Asymptotic-Möbius maps.

Georg Grützner

Abstract

Roughly speaking, a map between metric spaces is an asymptotic-Möbius map if it almost preserves cross-ratios of points being a large distance apart from each other. We show that under such maps, some large-scale notions of dimension increases: asymptotic dimension for finitely generated nilpotent groups, telescopic dimension for CAT(0) spaces.

1 Introduction

This paper introduces and investigates a class of maps that mimics quasi-Möbius maps in the context of geometric group theory.

In [13] Pierre Pansu introduces a notion of large-scale conformal maps that mimics the infinitesimal behavior of conformal maps. Briefly, large scale conformal maps map families of disjoint balls to families of weakly overlapping quasi-balls. It is a very flexible notion, that includes for example coarse embeddings. This flexibility makes the asymptotic behavior of such maps however less predictable.

In this paper, we introduce a more restrictive and semantically simpler notion that mimics quasi-Möbius behaviors. Roughly speaking, a map between metric spaces is an asymptotic-Möbius map if it almost preserves cross-ratios of points being a large distance apart from each other. In consequence, the results presented in this paper are much stronger than in [13].

1.1 Examples

We postpone the precise definition of asymptotic-Möbius (AM) maps until later. Sources of examples of AM-maps are:

- 1. Quasi-isometric embeddings,
- 2. Sublinear-Bilipschitz-equivalences (i.e. maps that induce Lipschitz-Equivalences on asymptotic cones [5]),
- 3. Snowflaking (i.e. replacing a metric by a power of it),
- 4. Assouad maps from doubling metric spaces to \mathbb{R}^N .

For instance, every nilpotent Lie group or finitely generated group can be AM-embedded in Euclidean space of sufficiently high dimension [1]. We shall furthermore encounter infinite dimensional examples.

1.2 Results

Our main result is that under AM-maps some large-scale notion of dimension increases. The relevant notion depends on the class of groups considered.

Theorem 3. Let G and G' be finitely generated nilpotent groups and $f: G \to G'$ an AM-map, then $\operatorname{asdim}(G) \leq \operatorname{asdim}(G')$. Futhermore, if $\operatorname{asdim}(G) = \operatorname{asdim}(G')$, then the asymptotic cones of G and G' are isomorphic. Conversely, given nilpotent groups with isomorphic asymptotic cones, there exists an asymptotic-Möbius map between them.

In the world of CAT(0)-spaces, the analogous theorem takes the following form.

Theorem 4. Let X and Y be CAT(0) spaces. If there exists an AM-map $f: X \to Y$, then the telescopic dimension increases e.g. tele-dim $(X) \le$ tele-dim(Y).

2 Asymptotic-Möbius maps

2.1 Quasi-Möbius maps

Let X be a metric space, and $x,y,z,w\in X$ a quadruple of distinct points. Their cross-ratio is

$$[x, y, z, w] = \frac{d(x, z)d(y, w)}{d(x, w)d(y, z)}.$$

If X is unbounded, then the cross-ratio extends to the one-point-compactification of X [14]. A map $f: X \to Y$ is $quasi\text{-}M\ddot{o}bius$ if there exists a homeomorphism $\eta: \mathbb{R}_+ \to \mathbb{R}_+$ such that for all quadruples of distinct points $x,y,z,w \in X$,

$$[f(x), f(y), f(z), f(w)] \le \eta([x, y, z, w]).$$

If f is a homeomorphism, then f is quasi-Möbius iff its inverse is quasi-Möbius.

Examples of quasi-Möbius maps are

- 1. the stereographic projection $\mathbb{R}^n \to S^n$,
- 2. the Cayley transforms, the complex, quaternionic and octonionic analoga of the stereographic projection,
- 3. inversions $x \mapsto \frac{x}{|x|^2}$ in Banach spaces.

2.2 Asymptotic-Möbius maps

Given $u: \mathbb{R}_+ \to \mathbb{R}$, we say that the points x and y are separated in X by u seen from a fixed origin o, if d(x,y) > u(d(x,o) + d(o,y)). For simplicity we often write x,y > u and |x| = d(o,x) for the distance to the origin.

Definition 1. A function $u : \mathbb{R}_+ \to \mathbb{R}$ is admissible if

- 1. it is non-decreasing,
- 2. u grows sublinearly i.e. $\limsup_{r\to\infty} \frac{u(r)}{r} = 0$.

Definition 2. A map $f: X \to Y$ is an asymptotic-Möbius map or AMmap, if there exists an admissible function u and a homeomorphism $\eta: \mathbb{R}^+ \to \mathbb{R}^+$ such that for every x, y, z, w in X such that all 6 distances between x, y, z, w > u, then

$$[f(x), f(y), f(z), f(w)] < \eta([x, y, z, w]).$$

Definition 3. A metric space X is asymptotically chained, if for every origin $o \in X$ there exists an admissible function v, such that for all $x, y \in X$ there exists a chain $x_1 = x, \ldots, x_{k+1} = y$ that satisfies

$$\max_{i \in 1...k} \{ d(x_i, x_{i+1}) \} < v(|x| + |y|).$$

Our main technical step will be the following theorem, whose proof, after some preliminary definition, will occupy Section 2.

