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Asymptotic-Möbius maps.

Georg Grützner

Abstract

Roughly speaking, a map between metric spaces is an asymptotic-
Möbius map if it almost preserves cross-ratios of points being a large dis-
tance apart from each other. We show that under such maps, some large-
scale notions of dimension increases: asymptotic dimension for finitely
generated nilpotent groups, telescopic dimension for CAT (0) spaces.

1 Introduction

In 1999, Oded Schramm investigated the scaling limits of loop-erased ran-
dom walks (LERW) [18]. Schramm observed that the conformal invari-
ance of the limit process implies its encoding in corresponding conformal
mappings ft satisfying Loewner’s differential equation

∂ft
∂t

= z
ζ(t) + z

ζ(t)− z

∂ft
∂z

.

This observation revolutionized two-dimensional statistical physics (see,
e.g., a review of SLE by G. F. Lawler [11]).

There are generalizations for dimensions higher than 2[20]. However, the
strength of conformal techniques in higher dimensions is severely limited.
This is particularly clear in Liouville’s 1850 theorem.1 While all simply
connected domains in R2 are confromally equivalent by the Riemann map-
ping theorem, any smooth conformal mapping on a domain of Rn, with
n > 2, is a composition of translations, similarities, orthogonal transfor-
mations and inversions.

Suitable classes of functions on metric spaces that capture conformal be-
havior are the classes of quasisymmetric (QS) maps, quasi-Möbius (QM)
maps, and quasiconformal (QC) maps. Quasisymmetric maps transform
balls into ”quasiballs.” The definition is based on the fact that conformal
maps transform infinitesimal balls into infinitesimal ellipsoids. Quasi-
Möbius maps preserve almost the cross ratio of points, and quasiconfor-
mal maps are an infinitesimal version of quasisymmetric maps. We always
have QS ⇒ QM ⇒ QC [19].

We are therefore interested in classes of functions that converge under
scaling limits to the classes QS, QM or QC . In the eyes of a geometric

1Monge 1850, pp. 609 - 616, a note contributed by Liouville as editor (Note VI: Extension
au cas des trois dimensions de la question du tracé géographique.)



group theorist, we are looking for classes of maps between finitely gener-
ated groups Γ, with the word metric, which remain invariant under small
changes in topology and which become conformal in the above sense when
viewed from a distance. Specifically, we require that the class of maps is
invariant under composition by quasi-isometries.

This chapter presents and examines a class of maps that mimics quasi-
Möbius maps in the context of geometric group theory.

In [16] Pierre Pansu introduces a notion of large-scale conformal maps
that mimics the infinitesimal behavior of conformal maps. In short, large-
scale conformal maps map families of disjoint balls onto families of weakly
overlapping quasiballs. It is a very flexible notion that includes, for ex-
ample, coarse embeddings. However, this flexibility makes the asymptotic
behavior of such maps less predictable.

Instead, we introduce a more restrictive and semantically simpler notion
that mimics quasi-Möbius behavior. Roughly speaking, a map between
metric spaces is an asymptotic-Möbius map if it nearly preserves the cross
ratio of points that are a large distance apart. As a result, the results
presented in this paper are much stronger than those in [16].

We postpone the precise definition of asymptotic-Möbius (AM) maps until
later. Sources of examples of AM -maps are:

1. Quasi-isometric embeddings,

2. Sublinear-bi-Lipschitz equivalences (i.e., maps inducing Lipschitz
equivalences on asymptotic cones [5]),

3. Snowflaking (i.e., replacing a metric by a power of it),

4. Assouad maps from doubling metric spaces to RN .

For example, any nilpotent Lie group or finitely generated group can be
AM -embedded in a Euclidean space of sufficiently high dimension [1].
Moreover, we will encounter infinite dimensional examples.

1.1 Results

Our main result is that under AM -mappings a large-scale term of di-
mension increases. The relevant term depends on the class of the groups
considered.

Theorem 3. Let G and G′ be finitely generated nilpotent groups and
f : G → G′ an AM-map, then asdim(G) ≤ asdim(G′). Futhermore, if
asdim(G) = asdim(G′), then the asymptotic cones of G and G′ are iso-
morphic. Conversely, given nilpotent groups with isomorphic asymptotic
cones, there exists an asymptotic-Möbius map between them.

