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Asymptotic-Möbius maps.

Georg Grützner

Abstract

Roughly speaking, a map between metric spaces is an asymptotic-
Möbius map if it almost preserves cross-ratios of points being a large dis-
tance apart from each other. We show that under such maps, some large-
scale notions of dimension increases: asymptotic dimension for finitely
generated nilpotent groups, telescopic dimension for CAT (0) spaces.

1 Introduction

This paper introduces and investigates a class of maps that mimics quasi-
Möbius maps in the context of geometric group theory.

In [13] Pierre Pansu introduces a notion of large-scale conformal maps
that mimics the infinitesimal behavior of conformal maps. Briefly, large
scale conformal maps map families of disjoint balls to families of weakly
overlapping quasi-balls. It is a very flexible notion, that includes for ex-
ample coarse embeddings. This flexibility makes the asymptotic behavior
of such maps however less predictable.

In this paper, we introduce a more restrictive and semantically simpler
notion that mimics quasi-Möbius behaviors. Roughly speaking, a map
between metric spaces is an asymptotic-Möbius map if it almost preserves
cross-ratios of points being a large distance apart from each other. In
consequence, the results presented in this paper are much stronger than
in [13].

1.1 Examples

We postpone the precise definition of asymptotic-Möbius (AM) maps until
later. Sources of examples of AM -maps are:

1. Quasi-isometric embeddings,

2. Sublinear-Bilipschitz-equivalences (i.e. maps that induce Lipschitz-
Equivalences on asymptotic cones [5]),

3. Snowflaking (i.e. replacing a metric by a power of it),

4. Assouad maps from doubling metric spaces to RN .

For instance, every nilpotent Lie group or finitely generated group can be
AM -embedded in Euclidean space of sufficiently high dimension [1]. We
shall furthermore encounter infinite dimensional examples.



1.2 Results

Our main result is that under AM -maps some large-scale notion of di-
mension increases. The relevant notion depends on the class of groups
considered.

Theorem 3. Let G and G′ be finitely generated nilpotent groups and
f : G → G′ an AM-map, then asdim(G) ≤ asdim(G′). Futhermore, if
asdim(G) = asdim(G′), then the asymptotic cones of G and G′ are iso-
morphic. Conversely, given nilpotent groups with isomorphic asymptotic
cones, there exists an asymptotic-Möbius map between them.

In the world of CAT(0)-spaces, the analogous theorem takes the following
form.

Theorem 4. Let X and Y be CAT(0) spaces. If there exists an AM-map
f : X → Y , then the telescopic dimension increases e.g. tele-dim(X) ≤
tele-dim(Y ).

2 Asymptotic-Möbius maps

2.1 Quasi-Möbius maps

Let X be a metric space, and x, y, z, w ∈ X a quadruple of distinct points.
Their cross-ratio is

[x, y, z, w] =
d(x, z)d(y, w)

d(x,w)d(y, z)
.

IfX is unbounded, then the cross-ratio extends to the one-point-compactification
of X [14]. A map f : X → Y is quasi-Möbius if there exists a homeo-
morphism η : R+ → R+ such that for all quadruples of distinct points
x, y, z, w ∈ X,

[f(x), f(y), f(z), f(w)] ≤ η([x, y, z, w]).

If f is a homeomorphism, then f is quasi-Möbius iff its inverse is quasi-
Möbius.

Examples of quasi-Möbius maps are

1. the stereographic projection Rn → Sn,

2. the Cayley transforms, the complex, quaternionic and octonionic
analoga of the stereographic projection,

3. inversions x 󰀁→ x
|x|2 in Banach spaces.

2.2 Asymptotic-Möbius maps

Given u : R+ → R, we say that the points x and y are separated in X by
u seen from a fixed origin o, if d(x, y) > u(d(x, o)+d(o, y)). For simplicity
we often write x, y > u and |x| = d(o, x) for the distance to the origin.
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Definition 1. A function u : R+ → R is admissible if

1. it is non-decreasing,

2. u grows sublinearly i.e. lim supr→∞
u(r)
r

= 0.

Definition 2. A map f : X → Y is an asymptotic-Möbius map or AM-
map, if there exists an admissible function u and a homeomorphism η :
R+ → R+ such that for every x, y, z, w in X such that all 6 distances
between x, y, z, w > u, then

[f(x), f(y), f(z), f(w)] < η([x, y, z, w]).