Theorem 1. Let f be an AM-map from an asymptotically chained space X to a space Y that preserves diverging and bounded sequences, then f induces a continuous, injective, quasi-symmetric map g between some asymptotic cones of X and Y.

2.3 Ultralimits and asymptotic-cones

Definition 4. A (non-principal) ultrafilter ω over \mathbb{N} is a set of subsets of \mathbb{N} satisfying the following conditions:

- 1. If $A, B \in \omega$ then $A \cap B \in \omega$.
- 2. If $A \in \omega$, $A \subset B \subset \mathbb{N}$, then $B \in \omega$.
- 3. For every $A \subset \mathbb{N}$ either $A \in \omega$ or $\mathbb{N} \setminus A \in \omega$.
- 4. No finite subset of \mathbb{N} is in ω .

Equivalently, ω is a finitely additive measure on $\mathbb N$ such that each subset has measure either 0 or 1 and every finite subset has measure 0.

If a statement A(n) holds for all $n \in B$ with B belonging to an ultra filter ω , we say that A(n) holds ω -almost surely.

Definition 5. Let ω be a (non-principle) ultrafilter over \mathbb{N} . An ω -limit of a sequence of points $\{x_n\}$ in a topological space X, is a point x in X such that for every neighborhood U of x the relation $x_n \in U$ holds ω -almost surely.

If X is a Hausdorff-space, then the ω -limit of a sequence is unique. We denote this point by $\lim_{\omega} x_n$.

Definition 6. The ultrapower of a set X w.r.t. an ultrafilter ω , denoted by X^{ω} , consists of equivalence classes of sequences $\{x_n\}$, $x_n \in X$, where two sequences $\{x_n\}$ and $\{y_n\}$ are identified if and only if $x_n = y_n \omega$ -almost surely.

We adopt the notation $\{x_n\}_{\omega}$ for the equivalence class of sequences.

Let (X,d) be a metric space, ω an ultrafilter over $\mathbb N$ and o an origin in X. Furthermore, there is given a sequence of numbers $\{d_n\}$, with $\lim_{\omega} d_n = \infty$. Then there exists a pseudo-metric on the ultrapower X^{ω} by setting the distance between $x = \{x_n\}_{\omega}$ and $y = \{y_n\}_{\omega}$ to

$$d_{\omega}(x,y) = \lim_{\omega} \frac{d(x_n, y_n)}{d_n}.$$

Let X_o^{ω} be the set of equivalence classes of elements $x=\{x_n\}_{\omega}$ in X^{ω} that satisfy $\lim_{\omega} \frac{d(x_n,o)}{d_n} < \infty$ and two elements $x=\{x_n\}_{\omega}$ and $y=\{y_n\}_{\omega}$ of X^{ω} are identified if and only if $d_{\omega}(x,y)=0$. The metric space $(X_o^{\omega},d_{\omega})$ is called an *asymptotic cone* of (X,d).

We adopt the notation x_{ω} for points in the asymptotic cone $(X_o^{\omega}, d_{\omega})$ of (X, d).

Lemma 7. If $x_{\omega} \neq y_{\omega}$, then for all admissible functions u and all sequences $\{x_n\}$, $\{y_n\}$ representing x_{ω} and y_{ω} respectively,

$$d(x_n, y_n) > u(|x_n| + |y_n|), \quad \omega - a.s.$$

Proof: If there exists an admissible function u and sequences $\{x_n\}$, $\{y_n\}$ such that

$$d(x_n, y_n) \le u(|x_n| + |y_n|), \quad \omega - a.s.$$

then $\omega - a.s.$

$$\frac{d(x_n, y_n)}{d_n} \le \frac{u(|x_n| + |y_n|)}{d_n}.$$

Thus

$$\lim_{\omega} \frac{d(x_n, y_n)}{d_n} = 0.$$

Lemma 8. Let X be an asymptotically chained metric space. Let $\{x_n\}$ and $\{y_n\}$ be two sequences in X representing the same point x_ω different from the origin o_ω , and such that $x_n \neq y_n \omega - a.s$. Then for every admissible function u, either

$$d(x_n, y_n) > u, \quad \omega - a.s.$$

or there exists a sequence $\{w_n\}$ representing the same point s.t.

$$d(x_n, w_n) > u \quad \omega - a.s.$$

and

$$d(y_n, w_n) > u \quad \omega - a.s.$$

Proof: Suppose $d(x_n, y_n) \le u \ \omega - a.s.$ and by assumption, $|x_n|, |y_n| \to +\infty$.

Since X is asymptotically chained, there exists an admissible function v and a chain $x_1^n = 0, \dots, x_{k+1}^n = y_n$ such that

$$\max_{i \in 1, \dots k} \{ d(x_i^n, x_{i+1}^n) \} < v(|y_n|).$$

Assume that n is large enough such that $2u(4|y_n|) < |y_n|$, then at least one point $x_{i_n}^n$ in the chain satisfies

$$2 u(4|y_n|) < d(y_n, x_{i_n}^n) \le 2 u(4|y_n|) + v(|y_n|).$$

Define $w_n = x_{i_n}^n$.

