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Introduction

In 1999, Oded Schramm investigated the scaling limits of loop-erased random walks (LERW) [START_REF] Schramm | Scaling limits of loop-erased random walks and uniform spanning trees[END_REF]. Schramm observed that the conformal invariance of the limit process implies its encoding in corresponding conformal mappings ft satisfying Loewner's differential equation

∂ft ∂t = z ζ(t) + z ζ(t) -z ∂ft ∂z .
This observation revolutionized two-dimensional statistical physics (see, e.g., a review of SLE by G. F. Lawler [START_REF] Lawler | Conformal invariance and 2D statistical physics[END_REF]).

There are generalizations for dimensions higher than 2 [START_REF] Werner | Lecture notes on the Gaussian free field[END_REF]. However, the strength of conformal techniques in higher dimensions is severely limited. This is particularly clear in Liouville's 1850 theorem. 1 While all simply connected domains in R 2 are confromally equivalent by the Riemann mapping theorem, any smooth conformal mapping on a domain of R n , with n > 2, is a composition of translations, similarities, orthogonal transformations and inversions.

Suitable classes of functions on metric spaces that capture conformal behavior are the classes of quasisymmetric (QS) maps, quasi-Möbius (QM) maps, and quasiconformal (QC) maps. Quasisymmetric maps transform balls into "quasiballs." The definition is based on the fact that conformal maps transform infinitesimal balls into infinitesimal ellipsoids. Quasi-Möbius maps preserve almost the cross ratio of points, and quasiconformal maps are an infinitesimal version of quasisymmetric maps. We always have QS ⇒ QM ⇒ QC [START_REF] Väisälä | Quasi-Möbius maps[END_REF].

We are therefore interested in classes of functions that converge under scaling limits to the classes QS, QM or QC . In the eyes of a geometric group theorist, we are looking for classes of maps between finitely generated groups Γ, with the word metric, which remain invariant under small changes in topology and which become conformal in the above sense when viewed from a distance. Specifically, we require that the class of maps is invariant under composition by quasi-isometries.

This chapter presents and examines a class of maps that mimics quasi-Möbius maps in the context of geometric group theory.

In [START_REF] Pansu | Large scale conformal maps[END_REF] Pierre Pansu introduces a notion of large-scale conformal maps that mimics the infinitesimal behavior of conformal maps. In short, largescale conformal maps map families of disjoint balls onto families of weakly overlapping quasiballs. It is a very flexible notion that includes, for example, coarse embeddings. However, this flexibility makes the asymptotic behavior of such maps less predictable.

Instead, we introduce a more restrictive and semantically simpler notion that mimics quasi-Möbius behavior. Roughly speaking, a map between metric spaces is an asymptotic-Möbius map if it nearly preserves the cross ratio of points that are a large distance apart. As a result, the results presented in this paper are much stronger than those in [START_REF] Pansu | Large scale conformal maps[END_REF].

We postpone the precise definition of asymptotic-Möbius (AM ) maps until later. Sources of examples of AM -maps are:

1. Quasi-isometric embeddings, 2. Sublinear-bi-Lipschitz equivalences (i.e., maps inducing Lipschitz equivalences on asymptotic cones [START_REF] De Cornulier | On sublinear bilipschitz equivalence of groups[END_REF]), 3. Snowflaking (i.e., replacing a metric by a power of it), 4. Assouad maps from doubling metric spaces to R N .

For example, any nilpotent Lie group or finitely generated group can be AM -embedded in a Euclidean space of sufficiently high dimension [START_REF] Assouad | Plongements lipschitziens dans R n[END_REF]. Moreover, we will encounter infinite dimensional examples.

Results

Our main result is that under AM -mappings a large-scale term of dimension increases. The relevant term depends on the class of the groups considered.

Theorem 3. Let G and G ′ be finitely generated nilpotent groups and

f : G → G ′ an AM-map, then asdim(G) ≤ asdim(G ′ ). Futhermore, if asdim(G) = asdim(G ′
), then the asymptotic cones of G and G ′ are isomorphic. Conversely, given nilpotent groups with isomorphic asymptotic cones, there exists an asymptotic-Möbius map between them.

In the world of CAT(0)-spaces, the analogous theorem takes the following form.

Theorem 4. Let X and Y be CAT(0) spaces. If there exists an AM -map f : X → Y , then the telescopic dimension increases e.g. tele-dim(X) ≤ tele-dim(Y ).

