply neglected in the calculation to see its  contribution.

Hence,  we  calculated  the  elastic  tensor  of  all  four  cellulose  allomorphs  using  DFT  to

investigate  the  effect  of  dispersion  interactions  on  their  intrinsic  elastic  mechanical

properties. 

Methods

       The initial atomic coordinates of crystals are imported from X-ray and neutron

studies as well as molecular dynamics simulation and DFT optimization (Langan et al. 1999;

Nishiyama et al. 2002, 2003; Wada et al. 2004; Chen et al. 2015).  The hydrogen bonding

pattern A was used for I  and  𝛂 I𝛃,  and the pattern B was used for  II  and III I.  Geometry

optimization was performed using the generalized gradient approximation (GGA) functional

PBE  (Perdew  et  al.  1996),  augmented  with  pairwise  DFT-D2  correction  for  long-range

dispersion  (Grimme 2006).  Different k-grids are selected according to different unit  cells
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dimensions: 2 x 3 x 3 for I𝛂, 2 x 2 x 2 for I𝛃 and II, and 4 x 2 x 2 for III I. The kinetic energy

cutoff  was  160  Ry.  The  convergence  threshold  of  total  energy  and  forces  for  ionic

minimization  are  1.0e-6  Ry  and  1.0e-5  Ry/bohr  respectively.  Periodic  calculations  were

carried  out  using  Quantum  Espresso (version  6.6)  (Giannozzi  et  al.  2009,  2017) in

combination with ElaStic (Yanchitsky and Timoshevskii 2001; Golesorkhtabar et al. 2013), a

universal tool for calculating elastic constants from first principles. All  allomorphs except

cellulose I𝛂 have P21 symmetry,  thus the tensor was determined using the energy-stain

method with 13/21 combinations of strain direction to deduce the 13/21 tensor elements

(21 elements for triclinic and 13 for monoclinic). For each combination of strain, 11 points

were calculated with strain amplitude up to 0.01 and the energy fitted with a parabolic

function. To visualize the feature of elastic tensors, the elastic tensors were  decomposed

into 6 eigenvalues λi and 6 pairs of eigentensors of stress and strain equivalents where

σ i=λi εi

 The stress/strain tensors have 6 independent components and can be visualized in three

dimension using  the  PAScal software (Cliffe and Goodwin 2012). The 3D contour surface

plots were generated using the  online  Anisotropic calculator  from Zuluaga  et al. (Zuluaga

2013) and further processed using Paraview (Ahrens et al. 2005).

Results and discussion:

Table  1:  The  unit  cell  parameters  (in  Å  and degrees),  volume (Å3)  and  d-spacing  (Å)  of
crystalline cellulose from experiment (exp) and DFT calculations with dispersion correction
(Disp.) or without dispersion correction (No disp.) applied.  The difference in percentage is
calculated either through (disp. - exp)/exp x 100% or (no disp. - exp)/exp x 100%. 

a b C 𝛼 𝛽 𝛾 Volume              d-spacing

110 010 100

I𝛂        Exp 10.40 6.717 5.962 80.4 118.1 114.8 333.3 3.908 5.256 6.093

      Disp. 10.40 6.564 5.857 81.7 117.2 114.1 323.9 3.828 5.200 5.984

0.0% -2.3% -1.8% -2.8% -2.0% -1.1% -1.8%

No disp. 10.46 6.920 6.920 75.9 115.5 113.2 377.0 4.376 5.666 6.344

0.6% 3.0% 5.5% 13.1% 12.0% 7.8% 4.1%

200 110 1-10

I𝛃 Exp (300K) 7.784 8.201 10.38 96.5 658.3 3.867 5.314 5.959

      Disp. 7.641 8.146 10.40 96.6 636.6 3.762 5.218 5.853

-1.8% -0.7% -0.2% -2.3% -1.8% -1.2% -1.4%

No disp. 8.742 8.236 10.47 94.8 750.9 4.356 5.740 6.238

12.3% 0.4% 0.8% 14.1% 12.6 % 8.0% 4.7%
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II        Exp 8.001 9.030 10.31 117.1 662.9 4.019 4.424 7.203

