Asymptotic-Möbius maps.

Georg Grützner

Abstract

Roughly speaking, a map between metric spaces is an asymptoticMöbius map if it almost preserves cross-ratios of points being a large distance apart from each other. We show that under such maps, some largescale notions of dimension increases: asymptotic dimension for finitely generated nilpotent groups, telescopic dimension for $C A T(0)$ spaces.

1 Introduction

This paper introduces and investigates a class of maps that mimics quasiMöbius maps in the context of geometric group theory.
In [13] Pierre Pansu introduces a notion of large-scale conformal maps that mimics the infinitesimal behavior of conformal maps. Briefly, large scale conformal maps map families of disjoint balls to families of weakly overlapping quasi-balls. It is a very flexible notion, that includes for example coarse embeddings. This flexibility makes the asymptotic behavior of such maps however less predictable.

In this paper, we introduce a more restrictive and semantically simpler notion that mimics quasi-Möbius behaviors. Roughly speaking, a map between metric spaces is an asymptotic-Möbius map if it almost preserves cross-ratios of points being a large distance apart from each other. In consequence, the results presented in this paper are much stronger than in [13].

1.1 Examples

We postpone the precise definition of asymptotic-Möbius ($A M$) maps until later. Sources of examples of $A M$-maps are:

1. Quasi-isometric embeddings,
2. Sublinear-Bilipschitz-equivalences (i.e. maps that induce LipschitzEquivalences on asymptotic cones [5]),
3. Snowflaking (i.e. replacing a metric by a power of it),
4. Assouad maps from doubling metric spaces to \mathbb{R}^{N}.

For instance, every nilpotent Lie group or finitely generated group can be $A M$-embedded in Euclidean space of sufficiently high dimension [1]. We shall furthermore encounter infinite dimensional examples.

1.2 Results

Our main result is that under $A M$-maps some large-scale notion of dimension increases. The relevant notion depends on the class of groups considered.
Theorem 3. Let G and G^{\prime} be finitely generated nilpotent groups and $f: G \rightarrow G^{\prime}$ an AM-map, then $\operatorname{asdim}(G) \leq \operatorname{asdim}\left(G^{\prime}\right)$. Futhermore, if $\operatorname{asdim}(G)=\operatorname{asdim}\left(G^{\prime}\right)$, then the asymptotic cones of G and G^{\prime} are isomorphic. Conversely, given nilpotent groups with isomorphic asymptotic cones, there exists an asymptotic-Möbius map between them.

In the world of CAT(0)-spaces, the analogous theorem takes the following form.
Theorem 4. Let X and Y be CAT(0) spaces. If there exists an AM-map $f: X \rightarrow Y$, then the telescopic dimension increases e.g. tele- $\operatorname{dim}(X) \leq$ tele-dim(Y).

2 Asymptotic-Möbius maps

2.1 Quasi-Möbius maps

Let X be a metric space, and $x, y, z, w \in X$ a quadruple of distinct points. Their cross-ratio is

$$
[x, y, z, w]=\frac{d(x, z) d(y, w)}{d(x, w) d(y, z)}
$$

If X is unbounded, then the cross-ratio extends to the one-point-compactification of X [14]. A map $f: X \rightarrow Y$ is quasi-Möbius if there exists a homeomorphism $\eta: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that for all quadruples of distinct points $x, y, z, w \in X$,

$$
[f(x), f(y), f(z), f(w)] \leq \eta([x, y, z, w])
$$

If f is a homeomorphism, then f is quasi-Möbius iff its inverse is quasiMöbius.
Examples of quasi-Möbius maps are

1. the stereographic projection $\mathbb{R}^{n} \rightarrow S^{n}$,
2. the Cayley transforms, the complex, quaternionic and octonionic analoga of the stereographic projection,
3. inversions $x \mapsto \frac{x}{|x|^{2}}$ in Banach spaces.

2.2 Asymptotic-Möbius maps

Given $u: \mathbb{R}_{+} \rightarrow \mathbb{R}$, we say that the points x and y are separated in X by u seen from a fixed origin o, if $d(x, y)>u(d(x, o)+d(o, y))$. For simplicity we often write $x, y>u$ and $|x|=d(o, x)$ for the distance to the origin.

Definition 1. A function $u: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is admissible if

1. it is non-decreasing,
2. u grows sublinearly i.e. $\lim \sup _{r \rightarrow \infty} \frac{u(r)}{r}=0$.

Definition 2. A map $f: X \rightarrow Y$ is an asymptotic-Möbius map or AMmap, if there exists an admissible function u and a homeomorphism η : $\mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that for every x, y, z, w in X such that all 6 distances between $x, y, z, w>u$, then

$$
[f(x), f(y), f(z), f(w)]<\eta([x, y, z, w])
$$

Definition 3. A metric space X is asymptotically chained, if for every origin $o \in X$ there exists an admissible function v, such that for all $x, y \in$ X there exists a chain $x_{1}=x, \ldots, x_{k+1}=y$ that satisfies

$$
\max _{i \in 1 \ldots k}\left\{d\left(x_{i}, x_{i+1}\right)\right\}<v(|x|+|y|) .
$$

Our main technical step will be the following theorem, whose proof, after some preliminary definition, will occupy Section 2.
Theorem 1. Let f be an AM-map from an asymptotically chained space X to a space Y that preserves diverging and bounded sequences, then f induces a continuous, injective, quasi-symmetric map g between some asymptotic cones of X and Y.

2.3 Ultralimits and asymptotic-cones

Definition 4. A (non-principal) ultrafilter ω over \mathbb{N} is a set of subsets of \mathbb{N} satisfying the following conditions:

1. If $A, B \in \omega$ then $A \cap B \in \omega$.
2. If $A \in \omega, A \subset B \subset \mathbb{N}$, then $B \in \omega$.
3. For every $A \subset \mathbb{N}$ either $A \in \omega$ or $\mathbb{N} \backslash A \in \omega$.
4. No finite subset of \mathbb{N} is in ω.