Definition 3. A metric space X is asymptotically chained, if for every
origin o ∈ X there exists an admissible function v, such that for all x, y ∈
X there exists a chain x1 = x, . . . , xk+1 = y that satisfies

max i∈1...k{d(xi, xi+1)} < v(|x|+ |y|).

Our main technical step will be the following theorem, whose proof, after
some preliminary definition, will occupy Section 2.

Theorem 1. Let f be an AM-map from an asymptotically chained space
X to a space Y that preserves diverging and bounded sequences, then
f induces a continuous, injective, quasi-symmetric map g between some
asymptotic cones of X and Y .

2.3 Ultralimits and asymptotic-cones

Definition 4. A (non-principal) ultrafilter ω over N is a set of subsets of
N satisfying the following conditions:

1. If A,B ∈ ω then A ∩B ∈ ω.

2. If A ∈ ω, A ⊂ B ⊂ N, then B ∈ ω.

3. For every A ⊂ N either A ∈ ω or N \A ∈ ω.

4. No finite subset of N is in ω.

Equivalently, ω is a finitely additive measure on N such that each subset
has measure either 0 or 1 and every finite subset has measure 0.

If a statement A(n) holds for all n ∈ B with B belonging to an ultra filter
ω, we say that A(n) holds ω-almost surely.

Definition 5. Let ω be a (non-principle) ultrafilter over N. An ω-limit of
a sequence of points {xn} in a topological space X, is a point x in X such
that for every neighborhood U of x the relation xn ∈ U holds ω-almost
surely.

If X is a Hausdorff-space, then the ω-limit of a sequence is unique. We
denote this point by limω xn.

Definition 6. The ultrapower of a set X w.r.t. an ultrafilter ω, denoted
by Xω, consists of equivalence classes of sequences {xn}, xn ∈ X, where
two sequences {xn} and {yn} are identified if and only if xn = yn ω-almost
surely.
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We adopt the notation {xn}ω for the equivalence class of sequences.

Let (X, d) be a metric space, ω an ultrafilter over N and o an origin
in X. Furthermore, there is given a sequence of numbers {dn}, with
limω dn = ∞. Then there exists a pseudo-metric on the ultrapower Xω

by setting the distance between x = {xn}ω and y = {yn}ω to

dω(x, y) = lim
ω

d(xn, yn)

dn
.

Let Xω
o be the set of equivalence classes of elements x = {xn}ω in Xω

that satisfy limω
d(xn,o)

dn
< ∞ and two elements x = {xn}ω and y = {yn}ω

of Xω are identified if and only if dω(x, y) = 0. The metric space (Xω
o , dω)

is called an asymptotic cone of (X, d).

We adopt the notation xω for points in the asymptotic cone (Xω
o , dω) of

(X, d).

Lemma 7. If xω ∕= yω, then for all admissible functions u and all se-
quences {xn}, {yn} representing xω and yω respectively,

d(xn, yn) > u(|xn|+ |yn|), ω − a.s.

Proof: If there exists an admissible function u and sequences {xn}, {yn}
such that

d(xn, yn) ≤ u(|xn|+ |yn|), ω − a.s.

then ω − a.s.,
d(xn, yn)

dn
≤ u(|xn|+ |yn|)

dn
.

Thus

lim
ω

d(xn, yn)

dn
= 0.

Lemma 8. Let X be an asymptotically chained metric space. Let {xn}
and {yn} be two sequences in X representing the same point xω differ-
ent from the origin oω, and such that xn ∕= yn ω − a.s. Then for every
admissible function u, either

d(xn, yn) > u, ω − a.s.

or there exists a sequence {wn} representing the same point s.t.

d(xn, wn) > u ω − a.s.

and
d(yn, wn) > u ω − a.s.

Proof: Suppose d(xn, yn) ≤ u ω − a.s. and by assumption, |xn|, |yn| →
+∞.

Since X is asymptotically chained, there exists an admissible function v
and a chain xn

1 = o, . . . , xn
k+1 = yn such that

max i∈1,...k{d(xn
i , x

n
i+1)} < v(|yn|).
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Assume that n is large enough such that 2u(4|yn|) < |yn|, then at least
one point xn

in in the chain satisfies

2u(4|yn|) < d(yn, x
n
in) ≤ 2u(4|yn|) + v(|yn|).

Define wn = xn
in .