      Disp. 7.969 8.763 10.38 117.1 644.7 3.899 4.351 7.101

-0.4% -3.0% -0.6% -2.7% -3.0% -1.7% -1.4%

No disp. 8.100 9.476 10.44 116.5 718.4 4.246 4.601 7.362

1.2% 4.9% 1.3% 8.4% 5.6% 4.0% 2.2%

100 010 1-10

IIII        Exp 4.450 7.850 10.31 105.1 347.7 4.296 7.579 3.379

      Disp. 4.250 7.892 10.39 103.8 338.4 4.126 7.663 3.317

-4.5% 0.5% 0.8% -2.7% -4.0% -1.1% -1.8%

No disp. 4.711 7.868 10.45 104.8 374.3 4.554 7.606 3.530

5.9% 0.2% 1.3% 7.7% 6.0% 0.4% 4.5%

Figure 1. (A): 3D representation of the elastic moduli surface of crystalline cellulose, either
with  (the  grid  contour)  or  without  dispersion  correction  (the  solid  contour)  from  two

different perspectives. (B): The lateral isosurface in B is multiplied by a factor of two for I𝛂,

I𝛃, and IIII, and by a factor of three for II for better visualization.The snapshots of the four
crystalline  cellulose  allomorphs  are  labeled  with  unit  cell  and  deformation  vectors.  The
projections of cross-sections are consistent with the isosurface orientations above. Unit cell

parameter a is parallel to x (except for I , 𝛃 b//x), c parallel to z, and y within the ab plane. 
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      The influence of dispersion energy on the predicted unit cell parameters, volume,

and d-spacing of crystalline cellulose is presented in Table 1. With the dispersion correction

applied, DFT generally underestimated the experimental values by up to about 5% but can

still  be  regarded to reproduce the experimental  data within  a  reasonable  range.  This  is

acceptable because DFT optimized quantities represent the geometry at 0 K, whereas the

experimental measurement refers to that at 300 K. Indeed, crystal structure measurements

of I𝛃 by neutron diffraction at 15 K showed decreased unit cell dimensions compared to

room temperature  (Nishiyama et al. 2008), which further lowers the difference between

experiment and simulation to less than 1%. In contrast, without dispersion correction, the

predicted  dimensions  were  overestimated  by  up  to  10%.  In  this  case,  relatively  large

deviations can be found in the direction normal to the pyranose ring ([1 1 0] of I𝛼, [2 0 0] of

I𝛽, [0 2 0] of II, [1 1 0] and [1 -1 0] of III I, as shown in Figure 1B). If also thermal expansion

was  included,  the  predicted  values  would  deviate  even  more  from  experiment.  Thus,

dispersion interactions contribute significantly to the tight assembly of cellulose chains in

the crystalline state. This is in line with a previous report where a similar strategy was used

(Bučko et al. 2011).

       3D contour plots of the orientation dependent Young's modulus are shown in

Figure  1.  The  full  elastic  tensor  in  Voigt  representation  is  given  in  Table  2  and  the

corresponding compliance tensor is presented in Table S1. Calculated values for cellulose I𝛃,

especially the diagonal values of stiffness tensor, is consistent with previous DFT results (Dri

et al. 2013). The off-diagonal values (Cij, i≠j, Table 2) are also of the same magnitude as in

previous work. Cancellation of dispersion interaction resulted in a systematical reduction of

the calculated values for all  allomorph, varying between -4.0% to -72% for shear moduli

(C44, C55, C66 in Table 1), and from -10% to -70% for tensile moduli (C11, C22, C33 in Table

1),  respectively.  The  relative  contribution  of  dispersion  interaction  on  the  modulus  is

anisotropic. It is relatively large (40% to 70 %) in the ring packing direction (010 in I𝛃, 1-10 in

I𝛂, 020 in II, and 1-10 in III I, respectively) and small in the longitudinal chain and hydrogen

bonding directions. This is expected as the covalent bonds are dominating in this direction.

Still, dispersion contributes between to 5 to 17% of the Young’s modulus along the chain,
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which is similar to the energy decomposition analysis reported (17%) using empirical force

field based molecular dynamics simulation (Wohlert et al. 2012) of cellulose I𝛃. 

Table 2: The stiffness tensor of crystalline cellulose from DFT calculation. (C11 of I𝛂 and C33 

of I𝛃, II, and IIII are longitudinal moduli. C44, C55, and C66 are shear moduli. C22 and C33, or
C11 and C22, are transverse moduli. The rest are off-diagonal elements.)