For n large enough,

$$2d(x_n, y_n) \le 2u(|x_n| + |y_n|)$$

$$\le |x_n| + |y_n|$$

$$\le 2|y_n| + d(x_n, y_n).$$
(1)

Therefore,

$$d(x_n, y_n) < u(4|y_n|).$$

and hence

$$u(4|y_n|) < d(x_n, w_n) \le 3u(4|y_n|) + v(|y_n|). \tag{2}$$

Pick N s.t. $\forall n \geq N$

$$3u(4|y_n|) + v(|y_n|) \le 2|y_n|.$$

Then

$$u(|x_{n}| + |w_{n}|) \leq u(|x_{n}| + |y_{n}| + d(y_{n}, w_{n}))$$

$$\leq u(2|y_{n}| + d(x_{n}, y_{n}) + 2u(4|y_{n}|) + v(|y_{n}|))$$

$$\leq u(2|y_{n}| + 3u(4|y_{n}|) + v(|y_{n}|))$$

$$\leq u(4|y_{n}|)$$

$$\leq d(x_{n}, w_{n}).$$
(3)

That means $x_n, w_n > u$ and

$$\frac{d(x_n, w_n)}{d_n} \le \frac{3u(4|y_n|) + v(|y_n|)}{d_n} \to 0.$$

Similarly,

$$u(|y_n| + |w_n|) \le u(2|y_n| + d(y_n, w_n))$$

$$\le u(2|y_n| + 2u(4|y_n|) + v(|y_n|))$$

$$\le u(4|y_n|)$$

$$< d(y_n, w_n).$$
(4)

2.4 Proof of Theorem 1.

Proof: Let u be an admissible function as given by the definition of f. Fix an origin $o \in X$. Let B_n be the ball of radius n around o. For every n, pick a point z_n in B_n such that

$$d(f(o), f(z_n)) (5)$$

is 'maximal'. More precisely, let $\epsilon > 0$ and pick z_n such that

$$d(f(o), f(z_n)) > \sup_{x \in B_n} d(f(o), f(x)) - \epsilon.$$
(6)

The supremum on the right-hand-side exists. If not we could construct a bounded sequence in B_n that is mapped by f to an unbounded sequence. This contradicts the assumptions.

Furthermore, the four point condition

$$[f(x), f(w), f(y), f(z)] \le \eta([x, w, y, z]),$$

reduces to the three point condition

$$\frac{d(f(x), f(y))}{d(f(x), f(z))} \le \eta(\frac{d(x, y)}{d(x, z)}),$$

by taking w to a point at ∞ .

In the following we often shorten the notation f(x) to x'.

Define

$$d_n = d(o, z_n) (7)$$

and

$$d_n' = d(o', z_n'). \tag{8}$$

By construction and assumption on f, the sequence d'_n diverges. Hence, also the sequence d_n must diverge by assumption on f.

(1) We show that if $\frac{d(o,x_n)}{d_n}$ is bounded, then $\frac{d(o',f(x_n))}{d'_n}$ is bounded as well.

If $x_{\omega} = o_{\omega}$, then $d(o, x_n) \leq d_n$ for n large, therefore $d(o', x'_n) \leq d'_n$.

If $x_{\omega} \neq z_{\omega}$, $x_{\omega} \neq o_{\omega}$, then by lemma 7 $\{x_n\},\{z_n\},\{o\}$ are separated by u ω -a.s. and the Möbius-condition gives

$$\frac{d(o', x'_n)}{d'_n} = \frac{d(o', x'_n)}{d(o', z'_n)} < \eta(\frac{d(o, x_n)}{d(o, z_n)}) = \eta(\frac{d(o, x_n)}{d_n}) \quad \omega - a.s.$$

Thus $\frac{d(o',x'_n)}{d'_n}$ is bounded.

If $x_{\omega} = z_{\omega}$, by lemma 8, there exists $\{w_n\}$ representing the same point s.t. $\{w_n\}, \{x_n\}$ are u separated and $\{w_n\}, \{z_n\}$ are u separated. In particular, $\{w_n\}, \{x_n\}, \{o\}$ and $\{w_n\}, \{z_n\}, \{o\}$ are u separated. Using the Möbius-condition again.

$$\frac{d(o', x'_n)}{d'_n} = \frac{d(o', x'_n)}{d(o', z'_n)}
= \frac{d(o', x'_n)}{d(o', w'_n)} \frac{d(o', w'_n)}{d(o', z'_n)}
< \eta(\frac{d(o, x_n)}{d(o, w_n)}) \eta(\frac{d(o, w_n)}{d(o, z_n)})
= \eta(\frac{d(o, x_n)}{d_n} \frac{d_n}{d(o, w_n)}) \eta(\frac{d(o, w_n)}{d_n})
\to \eta(1)^2$$
(9)

Thus $\frac{d(o',x'_n)}{d'_n}$ is bounded.