For n large enough,

2d(xn, yn) ≤ 2u(|xn|+ |yn|)
≤ |xn|+ |yn|
≤ 2|yn|+ d(xn, yn).

(1)

Therefore,
d(xn, yn) ≤ u(4|yn|).

and hence

u(4|yn|)) < d(xn, wn) ≤ 3u(4|yn|) + v(|yn|). (2)

Pick N s.t. ∀n ≥ N

3u(4|yn|) + v(|yn|) ≤ 2|yn|.

Then

u(|xn|+ |wn|) ≤ u(|xn|+ |yn|+ d(yn, wn))

≤ u(2|yn|+ d(xn, yn) + 2u(4|yn|) + v(|yn|))
≤ u(2|yn|+ 3u(4|yn|) + v(|yn|))
≤ u(4|yn|)
< d(xn, wn).

(3)

That means xn, wn > u and

d(xn, wn)

dn
≤ 3u(4|yn|) + v(|yn|)

dn
→ 0.

Similarly,

u(|yn|+ |wn|) ≤ u(2|yn|+ d(yn, wn))

≤ u(2|yn|+ 2u(4|yn|) + v(|yn|))
≤ u(4|yn|)
< d(yn, wn).

(4)

2.4 Proof of Theorem 1.

Proof: Let u be an admissible function as given by the definition of f .
Fix an origin o ∈ X. Let Bn be the ball of radius n around o. For every
n, pick a point zn in Bn such that

d(f(o), f(zn)) (5)
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is ’maximal’. More precisely, let 󰂃 > 0 and pick zn such that

d(f(o), f(zn)) > sup
x∈Bn

d(f(o), f(x))− 󰂃. (6)

The supremum on the right-hand-side exists. If not we could construct a
bounded sequence in Bn that is mapped by f to an unbounded sequence.
This contradicts the assumptions.

Furthermore, the four point condition

[f(x), f(w), f(y), f(z)] ≤ η([x,w, y, z]),

reduces to the three point condition

d(f(x), f(y))

d(f(x), f(z))
≤ η(

d(x, y)

d(x, z)
),

by taking w to a point at ∞.

In the following we often shorten the notation f(x) to x′.

Define
dn = d(o, zn) (7)

and
d′n = d(o′, z′n). (8)

By construction and assumption on f , the sequence d′n diverges. Hence,
also the sequence dn must diverge by assumption on f .

(1) We show that if d(o,xn)
dn

is bounded, then d(o′,f(xn))
d′n

is bounded as well.

If xω = oω, then d(o, xn) ≤ dn for n large, therefore d(o′, x′
n) ≤ d′n.

If xω ∕= zω, xω ∕= oω, then by lemma 7 {xn},{zn},{o} are separated by u
ω-a.s. and the Möbius-condition gives

d(o′, x′
n)

d′n
=

d(o′, x′
n)

d(o′, z′n)
< η(

d(o, xn)

d(o, zn)
) = η(

d(o, xn)

dn
) ω − a.s.

Thus
d(o′,x′

n)

d′n
is bounded.

If xω = zω, by lemma 8, there exists {wn} representing the same point
s.t. {wn}, {xn} are u separated and {wn}, {zn} are u separated. In
particular, {wn}, {xn}, {o} and {wn}, {zn}, {o} are u separated. Using
the Möbius-condition again,

d(o′, x′
n)

d′n
=

d(o′, x′
n)

d(o′, z′n)

=
d(o′, x′

n)

d(o′, w′
n)

d(o′, w′
n)

d(o′, z′n)

< η(
d(o, xn)

d(o, wn)
)η(

d(o, wn)

d(o, zn)
)

= η(
d(o, xn)

dn

dn
d(o, wn)

)η(
d(o, wn)

dn
)

→ η(1)2

(9)
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Thus
d(o′,x′

n)

d′n
is bounded.

(2) The map {xn} → {f(xn)} is well-defined from Xω(dn) to Yω(d
′
n).

If {xn} and {yn} are two sequences representing the same point different
from the origin oω, then by lemma 8 and lemma 7, either {xn}, {yn}, {o}
are separated by u, or there exists a sequence {wn} representing the same
point s.t. {xn}, {wn}, {o} and {yn}, {wn}, {o} are separated by u.