Quasi-Möbius maps

Quasi-Möbius maps were introduced by Jussi Väisälä, among others, as a means of studying quasisymmetric maps and quasiconformal maps. Unlike quasisymmetric maps, quasi-Möbius maps do not have a point fixed at infinity.

Let X be a metric space, and x, y, z, w ∈ X a quadruple of distinct points.

Their cross-ratio is

[x, y, z, w] = d(x, z)d(y, w) d(x, w)d(y, z) .
If X is unbounded, then the cross ratio extends to the one-point compactification of X [START_REF] Väisälä | Quasi-Möbius maps[END_REF]. A map f : X → Y is quasi-Möbius if there is a homeomorphism η : R+ → R+ such that for all quadruples of distinct points x, y, z, w ∈ X,

[f (x), f (y), f (z), f (w)] ≤ η([x, y, z, w]).
If f is a homeomorphism, then f is quasi-Möbius iff its inverse is quasi-Möbius.

Examples of quasi-Möbius maps are 1. the stereographic projection R n → S n , 2. the Cayley transformations (the complex, quaternionic and octonionic analogues of the stereographic projection), 3. the inversions x 󰀁 → x |x| 2 in Banach spaces.

Asymptotic-Möbius maps

We need a criterion to tell when two points in a space are far apart. One way to do this is to separate them by sublinear growing functions. This idea was used by Y. Cornulier to define sublinear-bi-Lipschitz equivalences [START_REF] De Cornulier | On sublinear bilipschitz equivalence of groups[END_REF]. Morally, asymptotic-Möbius maps at widely spaced points are quasi-Möbius.

Given u : R+ → R,
Definition 2. A map f : X → Y is an asymptotic-Möbius map or AMmap if there exists an admissible gauge u and a homeomorphism η : R + → R + such that for every x, y, z, w in X such that all 6 distances between x, y, z, w > u, then

[f (x), f (y), f (z), f (w)] < η([x, y, z, w]).
At some point we will need a coarse version of path connectivity.

Definition 3. A metric space X is asymptotically chained, if for every origin o ∈ X there exists an admissible gauge v such that for all x, y ∈ X there exists a chain x1 = x, . . . , x k+1 = y satisfying

max i∈1...k {d(xi, xi+1)} < v(|x| + |y|).
Our most important technical step will be the following theorem, the proof of which will occupy section 2.4 after some introductory definitions.

Theorem 1. Let f be an AM -map from an asymptotically chained space X to a space Y that preserves diverging and bounded sequences, then f induces a continuous, injective, quasisymmetric map g between some asymptotic cones of X and Y .

Asymptotic-cones

The asymptotic cone of a metric space (X, d), captures the geometry on the large scale of X. Roughly speaking, it formalizes the idea of snapshots of the space X taken by an observer moving farther and farther away from X. This sequence of snapshots can stabilize and the observer has the impression of seeing a single object. We call this object the asymptotic cone of X.

If R-balls B(o, R) with metric R -1 d are uniformly pre-compact, then the asymptotic cones can be constructed concretely by pointed Gromov-Hausdorff convergence [START_REF] Gromov | Groups of polynomial growth and expanding maps[END_REF], [START_REF] Gromov | Metric structures for Riemannian and non-Riemannian spaces[END_REF] In general, however, we have to resort to constructions via ultrafilters.

Definition 4. A (nonprincipal) ultrafilter ω over N is a set of subsets of N satisfying the following conditions:

1. If A, B ∈ ω then A ∩ B ∈ ω. 2. If A ∈ ω, A ⊂ B ⊂ N, then B ∈ ω.

For every

A ⊂ N, either A ∈ ω or N \ A ∈ ω. 4. No finite subset of N is in ω.
Equivalently, ω is a finitely additive measure on N such that every subset has measure either 0 or 1 and every finite subset has measure 0.

If a statement A(n) holds for all n ∈ B, where B belongs to an ultrafilter ω, then A(n) is said to hold ω-almost surely.

Definition 5. Let ω be a (nonprincipal) ultrafilter over N. An ω-limit of a sequence of points {xn} in a topological space X is a point x in X such that for any neighborhood U of x the relation xn ∈ U holds ω-almost surely.

If X is a Hausdorff space, then the ω-limit of a sequence is unique. We denote this point by limω xn.