(2) The map $\{x_n\} \to \{f(x_n)\}\$ is well-defined from $X_{\omega}(d_n)$ to $Y_{\omega}(d'_n)$.

If $\{x_n\}$ and $\{y_n\}$ are two sequences representing the same point different from the origin o_{ω} , then by lemma 8 and lemma 7, either $\{x_n\}, \{y_n\}, \{o\}$ are separated by u, or there exists a sequence $\{w_n\}$ representing the same point s.t. $\{x_n\}, \{w_n\}, \{o\}$ and $\{y_n\}, \{w_n\}, \{o\}$ are separated by u. In the first case,

$$\begin{split} \frac{d(x'_n, y'_n)}{d'_n} &= \frac{d(o', x'_n)}{d'_n} \frac{d(x'_n, y'_n)}{d(x'_n, o')} \\ &\leq \frac{d(o', x'_n)}{d'_n} \eta \Big(\frac{d(x_n, y_n)}{d(x_n, o)} \Big) \\ &= \frac{d(o', x'_n)}{d'_n} \eta \Big(\frac{d(x_n, y_n)}{d_n} \frac{d_n}{d(x_n, o)} \Big) \\ &\to 0 \end{split}$$

In the second case,

$$\begin{split} \frac{d(x'_n, y'_n)}{d'_n} &\leq \frac{d(x'_n, w'_n)}{d'_n} + \frac{d(w'_n, y'_n)}{d'_n} \\ &\leq \frac{d(o', x'_n)}{d'_n} \frac{d(x'_n, w'_n)}{d(x'_n, o')} + \frac{d(o', y'_n)}{d'_n} \frac{d(y'_n, w'_n)}{d(y'_n, o')} \\ &\leq \frac{d(o', x'_n)}{d'_n} \eta \Big(\frac{d(x_n, w_n)}{d(x_n, o)} \Big) + \frac{d(o', y'_n)}{d'_n} \eta \Big(\frac{d(y_n, w_n)}{d(y_n, o)} \Big) \\ &\leq \frac{d(o', x'_n)}{d'_n} \eta \Big(\frac{d(x_n, w_n)}{d_n} \frac{d_n}{d(x_n, o)} \Big) + \frac{d(o', y'_n)}{d'_n} \eta \Big(\frac{d(y_n, w_n)}{d_n} \frac{d_n}{d(y_n, o)} \Big) \\ &\to 0 \end{split}$$

Hence, in both cases $x'_{\omega} = y'_{\omega}$.

Let $\{x_n\}$ be a sequence representing the origin o_{ω} . If $\{x_n\}$ is a bounded sequence, then by assumption on f also $\{x'_n\}$ is bounded and therefore $x'_{\omega} = o'_{\omega}$.

If $d(o, x_n)$ diverges, then $\{x_n\}$ and $\{o\}$ are *u*-separated. We may pick $y_\omega \neq o_\omega$, then by lemma 7, $\{x_n\}, \{y_n\}, \{o\}$ are *u*-separated. Thus,

$$\frac{d(o', x'_n)}{d'_n} = \frac{d(o', y'_n)}{d'_n} \frac{d(o', x'_n)}{d(o', y'_n)}
\leq \frac{d(o', y'_n)}{d'_n} \eta(\frac{d(o, x_n)}{d(o, y_n)})
= \frac{d(o', y'_n)}{d'_n} \eta(\frac{d(o, x_n)}{d_n} \frac{d_n}{d(o, y_n)})
\to 0.$$
(10)

Therefore $o'_{\omega} = x'_{\omega}$.

(3) The map $g: \{x_n\} \to \{f(x_n)\}$ is quasi-symmetric and in particular continuous and injective.

Let $\{w_n\}$, $\{x_n\}$, $\{y_n\}$ be sequences representing three distinct points w_{ω}, x_{ω} and y_{ω} in $X_{\omega}(d_n)$. By lemma 7, $\{w_n\}$, $\{x_n\}$, $\{y_n\}$ are pairwise u separated. Thus

$$\frac{d(x_n',y_n')}{d(x_n',w_n')} < \eta(\frac{d(x_n,y_n)}{d(x_n,w_n)}),$$

equivalently

$$\frac{d(x'_n, y'_n)}{d'_n} \frac{d'_n}{d(x'_n, w'_n)} < \eta(\frac{d(x_n, y_n)}{d_n} \frac{d_n}{d(x_n, w_n)}).$$

Taking the ω -limit gives

$$\frac{d_{\omega}(x'_{\omega}, y'_{\omega})}{d_{\omega}(x'_{\omega}, w'_{\omega})} \le \eta(\frac{d_{\omega}(x_{\omega}, y_{\omega})}{d_{\omega}(x_{\omega}, w_{\omega})}).$$

Hence, if $g: \{x_n\} \mapsto \{f(x_n)\}$ is non-constant, then it is continuous and injective. Notice that $\{o'\}$ and $\{f(z_n)\}$ do not represent the same points, so g is indeed non-constant.