In the world of CAT(0)-spaces, the analogous theorem takes the following
form.

Theorem 4. Let X and Y be CAT(0) spaces. If there exists an AM-map
f : X → Y , then the telescopic dimension increases e.g. tele-dim(X) ≤
tele-dim(Y ).
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2 Asymptotic-Möbius maps

2.1 Quasi-Möbius maps

Quasi-Möbius maps were introduced by Jussi Väisälä, among others, as a
means of studying quasisymmetric maps and quasiconformal maps. Unlike
quasisymmetric maps, quasi-Möbius maps do not have a point fixed at
infinity.

Let X be a metric space, and x, y, z, w ∈ X a quadruple of distinct points.
Their cross-ratio is

[x, y, z, w] =
d(x, z)d(y, w)

d(x,w)d(y, z)
.

If X is unbounded, then the cross ratio extends to the one-point com-
pactification of X [19]. A map f : X → Y is quasi-Möbius if there is
a homeomorphism η : R+ → R+ such that for all quadruples of distinct
points x, y, z, w ∈ X,

[f(x), f(y), f(z), f(w)] ≤ η([x, y, z, w]).

If f is a homeomorphism, then f is quasi-Möbius iff its inverse is quasi-
Möbius.

Examples of quasi-Möbius maps are

1. the stereographic projection Rn → Sn,

2. the Cayley transformations (the complex, quaternionic and octo-
nionic analogues of the stereographic projection),

3. the inversions x 󰀁→ x
|x|2 in Banach spaces.

2.2 Asymptotic-Möbius maps

We need a criterion to tell when two points in a space are far apart. One
way to do this is to separate them by sublinear growing functions. This
idea was used by Y. Cornulier to define sublinear-bi-Lipschitz equivalences
[5].

Given u : R+ → R, we say that the points x and y in X are separated by
u from a fixed origin o if d(x, y) > u(d(x, o) + d(o, y)). For simplicity, we
often write x, y > u and |x| = d(o, x) for the distance from the origin. We
can call u a gauge, i.e., a function that sets a scale of ”sight” as a function
of ”location”. To fix a gauge means to decide what is ”near” and ”far
away”.

Definition 1. A function u : R+ → R is an admissible gauge if

1. it is non-decreasing, and

2. u grows sublinearly, i.e. lim supr→∞
u(r)
r

= 0.

Morally, asymptotic-Möbius maps at widely spaced points are quasi-Möbius.
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Definition 2. A map f : X → Y is an asymptotic-Möbius map or AM-
map if there exists an admissible gauge u and a homeomorphism η : R+ →
R+ such that for every x, y, z, w in X such that all 6 distances between
x, y, z, w > u, then

[f(x), f(y), f(z), f(w)] < η([x, y, z, w]).

At some point we will need a coarse version of path connectivity.

Definition 3. A metric space X is asymptotically chained, if for every
origin o ∈ X there exists an admissible gauge v such that for all x, y ∈ X
there exists a chain x1 = x, . . . , xk+1 = y satisfying

max i∈1...k{d(xi, xi+1)} < v(|x|+ |y|).

Our most important technical step will be the following theorem, the proof
of which will occupy section 2.4 after some introductory definitions.

Theorem 1. Let f be an AM-map from an asymptotically chained space
X to a space Y that preserves diverging and bounded sequences, then f in-
duces a continuous, injective, quasisymmetric map g between some asymp-
totic cones of X and Y .

2.3 Asymptotic-cones

The asymptotic cone of a metric space (X, d), captures the geometry on
the large scale of X. Roughly speaking, it formalizes the idea of snapshots
of the space X taken by an observer moving farther and farther away from
X. This sequence of snapshots can stabilize and the observer has the
impression of seeing a single object. We call this object the asymptotic
cone of X.

If R-balls B(o,R) with metric R−1d are uniformly pre-compact, then
the asymptotic cones can be constructed concretely by pointed Gromov-
Hausdorff convergence [6], [8] In general, however, we have to resort to
constructions via ultrafilters.