Stiffness tensor (GPa)

C11 C12 C13 C14 C15 C16  

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66

Disp. Correction No disp. Correction

202.3 7.0 10.3 -1.5 0.8 1.9 167.4 2.2 2.0 -1.2 0.3 0.3

7.0 47.8 30.7 -22.0 0.3 0.1 2.2 25.8 17.2 -18.1 0.2 -0.8

10.3 30.7 31.0 -15.8 -1.1 0.6 2.0 17.2 14.7 -12.5 0.1 0.0

I𝛂 -1.5 -22.0 -15.8 24.3 -0.4 0.0 -1.2 -18.1 -12.5 16.9 -0.1 0.2

0.8 0.3 -1.1 -0.4 8.3 -7.4 0.3 0.2 0.1 -0.1 7.0 -6.7

1.9 0.1 0.6 0.0 -7.4 9.4 0.3 -0.8 0.0 0.2 -6.7 9.0

99.2 10.5 11.6 0 0 -0.4 68.2 1.5 3.4 0 0 -0.2

10.5 17.6 9.2 0 0 -0.1 1.5 5.3 1.0 0 0 0.2

I𝛃 11.6 9.2 203.6 0 0 -1.5 3.4 1.0 168.3 0 0 0.3

0 0 0 2.1 -0.9 0 0 0 0 1.3 -0.3 0

0 0 0 -0.9 15.7 0 0 0 0 -0.3 15.0 0

-0.4 -0.1 -1.5 0 0 3.6 -0.2 0.2 0.3 0 0 1.0

37.4 17.1 3.7 0 0 0.0 41.3 13.9 5.1 0 0 -7.0

17.1 26.5 5.3 0 0 1.8 13.9 14.4 -1.9 0 0 -2.0

II 3.7 5.3 180.3 0 0 2.1 5.1 -1.9 170.9 0 0  2.4

0 0 0 3.9 -4.0 0 0 0 0 4.8 -3.8 0

0 0 0 -4.0 10.6 0 0 0 0 -3.8 13.1 0

0.0 1.8 2.1 0 0 6.0 -7.0 -2.0 -2.4 0 0 8.6

22.7 20.0 8.5 0 0 -2.2 13.7 10.8 2.8 0 0 0.1

20.0 61.0 11.9 0 0 6.2 10.8 41.4 6.9 0 0 4.9

IIII 8.5 11.9 173.4 0 0 -1.8 2.8 6.9 152.5 0 0 -0.7

0 0 0 11.8 -0.4 0 0 0 0 10.7 -0.1 0

0 0 0 -0.4 3.6 0 0 0 0 -0.1 1.4 0

-2.2 6.2 -1.8 0 0 3.6 0.1 4.9 -0.7 0 0 3.6

      In the transverse directions (C22 and C33 of I𝛂, C11 and C22 of I𝛃, II and IIII) the

reduction in stiffness tensor components without dispersion correction was mostly positive,
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which are 46% and 53% for I𝛂, 31% and 70% for I𝛃, -10% and 46% for II, 40% and 32% for IIII,

respectively. 

     With dispersion correction applied, the C11  is 99.2 GPa. ‘1’ in cellulose  I𝛃 is the

direction to which both hydrogen bonding interactions and the pyranose rings are almost

parallel. This is much higher than the other transverse modulus, which can be ascribed to

the assistance of both directional hydrogen bonds and the rigidity of the glucose ring.  When

no dispersion correction was applied, this elastic modulus drops by 30%, indicating that the

dispersion, in this direction, contributes to nearly one third of the total value. 

      In the sugar stacking directions, which is the directions perpendicular to the [2 0 0]

direction in I𝛃,  [1 1 0] in I𝛂,  [0 2 0] in II,  and [1 -1 0] in III I (Figure 1),  the response to

switching off the dispersion correction was similar, which  was found to contribute  40 to

70% of the rigidity. 

     The dispersion correction also has significant influence on the off-diagonal elements.

The values of elastic tensor elements depend on the reference frame, and the standard

convention is to take the direction  1 along the  a-axis, and direction  2 in the  ab-plane (as

shown in Figure 2). However, the unit cell itself is not necessarily representing the principal

axes of physical properties. To compare the different elastic tensors in a more universal

way, we decomposed the elastic tensor into eigentensors that are stress/strain tensor pairs

that  are  directly  related  by  a  scalar  value,  the  corresponding  eigenvalue,  which  is  the

measure of stiffness. 
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Figure 2. The 3D display of eigenvalue tensor of four cellulose allomorph with or without

dispersion correction for I𝛂, I , II, and 𝛃 IIII, respectively. 
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       The  stress/strain  tensors  have  6  independent  elements  corresponding  to  axial

(normal) and shear stress/strain. They can be further reduced to three eigenvectors that

translates to a pure axial stress/strain. If the corresponding eigenvalues of all eigenvectors

have the same sign,  they can be represented by  ellipsoids,  similar  to  thermal  factor  in

crystallographic  representation.  However,  the  stress/strain  tensor  can  imply  axial

stress/strain of opposite sign. Thus, we represent the tensor using color coding for positive

and  negative  values,  with  a  surface  located  at  a  distance  proportional  to  the  axial

stress/strain  in  each  direction.  In  general,  when  the  mode  is  dominated  by  axial

stress/strain, the color is uniform, whereas shear mode shows opposite colors in orthogonal

directions.