Definition 6. The ultrapower of a set X with respect to an ultrafilter ω, denoted by X ω , consists of equivalence classes of sequences {xn}, xn ∈ X, where two sequences {xn} and {yn} are identical if and only if xn = yn ω-almost surely.

We adopt the notation {xn}ω for the equivalence class of sequences.

Let (X, d) be a metric space, ω an ultrafilter over N and o an origin in X. Furthermore, let a sequence of numbers {dn} be given, with limω dn = ∞. Then there is a pseudo-metric on the ultrapower X ω by setting the distance between x = {xn}ω and y = {yn}ω to

dω(x, y) = lim ω d(xn, yn) dn .
Let X ω o be the set of equivalence classes of elements x = {xn}ω in X ω satisfying limω d(xn,o) dn < ∞ and two elements x = {xn}ω and y = {yn}ω of X ω are identical if and only if dω(x, y) = 0. The metric space (X ω o , dω) is called an asymptotic cone of (X, d).

For points in the asymptotic cone (X ω o , dω) of (X, d) we use the notation xω. Since X is asymptotically chained, there is an admissible gauge v and a chain

x n 1 = o, . . . , x n k+1 = yn such that max i∈1,...k {d(x n i , x n i+1 )} < v(|yn|).
Assuming n is large enough so that 2 u(4|yn|) < |yn|, then at least one point x n in in the chain satisfies

2 u(4|yn|) < d(yn, x n in ) ≤ 2 u(4|yn|) + v(|yn|). Define wn = x n in . For n large enough, 2d(xn, yn) ≤ 2u(|xn| + |yn|) ≤ |xn| + |yn| ≤ 2|yn| + d(xn, yn). It follows, d(xn, yn) ≤ u(4|yn|).
and therefore

u(4|yn|)) < d(xn, wn) ≤ 3 u(4|yn|) + v(|yn|). Choose N s.t. ∀n ≥ N 3 u(4|yn|) + v(|yn|) ≤ 2|yn|.
Then

u(|xn| + |wn|) ≤ u(|xn| + |yn| + d(yn, wn)) ≤ u(2|yn| + d(xn, yn) + 2 u(4|yn|) + v(|yn|)) ≤ u(2|yn| + 3 u(4|yn|) + v(|yn|)) ≤ u(4|yn|) < d(xn, wn).
This means xn, wn > u and

d(xn, wn) dn ≤ 3 u(4|yn|) + v(|yn|) dn → 0. Related, u(|yn| + |wn|) ≤ u(2|yn| + d(yn, wn)) ≤ u(2|yn| + 2 u(4|yn|) + v(|yn|)) ≤ u(4|yn|)
< d(yn, wn).

Proof of Theorem 1.

Proof: Let u be an admissible gauge as given by the definition of f . Fix an origin o ∈ X. Let Bn be the ball of radius n around o. For each n, choose a point zn in Bn such that

d(f (o), f (zn))
is 'maximal'. More precisely, let 󰂃 > 0 and choose zn such that

d(f (o), f (zn)) > sup x∈Bn d(f (o), f (x)) -󰂃.
The supremum on the right hand side exists. Otherwise, one could construct a bounded sequence in Bn mapped by f to an unbounded sequence. This contradicts the assumptions.

Moreover, the four-point condition

[f (x), f (w), f (y), f (z)] ≤ η([x, w, y, z]),
reduces to the three-point condition

d(f (x), f (y)) d(f (x), f (z)) ≤ η( d(x, y) d(x, z) ),
by bringing w to a point at ∞.

In what follows, we often abbreviate the notation f (x) to x ′ . Define dn = d(o, zn)

and d ′ n = d(o ′ , z ′ n )
. By construction and assumption over f , the sequence d ′ n is divergent. Consequently, the sequence dn must also be divergent by the assumption over f .