Equivalently, ω is a finitely additive measure on \mathbb{N} such that each subset has measure either 0 or 1 and every finite subset has measure 0 .
If a statement $A(n)$ holds for all $n \in B$ with B belonging to an ultra filter ω, we say that $A(n)$ holds ω-almost surely.
Definition 5. Let ω be a (non-principle) ultrafilter over \mathbb{N}. An ω-limit of a sequence of points $\left\{x_{n}\right\}$ in a topological space X, is a point x in X such that for every neighborhood U of x the relation $x_{n} \in U$ holds ω-almost surely.

If X is a Hausdorff-space, then the ω-limit of a sequence is unique. We denote this point by $\lim _{\omega} x_{n}$.
Definition 6. The ultrapower of a set X w.r.t. an ultrafilter ω, denoted by X^{ω}, consists of equivalence classes of sequences $\left\{x_{n}\right\}, x_{n} \in X$, where two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are identified if and only if $x_{n}=y_{n} \omega$-almost surely.

We adopt the notation $\left\{x_{n}\right\}_{\omega}$ for the equivalence class of sequences.
Let (X, d) be a metric space, ω an ultrafilter over \mathbb{N} and o an origin in X. Furthermore, there is given a sequence of numbers $\left\{d_{n}\right\}$, with $\lim _{\omega} d_{n}=\infty$. Then there exists a pseudo-metric on the ultrapower X^{ω} by setting the distance between $x=\left\{x_{n}\right\}_{\omega}$ and $y=\left\{y_{n}\right\}_{\omega}$ to

$$
d_{\omega}(x, y)=\lim _{\omega} \frac{d\left(x_{n}, y_{n}\right)}{d_{n}} .
$$

Let X_{o}^{ω} be the set of equivalence classes of elements $x=\left\{x_{n}\right\}_{\omega}$ in X^{ω} that satisfy $\lim _{\omega} \frac{d\left(x_{n}, o\right)}{d_{n}}<\infty$ and two elements $x=\left\{x_{n}\right\}_{\omega}$ and $y=\left\{y_{n}\right\}_{\omega}$ of X^{ω} are identified if and only if $d_{\omega}(x, y)=0$. The metric space $\left(X_{o}^{\omega}, d_{\omega}\right)$ is called an asymptotic cone of (X, d).
We adopt the notation x_{ω} for points in the asymptotic cone $\left(X_{o}^{\omega}, d_{\omega}\right)$ of (X, d).
Lemma 7. If $x_{\omega} \neq y_{\omega}$, then for all admissible functions u and all sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ representing x_{ω} and y_{ω} respectively,

$$
d\left(x_{n}, y_{n}\right)>u\left(\left|x_{n}\right|+\left|y_{n}\right|\right), \quad \omega-\text { a.s. }
$$

Proof: If there exists an admissible function u and sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ such that

$$
d\left(x_{n}, y_{n}\right) \leq u\left(\left|x_{n}\right|+\left|y_{n}\right|\right), \quad \omega-\text { a.s. }
$$

then ω - a.s.,

$$
\frac{d\left(x_{n}, y_{n}\right)}{d_{n}} \leq \frac{u\left(\left|x_{n}\right|+\left|y_{n}\right|\right)}{d_{n}}
$$

Thus

$$
\lim _{\omega} \frac{d\left(x_{n}, y_{n}\right)}{d_{n}}=0 .
$$

Lemma 8. Let X be an asymptotically chained metric space. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two sequences in X representing the same point x_{ω} different from the origin o_{ω}, and such that $x_{n} \neq y_{n} \omega-a . s$. Then for every admissible function u, either

$$
d\left(x_{n}, y_{n}\right)>u, \quad \omega-a . s .
$$

or there exists a sequence $\left\{w_{n}\right\}$ representing the same point s.t.

$$
d\left(x_{n}, w_{n}\right)>u \quad \omega-a . s .
$$

and

$$
d\left(y_{n}, w_{n}\right)>u \quad \omega-\text { a.s. }
$$

Proof: Suppose $d\left(x_{n}, y_{n}\right) \leq u \omega-$ a.s. and by assumption, $\left|x_{n}\right|,\left|y_{n}\right| \rightarrow$ $+\infty$.
Since X is asymptotically chained, there exists an admissible function v and a chain $x_{1}^{n}=o, \ldots, x_{k+1}^{n}=y_{n}$ such that

$$
\max _{i \in 1, \ldots k}\left\{d\left(x_{i}^{n}, x_{i+1}^{n}\right)\right\}<v\left(\left|y_{n}\right|\right) .
$$

Assume that n is large enough such that $2 u\left(4\left|y_{n}\right|\right)<\left|y_{n}\right|$, then at least one point $x_{i_{n}}^{n}$ in the chain satisfies

$$
2 u\left(4\left|y_{n}\right|\right)<d\left(y_{n}, x_{i_{n}}^{n}\right) \leq 2 u\left(4\left|y_{n}\right|\right)+v\left(\left|y_{n}\right|\right) .
$$

Define $w_{n}=x_{i_{n}}^{n}$.
For n large enough,

$$
\begin{align*}
2 d\left(x_{n}, y_{n}\right) & \leq 2 u\left(\left|x_{n}\right|+\left|y_{n}\right|\right) \\
& \leq\left|x_{n}\right|+\left|y_{n}\right| \tag{1}\\
& \leq 2\left|y_{n}\right|+d\left(x_{n}, y_{n}\right)
\end{align*}
$$

Therefore,

$$
d\left(x_{n}, y_{n}\right) \leq u\left(4\left|y_{n}\right|\right)
$$

and hence

$$
\begin{equation*}
\left.u\left(4\left|y_{n}\right|\right)\right)<d\left(x_{n}, w_{n}\right) \leq 3 u\left(4\left|y_{n}\right|\right)+v\left(\left|y_{n}\right|\right) . \tag{2}
\end{equation*}
$$

Pick N s.t. $\forall n \geq N$

$$
3 u\left(4\left|y_{n}\right|\right)+v\left(\left|y_{n}\right|\right) \leq 2\left|y_{n}\right| .
$$