3 Examples

3.1 Sublinearly Lipschitz Equivalences

In [5] Y. Cornulier introduces sublinearly Lipschitz maps. A map $f: X \to Y$ between metric spaces is a sublinearly Lipschitz map, if there exists an admissible function $u: \mathbb{R}_+ \to \mathbb{R}$ such that

$$d(f(x), f(y)) \le Cd(x, y) + C'u(|x| + |y|), \quad \forall x, y \in X,$$

for some constants C, C' > 0.

Two sublinearly Lipschitz maps f, f' are equivalent, if there exists an admissible function v and a constant C'' > 0, such that

$$d(f(x), f'(x)) \le C''v(|x|)$$

for all $x \in X$.

Sublinearly Lipschitz maps between metric spaces form a category. Taking asymptotic cones yields a functor from the sublinearly Lipschitz category to the Lipschitz category. The sublinearly Lipschitz category is in some sense the maximal category with such a property.

The isomorphisms in the sublinearly Lipschitz category are called sublinearly Lipschitz equivalences, or SBE maps.

Proposition 9. Every SBE-map $f: X \to Y$ is an AM-map with linear η .

Proof: If f is SBE, then f is bi-Lipschitz except at scales below some admissible function u. Indeed, let $x, y \in X$ s.t.

$$d(x,y) \ge u(|x| + |y|).$$

Then

$$d(f(x), f(y)) \le cd(x, y) + Cu(|x| + |y|)$$

$$\le (c + C)d(x, y),$$
(11)

and

$$d(f(x), f(y)) \ge c' d(x, y) - C' u(|x| + |y|)$$

$$\ge (c' - C') d(x, y)$$
(12)

Hence, there exists D > 0, s.t. for all x, y > u,

$$\frac{1}{D}d(x,y) \le d(f(x),f(y)) \le Dd(x,y).$$

In particular, f is an AM-map with linear η .

3.2 Assouad-type maps

Assouad's embedding theorem [1] [10] says that every snowflake $X^{\alpha} = (X, d^{\alpha})$, $0 < \alpha < 1$, of a doubling metric space admits a bi-Lipschitz embedding into some Euclidean space.

Clearly, the Assouad embedding of a doubling metric space into Euclidean space is an asymptotic-Möbius map.

In the following we construct an example of a Assouad type map from an infinite dimensional Heisenberg group into a Hilbert space. This construction follows straightforwardly from a construction by Lee and Naor in the finite dimensional case [9].

Let H be an infinite dimensional complex Hilbert space. H carries the symplectic form $\Omega(a,b)=\mathrm{Im}(\langle a,b\rangle)$.

The infinite dimensional Heisenberg group \mathcal{H}_{Ω} , is the set of tuples (a,t) with $a \in H$, $t \in \mathbb{R}$ and group law

$$(a,t)(a',t') = (a+a',t+t'+2\Omega(a,a')).$$

Let G be a group with identity element e. A group seminorm on G is a function $G \to [0, \infty)$ that satisfies $N(g^{-1}) = N(g)$ for all $g \in G$, $N(gh) \leq N(g) + N(h)$ for all $g, h \in G$ and N(e) = 0. If in addition N(g) = 0 if and only if g = e, then N is a group norm on G.

The function

$$N(a,t) = \sqrt{\sqrt{||a||^4 + t^2} + ||a||^2},$$

is a group norm on \mathcal{H}_{Ω} . Indeed, if N_1 and N_2 are group seminorms, then $\sqrt{N_1^2+N_2^2}$ is a group seminorm. In this case $N_1=(||a||^4+t^2)^{\frac{1}{4}}$ is the Koranyi-norm. Given N,

$$d_N((a,t),(a',t')) = N((a,t)(a',t')^{-1})$$

is a right-invariant metric on \mathcal{H}_{Ω} .

Let G be a group, a Hermitian kernel on G is a complex valued function $K: G \times G \to \mathbb{C}$ that satisfies $K(g,h) = \overline{K(h,g)}$ for all $g,h \in G$.

A Hermitian kernel on G is positive definite if

$$\sum_{i,j}^{n} K(g_i, g_j) c_i \overline{c_j} \ge 0$$

for all $g_1, \ldots, g_n \in G$ and for all complex numbers $c_1, \ldots, c_n \in \mathbb{C}$, with equality if and only if the c_i vanish. A Hermitian kernel on G is conditionally negative definite if

$$\sum_{i,j}^{n} K(g_i, g_j) c_i \overline{c_j} \le 0$$

for all $g_1, \ldots, g_n \in G$ and for all complex numbers $c_1, \ldots, c_n \in \mathbb{C}$ satisfying $\sum_{i=1}^{n} c_i = 0$ and with equality if and only if the c_i vanish.

Theorem 2 (Schönberg). Let G be a group, $K: G \times G \to \mathbb{R}$ a real valued kernel on G satisfying $K(g,g) = 0 \ \forall g \in G$. Then K is negative definite if and only if there exists a Hilberspace H and a function $T: G \to H$ such that $\forall g, h \in G: K(g,h) = \|T(g) - T(h)\|^2$.