In the first case,

d(x′
n, y

′
n)

d′n
=

d(o′, x′
n)

d′n

d(x′
n, y

′
n)

d(x′
n, o′)

≤ d(o′, x′
n)

d′n
η
󰀓d(xn, yn)

d(xn, o)

󰀔

=
d(o′, x′

n)

d′n
η
󰀓d(xn, yn)

dn

dn
d(xn, o)

󰀔

→ 0

In the second case,

d(x′
n, y

′
n)

d′n
≤ d(x′

n, w
′
n)

d′n
+

d(w′
n, y

′
n)

d′n

≤ d(o′, x′
n)

d′n

d(x′
n, w

′
n)

d(x′
n, o′)

+
d(o′, y′

n)

d′n

d(y′
n, w

′
n)

d(y′
n, o′)

≤ d(o′, x′
n)

d′n
η
󰀓d(xn, wn)

d(xn, o)

󰀔
+

d(o′, y′
n)

d′n
η
󰀓d(yn, wn)

d(yn, o)

󰀔

≤ d(o′, x′
n)

d′n
η
󰀓d(xn, wn)

dn

dn
d(xn, o)

󰀔
+

d(o′, y′
n)

d′n
η
󰀓d(yn, wn)

dn

dn
d(yn, o)

󰀔

→ 0

Hence, in both cases x′
ω = y′

ω.

Let {xn} be a sequence representing the origin oω. If {xn} is a bounded
sequence, then by assumption on f also {x′

n} is bounded and therefore
x′
ω = o′ω.

If d(o, xn) diverges, then {xn} and {o} are u-separated. We may pick
yω ∕= oω, then by lemma 7, {xn}, {yn}, {o} are u-separated. Thus,

d(o′, x′
n)

d′n
=

d(o′, y′
n)

d′n

d(o′, x′
n)

d(o′, y′
n)

≤ d(o′, y′
n)

d′n
η(

d(o, xn)

d(o, yn)
)

=
d(o′, y′

n)

d′n
η(

d(o, xn)

dn

dn
d(o, yn)

)

→ 0.

(10)

Therefore o′ω = x′
ω.

(3) The map g : {xn} → {f(xn)} is quasi-symmetric and in particular
continuous and injective.
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Let {wn}, {xn}, {yn} be sequences representing three distinct points wω, xω

and yω inXω(dn). By lemma 7, {wn}, {xn}, {yn} are pairwise u separated.
Thus

d(x′
n, y

′
n)

d(x′
n, w′

n)
< η(

d(xn, yn)

d(xn, wn)
),

equivalently

d(x′
n, y

′
n)

d′n

d′n
d(x′

n, w′
n)

< η(
d(xn, yn)

dn

dn
d(xn, wn)

).

Taking the ω-limit gives

dω(x
′
ω, y

′
ω)

dω(x′
ω, w′

ω)
≤ η(

dω(xω, yω)

dω(xω, wω)
).

Hence, if g : {xn} 󰀁→ {f(xn)} is non-constant, then it is continuous and
injective. Notice that {o′} and {f(zn)} do not represent the same points,
so g is indeed non-constant.

3 Examples

3.1 Sublinearly Lipschitz Equivalences

In [5] Y. Cornulier introduces sublinearly Lipschitz maps. A map f : X →
Y between metric spaces is a sublinearly Lipschitz map, if there exists an
admissible function u : R+ → R such that

d(f(x), f(y)) ≤ Cd(x, y) + C′u(|x|+ |y|), ∀x, y ∈ X,

for some constants C,C′ > 0.

Two sublinearly Lipschitz maps f, f ′ are equivalent, if there exists an
admissible function v and a constant C′′ > 0, such that

d(f(x), f ′(x)) ≤ C′′v(|x|)

for all x ∈ X.

Sublinearly Lipschitz maps between metric spaces form a category. Taking
asymptotic cones yields a functor from the sublinearly Lipschitz category
to the Lipschitz category. The sublinearly Lipschitz category is in some
sense the maximal category with such a property.

The isomorphisms in the sublinearly Lipschitz category are called sublin-
early Lipschitz equivalences, or SBE maps.

Proposition 9. Every SBE-map f : X → Y is an AM-map with linear
η.