(1) We show that if d(o,xn) dn is bounded, then d(o ′ ,f (xn)) d ′ n is also bounded. If xω = oω, then d(o, xn) ≤ dn for n large, therefore d(o ′ , x ′ n ) ≤ d ′ n . If xω ∕ = zω, xω ∕ = oω,
then by lemma 7 {xn},{zn},{o} are separated by u ω-a.s., and the Möbius-condition yields

d(o ′ , x ′ n ) d ′ n = d(o ′ , x ′ n ) d(o ′ , z ′ n ) < η( d(o, xn) d(o, zn) ) = η( d(o, xn) dn ) ω -a.s. Thus d(o ′ ,x ′ n ) d ′ n is bounded.
If xω = zω, then by lemma 8 there are {wn} representing the same point, s.t. {wn}, {xn} are u separated and {wn}, {zn} are u separated. In particular, {wn}, {xn}, {o} and {wn}, {zn}, {o} are u separated. Again using the Möbius condition, In the first case,

d(o ′ , x ′ n ) d ′ n = d(o ′ , x ′ n ) d(o ′ , z ′ n ) = d(o ′ , x ′ n ) d(o ′ , w ′ n ) d(o ′ , w ′ n ) d(o ′ , z ′ n ) < η( d(o, xn) d(o, wn) )η( d(o, wn) d(o, zn) ) = η( d(o, xn) dn dn d(o, wn) )η( d(o, wn) dn ) → η(1) 2 Thus d(o ′ ,x ′ n ) d ′ n is bounded.
d(x ′ n , y ′ n ) d ′ n = d(o ′ , x ′ n ) d ′ n d(x ′ n , y ′ n ) d(x ′ n , o ′ ) ≤ d(o ′ , x ′ n ) d ′ n η 󰀓 d(xn, yn) d(xn, o) 󰀔 = d(o ′ , x ′ n ) d ′ n η 󰀓 d(xn, yn) dn dn d(xn, o) 󰀔 → 0
In the second case,

d(x ′ n , y ′ n ) d ′ n ≤ d(x ′ n , w ′ n ) d ′ n + d(w ′ n , y ′ n ) d ′ n ≤ d(o ′ , x ′ n ) d ′ n d(x ′ n , w ′ n ) d(x ′ n , o ′ ) + d(o ′ , y ′ n ) d ′ n d(y ′ n , w ′ n ) d(y ′ n , o ′ ) ≤ d(o ′ , x ′ n ) d ′ n η 󰀓 d(xn, wn) d(xn, o) 󰀔 + d(o ′ , y ′ n ) d ′ n η 󰀓 d(yn, wn) d(yn, o) 󰀔 ≤ d(o ′ , x ′ n ) d ′ n η 󰀓 d(xn, wn) dn dn d(xn, o) 󰀔 + d(o ′ , y ′ n ) d ′ n η 󰀓 d(yn, wn) dn dn d(yn, o) 󰀔 → 0 Therefore, in both cases x ′ ω = y ′ ω .
Let {xn} be a sequence representing the origin oω. If {xn} is a bounded sequence, then under the assumption over f {x ′ n } is also bounded and thus x ′ ω = o ′ ω . If d(o, xn) diverges, then {xn} and {o} are u-separated. We can choose yω ∕ = oω, then by lemma 7, {xn}, {yn}, {o} are u-separated. Thus,

d(o ′ , x ′ n ) d ′ n = d(o ′ , y ′ n ) d ′ n d(o ′ , x ′ n ) d(o ′ , y ′ n ) ≤ d(o ′ , y ′ n ) d ′ n η( d(o, xn) d(o, yn) ) = d(o ′ , y ′ n ) d ′ n η( d(o, xn) dn dn d(o, yn) ) → 0. Therefore, o ′ ω = x ′ ω .
(3) The map g : {xn} → {f (xn)} is quasisymmetric and in particular continuous and injective.

Let {wn}, {xn}, {yn} be sequences representing three distinct points wω, xω and yω in Xω(dn). By lemma 7, {wn}, {xn}, {yn} are pairwise u separated.

So d(x ′ n , y ′ n ) d(x ′ n , w ′ n ) < η( d(xn, yn) d(xn, wn) ), equivalently d(x ′ n , y ′ n ) d ′ n d ′ n d(x ′ n , w ′ n ) < η( d(

xn, yn) dn dn d(xn, wn)

).

Taking the ω limit, we get

dω(x ′ ω , y ′ ω ) dω(x ′ ω , w ′ ω ) ≤ η( dω(xω, yω) dω(xω, wω) ).
So, if g : {xn} 󰀁 → {f (xn)} is not constant, then it is continuous and injective. Note that {o ′ } and {f (zn)} are not the same points, so g is indeed not constant.