Thus, if d_N is negative definite, then there exists a Hilbert space H and an isometry $T: (\mathcal{H}_{\Omega}, \sqrt{d_N}) \to H$. In particular, the map $T: (\mathcal{H}_{\Omega}, d_N) \to H$ is an AM-map.

A complex valued function F on a group G that satisfies $F(g^{-1}) = \overline{F(g)}$ for all $g \in G$ induces a Hermitian kernel on G by defining $K_F(g,h) := F(gh^{-1})$. The function F is said to be positive definite, if K_F is a positive definite Hermitian kernel on G.

Lemma 10. For every $\lambda \in \mathbb{R}$ the function

$$\Phi_{\lambda}(a,t) = e^{-|\lambda|\|a\|^2 + i\lambda t}$$

is positive definite on \mathcal{H}_{Ω} .

Proof: Indeed the function Φ_{λ} satisfies $\Phi_{\lambda}((a,t)^{-1}) = \overline{\Phi_{\lambda}((a,t))}$ and induces the kernel

$$K((a, s), (b, t)) := \exp(-|\lambda| ||a - b||^2 + i\lambda(s - t - 2\Omega(a, b))).$$

The kernel can be rewritten as product of three exponentials

$$\exp(-|\lambda|(||a||^2+||b||^2))\exp(i\lambda(s-t))\exp(2|\lambda|(\operatorname{Re}(\langle a,b\rangle)-i\operatorname{sign}(\lambda)\Omega(a,b))).$$

The product of positive definite kernels is positive definite. The first two factors are positive definite since for all $c_1, \ldots, c_n \in \mathbb{C}$, the matrix $(c_i\overline{c_j})_{i,j}$ is positive semi-definite. In particular also the matrix $(\exp(i\lambda(s_i-t_j))c_i\overline{c_j})_{i,j}$. The exponential of any positive definite kernel is again a positive definite kernel ([3] Proposition 8.2.). Therefore the kernel K is positive definite if

$$\operatorname{Re}(\langle a, b \rangle) - i \operatorname{sign}(\lambda) \Omega(a, b)$$

is positive definite. This is $\langle a,b\rangle$ if $\lambda<0$ and $\overline{\langle a,b\rangle}$ if $\lambda\geq0$ and therefore clearly positive definite.

Proposition 11. $d_N: \mathcal{H}_{\Omega} \times \mathcal{H}_{\Omega} \to H$ is conditionally negative definite.

Proof: The existence of $\frac{1}{2}$ -stable distributions implies that for all $\epsilon > 0$, there exists a non-negative integrable function $\varphi_{\epsilon} : \mathbb{R} \to [0, \infty)$ s.t. its Fourier-transform $\hat{\varphi}_{\epsilon}(t) = e^{-\epsilon \sqrt{|t|}}$. Notice that $\frac{1}{2\pi}\hat{\varphi}_{\epsilon}(x) = \varphi_{\epsilon}(x)$. By the lemma above,

$$F_{\epsilon}(a,t) = \int_{\mathbb{R}} e^{-|\lambda| \|a\|^2 + i\lambda t} \varphi_{\epsilon}(\lambda) d\lambda$$

is positive definite on \mathcal{H}_{Ω} . Let

$$h_k(x) = \frac{k}{\pi} \frac{1}{k^2 + x^2}$$

denote the Cauchy-distribution with scale parameter k > 0. We rewrite

$$F_{\epsilon}(a,t) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{i\lambda t} \hat{h}_{\|a\|^{2}}(\lambda) \hat{\varphi}_{\epsilon}(\lambda) d\lambda$$

$$= \frac{1}{2\pi} \int_{\mathbb{R}} e^{i\lambda t} \widehat{h}_{\|a\|^{2}} * \hat{\varphi}_{\epsilon}(\lambda) d\lambda$$

$$= (h_{\|a\|^{2}} * \hat{\varphi}_{\epsilon})(t).$$
(13)

Since F_{ϵ} is positive definite, $\frac{1-F_{\epsilon}}{\epsilon}$ is conditionally negative definite and

$$\lim_{\epsilon \to 0} \frac{1 - F_{\epsilon}(a, t)}{\epsilon} = \lim_{\epsilon \to 0} \left[h_{\|a\|^{2}} * \frac{1 - \hat{\varphi}_{\epsilon}}{\epsilon} \right]$$

$$= \lim_{\epsilon \to 0} \int_{\mathbb{R}} \frac{1 - e^{-\epsilon \sqrt{|x|}}}{\epsilon} h_{\|a\|^{2}}(t - x) dx \qquad (14)$$

$$= \frac{\|a\|^{2}}{\pi} \int_{\mathbb{R}} \frac{\sqrt{|x|}}{\|a\|^{4} + (t - x)^{2}} dx.$$

We now show that for all $r, t \in \mathbb{R}$

$$r^{2} \int_{\mathbb{R}} \frac{\sqrt{|x|}}{r^{4} + (t - x)^{2}} dx = \pi \sqrt{\sqrt{r^{4} + t^{2}} + r^{2}}.$$