Definition 4. A (nonprincipal) ultrafilter ω over N is a set of subsets of
N satisfying the following conditions:

1. If A,B ∈ ω then A ∩B ∈ ω.

2. If A ∈ ω, A ⊂ B ⊂ N, then B ∈ ω.

3. For every A ⊂ N, either A ∈ ω or N \A ∈ ω.

4. No finite subset of N is in ω.

Equivalently, ω is a finitely additive measure on N such that every subset
has measure either 0 or 1 and every finite subset has measure 0.

If a statement A(n) holds for all n ∈ B, where B belongs to an ultrafilter
ω, then A(n) is said to hold ω-almost surely.

Definition 5. Let ω be a (nonprincipal) ultrafilter over N. An ω-limit
of a sequence of points {xn} in a topological space X is a point x in X
such that for any neighborhood U of x the relation xn ∈ U holds ω-almost
surely.

4



If X is a Hausdorff space, then the ω-limit of a sequence is unique. We
denote this point by limω xn.

Definition 6. The ultrapower of a set X with respect to an ultrafilter ω,
denoted by Xω, consists of equivalence classes of sequences {xn}, xn ∈ X,
where two sequences {xn} and {yn} are identical if and only if xn = yn
ω-almost surely.

We adopt the notation {xn}ω for the equivalence class of sequences.

Let (X, d) be a metric space, ω an ultrafilter over N and o an origin in X.
Furthermore, let a sequence of numbers {dn} be given, with limω dn =
∞. Then there is a pseudo-metric on the ultrapower Xω by setting the
distance between x = {xn}ω and y = {yn}ω to

dω(x, y) = lim
ω

d(xn, yn)

dn
.

Let Xω
o be the set of equivalence classes of elements x = {xn}ω in Xω

satisfying limω
d(xn,o)

dn
< ∞ and two elements x = {xn}ω and y = {yn}ω

of Xω are identical if and only if dω(x, y) = 0. The metric space (Xω
o , dω)

is called an asymptotic cone of (X, d).

For points in the asymptotic cone (Xω
o , dω) of (X, d) we use the notation

xω.

Lemma 7. If xω ∕= yω, then for every admissible gauge u and all se-
quences {xn}, {yn} representing xω and yω, respectively,

d(xn, yn) > u(|xn|+ |yn|), ω − a.s.

Proof: If there is an admissible function u and sequences {xn}, {yn}
such that

d(xn, yn) ≤ u(|xn|+ |yn|), ω − a.s.

then ω − a.s.,
d(xn, yn)

dn
≤ u(|xn|+ |yn|)

dn
.

So

lim
ω

d(xn, yn)

dn
= 0.

Lemma 8. Let X be an asymptotically chained metric space. Let {xn}
and {yn} be two sequences in X representing the same point xω different
from the origin oω such that xn ∕= yn ω − a.s. Then, for any admissible
gauge u, either

d(xn, yn) > u, ω − a.s.

or there exists a sequence {wn} representing the same point s.t

d(xn, wn) > u ω − a.s.

and
d(yn, wn) > u ω − a.s.
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Proof: Suppose d(xn, yn) ≤ u ω − a.s. and assuming |xn|, |yn| → +∞.

Since X is asymptotically chained, there is an admissible gauge v and a
chain xn

1 = o, . . . , xn
k+1 = yn such that

max i∈1,...k{d(xn
i , x

n
i+1)} < v(|yn|).

Assuming n is large enough so that 2u(4|yn|) < |yn|, then at least one
point xn

in in the chain satisfies

2u(4|yn|) < d(yn, x
n
in) ≤ 2u(4|yn|) + v(|yn|).

Define wn = xn
in .

For n large enough,

2d(xn, yn) ≤ 2u(|xn|+ |yn|)
≤ |xn|+ |yn|
≤ 2|yn|+ d(xn, yn).

It follows,
d(xn, yn) ≤ u(4|yn|).

and therefore

u(4|yn|)) < d(xn, wn) ≤ 3u(4|yn|) + v(|yn|).

Choose N s.t. ∀n ≥ N

3u(4|yn|) + v(|yn|) ≤ 2|yn|.

Then

u(|xn|+ |wn|) ≤ u(|xn|+ |yn|+ d(yn, wn))

≤ u(2|yn|+ d(xn, yn) + 2u(4|yn|) + v(|yn|))
≤ u(2|yn|+ 3u(4|yn|) + v(|yn|))
≤ u(4|yn|)
< d(xn, wn).