Proof: If f is SBE, then f is bi-Lipschitz except at scales below some
admissible function u. Indeed, let x, y ∈ X s.t.

d(x, y) ≥ u(|x|+ |y|).
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Then

d(f(x), f(y)) ≤ cd(x, y) + Cu(|x|+ |y|)
≤ (c+ C)d(x, y),

(11)

and

d(f(x), f(y)) ≥ c′d(x, y)− C′u(|x|+ |y|)
≥ (c′ − C′)d(x, y)

(12)

Hence, there exists D > 0, s.t. for all x, y > u,

1

D
d(x, y) ≤ d(f(x), f(y)) ≤ Dd(x, y).

In particular, f is an AM -map with linear η.

3.2 Assouad-type maps

Assouad’s embedding theorem [1] [10] says that every snowflake Xα =
(X, dα), 0 < α < 1, of a doubling metric space admits a bi-Lipschitz
embedding into some Euclidean space.

Clearly, the Assouad embedding of a doubling metric space into Euclidean
space is an asymptotic-Möbius map.

In the following we construct an example of a Assouad type map from
an infinite dimensional Heisenberg group into a Hilbert space. This con-
struction follows straightforwardly from a construction by Lee and Naor
in the finite dimensional case [9].

Let H be an infinite dimensional complex Hilbert space. H carries the
symplectic form Ω(a, b) = Im(〈a, b〉).
The infinite dimensional Heisenberg group HΩ, is the set of tuples (a, t)
with a ∈ H, t ∈ R and group law

(a, t)(a′, t′) = (a+ a′, t+ t′ + 2Ω(a, a′)).

Let G be a group with identity element e. A group seminorm on G
is a function G → [0,∞) that satisfies N(g−1) = N(g) for all g ∈ G,
N(gh) ≤ N(g) + N(h) for all g, h ∈ G and N(e) = 0. If in addition
N(g) = 0 if and only if g = e, then N is a group norm on G.

The function

N(a, t) =

󰁴󰁳
||a||4 + t2 + ||a||2,

is a group norm on HΩ. Indeed, if N1 and N2 are group seminorms, then󰁳
N2

1 +N2
2 is a group seminorm. In this case N1 = (||a||4 + t2)

1
4 is the

Koranyi-norm. Given N ,

dN ((a, t), (a′, t′)) = N((a, t)(a′, t′)−1)

is a right-invariant metric on HΩ.

Let G be a group, a Hermitian kernel on G is a complex valued function
K : G×G → C that satisfies K(g, h) = K(h, g) for all g, h ∈ G.
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A Hermitian kernel on G is positive definite if

n󰁛

i,j

K(gi, gj)cicj ≥ 0

for all g1, . . . , gn ∈ G and for all complex numbers c1, . . . , cn ∈ C, with
equality if and only if the ci vanish. A Hermitian kernel on G is condi-
tionally negative definite if

n󰁛

i,j

K(gi, gj)cicj ≤ 0

for all g1, . . . , gn ∈ G and for all complex numbers c1, . . . , cn ∈ C satisfying󰁓n
i ci = 0 and with equality if and only if the ci vanish.

Theorem 2 (Schönberg). Let G be a group, K : G×G → R a real valued
kernel on G satisfying K(g, g) = 0 ∀g ∈ G. Then K is negative definite if
and only if there exists a Hilberspace H and a function T : G → H such
that ∀g, h ∈ G : K(g, h) = 󰀂T (g)− T (h)󰀂2.

Thus, if dN is negative definite, then there exists a Hilbert space H and an
isometry T : (HΩ,

√
dN ) → H. In particular, the map T : (HΩ, dN ) → H

is an AM -map.

A complex valued function F on a group G that satisfies F (g−1) = F (g)
for all g ∈ G induces a Hermitian kernel on G by defining KF (g, h) :=
F (gh−1). The function F is said to be positive definite, if KF is a positive
definite Hermitian kernel on G.

Lemma 10. For every λ ∈ R the function

Φλ(a, t) = e−|λ|󰀂a󰀂2+iλt

is positive definite on HΩ.

Proof: Indeed the function Φλ satisfies Φλ((a, t)
−1) = Φλ((a, t)) and

induces the kernel

K((a, s), (b, t)) := exp(−|λ|󰀂a− b󰀂2 + iλ(s− t− 2Ω(a, b))).

The kernel can be rewritten as product of three exponentials

exp(−|λ|(󰀂a󰀂2+󰀂b󰀂2)) exp(iλ(s−t)) exp(2|λ|(Re(〈a, b〉)−i sign(λ)Ω(a, b))).