By change of variables $x = r^2y$ and $s = t/r^2$, the left-hand-side can be written as

$$\int_0^\infty \left(\frac{1}{1 + (s - y)^2} + \frac{1}{1 + (s + y)^2} \right) \sqrt{y} \, dy$$

This integral equals

$$\lim_{r \to 0} \lim_{R \to \infty} \frac{1}{2} \int_{C_{r,R}} \Big(\frac{1}{1 + (s-z)^2} + \frac{1}{1 + (s+z)^2} \Big) \sqrt{z} \, dz,$$

where $C_{r,R}$ is the keyhole contour with a branch cut along the positive real axis. The integrand has simple poles at $i \pm s$ and $-i \pm s$. With $\operatorname{Res}(\frac{\sqrt{z}}{1+(s-z)^2},i+s) = \frac{\sqrt{i+s}}{2i},\operatorname{Res}(\frac{\sqrt{z}}{1+(s-z)^2},-i+s) = \frac{\sqrt{-i+s}}{-2i},\operatorname{Res}(\frac{\sqrt{z}}{1+(s+z)^2},i-s) = \frac{\sqrt{i-s}}{2i}$ and $\operatorname{Res}(\frac{\sqrt{z}}{1+(s+z)^2},-i-s) = \frac{\sqrt{-i-s}}{-2i}$. Now adding all the residues and multiplying by $2\pi i$, lets us evaluate the above equation as being

$$\frac{\pi}{2}\left(\sqrt{i+s}-\sqrt{-i+s}+\sqrt{i-s}-\sqrt{-i-s}\right)$$

This simplifies further to

$$\pi \operatorname{Re}(\sqrt{i+s} + \sqrt{i-s}) = \pi \left(\operatorname{Re}(\sqrt{i+s}) + \operatorname{Im}(\sqrt{i+s}) \right)$$

$$= \pi \left(\sqrt{\frac{\sqrt{1+s^2} + s}{2}} + \sqrt{\frac{\sqrt{1+s^2} - s}{2}} \right)$$

$$= \pi \sqrt{\sqrt{1+s^2} + 1}$$

$$(15)$$

Thus we have seen, that the N-norm is a limit of conditionally negative definite functions on \mathcal{H}_{Ω} , hence it is conditionally negative definite.

4 Applications to dimension theory

4.1 Dimension theory of finitely-generated groups

In 1993 M. Gromov introduced a notion of asymptotic dimension as a large scale analogue of Lebesgue's covering dimension [6]. The asymptotic dimension of a finitely generated group is a quasi-isometric invariant. Its most prominent application is due to Yu G., who showed that every finitely generated group with finite homotopy type and finite asymptotic dimension, satisfies the Novikov conjecture [15].

Definition 12. Let X be a metric space. We say that the asymptotic dimension of X does not exceed n provided for every uniformly bounded open cover \mathcal{V} of X there is a uniformly bounded open cover \mathcal{U} of X of multiplicity $\leq n+1$ so that \mathcal{V} refines \mathcal{U} . We write asdim X = n if it is true that $asdim X \leq n$ and $asdim X \nleq n-1$

The asymptotic dimension of a finitely generated group Γ has several interesting implications. For example asdim $\Gamma = 0$ if and only if Γ is finite (Proposition 65. in [2]) and asdim $\Gamma = 1$ if and only if Γ is virtually free (Theorem 66. in [2]).

If G is a finitely generated nilpotent group, then its asymptotic cone G_{ω} is a Carnot group [11] and the asymptotic dimension of G agrees with the topological dimension of its asymptotic cone [2].

Theorem 3. Let G and G' be a finitely generated nilpotent groups and $f: G \to G'$ an AM-map, then $\operatorname{asdim}(G) \leq \operatorname{asdim}(G')$. If G and G' are nilpotent Lie groups, then $\dim(G) \leq \dim(G')$. Futhermore, if $\operatorname{asdim}(G) = \operatorname{asdim}(G')$, then the asymptotic cones of G and G' are isomorphic graded Lie groups. Conversely, given nilpotent groups with isomorphic asymptotic cones, there exists an asymptotic-Möbius map between them.

Proof: The map f induces a quasi-symmetric map g between asymptotic cones G_{ω} and G'_{ω} of G and G' respectively.

In particular g is an injective map from G_{ω} to G'_{ω} and therefore the topological dimensions increase. Since G and G' are nilpotent, asdim(G) = top-dim $(G_{\omega}) \leq$ top-dim (G'_{ω}) = asdim(G').

The case for nilpotent Lie groups follows from the fact that for nilpotent Lie groups, $top-dim(G) = top-dim(G_{\omega})$.

If $\operatorname{asdim}(G) = \operatorname{asdim}(G')$, the invariance of domain theorem implies that g is a homeomorphism. Since both g and g^{-1} are quasi-symmetric, they are a.e. differentiable by Pansu's theorem and the differential of g is at almost every point a graded isomorphism of groups [12].