Then

$$
\begin{align*}
u\left(\left|x_{n}\right|+\left|w_{n}\right|\right) & \leq u\left(\left|x_{n}\right|+\left|y_{n}\right|+d\left(y_{n}, w_{n}\right)\right) \\
& \leq u\left(2\left|y_{n}\right|+d\left(x_{n}, y_{n}\right)+2 u\left(4\left|y_{n}\right|\right)+v\left(\left|y_{n}\right|\right)\right) \\
& \leq u\left(2\left|y_{n}\right|+3 u\left(4\left|y_{n}\right|\right)+v\left(\left|y_{n}\right|\right)\right) \tag{3}\\
& \leq u\left(4\left|y_{n}\right|\right) \\
& <d\left(x_{n}, w_{n}\right) .
\end{align*}
$$

That means $x_{n}, w_{n}>u$ and

$$
\frac{d\left(x_{n}, w_{n}\right)}{d_{n}} \leq \frac{3 u\left(4\left|y_{n}\right|\right)+v\left(\left|y_{n}\right|\right)}{d_{n}} \rightarrow 0
$$

Similarly,

$$
\begin{align*}
u\left(\left|y_{n}\right|+\left|w_{n}\right|\right) & \leq u\left(2\left|y_{n}\right|+d\left(y_{n}, w_{n}\right)\right) \\
& \leq u\left(2\left|y_{n}\right|+2 u\left(4\left|y_{n}\right|\right)+v\left(\left|y_{n}\right|\right)\right) \tag{4}\\
& \leq u\left(4\left|y_{n}\right|\right) \\
& <d\left(y_{n}, w_{n}\right)
\end{align*}
$$

2.4 Proof of Theorem 1.

Proof: Let u be an admissible function as given by the definition of f. Fix an origin $o \in X$. Let B_{n} be the ball of radius n around o. For every n, pick a point z_{n} in B_{n} such that

$$
\begin{equation*}
d\left(f(o), f\left(z_{n}\right)\right) \tag{5}
\end{equation*}
$$

is 'maximal'. More precisely, let $\epsilon>0$ and pick z_{n} such that

$$
\begin{equation*}
d\left(f(o), f\left(z_{n}\right)\right)>\sup _{x \in B_{n}} d(f(o), f(x))-\epsilon . \tag{6}
\end{equation*}
$$

The supremum on the right-hand-side exists. If not we could construct a bounded sequence in B_{n} that is mapped by f to an unbounded sequence. This contradicts the assumptions.
Furthermore, the four point condition

$$
[f(x), f(w), f(y), f(z)] \leq \eta([x, w, y, z])
$$

reduces to the three point condition

$$
\frac{d(f(x), f(y))}{d(f(x), f(z))} \leq \eta\left(\frac{d(x, y)}{d(x, z)}\right)
$$

by taking w to a point at ∞.
In the following we often shorten the notation $f(x)$ to x^{\prime}.
Define

$$
\begin{equation*}
d_{n}=d\left(o, z_{n}\right) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{n}^{\prime}=d\left(o^{\prime}, z_{n}^{\prime}\right) \tag{8}
\end{equation*}
$$

By construction and assumption on f, the sequence d_{n}^{\prime} diverges. Hence, also the sequence d_{n} must diverge by assumption on f.
(1) We show that if $\frac{d\left(o, x_{n}\right)}{d_{n}}$ is bounded, then $\frac{d\left(o^{\prime}, f\left(x_{n}\right)\right)}{d_{n}^{\prime}}$ is bounded as well. If $x_{\omega}=o_{\omega}$, then $d\left(o, x_{n}\right) \leq d_{n}$ for n large, therefore $d\left(o^{\prime}, x_{n}^{\prime}\right) \leq d_{n}^{\prime}$.
If $x_{\omega} \neq z_{\omega}, x_{\omega} \neq o_{\omega}$, then by lemma $7\left\{x_{n}\right\},\left\{z_{n}\right\},\{o\}$ are separated by u ω-a.s. and the Möbius-condition gives

$$
\frac{d\left(o^{\prime}, x_{n}^{\prime}\right)}{d_{n}^{\prime}}=\frac{d\left(o^{\prime}, x_{n}^{\prime}\right)}{d\left(o^{\prime}, z_{n}^{\prime}\right)}<\eta\left(\frac{d\left(o, x_{n}\right)}{d\left(o, z_{n}\right)}\right)=\eta\left(\frac{d\left(o, x_{n}\right)}{d_{n}}\right) \quad \omega-\text { a.s. }
$$

Thus $\frac{d\left(o^{\prime}, x_{n}^{\prime}\right)}{d_{n}^{\prime}}$ is bounded.
If $x_{\omega}=z_{\omega}$, by lemma 8 , there exists $\left\{w_{n}\right\}$ representing the same point s.t. $\left\{w_{n}\right\},\left\{x_{n}\right\}$ are u separated and $\left\{w_{n}\right\},\left\{z_{n}\right\}$ are u separated. In particular, $\left\{w_{n}\right\},\left\{x_{n}\right\},\{o\}$ and $\left\{w_{n}\right\},\left\{z_{n}\right\},\{o\}$ are u separated. Using the Möbius-condition again,

$$
\begin{align*}
\frac{d\left(o^{\prime}, x_{n}^{\prime}\right)}{d_{n}^{\prime}} & =\frac{d\left(o^{\prime}, x_{n}^{\prime}\right)}{d\left(o^{\prime}, z_{n}^{\prime}\right)} \\
& =\frac{d\left(o^{\prime}, x_{n}^{\prime}\right)}{d\left(o^{\prime}, w_{n}^{\prime}\right)} \frac{d\left(o^{\prime}, w_{n}^{\prime}\right)}{d\left(o^{\prime}, z_{n}^{\prime}\right)} \\
& <\eta\left(\frac{d\left(o, x_{n}\right)}{d\left(o, w_{n}\right)}\right) \eta\left(\frac{d\left(o, w_{n}\right)}{d\left(o, z_{n}\right)}\right) \tag{9}\\
& =\eta\left(\frac{d\left(o, x_{n}\right)}{d_{n}} \frac{d_{n}}{d\left(o, w_{n}\right)}\right) \eta\left(\frac{d\left(o, w_{n}\right)}{d_{n}}\right) \\
& \rightarrow \eta(1)^{2}
\end{align*}
$$

Thus $\frac{d\left(o^{\prime}, x_{n}^{\prime}\right)}{d_{n}^{\prime}}$ is bounded.
(2) The map $\left\{x_{n}\right\} \rightarrow\left\{f\left(x_{n}\right)\right\}$ is well-defined from $X_{\omega}\left(d_{n}\right)$ to $Y_{\omega}\left(d_{n}^{\prime}\right)$.