Examples

Sublinear-Lipschitz equivalences

In [START_REF] De Cornulier | On sublinear bilipschitz equivalence of groups[END_REF], Y. Cornulier introduces sublinear-Lipschitz maps. A map f : X → Y between metric spaces is a sublinear-Lipschitz map if there is an admissible gauge u :

R+ → R such that d(f (x), f (y)) ≤ Cd(x, y) + C ′ u(|x| + |y|), ∀x, y ∈ X,
for some constants C, C ′ > 0.

Two sublinear-Lipschitz maps f, f ′ are equivalent if there is an admissible gauge v and a constant C ′′ > 0 such that

d(f (x), f ′ (x)) ≤ C ′′ v(|x|)
for all x ∈ X.

Sublinear-Lipschitz maps between metric spaces form a category. Taking asymptotic cones, we obtain a functor from the sublinear-Lipschitz category to the Lipschitz category. The sublinear-Lipschitz category is in a sense the maximal category with such a property.

The isomorphisms in the sublinear-Lipschitz category are called sublinear-Lipschitz equivalences or SBE maps.

Proposition 9. Every SBE-mapping f : X → Y is an AM -mapping with linear η.

Proof: If f is SBE, then f is bi-Lipschitz except at scales below an admissible gauge u. Indeed, let x, y ∈ X s.t.

d(x, y) ≥ u(|x| + |y|).
Then

d(f (x), f (y)) ≤ cd(x, y) + Cu(|x| + |y|) ≤ (c + C)d(x, y), and 
d(f (x), f (y)) ≥ c ′ d(x, y) -C ′ u(|x| + |y|) ≥ (c ′ -C ′ )d(x, y)
So there exists D > 0, s.t. for all x, y > u,

1 D d(x, y) ≤ d(f (x), f (y)) ≤ Dd(x, y).
In particular, f is an AM -mapping with linear η.

Assouad-type maps

How can one recognize when a metric space is bi-Lipschitz equivalent to an Euclidean space? (S. Semmes, On the nonexistence of bilipschitz parametrizations, 1996)

Simple as it sounds, this question is not obvious. If a metric space admits a bi-Lipschitz embedding in R n , then it is clearly doubling. The converse is not true, however; the 3-dimensional Heisenberg group with the Carnot-Carathéodory metric is doubling, but does not admit a bi-Lipschitz embedding in R n for any n.

Assouad's embedding theorem [START_REF] Assouad | Plongements lipschitziens dans R n[END_REF] [13] states that any snowflake X α = (X, d α ), 0 < α < 1, of a doubling metric space admits a bi-Lipschitz embedding in a Euclidean space.

It is clear that the Assouad embedding of a doubling metric space into Euclidean space is an asymptotic-Möbius map. In what follows, we construct an example of an Assouad mapping from an infinite dimensional Heisenberg group into a Hilbert space. This construction follows straightforwardly from a construction of Lee and Naor for the finite dimensional case [START_REF] Lee | L p metrics on the Heisenberg group and the Goemans-Linial conjecture[END_REF].

Let H be an infinite dimensional complex Hilbert space. H carries the symplectic form Ω(a, b) = Im(〈a, b〉).

The infinite-dimensional Heisenberg group HΩ, is the set of tuples (a, t) with a ∈ H, t ∈ R and the group law

(a, t)(a ′ , t ′ ) = (a + a ′ , t + t ′ + 2 Ω(a, a ′ )).
Let G be a group with identity element e. A group seminorm on

G is a function G → [0, ∞) satisfying N (g -1 ) = N (g) for all g ∈ G, N (gh) ≤ N (g) + N (h) for all g, h ∈ G and N (e) = 0. Moreover, if N (g) = 0 if and only if g = e, then N is a group norm on G.
The function

N (a, t) = 󰁴 󰁳 ||a|| 4 + t 2 + ||a|| 2 ,
is a group norm on HΩ. Namely, if N1 and N2 are group seminorms, then

󰁳 N 2 1 + N 2 2 is a group seminorm. In this case, N1 = (||a|| 4 + t 2 ) 1 4 is the Koranyi norm. Given N , dN ((a, t), (a ′ , t ′ )) = N ((a, t)(a ′ , t ′ ) -1 )
is a right invariant metric on HΩ.