4.2 Dimension theory of CAT(0)-spaces

Heinrich Jung observed in early 1900, that the diameter of a set in Euclidean space \mathbb{R}^n is related to the radius of the minimum enclosing ball by an inequality, whose constant depends only on the dimension n [7]. Precisely, for any set $A \subset \mathbb{R}^n$

$$r \le d(A)\sqrt{\frac{n}{2(n+1)}},\tag{16}$$

where r is the radius of the minimum enclosing ball of A and d(A) is the diameter of A.

Caprace and Lytchak observed [4], that a CAT(0)-space has geometric dimension less than n (as defined by B. Kleiner [8]), if and only if Jung's inequality (16) is true.

Remark 13. It turns out that the geometric dimension of a CAT(0)-space X is equal to the maximal topological dimension of all compact subsets in X [8].

The geometric dimension can be turned into a large-scale notion in the following manner. A CAT(0)-space X has telescopic dimension less then n if and only if for every $\delta > 0$, there exists a D > 0 such that for every set A in X with diameter larger then D,

$$r \le \left(\delta + \sqrt{\frac{n}{2(n+1)}}\right) d(A). \tag{17}$$

Alternatively,

Definition 14. A CAT(0)-space X has telescopic dimension $\leq n$, if every asymptotic cone has geometric dimension $\leq n$.

We adopt the notation tele- $\dim(X)$ for the telescopic dimension of X.

Theorem 4. Let X and Y be CAT(0) spaces. If there exists an AM-map $f: X \to Y$, then the telescopic dimension increases e.g. tele-dim $(X) \le$ tele-dim(Y).

The theorem follows straight forward from Theorem 1, Remark 13 and the fact that the topological dimension increases under injective continuous maps.

As a consequence, there cannot exist an AM-map from Euclidean buildings of finite rank r and thus telescopic dimension r, to a Euclidean building of lower rank.

If there exists an AM-map from a CAT(0) space to a hyperbolic metric space, then X is a hyperbolic metric space as well.

References

- [1] ASSOUAD, P. Plongements lipschitziens dans \mathbb{R}^n . Bulletin de la Société Mathématique de France 111 (1983), 429 448.
- [2] Bell, G., and Dranishnikov, A. Asymptotic dimension. Topology and its Applications 155, 12 (2008), 1265–1296.
- [3] Benyamini, Y., and Lindenstrauss, J. Geometric Nonlinear Functional Analysis, vol. 1 of American Mathematical Society colloquium publications. American Mathematical Soc., 1998.
- [4] Caprace, P., and Lytchak, A. At infinity of finite-dimensional cat(0) spaces. *Math. Ann.* 346 (2010), 1 21.
- [5] CORNULIER, Y. On sublinear bilipschitz equivalence of groups. Annales scientifiques de l'École normale supérieure 52 (02 2017).
- [6] Gromov, M. Asymptotic invariants of infinite groups, vol. 2. Cambridge Univ. Press, 1993.
- [7] JUNG, H. Ueber die kleinste kugel, die eine r\u00e4umliche figur einschliesst. Journal f\u00fcr die reine und angewandte Mathematik (Crelles Journal) 1901, 123 (1901), 241-257.
- [8] KLEINER, B. The local structure of length spaces with curvature bounded above. *Mathematische Zeitschrift 231* (1999), 409 456.
- [9] LEE, J. R., AND NAOR, A. Lp metrics on the heisenberg group and the goemans-linial conjecture. In 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06) (2006), pp. 99–108.
- [10] NAOR, A., AND NEIMAN, O. Assouad's theorem with dimension independent of the snowflaking. Rev. Mat. Iberoam. 28, 4 (2012), 1123 – 1142.
- [11] PANSU, P. Croissance des boules et des géodésiques fermées dans les nilvariétés. Ergodic Theory and Dynamical Systems 3, 3 (1983), 415–445.
- [12] Pansu, P. Metriques de carnot-caratheodory et quasiisometries des espaces symetriques de rang un. Annals of Mathematics 129, 1 (1989), 1–60.
- [13] PANSU, P. Large scale conformal maps. Annales Scientifiques de l'Ecole Normale Supérieure: publiées sous les auspices du Ministre de l'Instruction publique 54, 4 (2021), 831 – 887.
- [14] VÄISÄLÄ, J. Quasi-möbius maps. J. Analyse Math. 44 (1984/85), 218 – 234.
- [15] Yu, G. The novikov conjecture for groups with finite asymptotic dimension. Annals of Mathematics 147, 2 (1998), 325–355.

Orsay, September 30, 2021.

 $^{2020\} Mathematical\ Subject\ Classification..$

Keywords and phrases. Möbius geometry, large scale geometry.

GEORG GRÜTZNER UNIVERSITÉ PARIS-SACLAY, CNRS LABORATOIRE DE MATHÉMATIQUES D'ORSAY 91405 ORSAY CÉDEX, FRANCE DATASHAPE, CENTRE INRIA SACLAY 91120 PALAISEAU, FRANCE

georg.gruetzner@universite-paris-saclay.fr