If $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are two sequences representing the same point different from the origin o_{ω}, then by lemma 8 and lemma 7, either $\left\{x_{n}\right\},\left\{y_{n}\right\},\{o\}$ are separated by u, or there exists a sequence $\left\{w_{n}\right\}$ representing the same point s.t. $\left\{x_{n}\right\},\left\{w_{n}\right\},\{o\}$ and $\left\{y_{n}\right\},\left\{w_{n}\right\},\{o\}$ are separated by u.
In the first case,

$$
\begin{aligned}
\frac{d\left(x_{n}^{\prime}, y_{n}^{\prime}\right)}{d_{n}^{\prime}} & =\frac{d\left(o^{\prime}, x_{n}^{\prime}\right)}{d_{n}^{\prime}} \frac{d\left(x_{n}^{\prime}, y_{n}^{\prime}\right)}{d\left(x_{n}^{\prime}, o^{\prime}\right)} \\
& \leq \frac{d\left(o^{\prime}, x_{n}^{\prime}\right)}{d_{n}^{\prime}} \eta\left(\frac{d\left(x_{n}, y_{n}\right)}{d\left(x_{n}, o\right)}\right) \\
& =\frac{d\left(o^{\prime}, x_{n}^{\prime}\right)}{d_{n}^{\prime}} \eta\left(\frac{d\left(x_{n}, y_{n}\right)}{d_{n}} \frac{d_{n}}{d\left(x_{n}, o\right)}\right) \\
& \rightarrow 0
\end{aligned}
$$

In the second case,

$$
\begin{aligned}
\frac{d\left(x_{n}^{\prime}, y_{n}^{\prime}\right)}{d_{n}^{\prime}} & \leq \frac{d\left(x_{n}^{\prime}, w_{n}^{\prime}\right)}{d_{n}^{\prime}}+\frac{d\left(w_{n}^{\prime}, y_{n}^{\prime}\right)}{d_{n}^{\prime}} \\
& \leq \frac{d\left(o^{\prime}, x_{n}^{\prime}\right)}{d_{n}^{\prime}} \frac{d\left(x_{n}^{\prime}, w_{n}^{\prime}\right)}{d\left(x_{n}^{\prime}, o^{\prime}\right)}+\frac{d\left(o^{\prime}, y_{n}^{\prime}\right)}{d_{n}^{\prime}} \frac{d\left(y_{n}^{\prime}, w_{n}^{\prime}\right)}{d\left(y_{n}^{\prime}, o^{\prime}\right)} \\
& \leq \frac{d\left(o^{\prime}, x_{n}^{\prime}\right)}{d_{n}^{\prime}} \eta\left(\frac{d\left(x_{n}, w_{n}\right)}{d\left(x_{n}, o\right)}\right)+\frac{d\left(o^{\prime}, y_{n}^{\prime}\right)}{d_{n}^{\prime}} \eta\left(\frac{d\left(y_{n}, w_{n}\right)}{d\left(y_{n}, o\right)}\right) \\
& \leq \frac{d\left(o^{\prime}, x_{n}^{\prime}\right)}{d_{n}^{\prime}} \eta\left(\frac{d\left(x_{n}, w_{n}\right)}{d_{n}} \frac{d_{n}}{d\left(x_{n}, o\right)}\right)+\frac{d\left(o^{\prime}, y_{n}^{\prime}\right)}{d_{n}^{\prime}} \eta\left(\frac{d\left(y_{n}, w_{n}\right)}{d_{n}} \frac{d_{n}}{d\left(y_{n}, o\right)}\right) \\
& \rightarrow 0
\end{aligned}
$$

Hence, in both cases $x_{\omega}^{\prime}=y_{\omega}^{\prime}$.
Let $\left\{x_{n}\right\}$ be a sequence representing the origin o_{ω}. If $\left\{x_{n}\right\}$ is a bounded sequence, then by assumption on f also $\left\{x_{n}^{\prime}\right\}$ is bounded and therefore $x_{\omega}^{\prime}=o_{\omega}^{\prime}$.
If $d\left(o, x_{n}\right)$ diverges, then $\left\{x_{n}\right\}$ and $\{o\}$ are u-separated. We may pick $y_{\omega} \neq o_{\omega}$, then by lemma $7,\left\{x_{n}\right\},\left\{y_{n}\right\},\{o\}$ are u-separated. Thus,

$$
\begin{aligned}
\frac{d\left(o^{\prime}, x_{n}^{\prime}\right)}{d_{n}^{\prime}} & =\frac{d\left(o^{\prime}, y_{n}^{\prime}\right)}{d_{n}^{\prime}} \frac{d\left(o^{\prime}, x_{n}^{\prime}\right)}{d\left(o^{\prime}, y_{n}^{\prime}\right)} \\
& \leq \frac{d\left(o^{\prime}, y_{n}^{\prime}\right)}{d_{n}^{\prime}} \eta\left(\frac{d\left(o, x_{n}\right)}{d\left(o, y_{n}\right)}\right) \\
& =\frac{d\left(o^{\prime}, y_{n}^{\prime}\right)}{d_{n}^{\prime}} \eta\left(\frac{d\left(o, x_{n}\right)}{d_{n}} \frac{d_{n}}{d\left(o, y_{n}\right)}\right) \\
& \rightarrow 0
\end{aligned}
$$

Therefore $o_{\omega}^{\prime}=x_{\omega}^{\prime}$.
(3) The map $g:\left\{x_{n}\right\} \rightarrow\left\{f\left(x_{n}\right)\right\}$ is quasi-symmetric and in particular continuous and injective.