Let G be a group, then a Hermitian kernel on G is a complex-valued function

K : G × G → C satisfying K(g, h) = K(h, g) for all g, h ∈ G. A Hermitian kernel on G is positive definite if n 󰁛 i,j
K(gi, gj)cicj ≥ 0 for all g1, . . . , gn ∈ G and for all complex numbers c1, . . . , cn ∈ C, with equality if and only if the ci vanish. A Hermitian kernel on G is conditionally negative definite if n 󰁛 i,j K(gi, gj)cicj ≤ 0 for all g1, . . . , gn ∈ G and for all complex numbers c1, . . . , cn ∈ C satisfying 󰁓 n i ci = 0. Theorem 2 (Schönberg [START_REF] Schoenberg | Metric spaces and positive definite functions[END_REF]). Let G be a group, K : G × G → R a realvalued kernel on G satisfying K(g, g) = 0 ∀g ∈ G. Then K is negative definite if and only if there exists a Hilbert space H and a function T :

G → H such that ∀g, h ∈ G : K(g, h) = 󰀂T (g) -T (h)󰀂 2 .
Thus, if dN is negative definite, then there is a Hilbert space H and an isometry T : (HΩ, √ dN ) → H. In particular, the mapping T : (HΩ, dN ) → H is an AM mapping.

A complex-valued function F on a group G satisfying F (g -1 ) = F (g) for all g ∈ G induces a Hermitian kernel on G by defining KF (g, h) := F (gh -1 ). The function F is called positive definite if KF is a positive definite Hermitian kernel on G.

Lemma 10. For any λ ∈ R, the function

Φ λ (a, t) = e -|λ|󰀂a󰀂 2 +iλt
is positive definite on HΩ.

Proof: Indeed, the function Φ λ satisfies the condition Φ λ ((a, t) -1 ) = Φ λ ((a, t)) and induces the kernel

K((a, s), (b, t)) := exp(-|λ|󰀂a -b󰀂 2 + iλ(s -t -2 Ω(a, b))).
The kernel can be rewritten as a product of three exponentials exp(-|λ|(󰀂a󰀂 2 +󰀂b󰀂 2 )) exp(iλ(s-t)) exp(2|λ|(Re(〈a, b〉)-i sign(λ) Ω(a, b))).

The product of positive definite kernels is positive definite. The first two factors are positive definite because for all c1, . . . , cn ∈ C the matrix (cicj)i,j is positive semidefinite. In particular, also the matrix (exp(iλ(sitj))cicj)i,j. The exponential of any positive definite kernel is again a positive definite kernel ([3] Proposition 8.2.). Thus the kernel K is positive definite if Re(〈a, b〉) -i sign(λ) Ω(a, b) is positive definite. This is 〈a, b〉 if λ < 0 and 〈a, b〉 if λ ≥ 0 and thus clearly positive definite.

Proposition 11. dN : HΩ × HΩ → H is conditionally negative definite.

Proof: The existence of 1 2 -stable distributions implies that for all 󰂃 > 0 there exists a non-negative integrable function ϕ󰂃 : R → [0, ∞) s.t. its Fourier transform φ󰂃(t) = e -󰂃 √ |t| . Note that 1 2π φ󰂃(x) = ϕ󰂃(x). By the above lemma, F󰂃(a, t) = 󰁝 R e -|λ|󰀂a󰀂 2 +iλt ϕ󰂃(λ)dλ is positive definite on HΩ. Let

h k (x) = k π 1 k 2 + x 2
denote the Cauchy distribution with scale parameter k > 0. We write around

F󰂃(a, t) = 1 2π 󰁝 R e iλt ĥ󰀂a󰀂 2 (λ) φ󰂃(λ)dλ = 1 2π 󰁝 R e iλt h 󰀂a󰀂 2 * φ󰂃 󰁙 (λ)dλ = (h 󰀂a󰀂 2 * φ󰂃)(t).
Since F󰂃 is positive definite, 1-F󰂃 󰂃 is conditionally negative definite and

lim 󰂃→0 1 -F󰂃(a, t) 󰂃 = lim 󰂃→0 󰀅 h 󰀂a󰀂 2 * 1 -φ󰂃 󰂃 󰀆 = lim 󰂃→0 󰁝 R 1 -e -󰂃 √ |x| 󰂃 h 󰀂a󰀂 2 (t -x)dx = 󰀂a󰀂 2 π 󰁝 R 󰁳 |x| 󰀂a󰀂 4 + (t -x) 2 dx.
We now show that for all r, t ∈ R

r 2 󰁝 R 󰁳 |x| r 4 + (t -x) 2 dx = π 󰁴 󰁳 r 4 + t 2 + r 2 .
By changing variables x = r 2 y and s = t/r 2 , the left hand side can be written as