The product of positive definite kernels is positive definite. The first
two factors are positive definite since for all c1, . . . , cn ∈ C, the matrix
(cicj)i,j is positive semi-definite. In particular also the matrix (exp(iλ(si−
tj))cicj)i,j . The exponential of any positive definite kernel is again a
positive definite kernel ([3] Proposition 8.2.). Therefore the kernel K is
positive definite if

Re(〈a, b〉)− i sign(λ)Ω(a, b)

is positive definite. This is 〈a, b〉 if λ < 0 and 〈a, b〉 if λ ≥ 0 and therefore
clearly positive definite.
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Proposition 11. dN : HΩ ×HΩ → H is conditionally negative definite.

Proof: The existence of 1
2
-stable distributions implies that for all 󰂃 > 0,

there exists a non-negative integrable function ϕ󰂃 : R → [0,∞) s.t. its

Fourier-transform ϕ̂󰂃(t) = e−󰂃
√

|t|. Notice that 1
2π

ˆ̂ϕ󰂃(x) = ϕ󰂃(x).

By the lemma above,

F󰂃(a, t) =

󰁝

R
e−|λ|󰀂a󰀂2+iλtϕ󰂃(λ)dλ

is positive definite on HΩ. Let

hk(x) =
k

π

1

k2 + x2

denote the Cauchy-distribution with scale parameter k > 0. We rewrite

F󰂃(a, t) =
1

2π

󰁝

R
eiλtĥ󰀂a󰀂2(λ) ˆ̂ϕ󰂃(λ)dλ

=
1

2π

󰁝

R
eiλth󰀂a󰀂2 ∗ ϕ̂󰂃

󰁙

(λ)dλ

= (h󰀂a󰀂2 ∗ ϕ̂󰂃)(t).

(13)

Since F󰂃 is positive definite, 1−F󰂃
󰂃

is conditionally negative definite and

lim
󰂃→0

1− F󰂃(a, t)

󰂃
= lim

󰂃→0

󰀅
h󰀂a󰀂2 ∗ 1− ϕ̂󰂃

󰂃

󰀆

= lim
󰂃→0

󰁝

R

1− e−󰂃
√

|x|

󰂃
h󰀂a󰀂2(t− x)dx

=
󰀂a󰀂2

π

󰁝

R

󰁳
|x|

󰀂a󰀂4 + (t− x)2
dx.

(14)

We now show that for all r, t ∈ R

r2
󰁝

R

󰁳
|x|

r4 + (t− x)2
dx = π

󰁴󰁳
r4 + t2 + r2.

By change of variables x = r2y and s = t/r2, the left-hand-side can be
written as 󰁝 ∞

0

󰀓 1

1 + (s− y)2
+

1

1 + (s+ y)2

󰀔√
y dy

This integral equals

lim
r→0

lim
R→∞

1

2

󰁝

Cr,R

󰀓 1

1 + (s− z)2
+

1

1 + (s+ z)2

󰀔√
z dz,

where Cr,R is the keyhole contour with a branch cut along the positive
real axis. The integrand has simple poles at i ± s and −i ± s. With
Res(

√
z

1+(s−z)2
, i+s) =

√
i+s
2i

, Res(
√
z

1+(s−z)2
,−i+s) =

√
−i+s
−2i

, Res(
√
z

1+(s+z)2
, i−

s) =
√
i−s
2i

and Res(
√
z

1+(s+z)2
,−i−s) =

√
−i−s
−2i

. Now adding all the residues

and multiplying by 2πi, lets us evaluate the above equation as being

π

2
(
√
i+ s−

√
−i+ s+

√
i− s−

√
−i− s).
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This simplifies further to

π Re(
√
i+ s+

√
i− s) = π (Re(

√
i+ s) + Im(

√
i+ s))

= π

󰀣󰁶√
1 + s2 + s

2
+

󰁶√
1 + s2 − s

2

󰀤

= π

󰁴󰁳
1 + s2 + 1

(15)

Thus we have seen, that the N -norm is a limit of conditionally negative
definite functions on HΩ, hence it is conditionally negative definite.

4 Applications to dimension theory

4.1 Dimension theory of finitely-generated groups

In 1993 M. Gromov introduced a notion of asymptotic dimension as a
large scale analogue of Lebesgue’s covering dimension [6]. The asymp-
totic dimension of a finitely generated group is a quasi-isometric invariant.
Its most prominent application is due to Yu G., who showed that every
finitely generated group with finite homotopy type and finite asymptotic
dimension, satisfies the Novikov conjecture [15].