This means xn, wn > u and

d(xn, wn)

dn
≤ 3u(4|yn|) + v(|yn|)

dn
→ 0.

Related,

u(|yn|+ |wn|) ≤ u(2|yn|+ d(yn, wn))

≤ u(2|yn|+ 2u(4|yn|) + v(|yn|))
≤ u(4|yn|)
< d(yn, wn).
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2.4 Proof of Theorem 1.

Proof: Let u be an admissible gauge as given by the definition of f . Fix
an origin o ∈ X. Let Bn be the ball of radius n around o. For each n,
choose a point zn in Bn such that

d(f(o), f(zn))

is ’maximal’. More precisely, let 󰂃 > 0 and choose zn such that

d(f(o), f(zn)) > sup
x∈Bn

d(f(o), f(x))− 󰂃.

The supremum on the right hand side exists. Otherwise, one could con-
struct a bounded sequence in Bn mapped by f to an unbounded sequence.
This contradicts the assumptions.

Moreover, the four-point condition

[f(x), f(w), f(y), f(z)] ≤ η([x,w, y, z]),

reduces to the three-point condition

d(f(x), f(y))

d(f(x), f(z))
≤ η(

d(x, y)

d(x, z)
),

by bringing w to a point at ∞.

In what follows, we often abbreviate the notation f(x) to x′.

Define
dn = d(o, zn)

and
d′n = d(o′, z′n).

By construction and assumption over f , the sequence d′n is divergent.
Consequently, the sequence dn must also be divergent by the assumption
over f .

(1) We show that if d(o,xn)
dn

is bounded, then d(o′,f(xn))
d′n

is also bounded.

If xω = oω, then d(o, xn) ≤ dn for n large, therefore d(o′, x′
n) ≤ d′n.

If xω ∕= zω, xω ∕= oω, then by lemma 7 {xn},{zn},{o} are separated by u
ω-a.s., and the Möbius- condition yields

d(o′, x′
n)

d′n
=

d(o′, x′
n)

d(o′, z′n)
< η(

d(o, xn)

d(o, zn)
) = η(

d(o, xn)

dn
) ω − a.s.

Thus
d(o′,x′

n)

d′n
is bounded.

If xω = zω, then by lemma 8 there are {wn} representing the same point,
s.t. {wn}, {xn} are u separated and {wn}, {zn} are u separated. In
particular, {wn}, {xn}, {o} and {wn}, {zn}, {o} are u separated. Again
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using the Möbius condition,

d(o′, x′
n)

d′n
=

d(o′, x′
n)

d(o′, z′n)

=
d(o′, x′

n)

d(o′, w′
n)

d(o′, w′
n)

d(o′, z′n)

< η(
d(o, xn)

d(o, wn)
)η(

d(o, wn)

d(o, zn)
)

= η(
d(o, xn)

dn

dn
d(o, wn)

)η(
d(o, wn)

dn
)

→ η(1)2

Thus
d(o′,x′

n)

d′n
is bounded.

(2) The mapping {xn} → {f(xn)} is well-defined from Xω(dn) to Yω(d
′
n).

If {xn} and {yn} are two sequences representing the same point different
from the origin oω, then by Lemma 8 and Lemma 7 either {xn}, {yn}, {o}
are separated by u, or there exists a sequence {wn} representing the same
point, s.t. {xn}, {wn}, {o} and {yn}, {wn}, {o} are separated by u.

In the first case,

d(x′
n, y

′
n)

d′n
=

d(o′, x′
n)

d′n

d(x′
n, y

′
n)

d(x′
n, o′)

≤ d(o′, x′
n)

d′n
η
󰀓d(xn, yn)

d(xn, o)

󰀔

=
d(o′, x′

n)

d′n
η
󰀓d(xn, yn)

dn

dn
d(xn, o)

󰀔

→ 0

In the second case,

d(x′
n, y

′
n)

d′n
≤ d(x′

n, w
′
n)

d′n
+

d(w′
n, y

′
n)

d′n

≤ d(o′, x′
n)

d′n

d(x′
n, w

′
n)

d(x′
n, o′)

+
d(o′, y′

n)

d′n

d(y′
n, w

′
n)

d(y′
n, o′)

≤ d(o′, x′
n)

d′n
η
󰀓d(xn, wn)

d(xn, o)

󰀔
+

d(o′, y′
n)

d′n
η
󰀓d(yn, wn)

d(yn, o)

󰀔

≤ d(o′, x′
n)

d′n
η
󰀓d(xn, wn)

dn

dn
d(xn, o)

󰀔
+

d(o′, y′
n)

d′n
η
󰀓d(yn, wn)

dn

dn
d(yn, o)

󰀔

→ 0

Therefore, in both cases x′
ω = y′

ω.