󰁝 ∞ 0 󰀓 1 1 + (s -y) 2 + 1 1 + (s + y) 2 󰀔 √ y dy
This integral is equal to

lim r→0 lim R→∞ 1 2 󰁝 C r,R 󰀓 1 1 + (s -z) 2 + 1 1 + (s + z) 2 󰀔 √ z dz,
where Cr,R is the keyhole contour with a branch cut along the positive real axis. The integrand has simple poles at i ± s and -i ± s. By Res(

√ z 1+(s-z) 2 , i+s) = √ i+s 2i , Res( √ z 1+(s-z) 2 , -i+s) = √ -i+s -2i , Res( √ z 1+(s+z) 2 , i- s) = √ i-s 2i
and Res(

√ z 1+(s+z) 2 , -i -s) = √ -i-s -2i
. Now adding all the residuals and multiplying by 2πi, we obtain the above equation as

π 2 ( √ i + s - √ -i + s + √ i -s - √ -i -s).
This further simplifies to

π Re( √ i + s + √ i -s) = π (Re( √ i + s) + Im( √ i + s)) = π 󰀣 󰁶 √ 1 + s 2 + s 2 + 󰁶 √ 1 + s 2 -s 2 󰀤 = π 󰁴 󰁳 1 + s 2 + 1
So we have seen that the N -norm is a limit of conditionally negative definite functions on HΩ, so it is conditionally negative definite.

Applications to dimension theory

Dimension theory of finitely-generated groups

In 1993 M. Gromov introduced the notion of asymptotic dimension as a large scale analogue of Lebesgue's covering dimension [START_REF] Gromov | Asymptotic invariants of infinite groups[END_REF]. The asymptotic dimension of a finitely generated group is a quasi-isometric invariant. Its most prominent application goes back to Guoliang Yu, who showed that any finitely generated group with finite homotopy type and finite asymptotic dimension satisfies the Novikov conjecture [START_REF] Yu | The Novikov conjecture for groups with finite asymptotic dimension[END_REF].

Definition 12. Let X be a metric space. We say that the asymptotic dimension of X does not exceed n if for every uniformly bounded open cover V of X there exists a uniformly bounded open cover U of X of multiplicity ≤ n + 1 such that V refines U. We write asdimX = n if it is true that asdimX ≤ n and asdimX ≰ n -1

The asymptotic dimension of a finitely generated group Γ has several interesting implications. For example, asdim Γ = 0 if and only if Γ is finite (Proposition 65. in [START_REF] Bell | Asymptotic dimension[END_REF]) and asdim Γ = 1 if and only if Γ is virtually free (Theorem 66. in [START_REF] Bell | Asymptotic dimension[END_REF]).

If G is a finitely generated nilpotent group, then its asymptotic cone Gω is a Carnot group [START_REF] Pansu | Croissance des boules et des géodésiques fermées dans les nilvariétés[END_REF] and the asymptotic dimension of G coincides with the topological dimension of its asymptotic cone [START_REF] Bell | Asymptotic dimension[END_REF].

Theorem 3. Let G and G ′ be a finitely generated nilpotent groups and f : G → G ′ an AM-map, then asdim(G) ≤ asdim(G ′ ). If G and G ′ are nilpotent Lie groups, then dim(G) ≤ dim(G ′ ). Futhermore, if asdim(G) = asdim(G ′ ), then the asymptotic cones of G and G ′ are isomorphic graded Lie groups. Conversely, given nilpotent groups with isomorphic asymptotic cones, there exists an asymptotic-Möbius map between them.

Proof:

The mapping f induces a quasisymmetric mapping g between the asymptotic cones Gω and G ′ ω of G and G ′ , respectively. In particular, g is an injective mapping from Gω to G ′ ω and hence the topological dimensions increase. Since G and G ′ are nilpotent, asdim(G) = top-dim(Gω) ≤ top-dim(G ′ ω ) = asdim(G ′ ). The case for nilpotent Lie groups follows from the fact that for nilpotent Lie groups top-dim(G) = top-dim(Gω).