Let $\left\{w_{n}\right\},\left\{x_{n}\right\},\left\{y_{n}\right\}$ be sequences representing three distinct points w_{ω}, x_{ω} and y_{ω} in $X_{\omega}\left(d_{n}\right)$. By lemma $7,\left\{w_{n}\right\},\left\{x_{n}\right\},\left\{y_{n}\right\}$ are pairwise u separated. Thus

$$
\frac{d\left(x_{n}^{\prime}, y_{n}^{\prime}\right)}{d\left(x_{n}^{\prime}, w_{n}^{\prime}\right)}<\eta\left(\frac{d\left(x_{n}, y_{n}\right)}{d\left(x_{n}, w_{n}\right)}\right)
$$

equivalently

$$
\frac{d\left(x_{n}^{\prime}, y_{n}^{\prime}\right)}{d_{n}^{\prime}} \frac{d_{n}^{\prime}}{d\left(x_{n}^{\prime}, w_{n}^{\prime}\right)}<\eta\left(\frac{d\left(x_{n}, y_{n}\right)}{d_{n}} \frac{d_{n}}{d\left(x_{n}, w_{n}\right)}\right) .
$$

Taking the ω-limit gives

$$
\frac{d_{\omega}\left(x_{\omega}^{\prime}, y_{\omega}^{\prime}\right)}{d_{\omega}\left(x_{\omega}^{\prime}, w_{\omega}^{\prime}\right)} \leq \eta\left(\frac{d_{\omega}\left(x_{\omega}, y_{\omega}\right)}{d_{\omega}\left(x_{\omega}, w_{\omega}\right)}\right)
$$

Hence, if $g:\left\{x_{n}\right\} \mapsto\left\{f\left(x_{n}\right)\right\}$ is non-constant, then it is continuous and injective. Notice that $\left\{o^{\prime}\right\}$ and $\left\{f\left(z_{n}\right)\right\}$ do not represent the same points, so g is indeed non-constant.

3 Examples

3.1 Sublinearly Lipschitz Equivalences

In [5] Y. Cornulier introduces sublinearly Lipschitz maps. A map $f: X \rightarrow$ Y between metric spaces is a sublinearly Lipschitz map, if there exists an admissible function $u: \mathbb{R}_{+} \rightarrow \mathbb{R}$ such that

$$
d(f(x), f(y)) \leq C d(x, y)+C^{\prime} u(|x|+|y|), \quad \forall x, y \in X
$$

for some constants $C, C^{\prime}>0$.
Two sublinearly Lipschitz maps f, f^{\prime} are equivalent, if there exists an admissible function v and a constant $C^{\prime \prime}>0$, such that

$$
d\left(f(x), f^{\prime}(x)\right) \leq C^{\prime \prime} v(|x|)
$$

for all $x \in X$.
Sublinearly Lipschitz maps between metric spaces form a category. Taking asymptotic cones yields a functor from the sublinearly Lipschitz category to the Lipschitz category. The sublinearly Lipschitz category is in some sense the maximal category with such a property.
The isomorphisms in the sublinearly Lipschitz category are called sublinearly Lipschitz equivalences, or SBE maps.
Proposition 9. Every $S B E$-map $f: X \rightarrow Y$ is an $A M$-map with linear η.

Proof: If f is $S B E$, then f is bi-Lipschitz except at scales below some admissible function u. Indeed, let $x, y \in X$ s.t.

$$
d(x, y) \geq u(|x|+|y|) .
$$

Then

$$
\begin{align*}
d(f(x), f(y)) & \leq c d(x, y)+C u(|x|+|y|) \\
& \leq(c+C) d(x, y) \tag{11}
\end{align*}
$$

and

$$
\begin{align*}
d(f(x), f(y)) & \geq c^{\prime} d(x, y)-C^{\prime} u(|x|+|y|) \\
& \geq\left(c^{\prime}-C^{\prime}\right) d(x, y) \tag{12}
\end{align*}
$$

Hence, there exists $D>0$, s.t. for all $x, y>u$,

$$
\frac{1}{D} d(x, y) \leq d(f(x), f(y)) \leq D d(x, y)
$$

In particular, f is an $A M$-map with linear η.

3.2 Assouad-type maps

Assouad's embedding theorem [1] [10] says that every snowflake $X^{\alpha}=$ $\left(X, d^{\alpha}\right), 0<\alpha<1$, of a doubling metric space admits a bi-Lipschitz embedding into some Euclidean space.
Clearly, the Assouad embedding of a doubling metric space into Euclidean space is an asymptotic-Möbius map.

In the following we construct an example of a Assouad type map from an infinite dimensional Heisenberg group into a Hilbert space. This construction follows straightforwardly from a construction by Lee and Naor in the finite dimensional case [9].
Let H be an infinite dimensional complex Hilbert space. H carries the symplectic form $\Omega(a, b)=\operatorname{Im}(\langle a, b\rangle)$.
The infinite dimensional Heisenberg group \mathcal{H}_{Ω}, is the set of tuples (a, t) with $a \in H, t \in \mathbb{R}$ and group law

$$
(a, t)\left(a^{\prime}, t^{\prime}\right)=\left(a+a^{\prime}, t+t^{\prime}+2 \Omega\left(a, a^{\prime}\right)\right) .
$$

Let G be a group with identity element e. A group seminorm on G is a function $G \rightarrow[0, \infty)$ that satisfies $N\left(g^{-1}\right)=N(g)$ for all $g \in G$, $N(g h) \leq N(g)+N(h)$ for all $g, h \in G$ and $N(e)=0$. If in addition $N(g)=0$ if and only if $g=e$, then N is a group norm on G.
The function

$$
N(a, t)=\sqrt{\sqrt{\|a\|^{4}+t^{2}}+\|a\|^{2}}
$$

is a group norm on \mathcal{H}_{Ω}. Indeed, if N_{1} and N_{2} are group seminorms, then $\sqrt{N_{1}^{2}+N_{2}^{2}}$ is a group seminorm. In this case $N_{1}=\left(\|a\|^{4}+t^{2}\right)^{\frac{1}{4}}$ is the Koranyi-norm. Given N,

$$
d_{N}\left((a, t),\left(a^{\prime}, t^{\prime}\right)\right)=N\left((a, t)\left(a^{\prime}, t^{\prime}\right)^{-1}\right)
$$

is a right-invariant metric on \mathcal{H}_{Ω}.
Let G be a group, a Hermitian kernel on G is a complex valued function $K: G \times G \rightarrow \mathbb{C}$ that satisfies $K(g, h)=\overline{K(h, g)}$ for all $g, h \in G$.