Let {xn} be a sequence representing the origin oω. If {xn} is a bounded
sequence, then under the assumption over f {x′

n} is also bounded and
thus x′

ω = o′ω.

If d(o, xn) diverges, then {xn} and {o} are u-separated. We can choose
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yω ∕= oω, then by lemma 7, {xn}, {yn}, {o} are u-separated. Thus,

d(o′, x′
n)

d′n
=

d(o′, y′
n)

d′n

d(o′, x′
n)

d(o′, y′
n)

≤ d(o′, y′
n)

d′n
η(

d(o, xn)

d(o, yn)
)

=
d(o′, y′

n)

d′n
η(

d(o, xn)

dn

dn
d(o, yn)

)

→ 0.

Therefore, o′ω = x′
ω.

(3) The map g : {xn} → {f(xn)} is quasisymmetric and in particular
continuous and injective.

Let {wn}, {xn}, {yn} be sequences representing three distinct points wω, xω

and yω inXω(dn). By lemma 7, {wn}, {xn}, {yn} are pairwise u separated.
So

d(x′
n, y

′
n)

d(x′
n, w′

n)
< η(

d(xn, yn)

d(xn, wn)
),

equivalently

d(x′
n, y

′
n)

d′n

d′n
d(x′

n, w′
n)

< η(
d(xn, yn)

dn

dn
d(xn, wn)

).

Taking the ω limit, we get

dω(x
′
ω, y

′
ω)

dω(x′
ω, w′

ω)
≤ η(

dω(xω, yω)

dω(xω, wω)
).

So, if g : {xn} 󰀁→ {f(xn)} is not constant, then it is continuous and
injective. Note that {o′} and {f(zn)} are not the same points, so g is
indeed not constant.

3 Examples

3.1 Sublinear-Lipschitz equivalences

In [5], Y. Cornulier introduces sublinear-Lipschitz maps. A map f : X →
Y between metric spaces is a sublinear-Lipschitz map if there is an ad-
missible gauge u : R+ → R such that

d(f(x), f(y)) ≤ Cd(x, y) + C′u(|x|+ |y|), ∀x, y ∈ X,

for some constants C,C′ > 0.

Two sublinear-Lipschitz maps f, f ′ are equivalent if there is an admissible
gauge v and a constant C′′ > 0 such that

d(f(x), f ′(x)) ≤ C′′v(|x|)

for all x ∈ X.
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Sublinear-Lipschitz maps between metric spaces form a category. Taking
asymptotic cones, we obtain a functor from the sublinear-Lipschitz cate-
gory to the Lipschitz category. The sublinear-Lipschitz category is in a
sense the maximal category with such a property.

The isomorphisms in the sublinear-Lipschitz category are called sublinear-
Lipschitz equivalences or SBE maps.

Proposition 9. Every SBE-mapping f : X → Y is an AM-mapping
with linear η.

Proof: If f is SBE, then f is bi-Lipschitz except at scales below an
admissible gauge u. Indeed, let x, y ∈ X s.t.

d(x, y) ≥ u(|x|+ |y|).

Then

d(f(x), f(y)) ≤ cd(x, y) + Cu(|x|+ |y|)
≤ (c+ C)d(x, y),

and

d(f(x), f(y)) ≥ c′d(x, y)− C′u(|x|+ |y|)
≥ (c′ − C′)d(x, y)

So there exists D > 0, s.t. for all x, y > u,

1

D
d(x, y) ≤ d(f(x), f(y)) ≤ Dd(x, y).

In particular, f is an AM -mapping with linear η.