Definition 12. Let X be a metric space. We say that the asymptotic
dimension of X does not exceed n provided for every uniformly bounded
open cover V of X there is a uniformly bounded open cover U of X of
multiplicity ≤ n + 1 so that V refines U . We write asdimX = n if it is
true that asdimX ≤ n and asdimX ≰ n− 1

The asymptotic dimension of a finitely generated group Γ has several
interesting implications. For example asdimΓ = 0 if and only if Γ is finite
(Proposition 65. in [2]) and asdimΓ = 1 if and only if Γ is virtually free
(Theorem 66. in [2]).

If G is a finitely generated nilpotent group, then its asymptotic cone Gω

is a Carnot group [11] and the asymptotic dimension of G agrees with the
topological dimension of its asymptotic cone [2].

Theorem 3. Let G and G′ be a finitely generated nilpotent groups and
f : G → G′ an AM-map, then asdim(G) ≤ asdim(G′). If G and G′ are
nilpotent Lie groups, then dim(G) ≤ dim(G′). Futhermore, if asdim(G) =
asdim(G′), then the asymptotic cones of G and G′ are isomorphic graded
Lie groups. Conversely, given nilpotent groups with isomorphic asymptotic
cones, there exists an asymptotic-Möbius map between them.

Proof: The map f induces a quasi-symmetric map g between asymptotic
cones Gω and G′

ω of G and G′ respectively.

In particular g is an injective map from Gω to G′
ω and therefore the topo-

logical dimensions increase. Since G and G′ are nilpotent, asdim(G) =
top-dim(Gω) ≤ top-dim(G′

ω) = asdim(G′).

The case for nilpotent Lie groups follows from the fact that for nilpotent
Lie groups, top-dim(G) = top-dim(Gω).

12



If asdim(G) = asdim(G′), the invariance of domain theorem implies that
g is a homeomorphism. Since both g and g−1 are quasi-symmetric, they
are a.e. differentiable by Pansu’s theorem and the differential of g is at
almost every point a graded isomorphism of groups [12].

4.2 Dimension theory of CAT(0)-spaces

Heinrich Jung observed in early 1900, that the diameter of a set in Eu-
clidean space Rn is related to the radius of the minimum enclosing ball
by an inequality, whose constant depends only on the dimension n [7].
Precisely, for any set A ⊂ Rn

r ≤ d(A)

󰁵
n

2(n+ 1)
, (16)

where r is the radius of the minimum enclosing ball of A and d(A) is the
diameter of A.

Caprace and Lytchak observed [4], that a CAT(0)-space has geometric
dimension less than n (as defined by B. Kleiner [8]), if and only if Jung’s
inequality (16) is true.

Remark 13. It turns out that the geometric dimension of a CAT(0)-space
X is equal to the maximal topological dimension of all compact subsets in
X [8].

The geometric dimension can be turned into a large-scale notion in the
following manner. A CAT(0)-space X has telescopic dimension less then
n if and only if for every δ > 0, there exists a D > 0 such that for every
set A in X with diameter larger then D,

r ≤
󰀣
δ +

󰁵
n

2(n+ 1)

󰀤
d(A). (17)

Alternatively,

Definition 14. A CAT(0)-space X has telescopic dimension ≤ n, if every
asymptotic cone has geometric dimension ≤ n.

We adopt the notation tele-dim(X) for the telescopic dimension of X.

Theorem 4. Let X and Y be CAT(0) spaces. If there exists an AM-map
f : X → Y , then the telescopic dimension increases e.g. tele-dim(X) ≤
tele-dim(Y ).

The theorem follows straight forward from Theorem 1, Remark 13 and the
fact that the topological dimension increases under injective continuous
maps.

As a consequence, there cannot exist an AM -map from Euclidean build-
ings of finite rank r and thus telescopic dimension r, to a Euclidean build-
ing of lower rank.

If there exists an AM -map from a CAT(0) space to a hyperbolic metric
space, then X is a hyperbolic metric space as well.

13
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nales scientifiques de l’École normale supérieure 52 (02 2017).

[6] Gromov, M. Asymptotic invariants of infinite groups, vol. 2. Cam-
bridge Univ. Press, 1993.

[7] Jung, H. Ueber die kleinste kugel, die eine räumliche figur ein-
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