A Hermitian kernel on G is positive definite if

$$
\sum_{i, j}^{n} K\left(g_{i}, g_{j}\right) c_{i} \overline{c_{j}} \geq 0
$$

for all $g_{1}, \ldots, g_{n} \in G$ and for all complex numbers $c_{1}, \ldots, c_{n} \in \mathbb{C}$, with equality if and only if the c_{i} vanish. A Hermitian kernel on G is conditionally negative definite if

$$
\sum_{i, j}^{n} K\left(g_{i}, g_{j}\right) c_{i} \overline{c_{j}} \leq 0
$$

for all $g_{1}, \ldots, g_{n} \in G$ and for all complex numbers $c_{1}, \ldots, c_{n} \in \mathbb{C}$ satisfying $\sum_{i}^{n} c_{i}=0$ and with equality if and only if the c_{i} vanish.
Theorem 2 (Schönberg). Let G be a group, $K: G \times G \rightarrow \mathbb{R}$ a real valued kernel on G satisfying $K(g, g)=0 \forall g \in G$. Then K is negative definite if and only if there exists a Hilberspace H and a function $T: G \rightarrow H$ such that $\forall g, h \in G: \quad K(g, h)=\|T(g)-T(h)\|^{2}$.

Thus, if d_{N} is negative definite, then there exists a Hilbert space H and an isometry $T:\left(\mathcal{H}_{\Omega}, \sqrt{d_{N}}\right) \rightarrow H$. In particular, the map $T:\left(\mathcal{H}_{\Omega}, d_{N}\right) \rightarrow H$ is an $A M$-map.
A complex valued function F on a group G that satisfies $F\left(g^{-1}\right)=\overline{F(g)}$ for all $g \in G$ induces a Hermitian kernel on G by defining $K_{F}(g, h):=$ $F\left(g h^{-1}\right)$. The function F is said to be positive definite, if K_{F} is a positive definite Hermitian kernel on G.

Lemma 10. For every $\lambda \in \mathbb{R}$ the function

$$
\Phi_{\lambda}(a, t)=e^{-|\lambda|\|a\|^{2}+i \lambda t}
$$

is positive definite on \mathcal{H}_{Ω}.
Proof: Indeed the function Φ_{λ} satisfies $\Phi_{\lambda}\left((a, t)^{-1}\right)=\overline{\Phi_{\lambda}((a, t))}$ and induces the kernel

$$
K((a, s),(b, t)):=\exp \left(-|\lambda|\|a-b\|^{2}+i \lambda(s-t-2 \Omega(a, b))\right) .
$$

The kernel can be rewritten as product of three exponentials

$$
\exp \left(-|\lambda|\left(\|a\|^{2}+\|b\|^{2}\right)\right) \exp (i \lambda(s-t)) \exp (2|\lambda|(\operatorname{Re}(\langle a, b\rangle)-i \operatorname{sign}(\lambda) \Omega(a, b)))
$$

The product of positive definite kernels is positive definite. The first two factors are positive definite since for all $c_{1}, \ldots, c_{n} \in \mathbb{C}$, the matrix $\left(c_{i} \overline{c_{j}}\right)_{i, j}$ is positive semi-definite. In particular also the matrix $\left(\exp \left(i \lambda\left(s_{i}-\right.\right.\right.$ $\left.\left.\left.t_{j}\right)\right) c_{i} \overline{c_{j}}\right)_{i, j}$. The exponential of any positive definite kernel is again a positive definite kernel ([3] Proposition 8.2.). Therefore the kernel K is positive definite if

$$
\operatorname{Re}(\langle a, b\rangle)-i \operatorname{sign}(\lambda) \Omega(a, b)
$$

is positive definite. This is $\langle a, b\rangle$ if $\lambda<0$ and $\overline{\langle a, b\rangle}$ if $\lambda \geq 0$ and therefore clearly positive definite.

Proposition 11. $d_{N}: \mathcal{H}_{\Omega} \times \mathcal{H}_{\Omega} \rightarrow H$ is conditionally negative definite.
Proof: The existence of $\frac{1}{2}$-stable distributions implies that for all $\epsilon>0$, there exists a non-negative integrable function $\varphi_{\epsilon}: \mathbb{R} \rightarrow[0, \infty)$ s.t. its Fourier-transform $\hat{\varphi}_{\epsilon}(t)=e^{-\epsilon \sqrt{|t|}}$. Notice that $\frac{1}{2 \pi} \hat{\hat{\varphi}}_{\epsilon}(x)=\varphi_{\epsilon}(x)$.
By the lemma above,

$$
F_{\epsilon}(a, t)=\int_{\mathbb{R}} e^{-|\lambda|\|a\|^{2}+i \lambda t} \varphi_{\epsilon}(\lambda) d \lambda
$$

is positive definite on \mathcal{H}_{Ω}. Let

$$
h_{k}(x)=\frac{k}{\pi} \frac{1}{k^{2}+x^{2}}
$$

denote the Cauchy-distribution with scale parameter $k>0$. We rewrite

$$
\begin{align*}
F_{\epsilon}(a, t) & =\frac{1}{2 \pi} \int_{\mathbb{R}} e^{i \lambda t} \hat{h}_{\|a\|^{2}}(\lambda) \hat{\hat{\varphi}}_{\epsilon}(\lambda) d \lambda \\
& =\frac{1}{2 \pi} \int_{\mathbb{R}} e^{i \lambda t} \widehat{h_{\|a\|^{2}} * \hat{\varphi}_{\epsilon}}(\lambda) d \lambda \tag{13}\\
& =\left(h_{\|a\|^{2}} * \hat{\varphi}_{\epsilon}\right)(t)
\end{align*}
$$