3.2 Assouad-type maps

How can one recognize when a metric space is bi-Lipschitz
equivalent to an Euclidean space? (S. Semmes, On the nonex-
istence of bilipschitz parametrizations, 1996)

Simple as it sounds, this question is not obvious. If a metric space ad-
mits a bi-Lipschitz embedding in Rn, then it is clearly doubling. The
converse is not true, however; the 3-dimensional Heisenberg group with
the Carnot-Carathéodory metric is doubling, but does not admit a bi-
Lipschitz embedding in Rn for any n.

Assouad’s embedding theorem [1] [13] states that any snowflake Xα =
(X, dα), 0 < α < 1, of a doubling metric space admits a bi-Lipschitz
embedding in a Euclidean space.

It is clear that the Assouad embedding of a doubling metric space into
Euclidean space is an asymptotic-Möbius map. In what follows, we con-
struct an example of an Assouad mapping from an infinite dimensional
Heisenberg group into a Hilbert space. This construction follows straight-
forwardly from a construction of Lee and Naor for the finite dimensional
case [12].
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Let H be an infinite dimensional complex Hilbert space. H carries the
symplectic form Ω(a, b) = Im(〈a, b〉).
The infinite-dimensional Heisenberg group HΩ, is the set of tuples (a, t)
with a ∈ H, t ∈ R and the group law

(a, t)(a′, t′) = (a+ a′, t+ t′ + 2Ω(a, a′)).

Let G be a group with identity element e. A group seminorm on G is a
function G → [0,∞) satisfying N(g−1) = N(g) for all g ∈ G, N(gh) ≤
N(g) +N(h) for all g, h ∈ G and N(e) = 0. Moreover, if N(g) = 0 if and
only if g = e, then N is a group norm on G.

The function

N(a, t) =

󰁴󰁳
||a||4 + t2 + ||a||2,

is a group norm on HΩ. Namely, if N1 and N2 are group seminorms, then󰁳
N2

1 +N2
2 is a group seminorm. In this case, N1 = (||a||4 + t2)

1
4 is the

Koranyi norm. Given N ,

dN ((a, t), (a′, t′)) = N((a, t)(a′, t′)−1)

is a right invariant metric on HΩ.

Let G be a group, then a Hermitian kernel on G is a complex-valued
function K : G×G → C satisfying K(g, h) = K(h, g) for all g, h ∈ G.

A Hermitian kernel on G is positive definite if

n󰁛

i,j

K(gi, gj)cicj ≥ 0

for all g1, . . . , gn ∈ G and for all complex numbers c1, . . . , cn ∈ C, with
equality if and only if the ci vanish. A Hermitian kernel on G is condi-
tionally negative definite if

n󰁛

i,j

K(gi, gj)cicj ≤ 0

for all g1, . . . , gn ∈ G and for all complex numbers c1, . . . , cn ∈ C satisfying󰁓n
i ci = 0.

Theorem 2 (Schönberg [17]). Let G be a group, K : G×G → R a real-
valued kernel on G satisfying K(g, g) = 0 ∀g ∈ G. Then K is negative
definite if and only if there exists a Hilbert space H and a function T :
G → H such that ∀g, h ∈ G : K(g, h) = 󰀂T (g)− T (h)󰀂2.

Thus, if dN is negative definite, then there is a Hilbert space H and an
isometry T : (HΩ,

√
dN ) → H. In particular, the mapping T : (HΩ, dN ) →

H is an AM mapping.

A complex-valued function F on a group G satisfying F (g−1) = F (g)
for all g ∈ G induces a Hermitian kernel on G by defining KF (g, h) :=
F (gh−1). The function F is called positive definite if KF is a positive
definite Hermitian kernel on G.

11



Lemma 10. For any λ ∈ R, the function

Φλ(a, t) = e−|λ|󰀂a󰀂2+iλt

is positive definite on HΩ.

Proof: Indeed, the function Φλ satisfies the condition Φλ((a, t)
−1) =

Φλ((a, t)) and induces the kernel

K((a, s), (b, t)) := exp(−|λ|󰀂a− b󰀂2 + iλ(s− t− 2Ω(a, b))).

The kernel can be rewritten as a product of three exponentials

exp(−|λ|(󰀂a󰀂2+󰀂b󰀂2)) exp(iλ(s−t)) exp(2|λ|(Re(〈a, b〉)−i sign(λ)Ω(a, b))).