If asdim(G) = asdim(G ′ ), the invariance of domain theorem implies that g is a homeomorphism. Since both g and g -1 are quasisymmetric, they are differentiable by Pansu's theorem a.e., and the differential of g is a graded isomorphism of groups at almost every point [START_REF] Pansu | Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un[END_REF] 

where r is the radius of the smallest enclosing ball of A and d(A) is the diameter of A.

The above inequality can be used to define a geometric dimension of CAT(0)-spaces. A CAT(0)-space X has geometric dimension less than n if and only if the Jung's inequality (1) is true in X [START_REF] Caprace | At infinity of finite-dimensional CAT(0) spaces[END_REF].

Remark 13. It turns out that the geometric dimension of a CAT(0)-space X is equal to the maximal topological dimension of all compact subsets in X [START_REF] Kleiner | The local structure of length spaces with curvature bounded above[END_REF].

The geometric dimension can be transformed into a large-scale term in the following way. A CAT(0)-space X has telescopic dimension less than n if and only if for every δ > 0 there is a D > 0 such that for every set A (

) 2 
Somewhat more general, Definition 14. A space X whose asymptotic cones are CAT(0) has telescopic dimension ≤ n if every asymptotic cone has geometric dimension ≤ n.

We adopt the notation tele-dim(X) for the telescopic dimension of X.

Theorem 4. Let X and Y be spaces, whose asymptotic cones are CAT(0).

If there exists an AM -map f : X → Y , then the telescopic dimension increases e.g. tele-dim(X) ≤ tele-dim(Y ).

The theorem follows straight from theorem 1, remark 13 and the fact that the topological dimension increases under injective continuous maps.

It follows that there can be no AM -mapping from Euclidean buildings of finite rank r and hence telescopic dimension r to a Euclidean building of lower rank.

If there is a AM -mapping from a CAT(0)-space to a hyperbolic metric space, then X is also a hyperbolic metric space.

Lemma 7 .Lemma 8 .

 78 If xω ∕ = yω, then for every admissible gauge u and all sequences {xn}, {yn} representing xω and yω, respectively, d(xn, yn) > u(|xn| + |yn|), ω -a.s. Proof: If there is an admissible function u and sequences {xn}, {yn} such that d(xn, yn) ≤ u(|xn| + |yn|), ω -a.s. then ω -a.s., d(xn, yn) dn ≤ u(|xn| + |yn|) dn . Let X be an asymptotically chained metric space. Let {xn} and {yn} be two sequences in X representing the same point xω different from the origin oω such that xn ∕ = yn ω -a.s. Then, for any admissible gauge u, either d(xn, yn) > u, ω -a.s. or there exists a sequence {wn} representing the same point s.t d(xn, wn) > u ω -a.s. and d(yn, wn) > u ω -a.s. Proof: Suppose d(xn, yn) ≤ u ω -a.s. and assuming |xn|, |yn| → +∞.

( 2 )

 2 The mapping {xn} → {f (xn)} is well-defined from Xω(dn) to Yω(d ′ n ). If {xn} and {yn} are two sequences representing the same point different from the origin oω, then by Lemma 8 and Lemma 7 either {xn}, {yn}, {o} are separated by u, or there exists a sequence {wn} representing the same point, s.t. {xn}, {wn}, {o} and {yn}, {wn}, {o} are separated by u.

  .

4. 2

 2 Dimension theory of CAT(0)-spaces Heinrich Jung established in the early 1900s that the diameter of a set in Euclidean space R n is related to the radius of the smallest enclosing ball by an inequality whose constant depends only on the dimension n [9]. More precisely, for any set A ⊂ R n r ≤ d(A) 󰁵 n 2(n + 1) ,

in X with diameter greater

  

  we say that the points x and y in X are separated by

	u from a fixed origin o if d(x, y) > u(d(x, o) + d(o, y)). For simplicity, we
	often write x, y > u and |x| = d(o, x) for the distance from the origin. We can call u a gauge, i.e., a function that sets a scale of "sight" as a function
	of "location". To fix a gauge means to decide what is "near" and "far
	away".		
	Definition 1. A function u : R+ → R is an admissible gauge if
	1. it is non-decreasing, and		
	2. u grows sublinearly, i.e. lim sup r→∞	u(r) r	= 0.

Monge 1850, pp. 609 -616, a note contributed by Liouville as editor (Note VI: Extension au cas des trois dimensions de la question du tracé géographique.)