Since F_{ϵ} is positive definite, $\frac{1-F_{\epsilon}}{\epsilon}$ is conditionally negative definite and

$$
\begin{align*}
\lim _{\epsilon \rightarrow 0} \frac{1-F_{\epsilon}(a, t)}{\epsilon} & =\lim _{\epsilon \rightarrow 0}\left[h_{\|a\|^{2}} * \frac{1-\hat{\varphi}_{\epsilon}}{\epsilon}\right] \\
& =\lim _{\epsilon \rightarrow 0} \int_{\mathbb{R}} \frac{1-e^{-\epsilon \sqrt{|x|}}}{\epsilon} h_{\|a\|^{2}}(t-x) d x \tag{14}\\
& =\frac{\|a\|^{2}}{\pi} \int_{\mathbb{R}} \frac{\sqrt{|x|}}{\|a\|^{4}+(t-x)^{2}} d x .
\end{align*}
$$

We now show that for all $r, t \in \mathbb{R}$

$$
r^{2} \int_{\mathbb{R}} \frac{\sqrt{|x|}}{r^{4}+(t-x)^{2}} d x=\pi \sqrt{\sqrt{r^{4}+t^{2}}+r^{2}}
$$

By change of variables $x=r^{2} y$ and $s=t / r^{2}$, the left-hand-side can be written as

$$
\int_{0}^{\infty}\left(\frac{1}{1+(s-y)^{2}}+\frac{1}{1+(s+y)^{2}}\right) \sqrt{y} d y
$$

This integral equals

$$
\lim _{r \rightarrow 0} \lim _{R \rightarrow \infty} \frac{1}{2} \int_{C_{r, R}}\left(\frac{1}{1+(s-z)^{2}}+\frac{1}{1+(s+z)^{2}}\right) \sqrt{z} d z
$$

where $C_{r, R}$ is the keyhole contour with a branch cut along the positive real axis. The integrand has simple poles at $i \pm s$ and $-i \pm s$. With $\operatorname{Res}\left(\frac{\sqrt{z}}{1+(s-z)^{2}}, i+s\right)=\frac{\sqrt{i+s}}{2 i}, \operatorname{Res}\left(\frac{\sqrt{z}}{1+(s-z)^{2}},-i+s\right)=\frac{\sqrt{-i+s}}{-2 i}, \operatorname{Res}\left(\frac{\sqrt{z}}{1+(s+z)^{2}}, i-\right.$ $s)=\frac{\sqrt{i-s}}{2 i}$ and $\operatorname{Res}\left(\frac{\sqrt{z}}{1+(s+z)^{2}},-i-s\right)=\frac{\sqrt{-i-s}}{-2 i}$. Now adding all the residues and multiplying by $2 \pi i$, lets us evaluate the above equation as being

$$
\frac{\pi}{2}(\sqrt{i+s}-\sqrt{-i+s}+\sqrt{i-s}-\sqrt{-i-s})
$$

This simplifies further to

$$
\begin{align*}
\pi \operatorname{Re}(\sqrt{i+s}+\sqrt{i-s}) & =\pi(\operatorname{Re}(\sqrt{i+s})+\operatorname{Im}(\sqrt{i+s})) \\
& =\pi\left(\sqrt{\frac{\sqrt{1+s^{2}}+s}{2}}+\sqrt{\frac{\sqrt{1+s^{2}}-s}{2}}\right) \tag{15}\\
& =\pi \sqrt{\sqrt{1+s^{2}}+1}
\end{align*}
$$

Thus we have seen, that the N-norm is a limit of conditionally negative definite functions on \mathcal{H}_{Ω}, hence it is conditionally negative definite.

4 Applications to dimension theory

4.1 Dimension theory of finitely-generated groups

In 1993 M. Gromov introduced a notion of asymptotic dimension as a large scale analogue of Lebesgue's covering dimension [6]. The asymptotic dimension of a finitely generated group is a quasi-isometric invariant. Its most prominent application is due to Yu G., who showed that every finitely generated group with finite homotopy type and finite asymptotic dimension, satisfies the Novikov conjecture [15].
Definition 12. Let X be a metric space. We say that the asymptotic dimension of X does not exceed n provided for every uniformly bounded open cover \mathcal{V} of X there is a uniformly bounded open cover \mathcal{U} of X of multiplicity $\leq n+1$ so that \mathcal{V} refines \mathcal{U}. We write asdim $X=n$ if it is true that asdim $X \leq n$ and asdim $X \not \leq n-1$

The asymptotic dimension of a finitely generated group Γ has several interesting implications. For example asdim $\Gamma=0$ if and only if Γ is finite (Proposition 65. in [2]) and asdim $\Gamma=1$ if and only if Γ is virtually free (Theorem 66. in [2]).
If G is a finitely generated nilpotent group, then its asymptotic cone G_{ω} is a Carnot group [11] and the asymptotic dimension of G agrees with the topological dimension of its asymptotic cone [2].
Theorem 3. Let G and G^{\prime} be a finitely generated nilpotent groups and $f: G \rightarrow G^{\prime}$ an AM-map, then $\operatorname{asdim}(G) \leq \operatorname{asdim}\left(G^{\prime}\right)$. If G and G^{\prime} are nilpotent Lie groups, then $\operatorname{dim}(G) \leq \operatorname{dim}\left(G^{\prime}\right)$. Futhermore, if asdim $(G)=$ $\operatorname{asdim}\left(G^{\prime}\right)$, then the asymptotic cones of G and G^{\prime} are isomorphic graded Lie groups. Conversely, given nilpotent groups with isomorphic asymptotic cones, there exists an asymptotic-Möbius map between them.