The product of positive definite kernels is positive definite. The first
two factors are positive definite because for all c1, . . . , cn ∈ C the matrix
(cicj)i,j is positive semidefinite. In particular, also the matrix (exp(iλ(si−
tj))cicj)i,j . The exponential of any positive definite kernel is again a
positive definite kernel ([3] Proposition 8.2.). Thus the kernelK is positive
definite if

Re(〈a, b〉)− i sign(λ)Ω(a, b)

is positive definite. This is 〈a, b〉 if λ < 0 and 〈a, b〉 if λ ≥ 0 and thus
clearly positive definite.

Proposition 11. dN : HΩ ×HΩ → H is conditionally negative definite.

Proof: The existence of 1
2
-stable distributions implies that for all 󰂃 > 0

there exists a non-negative integrable function ϕ󰂃 : R → [0,∞) s.t. its

Fourier transform ϕ̂󰂃(t) = e−󰂃
√

|t|. Note that 1
2π

ˆ̂ϕ󰂃(x) = ϕ󰂃(x).

By the above lemma,

F󰂃(a, t) =

󰁝

R
e−|λ|󰀂a󰀂2+iλtϕ󰂃(λ)dλ

is positive definite on HΩ. Let

hk(x) =
k

π

1

k2 + x2

denote the Cauchy distribution with scale parameter k > 0. We write
around

F󰂃(a, t) =
1

2π

󰁝

R
eiλtĥ󰀂a󰀂2(λ) ˆ̂ϕ󰂃(λ)dλ

=
1

2π

󰁝

R
eiλth󰀂a󰀂2 ∗ ϕ̂󰂃

󰁙

(λ)dλ

= (h󰀂a󰀂2 ∗ ϕ̂󰂃)(t).

Since F󰂃 is positive definite, 1−F󰂃
󰂃

is conditionally negative definite and

lim
󰂃→0

1− F󰂃(a, t)

󰂃
= lim

󰂃→0

󰀅
h󰀂a󰀂2 ∗ 1− ϕ̂󰂃

󰂃

󰀆

= lim
󰂃→0

󰁝

R

1− e−󰂃
√

|x|

󰂃
h󰀂a󰀂2(t− x)dx

=
󰀂a󰀂2

π

󰁝

R

󰁳
|x|

󰀂a󰀂4 + (t− x)2
dx.

12



We now show that for all r, t ∈ R

r2
󰁝

R

󰁳
|x|

r4 + (t− x)2
dx = π

󰁴󰁳
r4 + t2 + r2.

By changing variables x = r2y and s = t/r2, the left hand side can be
written as 󰁝 ∞

0

󰀓 1

1 + (s− y)2
+

1

1 + (s+ y)2

󰀔√
y dy

This integral is equal to

lim
r→0

lim
R→∞

1

2

󰁝

Cr,R

󰀓 1

1 + (s− z)2
+

1

1 + (s+ z)2

󰀔√
z dz,

where Cr,R is the keyhole contour with a branch cut along the posi-
tive real axis. The integrand has simple poles at i ± s and −i ± s. By
Res(

√
z

1+(s−z)2
, i+s) =

√
i+s
2i

, Res(
√
z

1+(s−z)2
,−i+s) =

√
−i+s
−2i

, Res(
√
z

1+(s+z)2
, i−

s) =
√
i−s
2i

and Res(
√
z

1+(s+z)2
,−i− s) =

√
−i−s
−2i

. Now adding all the resid-

uals and multiplying by 2πi, we obtain the above equation as

π

2
(
√
i+ s−

√
−i+ s+

√
i− s−

√
−i− s).

This further simplifies to

π Re(
√
i+ s+

√
i− s) = π (Re(

√
i+ s) + Im(

√
i+ s))

= π

󰀣󰁶√
1 + s2 + s

2
+

󰁶√
1 + s2 − s

2

󰀤

= π

󰁴󰁳
1 + s2 + 1

So we have seen that the N -norm is a limit of conditionally negative
definite functions on HΩ, so it is conditionally negative definite.

4 Applications to dimension theory

4.1 Dimension theory of finitely-generated groups

In 1993 M. Gromov introduced the notion of asymptotic dimension as a
large scale analogue of Lebesgue’s covering dimension [7]. The asymptotic
dimension of a finitely generated group is a quasi-isometric invariant. Its
most prominent application goes back to Guoliang Yu, who showed that
any finitely generated group with finite homotopy type and finite asymp-
totic dimension satisfies the Novikov conjecture [21].