      The estimated Poisson’s ratio is shown in Table S2. In comparison to experimental

measurements (Nakamura et al. 2004), I𝛃 showed slightly larger calculated 𝒗31 (0.49 vs. an

experimental value of 0.38), and II showed a smaller 𝒗32 (0.16 vs. 0.30). 

     To compare the elastic tensors of different allomorphs and in different conditions (with

and without dispersion correction), eigentensors were sorted in descending order of the

eigenvalue (stiffest first) of the stiffness tensor calculated with dispersion correction (first

row  of  each  allomorph  in  Figure  2).  To  find  the  corresponding  eigentensor  from  the

calculations  without  dispersion  correction  (shown  on  the  second  row),  the  closest

eigentensor was chosen, based on a distance measure. This distance was calculated as an

inner  product,  which  is  1  when  they  match  perfectly,  and  0  when  orthogonal.  The

corresponding structure is drawn in the same reference frame.

       Figure  2  shows that  in  all  cases  the  highest  eigenvalue  is  dominated  by  axial

deformation along the chain direction, which was already seen from the diagonal elements

of the stiffness tensor. 

       For  cellulose  Iβ  the eigentensors following the first  one have a straightforward

interpretation. The second eigentensor is axial deformation almost parallel  to the  y-axis.

This is the direction of inter-molecular hydrogen bonding, parallel to the pyranose plane.

The third one is orthogonal to the two, followed by three shear modes: yz, xy, and xz. 

      The fact that, considering lateral directions only, the structure is stiffest in the direction

of inter-molecular  hydrogen bonding is often discussed as manifestation of the effect of

hydrogen bonding. However, it should be remembered that the density of covalent bonds is
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higher  in  this  direction  (along  unit  cell  b  of Iβ in  Figure  1B),  while  the  non-covalent

interactions appears only every 8 Å (d0 1 0 = 0.82 nm), compared to every 4 Å (d2 0 0 = 0.39 nm)

in the perpendicular direction. Since a typical stable non-bonded separation is of the order

of 3 Å, properties perpendicular to the pyranose ring plane are dominated by non-bonded

interactions. In the hydrogen bonded plane ([2 0 0] of Iβ), atoms are mostly linked through

covalent bonds, contributing to the high rigidity.

      For cellulose II and IIII, still only considering lateral directions, the tensile deformation

in the pyranose plane is highly coupled to its perpendicular direction and, in the case of

cellulose II the second eigentensor almost appears as elongated doughnuts when dispersion

correction is on. This tendency can be also verified in the off-diagonal element value that

are  similar  to the diagonal  element  in  x and  y directions.  The  axial  deformation in  the

direction perpendicular to the pyranose plane is coupled to  xy shear (3rd tensor). At first

sight, one would tend to interpret this feature as due to a zig-zag hydrogen bond pattern

leading to a honeycomb-like response, but the fact that the dispersion correction enhances

this  tendency  suggests  that  the  mechanism  is  more  complex  and requires  further

clarification.

     The eigentensors of cellulose Iα is strikingly different from Iβ, except for the stiffest

mode. The deformation of a material is dominated by soft components, and thus cellulose

Iα and Iβ would behave quite differently in complex stress environment in a dense material.

Conclusion:

       We have systematically calculated unit cell parameters and elastic moduli of four

crystalline cellulose allomorphs using DFT. The influence of the dispersion energy on both

crystal  structures  and  elastic  constants  was  investigated  by  switching  the  dispersion

correction on and off. Our calculations reveal that the dispersion interactions dominate the

stacking of cellulose chains, in all crystal forms, especially in the direction perpendicular to

the pyranose rings ([2 0 0] in I𝛃, [1 1 0] in I𝛂, [0 2 0] in II, and [1 -1 0] in IIII, respectively). In

this  direction,  dispersion  energy  contributes  more  than  50%  to  the  elastic  mechanical

properties. It further contributes about one third in the hydrogen bonding direction ([2 0 0]

in I𝛃, [1 1 0] in I𝛂, [0 2 0, 1 1 0] in II, and [1 -1 0, 1 1 0] in III I, respectively), and 5 to 17% in

the  chain  direction.  These  findings  emphasize  that  dispersion  energy  contributes

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257



significantly  to  the  mechanical  properties  of  cellulose,  and  they  also  indicate  that  the

contribution from dispersion energy exceeds that of hydrogen bonding during the initial

step of defibrillation or dissolution of cellulose.
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