Proof: The map f induces a quasi-symmetric map g between asymptotic cones G_{ω} and G_{ω}^{\prime} of G and G^{\prime} respectively.
In particular g is an injective map from G_{ω} to G_{ω}^{\prime} and therefore the topological dimensions increase. Since G and G^{\prime} are nilpotent, $\operatorname{asdim}(G)=$ top-dim $\left(G_{\omega}\right) \leq \operatorname{top}-\operatorname{dim}\left(G_{\omega}^{\prime}\right)=\operatorname{asdim}\left(G^{\prime}\right)$.

The case for nilpotent Lie groups follows from the fact that for nilpotent Lie groups, $\operatorname{top}-\operatorname{dim}(G)=\operatorname{top}-\operatorname{dim}\left(G_{\omega}\right)$.

If $\operatorname{asdim}(G)=\operatorname{asdim}\left(G^{\prime}\right)$, the invariance of domain theorem implies that g is a homeomorphism. Since both g and g^{-1} are quasi-symmetric, they are a.e. differentiable by Pansu's theorem and the differential of g is at almost every point a graded isomorphism of groups [12].

4.2 Dimension theory of CAT(0)-spaces

Heinrich Jung observed in early 1900, that the diameter of a set in Euclidean space \mathbb{R}^{n} is related to the radius of the minimum enclosing ball by an inequality, whose constant depends only on the dimension n [7]. Precisely, for any set $A \subset \mathbb{R}^{n}$

$$
\begin{equation*}
r \leq d(A) \sqrt{\frac{n}{2(n+1)}}, \tag{16}
\end{equation*}
$$

where r is the radius of the minimum enclosing ball of A and $d(A)$ is the diameter of A.
Caprace and Lytchak observed [4], that a CAT(0)-space has geometric dimension less than n (as defined by B. Kleiner [8]), if and only if Jung's inequality (16) is true.
Remark 13. It turns out that the geometric dimension of a CAT(0)-space X is equal to the maximal topological dimension of all compact subsets in X [8].

The geometric dimension can be turned into a large-scale notion in the following manner. A CAT(0)-space X has telescopic dimension less then n if and only if for every $\delta>0$, there exists a $D>0$ such that for every set A in X with diameter larger then D,

$$
\begin{equation*}
r \leq\left(\delta+\sqrt{\frac{n}{2(n+1)}}\right) d(A) \tag{17}
\end{equation*}
$$

Alternatively,
Definition 14. A CAT(0)-space X has telescopic dimension $\leq n$, if every asymptotic cone has geometric dimension $\leq n$.

We adopt the notation tele-dim (X) for the telescopic dimension of X.
Theorem 4. Let X and Y be CAT(0) spaces. If there exists an AM-map $f: X \rightarrow Y$, then the telescopic dimension increases e.g. tele- $\operatorname{dim}(X) \leq$ tele-dim (Y).

The theorem follows straight forward from Theorem 1, Remark 13 and the fact that the topological dimension increases under injective continuous maps.
As a consequence, there cannot exist an $A M$-map from Euclidean buildings of finite rank r and thus telescopic dimension r, to a Euclidean building of lower rank.
If there exists an $A M$-map from a $\operatorname{CAT}(0)$ space to a hyperbolic metric space, then X is a hyperbolic metric space as well.

References

[1] Assouad, P. Plongements lipschitziens dans \mathbb{R}^{n}. Bulletin de la Société Mathématique de France 111 (1983), 429 - 448.
[2] Bell, G., and Dranishnikov, A. Asymptotic dimension. Topology and its Applications 155, 12 (2008), 1265-1296.
[3] Benyamini, Y., and Lindenstrauss, J. Geometric Nonlinear Functional Analysis, vol. 1 of American Mathematical Society colloquium publications. American Mathematical Soc., 1998.
[4] Caprace, P., and Lytchak, A. At infinity of finite-dimensional cat(0) spaces. Math. Ann. 346 (2010), 1 - 21.
[5] Cornulier, Y. On sublinear bilipschitz equivalence of groups. Annales scientifiques de l'École normale supérieure 52 (02 2017).
[6] Gromov, M. Asymptotic invariants of infinite groups, vol. 2. Cambridge Univ. Press, 1993.
[7] Jung, H. Ueber die kleinste kugel, die eine räumliche figur einschliesst. Journal für die reine und angewandte Mathematik (Crelles Journal) 1901, 123 (1901), 241-257.
[8] Kleiner, B. The local structure of length spaces with curvature bounded above. Mathematische Zeitschrift 231 (1999), 409-456.
[9] Lee, J. R., and Naor, A. Lp metrics on the heisenberg group and the goemans-linial conjecture. In 200647 th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06) (2006), pp. 99-108.
[10] Naor, A., and Neiman, O. Assouad's theorem with dimension independent of the snowflaking. Rev. Mat. Iberoam. 28, 4 (2012), 1123 - 1142.
[11] Pansu, P. Croissance des boules et des géodésiques fermées dans les nilvariétés. Ergodic Theory and Dynamical Systems 3, 3 (1983), 415-445.
[12] Pansu, P. Metriques de carnot-caratheodory et quasiisometries des espaces symetriques de rang un. Annals of Mathematics 129, 1 (1989), 1-60.
[13] Pansu, P. Large scale conformal maps. Annales Scientifiques de l'Ecole Normale Supérieure : publiées sous les auspices du Ministre de l'Instruction publique 54, 4 (2021), 831 - 887.
[14] VÄısälä, J. Quasi-möbius maps. J. Analyse Math. 44 (1984/85), 218-234.
[15] Yu, G. The novikov conjecture for groups with finite asymptotic dimension. Annals of Mathematics 147, 2 (1998), 325-355.

[^0]Georg Grützner
Université Paris-Saclay, CNRS
Laboratoire de Mathématiques d'Orsay
91405 Orsay Cédex, France
DataShape, Centre Inria Saclay
91120 Palaiseau, France
georg.gruetzner@universite-paris-saclay.fr

[^0]: Orsay, September 30, 2021.
 2020 Mathematical Subject Classification..
 Keywords and phrases. Möbius geometry, large scale geometry.