Definition 12. Let X be a metric space. We say that the asymptotic
dimension of X does not exceed n if for every uniformly bounded open
cover V of X there exists a uniformly bounded open cover U of X of
multiplicity ≤ n+ 1 such that V refines U . We write asdimX = n if it is
true that asdimX ≤ n and asdimX ≰ n− 1

13



The asymptotic dimension of a finitely generated group Γ has several
interesting implications. For example, asdimΓ = 0 if and only if Γ is
finite (Proposition 65. in [2]) and asdimΓ = 1 if and only if Γ is virtually
free (Theorem 66. in [2]).

If G is a finitely generated nilpotent group, then its asymptotic cone Gω

is a Carnot group [14] and the asymptotic dimension of G coincides with
the topological dimension of its asymptotic cone [2].

Theorem 3. Let G and G′ be a finitely generated nilpotent groups and
f : G → G′ an AM-map, then asdim(G) ≤ asdim(G′). If G and G′ are
nilpotent Lie groups, then dim(G) ≤ dim(G′). Futhermore, if asdim(G) =
asdim(G′), then the asymptotic cones of G and G′ are isomorphic graded
Lie groups. Conversely, given nilpotent groups with isomorphic asymptotic
cones, there exists an asymptotic-Möbius map between them.

Proof: The mapping f induces a quasisymmetric mapping g between
the asymptotic cones Gω and G′

ω of G and G′, respectively.

In particular, g is an injective mapping from Gω to G′
ω and hence the topo-

logical dimensions increase. Since G and G′ are nilpotent, asdim(G) =
top-dim(Gω) ≤ top-dim(G′

ω) = asdim(G′).

The case for nilpotent Lie groups follows from the fact that for nilpotent
Lie groups top-dim(G) = top-dim(Gω).

If asdim(G) = asdim(G′), the invariance of domain theorem implies that
g is a homeomorphism. Since both g and g−1 are quasisymmetric, they
are differentiable by Pansu’s theorem a.e., and the differential of g is a
graded isomorphism of groups at almost every point [15].

4.2 Dimension theory of CAT(0)-spaces

Heinrich Jung established in the early 1900s that the diameter of a set
in Euclidean space Rn is related to the radius of the smallest enclosing
ball by an inequality whose constant depends only on the dimension n [9].
More precisely, for any set A ⊂ Rn

r ≤ d(A)

󰁵
n

2(n+ 1)
, (1)

where r is the radius of the smallest enclosing ball of A and d(A) is the
diameter of A.

The above inequality can be used to define a geometric dimension of
CAT(0)-spaces. A CAT(0)-space X has geometric dimension less than
n if and only if the Jung’s inequality (1) is true in X [4].

Remark 13. It turns out that the geometric dimension of a CAT(0)-space
X is equal to the maximal topological dimension of all compact subsets in
X [10].

The geometric dimension can be transformed into a large-scale term in
the following way. A CAT(0)-space X has telescopic dimension less than
n if and only if for every δ > 0 there is a D > 0 such that for every set A
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in X with diameter greater than D,

r ≤
󰀣
δ +

󰁵
n

2(n+ 1)

󰀤
d(A). (2)

Somewhat more general,

Definition 14. A space X whose asymptotic cones are CAT(0) has tele-
scopic dimension ≤ n if every asymptotic cone has geometric dimension
≤ n.

We adopt the notation tele-dim(X) for the telescopic dimension of X.

Theorem 4. Let X and Y be spaces, whose asymptotic cones are CAT(0).
If there exists an AM-map f : X → Y , then the telescopic dimension
increases e.g. tele-dim(X) ≤ tele-dim(Y ).

The theorem follows straight from theorem 1, remark 13 and the fact that
the topological dimension increases under injective continuous maps.

It follows that there can be no AM -mapping from Euclidean buildings of
finite rank r and hence telescopic dimension r to a Euclidean building of
lower rank.

If there is a AM -mapping from a CAT(0)-space to a hyperbolic metric
space, then X is also a hyperbolic metric space.
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